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Bronchial premalignant lesions (PMLs) precede the development of invasive lung squamous cell car-
cinoma (LUSC), posing a significant challenge in distinguishing those likely to advance to LUSC from
those that might regress without intervention. This study followed a novel computational approach, the
Graph Perceiver Network, leveraging hematoxylin and eosinestained whole slide images to stratify
endobronchial biopsies of PMLs across a spectrum from normal to tumor lung tissues. The Graph
Perceiver Network outperformed existing frameworks in classification accuracy predicting LUSC, lung
adenocarcinoma, and nontumor lung tissue on The Cancer Genome Atlas and Clinical Proteomic Tumor
Analysis Consortium datasets containing lung resection tissues while efficiently generating pathologist-
aligned, class-specific heatmaps. The network was further tested using endobronchial biopsies from two
data cohorts, containing normal to carcinoma in situ histology. It demonstrated a unique capability to
differentiate carcinoma in situ lung squamous PMLs based on their progression status to invasive
carcinoma. The network may have utility in stratifying PMLs for chemoprevention trials or more
aggressive follow-up. (Am J Pathol 2024, 194: 1285e1293; https://doi.org/10.1016/
j.ajpath.2024.03.009)
Supported by NIH grants R21-CA253498 (J.E.B., V.B.K., R.H.G., and
Y.Z.), U2C-CA233238 (J.E.B., S.A.M., D.T.M., and M.E.R.), R01-
HL159620 (V.B.K.), R43-DK134273 (V.B.K.), RF1-AG062109 (V.B.K.),
P30-AG073104 (V.B.K.), and 1UL1TR001430 (V.B.K.); Johnson &
Johnson Enterprise Innovation, Inc. (R.H.G., Y.Z., E.J.G., D.T.M., E.J.B.,
V.B.K., J.E.B., S.A.M., and M.E.R.); the American Heart Association
20SFRN35460031 (V.B.K.); and the Karen Toffler Charitable Trust
(V.B.K.).

V.B.K. and J.E.B. contributed equally to this work.
Lung squamous cell carcinoma (LUSC), the second most
common type of nonesmall-cell lung cancer, is preceded by
the development of bronchial premalignant lesions (PMLs)
that can progress toward invasive carcinoma or regress
without intervention. Recently, genomic and proteomic
profiling of PMLs has demonstrated that PML progression
is associated with impaired immunosurveillance.1e5

Currently, there are ongoing efforts to build a Lung Pre-
Cancer Atlas6 to understand molecular alterations in their
spatial context associated with disease severity and pro-
gression. To date, hematoxylin and eosinestained tissue
slides of PMLs have not been fully used as a data source to
augment our insights into PML biology. Endobronchial
biopsies of PMLs are heterogeneous and contain a range of
histologic grades, a variety of structures, including cartilage
tigative Pathology. Published by Elsevier Inc. A
and submucosal glands, and varying degrees of inflamma-
tory cell infiltration. We hypothesized that computational
methods that use digitized hematoxylin and eosinestained
whole slide images (WSIs) may be able to capture PML
heterogeneity and stratify PMLs by histologic severity or
their ability to progress to invasive carcinoma, providing a
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standardized and informative WSI-level assessment of
PMLs.

Towards this end, a Graph Perceiver Network (GRAPE-
Net) was developed to characterize PMLs using lung tissue
WSIs from public cohorts [The Cancer Genome Atlas
(TCGA) and Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC)], consisting of normal (nontumor adja-
cent), lung adenocarcinoma (LUAD), and LUSC tissue
samples. GRAPE-Net was trained using TCGA samples and
tested using CPTAC samples. It was then used to learn
WSI-level features and classes of endobronchial biopsy-
based WSIs from two datasets from the University College
London (UCL) and the Roswell Park Comprehensive Can-
cer Institute (Roswell). The network identified signatures
that differentiated the lung tissue types, stratified samples by
their predominant histologic pattern within LUSC and
LUAD tumors, and identified carcinoma in situ (CIS) PMLs
that progress to LUSC.

