
ARTICLE

The metabolome-wide signature of major depressive disorder
Rick Jansen 1,2,3,11✉, Yuri Milaneschi 1,2,3,11, Daniela Schranner4, Gabi Kastenmuller4, Matthias Arnold4,5, Xianlin Han6,
Boadie W. Dunlop 7, Mood Disorder Precision Medicine Consortium, A. John Rush 5,8, Rima Kaddurah-Daouk5,9,10✉ and
Brenda W. J. H. Penninx1,2,3

© The Author(s), under exclusive licence to Springer Nature Limited 2024

Major Depressive Disorder (MDD) is a common, frequently chronic condition characterized by substantial molecular alterations and
pathway dysregulations. Single metabolite and targeted metabolomics platforms have revealed several metabolic alterations in
depression, including energy metabolism, neurotransmission, and lipid metabolism. More comprehensive coverage of the
metabolome is needed to further specify metabolic dysregulations in depression and reveal previously untargeted mechanisms.
Here, we measured 820 metabolites using the metabolome-wide Metabolon platform in 2770 subjects from a large Dutch clinical
cohort with extensive clinical phenotyping (1101 current MDD, 868 remitted MDD, 801 healthy controls) at baseline, which were
repeated in 1805 subjects at 6-year follow up (327 current MDD, 1045 remitted MDD, 433 healthy controls). MDD diagnosis was
based on DSM-IV psychiatric interviews. Depression severity was measured with the Inventory of Depressive Symptomatology Self-
report. Associations between metabolites and MDD status and depression severity were assessed at baseline and at 6-year follow-
up. At baseline, 139 and 126 metabolites were associated with current MDD status and depression severity, respectively, with 79
overlapping metabolites. Adding body mass index and lipid-lowering medication to the models changed results only marginally.
Among the overlapping metabolites, 34 were confirmed in internal replication analyses using 6-year follow-up data. Downregulated
metabolites were enriched with long-chain monounsaturated (P= 6.7e−07) and saturated (P= 3.2e−05) fatty acids; upregulated
metabolites were enriched with lysophospholipids (P= 3.4e−4). Mendelian randomization analyses using genetic instruments for
metabolites (N= 14,000) and MDD (N= 800,000) showed that genetically predicted higher levels of the lysophospholipid 1-
linoleoyl-GPE (18:2) were associated with greater risk of depression. The identified metabolome-wide profile of depression indicated
altered lipid metabolism with downregulation of long-chain fatty acids and upregulation of lysophospholipids, for which causal
involvement was suggested using genetic tools. This metabolomics signature offers a window on depression pathophysiology and
a potential access point for the development of novel therapeutic approaches.
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INTRODUCTION
Major Depressive Disorder (MDD) is a multifactorial disorder with
high disease burden and chronicity in many patients. The
pathophysiology of MDD is complex, with substantial molecular
alterations and dysregulations of multiple pathways. Metabolomic
technologies capturing simultaneously hundreds of molecules
may provide a comprehensive assessment of depression patho-
physiology. A review [1] summarizing metabolomic analyses in
depressed patients using urine, cerebrospinal fluid, and blood
samples showed that metabolites implicated in energy metabo-
lism and neuronal integrity and transmission were altered. In a
large-scale pooled analysis using the lipidomics Nightingale
platform in 10,145 controls and 5283 depressed cases [2], we
identified a metabolic profile (21 metabolites) for lifetime
depression characterized by a shift towards less high-density

lipoprotein (HDL) and more triglycerides and glycoprotein acetyls.
These findings were replicated in the recent UK Biobank analysis
using the same platform [3]. Such findings not only indicate
pathway dysregulations that contribute to depression symptoma-
tology development- but also help explain why comorbidities like
metabolic syndrome [4], obesity [5], diabetes [6]) and cardiovas-
cular disease [7] occur more often in depressed than non-
depressed persons.
While targeted metabolomics platforms are limited by design

and often overrepresented by a certain class of metabolites (like
lipids on the Nightingale platform), untargeted platforms cover a
larger portion of the metabolome and have the potential to
uncover previously unrecognized pathobiological mechanisms. In
a population-based study, the untargeted Metabolon platform
was used to measure 353 unique metabolites in serum of
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1411 subjects [8]. Participants with elevated depressive symptoms
as assessed with a self-report scale (N= 72) had decreased levels
of two acylcarnitines involved in mitochondrial fatty acid
oxidation. A larger pooled analysis of population-based cohorts
[9] showed that self-reported symptoms of depression were
associated with 8 metabolites directly derived from food or
products of host/microbial food-derived products. Nevertheless,
previous studies did not evaluate patients formally diagnosed with
MDD using psychiatric interviews and therefore likely included
relatively few participants with MDD. Furthermore, prior studies
assessed metabolites only at a unique time-point, thus precluding
the possibility of replicating the metabolite-depression
associations.
The associations between metabolite concentrations and