Materials and Methods

Ethics Statement

The Institutional Review Boards at Boston University
Chobanian and Avedisian School of Medicine (Boston,
MA) and the Roswell Park Comprehensive Cancer Center
(Buffalo, NY) approved the study. All subjects provided
written informed consent. Data from TCGA, CPTAC, and
UCL are publicly available.

Data Acquisition and Preprocessing

Digitized hematoxylin and eosinestained WSIs of lung
resection tissue and lung tumor subtype annotation were
obtained from TCGA (534 normal, 740 LUSC, and 808
LUAD) and CPTAC (719 normal, 685 LUSC, and 667
LUAD). Predominant tumor histologic pattern was obtained
for the CPTAC samples. The endobronchial biopsy WSIs
were from two datasets: UCL (112 CIS samples),4 where
progression was defined as development of LUSC; and
Roswell (346 samples, normal to CIS spectrum),1 where
progression was defined as persistence of dysplasia,
advancement to mild dysplasia, or a worst histologic grade
(Figure 1A). The UCL CIS samples included supplementary
details about the samples’ lymphocyte counts in CIS and
stromal regions. The Roswell samples included molecular
phenotypes identified using RNA-sequencing data, such as
PML molecular subtype that included four categories, pro-
liferative, inflammatory, secretory, and normal-like, as pre-
viously described.1

To evaluate the model’s explanations, WSIs from CPTAC,
Roswell, and UCL were uploaded to a web-based software
(PixelView; deepPath, Boston, MA). Several regions on the
WSIs were annotated by board-certified thoracic pathologists
(D.T.M. and E.J.B.) using the software. In the LUAD spec-
imens, tumor areas were annotated by their histologic
1286
patterns (solid, micropapillary, cribriform, papillary, acinar,
and lepidic). For both LUAD and LUSC tumors, histologic
features, including necrosis, lymphatic invasion, and vascular
invasion, were also annotated. Airways present in the tissues
were graded on the spectrum of normal to CIS, and nontumor
tissue areas were labeled as healthy or inflamed lung tissue,
stroma, or necrosis. The LUAD and LUSC annotations were
combined into tumor, stroma, normal lung, and necrosis for
analysis. For the endobronchial biopsy samples, the histo-
logic grade of the epithelial regions was annotated as normal,
hyperplasia, immature squamous metaplasia, squamous
metaplasia, mild dysplasia, moderate dysplasia, severe
dysplasia, and CIS. These annotations were combined into
CIS, dysplasia, and nondysplasia for analysis. The overlap
between the model-produced heatmaps and the pathologist
annotations was analyzed by exporting them as binary
images.
WSIs are inherently large, often exceeding dimensions of

tens of thousands of pixels in both width and height. This
presents challenges for analyzing them because of compu-
tational and memory constraints. To address these limita-
tions, each WSI was passed through a fast-patching pipeline
at �20 magnification, generating nonoverlapping tissue re-
gion patches of 256 � 256 pixels while filtering out back-
ground slide information. Key epithelial regions were
retained via Otsu thresholding.7 To prepare the data as input
for GRAPE-Net, each WSI was represented as an undi-
rected, unweighted graph with nodes representing the tissue
image patches and edges connecting the nodes. The graph
followed an eight-connectivity neighborhood structure. The
node embeddings in the graph were structured as a matrix of
N feature vectors, where N is the total number of patches in
the WSI (nodes in the graph). Each vector was of size 768
dimensions. The features for each patch were obtained from
CTransPath,8 a swin-transformer9 based feature extractor.
CTransPath was pretrained on TCGA pan-cancer dataset in
a self-supervised manner. The graph neighborhood con-
nections were structured as a binary N � N matrix (adja-
cency matrix A) with elements eijZ1 if there existed an
edge between nodes i and j. These graphs fed into GRAPE-
Net, which was then trained for a WSI classification task
(Figure 1B).

Graph Perceiver Network

The architectural design of GRAPE-Net consists of three
main components (Figure 2): i) a graph convolution block10

that retains position information in the input features via
edge connections between neighboring nodes, ii) a cross-
attention pooling block from perceiver11 that maps vari-
able number of patches per WSI graph to predefined clusters
(or sets), and iii) a self-attention block12 that learns relevant
interactions between the sets.
The goal of GRAPE-Net is to learn a representation of the

WSI. The graph convolution block contributes to this by
stacking multiple graph convolutional layers to learn
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Overview of the study. A: Digitized hematoxylin and eosinestained whole slide images were obtained from four different datasets, including lung
resection tissues [The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets] with nontumor tissue adjacent to the
tumor (Normal), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC) and endobronchial biopsies [University College London (UCL) and
Roswell Park Comprehensive Cancer Institute (Roswell) datasets] ranging from normal to carcinoma in situ (CIS) histology. The model was trained on TCGA data
and tested across TCGA, CPTAC, UCL, and Roswell datasets. B: Graph Perceiver Network overview trained to differentiate lung cancer subtypes. C: Overview of
analysis conducted using the results of the model that included evaluation of model performance, calculation of clustering-based metrics using whole slide
image features, and model explainability using class-specific heatmaps. Panel A was generated with BioRender.com (Toronto, ON, Canada).

Lung Lesion Pathology Stratification
hierarchical features efficiently. Specifically, the first few
layers capture the local, low-level patterns, whereas the
deeper layers aggregate them to understand the global
structures within the graph. Next, inspired by the recent work
on using min-cut pooling on a graph-transformer network for
WSI-level classification,13 and adaptive aggregation func-
tions used in recent graph classification problems,14 GRAPE-
Net uses a cross-attention pooling block from the perceiver.
This module simplifies graph-transformer network by
replacing the min-cut pooling15 mechanism with cross-
Tissue Graph Graph Convolution

Figure 2 Graph Perceiver Network (GRAPE-Net) architecture. Each whole slid
where each node is an embedding of features in an image patch. Our proposed GR
preserving spatial context. To efficiently find the neighborhood interaction betwe
clustered to C overlapping sets by pooling the nodes using multihead cross-attenti
the self-attention block (SAB), which learns morphologic interactions with its ne
interest. The aggregated attentions are then given as input to a multilayer perce
(LUAD), or lung squamous cell carcinoma (LUSC). Here, the layer-specific feature
added to serve as the entire WSI representation, which is used for classification
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attention layers, which cluster the graph nodes with similar
embeddings and spatial proximity to predefined latent clus-
ters, denoted as sets. The number of sets used in the cross-
attention pooling module is a hyperparameter C, typically
much smaller than the expected number of visual tokens. The
formed sets, accompanied by a classification token, are inputs
to the self-attention block, mirroring the approach employed
in vision transformers.16 The self-attention block assigns
weights to each set embedding for classification. The cross-
attention pooling and self-attention block modules are
CLS
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e image (WSI) is represented as an undirected, unweighted tissue graph,
APE-Net aggregates neighborhood information via graph convolutions while
en the different tissue regions in the tumor microenvironment, the graph is
on pooling (PMA) block. The fixed set embeddings are then given as input to
ighborhood and relevance of each set toward the specific output label of
ptron (MLP) for classification of the WSI as normal, lung adenocarcinoma
representation of the graph is denoted as H. A classification token (CLS) is
and computing the relevance of each graph node toward the prediction.
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alternatively stacked, allowing the set embeddings to extract
information from the input WSI graph based on the previous
layer’s learnings. This strategy preserves positional infor-
mation of the graph nodes in the sets. Weight-sharing strat-
egy of the perceiver was followed to optimize computations
and reduce memory constraints. The final self-attention block
is followed by a multilayer perceptron, which facilitates
multiclass prediction. The classification token embedding
from the self-attention block represents the slide-level ag-
gregation vector of the weighted sets. The use of the classi-
fication token instead of averaging the embeddings of sets
facilitates explainability in the network.