depression identified in observational studies may emerge from
different causal pathways: 1) shared factors (e.g., lifestyle,
medication use) impacting both metabolite levels and presence
of depression; 2) reverse causation of subclinical depression
impacting on metabolite levels via behavioral changes (e.g.,
reduction in physical activity, worsening of dietary habit); and 3)
direct causal action of metabolite alterations on depression
pathophysiological pathways. Mendelian Randomization (MR), a
causal inference technique leveraging genetic variants as instru-
ments for which random allele segregation and independent
assortment limits confounding and reverse causality, can help to
disentangle causes and consequences in the metabolite-
depression associations. For instance, in previous MR studies, we
showed that alterations in inflammatory pathways [10] and
acylcarnitine metabolism [11] may have a potential causal role
for the development of depression, while this was not supported
for omega-3 fatty acids [12].
In the current study, we measured 820 metabolites using the

Metabolon platform in subjects from a large Dutch clinical
cohort (N= 2770) with extensive clinical phenotyping con-
ducted at baseline and at 6-year follow up. The unprecedented
sample size, broad metabolite spectrum, and longitudinal data
provides a reliable, state-of the-art metabolite signature of
depression. Furthermore, we applied MR analyses to
examine the nature of metabolite-depression associations
leveraging results from the most recent and largest genome
wide association studies (GWAS) on metabolites from the
Metabolon platform [13] (N ~ 14,000) and depression [14]
(N ~ 800,000).

METHODS
Study design and participants
Data were from the Netherlands Study of Depression and Anxiety (NESDA),
an ongoing longitudinal cohort study examining course and consequences
of depressive and anxiety disorders. The NESDA baseline sample consists
of 2,981 persons between 18- and 65-years, including persons with a
current or remitted diagnosis of a depressive and/or anxiety disorder (74%)
and healthy controls (26%). Individuals were recruited from mental health
care settings, general practitioners, and the general population in the
period from September 2004 to February 2007. Persons with insufficient
command of the Dutch language or a primary clinical diagnosis of another
severe mental disorder, such as severe substance use disorder, or a
psychotic disorder, were excluded. Participants were assessed during a
4-hour clinical visit consisting of the collection of all somatic and mental
health determinants in the current study as well as a fasting blood draw.
Similar face-to-face assessments were repeated after two, four, six and nine
years [15]. The current study uses metabolomics data from 2770
participants (2463 from NESDA baseline and 307 siblings newly recruited
at the 9-year follow up, pooled as discovery cohort) and 1805 participants
of the 6-year follow-up used for internal replication analyses(of which 1685
overlapped with baseline participants). Persons with an anxiety disorder
without MDD were excluded from the analyses. The NESDA study was
approved by the Ethical Review Boards of participating centers, and all
participants signed a written informed consent form. More than 94% of the
NESDA participants were from North European origin. The population and

methods of the NESDA study have been described in more detail
elsewhere [15, 16].

Metabolite measures
After an overnight fast, EDTA plasma samples were collected and stored in
aliquots at −80 °C until further analysis. Samples were sent in two
shipments for metabolic profiling using the untargeted platform from
Metabolon Inc (Durham, NC). Briefly, plasma samples were divided into
four fractions; two for ultra-high performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS; positive ionization), one for
UPLC-MS/MS (negative ionization), and one for a UPLC-MS/MS polar
platform (negative ionization). Peaks were quantified using the area-under-
the-curve in the spectra. To account for run-day variations, peak
abundances were normalized by their respective run-day medians.
Compounds were identified using an internal spectral database.