The current model introduced novelty by integrating the
graph module with the perceiver architecture, enabling
sparse graph computations on the visual tokens and
computationally efficient modeling of a graph for down-
stream tasks. For the use case, it served as an end-to-end,
amortized clustering algorithm, which clustered distinct re-
gions of the tissue into overlapping sets, preserving vital
spatial interactions that enhanced the comprehension of the
biological processes withing tumor tissues.

Experimental Design

GRAPE-Net was trained as a three-label classifier (LUAD,
LUSC, or normal). The study used TCGA dataset, with strat-
ified patient-level sampling and fivefold cross-validation
(Supplemental Figure S1) with internal testing. The receiver
operating characteristic and precision-recall curves for each
class were computed along with the accuracy, precision,
sensitivity, and specificity as performancemetrics (Figure 1C).
To ensure the classifier is robust to dataset-specific batch ef-
fects, it was evaluated on the unseen CPTAC cohort. Model
weights of the fold with the highest sensitivity (recall) on the
CPTAC cohort was used for further post hoc analysis.

To evaluate the effectiveness of the proposed network,
the study compared the model performance with a state-of-
the art lung tumor classification model, graph-transformer
network. Because the model leverages graph convolutions, a
traditional graph classifier, Graph Isomorphism Network,10

was selected for comparison. To ensure fair comparison,
CTransPath8 was used as the common feature extractor for
all methods and the same cross-validation parameters were
used for training. The hyperparameters stated in the
respective published research of graph-transformer network
and Graph Isomorphism Network were used to achieve the
best performance on TCGA and CPTAC cohorts. Optimal
hyperparameters for the network configuration involved a
hidden dimension of 64, a graph block with three GIN
Convolution layers, a cross-attention pooling configuration
of 200 sets, and a three self-attention layers per self-atten-
tion block. Eight heads were used for multihead attention
training. To avoid overfitting, dropouts with a rate of 0.2
were used in feed-forward blocks, and binary cross-entropy
loss to enhance robustness. Training was completed over 30
epochs in eight-sample minibatches, using early stopping, a
1288
0.0003 initial learning rate, a step scheduler, and the Adam
optimizer17 for expedited convergence. All the experiments
were performed on a single GeForce RTX 2080Ti 11 Gb
workstation (Nvidia, Santa Clara, CA).
For post hoc analysis, the WSI-level features for each

sample were extracted by giving the respective graphs as
input to the trained three-label GRAPE-Net classifier. The
64-dimensional features from the final layer of the network
were considered as the representations for each WSI and
used for further analysis. Uniform manifold approximation
and projection manifold representations18 and principal
component analysis (PCA) representations were plotted to
illustrate the relationship between image features and sam-
ple phenotypes (Figure 1C). Sample phenotypes were
grouped as follows: normal adjacent lung tissue, LUSC, and
LUAD for the lung tissue data (CPTAC). Within CPTAC,
differences were examined in the principal components
associated with LUSC predominant histologic patterns
(keratinizing or nonkeratinizing) and LUAD predominant
histologic patterns grouped as follows: solid/micropapillary/
cribriform or lepidic/acinar/papillary. Within the CIS sam-
ples, differences in the principal components were examined
by progression status. Post hoc analysis results suggest that
the model is robust to cohort-based batch effects between
Roswell and UCL cohorts.

Explainability Analysis

GRAPE-Net learns the classification label-relevant contri-
butions of the tissue regions during training. These expla-
nations are shown as heatmaps using a relevance
propagation mechanism19 (Figure 1C). This mechanism is a
generic attention-based model explanation for bimodal
transformers. It uses attentions and gradients from the self-
attention block and cross-attention pooling blocks to pro-
duce relevancy maps for each interaction between the sets C
and the assigned nodes N. The relevancy map from cross-
attention layers provides the individual contributions of each
node (patch) for the final prediction instead of distributing
the contribution of each set as an average to all the nodes
within the set. These relevancy maps are constructed on the
WSI using the adjacency matrix A and coordinates of all the
patches on the WSI.

Data Availability

TCGA data used here are in part based on the data generated
by TCGA Research Network (https://www.cancer.gov/tcga,
last accessed April 11, 2021). CPTAC data used here were
downloaded via the National Cancer Institute’s Cancer
Imaging Archive [lung squamous cell carcinoma images:
CPTAC-LSCC data set (Version 15). The Cancer Imaging
Archive, 2018, https://doi.org/10.7937/K9/TCIA.2018.
6EMUB5L2; and LUAD: CPTAC-LUAD data set
(Version 12). The Cancer Imaging Archive, 2018, https://
doi.org/10.7937/K9/TCIA.2018.PAT12TBS; both last
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Classification performance. Receiver operating characteristic (ROC) and precision-recall (PR) curves showcasing the performance of Graph
Perceiver Network (GRAPE-Net) toward multiclass classification on Clinical Proteomic Tumor Analysis Consortium (CPTAC) external testing dataset. The mean �
SD area under the curve (AUC) score for each label [normal, lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC)] is provided for the ROC
and PR curves.

Lung Lesion Pathology Stratification
accessed June 2, 2021]. UCL data can be obtained online
(https://idr.openmicroscopy.org with IDR0082, last
accessed November 23, 2021). Roswell images will be
accessible via the Human Tumor Atlas Network Data
Portal (https://humantumoratlas.org) Data Release V5.1
using the file identifications provided in Supplemental
Table S1.

Code Availability

Computer scripts and manuals are made available on GitHub
(https://github.com/vkola-lab/ajpa2024, last accessed February
13, 2024).

Statistical Analysis

The performance of GRAPE-Net was compared with other
approaches for the tumor classification task in lung cancer
(train on TCGA test on CPTAC), highlighting its efficiency
while performing like the state-of-the-art methods. Uniform
manifold approximation and projection and PCA clustering
analyses were conducted using Scanpy framework.20 Clus-
tering performance was evaluated using adjusted Rand score
and adjusted mutual index, with higher scores displaying
Table 1 Performance Metrics for the Three-Label (Normal versus LUAD

Method Data

Precision Recall/sensitivit

Normal LUAD LUSC Normal LUA

GRAPE-Net TCGA 97.6 (0.8) 89.7 (2.1) 88.7 (2.6) 99.0 (0.5) 88.8
CPTAC 95.9 (2.2) 79.7 (3.2) 88.8 (2.7) 95.3 (2.0) 89.6

GTP TCGA 96.0 (1.5) 90.5 (2.3) 90.7 (1.9) 98.5 (1.0) 89.8
CPTAC 92.8 (7.5) 82.9 (4.5) 91.1 (4.3) 96.9 (1.7) 88.9

GIN TCGA 97.3 (1.2) 89.7 (2.5) 85.7 (3.6) 98.4 (1.1) 85.9
CPTAC 95.9 (0.2) 82.5 (0.4) 78.3 (0.3) 89.0 (6.8) 83.5

Mean performance metrics (percentages) with SD values in parentheses are repo
published state-of-the-art methods in TCGA and CPTAC datasets.
CPTAC, Clinical Proteomic Tumor Analysis Consortium; GIN, Graph Isomorphis

network; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TCGA
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good clustering for user-specified labels. Statistical signifi-
cance between principal components and sample character-
istics was assessed through two-tailed t-tests and Spearman
correlation coefficient experiments, with analyses performed
at a significance PZ 0:05.

Results

GRAPE-Net Performance

GRAPE-Net demonstrated high classification performance
on TCGA [mean � SD area under the receiver operating
curve (AUROC) Z 0.98 � 0.01; and mean � SD area under
the precision recall curve (AUPRC) Z 0.98 � 0.01] and
CPTAC data (mean � SD AUROC Z 0.93 � 0.01; and
mean � SD AUPRC Z 0.95 � 0.02) (Figure 3), using
significantly fewer resources compared with two published
frameworks (Table 1) (GRAPE-Net has approxi-
mately 202,000 whereas graph-transformer network has
approximately 664,000 trainable parameters). Fivefold cross-
validation indicated good agreement between the true and
predicted tumor classes on both TCGA and CPTAC data,
across different folds, displaying the robustness of the model
to data bias used for training and testing. For each sample,
versus LUSC) Classification Task

y Specificity Accuracy

D LUSC Normal LUAD LUSC All

(2.1) 88.8 (2.2) 99.1 (0.3) 93.5 (1.3 93.8 (1.0) 91.4 (1.0)
(3.6) 78.1 (5.1) 97.8 (1.3) 89.0 (2.4) 95.0 (1.5) 87.8 (1.1
(1.5) 89.7 (1.6) 98.6 (0.6) 94.0 (1.4) 94.9 (0.8) 92.0 (1.2)
(5.0) 78.5 (7.4) 95.5 (5.3) 91.0 (3.3) 95.9 (2.6) 88.2 (2.1)
(3.3) 89.2 (2.8) 99.0 (0.4) 93.8 (1.6) 92.1 (1.4) 90.3 (1.7)
(3.5) 82.8 (4.4) 97.9 (1.2) 91.5 (2.3) 88.5 (2.4) 85.2 (1.6)

rted for the GRAPE-Net method used in this study and two other previously

m Network; GRAPE-Net, Graph Perceiver Network; GTP, graph-transformer
, The Cancer Genome Atlas.
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Figure 4 Graph Perceiver Network identifies tissue regions that correspond with pathologic annotations. A: The network identified regions annotated as
tumor and normal on lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) whole slide images (WSIs) from the Clinical Proteomic Tumor
Analysis Consortium (CPTAC). CTPAC images were acquired at �20 magnification, the LUAD image is 23.6 � 17.9 mm, and the LUSC image is 24.6 � 21.1 mm.
Representative patches are 126.5� 126.5 mm. B and C: The network was also used to classify premalignant lesions (PMLs) as one of the three labels. The LUSC-
specific heat maps for PMLs predicted to be LUSC identified regions of dysplasia and carcinoma in situ (CIS) as well as other regions likely contributing to its
ability to separate CIS progressors from CIS regressors. B: The University College London images were acquired at �40 magnification, where the progressive
image is 8.6 � 5.6 mm, the regressive image is 4.7 � 3.1 mm, and the representative patches are 58.2 � 58.2 mm. C: The Roswell Park Comprehensive Cancer
Institute images were acquired at �20 magnification, where the top image is 8.0 � 7.1 mm, the bottom image is 5.0 � 4.8 mm, and the representative patches
are 128.8 � 128.8 mm. Z-score color bar represents the contribution of the patches towards the final prediction, with scores close to 1 providing high
contributions while scores close to e1 are not relevant to the prediction.

Gindra et al
three separate class activation maps were produced to high-
light the areas of normal and tumor tissue (LUAD or LUSC)
in each WSI. The generated class-specific heat maps were
consistent with the expert pathologist annotations from 20
CPTAC samples (selected at random), accurately pinpointing
1290
areas corresponding to same-label annotations (Figure 4A
and Supplemental Figure S2). These results illustrate that
GRAPE-Net could distinguish between the nonesmall-cell
lung cancer tumor subtypes and the normal tissue regions
within a WSI. Therefore, its ability to detect subtle
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Stratification of lung tumors and premalignant lesions (PMLs) relates to histologic features and outcome. A: Uniform manifold approximation and
projection (UMAP) plots of Clinical Proteomic Tumor Analysis Consortium, University College London, and Roswell Park Comprehensive Cancer Institute whole
slide image (WSI) features, stratified samples from normal to invasive carcinoma. B: The model separated lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) WSIs by tumor histologic patterns and carcinoma in situ (CIS) PMLs by outcome.

Lung Lesion Pathology Stratification
distinctions between tumor histologic patterns and PML
histology was explored further.

Stratification of Tissues by Morphologic Features

The authors hypothesized that GRAPE-Net could differen-
tiate between predominant histologic patterns of LUSC and
LUAD tumors and lung squamous PML histology by
discerning subtle morphologic features. To test this, the
WSI latent features from the CPTAC, UCL, and Roswell
samples were used to perform uniform manifold approxi-
mation and projectionebased clustering (Figure 5). Clus-
tering segregated normal, LUAD, and LUSC with a high
adjusted Rand score of 0.69 and adjusted mutual informa-
tion score of 0.64. PCA on the latent features (Supplemental
Figure S3A) revealed significant principal component (PC)
1 differences between keratinizing and nonkeratinizing
LUSC tumors (PC1: P Z 0.01), with the latter PC2 values
like those of LUAD tumors. The LUAD tumors showed
significant PC1 differences between aggressive (solid/
micropapillary) and nonaggressive (lepidic/acinar/papillary)
histologic patterns (PC1: P Z 5.4 � 10e14). Notably,
The American Journal of Pathology - ajp.amjpathol.org
LUAD (solid/micropapillary) tumors exhibited PC2 values
similar to LUSC tumors, as solid LUAD tumors require
immunohistochemical analysis for diagnosis as they can be
difficult to distinguish from LUSC tumors (Supplemental
Figure S3B).21

Uniform manifold approximation and projection and
PCA revealed most endobronchial biopsies were proximal
to the normal cluster, with some high-grade dysplasia and
CIS PMLs clustering with LUAD and LUSC cases
(P < 0.01 for PML versus LUAD, PML versus LUSC, on
both PC1 and PC2). Roswell biopsies did not show signif-
icant separation by histology, molecular subtype, or pro-
gression status (Supplemental Figure S3D).

All CIS samples from Roswell and some from UCL
grouped with LUSC tumor cases (75% of CIS samples
were classified as LUSC tumors with P < 0.01 for CIS
versus LUAD, CIS versus LUSC, on both PC1 and PC2).
Among the UCL biopsies with progression status to
LUSC, the model robustly stratified regressive versus
progressive CIS. GRAPE-Net performance predicting
regressive CIS as normals and progressive CIS as tumors
was as follows: precision Z 0.68, recall Z 0.67,
1291
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Table 2 Significance Statistics for Comparing Model Feature
Space with Sample Characteristics for CIS Premalignant Lesions

Test description
Test
statistic

P value
(<0.05)

t-Tests
Lymphocyte density in CIS
regions (pLUSC vs pNORMAL)

e5.18 1.03 3 10e6

Epithelial density in CIS
regions (pLUSC vs pNORMAL)

3.94 0.000145

PC1 (progression vs
regression)

2.82 0.005721

PC2 (progression vs
regression)

e4.59 1.18 3 10e5

Spearman correlation coefficient
Lymphocyte density in CIS
regions vs PC1

e0.099 0.2932

Lymphocyte density in CIS
regions vs PC2

0.297 0.0024

Epithelial density in CIS
regions vs PC1

0.506 0.0002

Epithelial density in CIS
regions vs PC2

e0.749 0.0002

Classification metrics
Precision 0.68 e
Recall 0.67 e
Specificity 0.38 e
Accuracy 0.67 e
AUC 0.69 e

To demonstrate Graph Perceiver Network’s ability to stratify premalignant
lesions, we show the model’s classification performance predicting
regressive CIS as normals (pNORMAL) and progressive CIS as tumors
(pLUSC). Additional test statistics were also done with other metadata
characteristics, with P < 0.05 considered significant. Significant scores are
highlighted in bold.
e, not applicable; AUC, area under the curve; CIS, carcinoma in situ; PC,

principal component.

Gindra et al
specificity Z 0.38, accuracy Z 0.67, and area under the
curve Z 0.69 (Table 2). Additionally, in prior work on
the UCL dataset,4 an automated deep learning pipeline
was used to quantify the density of lymphocytes, epithelial
cells, and stromal cells in the CIS and stromal regions.
The study showed a significant decrease in lymphocyte
density (P Z 0.02) and increase in epithelial cell density
(P Z 0.005) in CIS regions in progressive versus
regressive samples. Using GRAPE-Net, a similar signifi-
cant decrease in lymphocyte density (P Z 1.03 � 10e6)
and an increase in epithelial cell density (P Z 1.4 �
10e4) were observed between CIS samples predicted as
tumors versus normals. Spearman correlation between the
PC values and the respective CIS region lymphocyte and
epithelial cell densities suggested that PC1 had a high
positive correlation and PC2 had a high negative corre-
lation with epithelial density. PC2 was also positively
correlated with lymphocyte density (Table 2). Both PC1
and PC2 were significantly different between CIS pro-
gressive versus regressive lesions (P Z 0.005 and
1292
P Z 1.1 � 10e5, respectively) (Supplemental Figure
S3C). These results suggest that the model learns certain
morphologic characteristics pertaining to CIS progression
status highlighted using relevance heat maps, as shown in
Figure 4B and Supplemental Figure S4.

Discussion

This work introduced the GRAPE-Net that was designed to
stratify bronchial PMLs, which are precursors to invasive
LUSC. The goal was to distinguish PMLs with a high likeli-
hood of progressing to LUSC from those that may regress
without intervention. Using hematoxylin and eosinestained
WSIs, GRAPE-Net stratified PMLs across a continuum from
normal to tumor tissues. Using four distinct datasets, the
model generated latent features observable across sample
types (resected lung tissue versus endobronchial biopsies)
that were associated with tumor histologic patterns and CIS
PML progression status to invasive carcinoma.
GRAPE-Net’s performance was demonstrated through its

high classification accuracy on TCGA and CPTAC lung
resection tissue datasets, coupledwith its efficient generationof
pathologist-aligned, class-specific heatmaps. PCA on the WSI
latent features demonstrated separation within LUAD and
LUSC samples based on predominant histologic pattern. On
the endobronchial biopsy WSIs, GRAPE-Net identified CIS
lesions that progressed to LUSC. The principal components of
the latent featureswere associatedwith decreases and increases
in lymphocyte and epithelial cell densities within CIS regions,
respectively, in progressingversus regressing lesions.GRAPE-
Net’s predictive capacity on CIS lesions may have clinical
utility in prioritizing patients for chemoprevention trials or
potentially shortening screening intervals via bronchoscopy.
This framework currently does not differentiate between

biopsies with and without bronchial dysplasia, as observed
in Figure 4C and Supplemental Figure S5, likely because of
a paucity of training data on the cellular morphology
changes characteristic of various dysplasia stages (ie, mild,
moderate, and severe). This limitation underlines the ne-
cessity for future research to expand model training with a
broader array of bronchial PMLs. Additionally, it will be
important to test this model on lung adenomatous prema-
lignant lesions (including atypic adenomatous hyperplasia
and adenocarcinoma in situ) as biopsies of these lesions
become available via robotic bronchoscopy. The assessment
of GRAPE-Net across more extensive cohorts and the
integration of additional bulk, single-cell, and spatial-
resolved molecular data into the model is expected to
refine PML stratification further.
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