Metabolite QC
The raw metabolite data set included measures of 5181 samples and
1008 reference samples (well-characterized human plasma samples)
which were used to calculate and control for technical measurement
variability among a total of 1367 metabolites measured in 29 batches.
One experimental sample and one reference sample with a high
missingness (>5 SD+mean missingness) were excluded from the
dataset. We further excluded metabolites with a missingness in over
30% of all samples. If we observed outliers or apparent measurement
issues within one plate, or across several plates within one batch, all
values on that plate were set to ‘NA’ to not affect subsequent batch
correction. We batch corrected data by normalizing all samples to the
batch median and then excluded those metabolites that still had a
technical measurement variability of >30%. Next, we imputed missing
metabolite measures. Before imputation, we tested if missingness in any
of the remaining 820 metabolites accumulated in one of the three
measurement waves (baseline, 6- or 9-year follow up) using a Fisher’s
exact test. As this was not the case, we jointly imputed all waves using a
k-nearest neighbor approach (k= 10) [17]. Before statistical analysis, we
log2 transformed the final dataset. For each metabolite, outliers larger
than the mean plus five standard deviations were set to the mean plus
five standard deviations. Outliers smaller than the mean minus five
standard deviations were set to the mean minus five standard deviations.

Clinical assessment and covariates
Presence of current MDD (i.e.within six months prior to the interview) was
assessed using the DSM-IV Composite International Diagnostic Interview
(CIDI) version 2.1. Depression severity levels in the week prior to
assessment were measured with the 28-item Inventory of Depressive
Symptomatology (IDS) self-report [18]. Several covariates were included in
the models assessing the associations between metabolites and depres-
sion. Alcohol consumption was assessed as units per week and smoking
status was coded as current, ex- and never-smokers. Physical activity was
assessed using the International Physical Activity Questionnaire (IPAQ) [19]
and expressed as overall energy expenditure in Metabolic Equivalent Total
(MET) minutes per week (MET level * minutes of activity * events per week).
Body mass index (BMI) was calculated as measured weight divided by
height squared. The number of self-reported current somatic diseases for
which participants received medical treatment was counted. We used
somatic disease categories as categorized previously [20, 21]: cardiometa-
bolic, respiratory, musculoskeletal, digestive, neurological and endocrine
diseases, and cancer. Educational level was measured as years of
education. Medication use was based on medication container inspection
of all medications used in the past month, classified according to the
World Health Organization Anatomical Therapeutic Chemical classification,
and included the antidepressant classes of selective serotonin reuptake
inhibitors (SSRI, ATC code N06AB), serotonin–norepinephrine reuptake
inhibitors (SNRI, N06AX16, N06AX21), tricyclic antidepressants (N06AA) and
tetracyclic antidepressants (TCA, N06AX03, N06AX05 and N06AX11) An
earlier large scale drug-metabolite study [22] identified three class of
commonly prescribed drugs associated with widespread metabolite
alterations: lipid lowering, anti-hypertensive and anti-diabetics medica-
tions. However, while the association with anti-diabetics were mainly
driven by the disease of indication, the associations with anti-hypertensive
medications were mainly driven by co-medication, in particular statin.
Therefore we only considered the use of lipid-lowering drugs (ATC code
C10) in the present study.

R. Jansen et al.

3723

Molecular Psychiatry (2024) 29:3722 – 3733



Instrument selection for Mendelian randomization (MR)
Summary statistics for metabolites measured with the same untargeted
mass spectrometry-based platform (Metabolon HD4) were retrieved from a
GWAS including up to ~14,000 samples [13] (interrogation of the GWAS
results can be performed at www.omicscience.org). The Psychiatric
Genomics Consortium performed an overarching meta-analysis [14] of all
available GWAS datasets with depression phenotypes including estab-
lished MDD diagnosis or self-declared depression, totaling 246,363 cases
and 561,190 controls. Lack of sample overlap across the two discovery
GWAS reduced the likelihood of MR estimates being biased toward the
observational correlation [23]. Metabolites’ GWAS summary statistics were
processed by removing non-SNP variants, strand-ambiguous SNPs
and those with MAF < 1%. Variants overlapping and allele-matching
with those reported in depression GWAS were clumped (10,000 kb
window, r2= 0.001, EUR population of 1000Genomes used as linkage
disequilibrium reference) to identify significantly associated (p < 5.0e−8)
independent SNPs.

Statistical analyses
For each of the 820 metabolites measured at the NESDA baseline wave, we
ran a GEE model with the metabolite concentration as the dependent
variable, and MDD status or depression severity (total IDS) as the
independent variable, while correcting for education, sex, age, physical
activity, smoking status, alcohol use, number of chronic diseases, and
shipment. Family ID was used for clustering in the GEE models. MDD status
was coded as a 3-level factor (controls, remitted MDD, current MDD), using
controls as reference. In additional analyses BMI and lipid-lowering drugs
use (yes/no) were added to the model to check their potential explanatory
role in the metabolite-depression association.
Subsequently, for metabolites associated with current MDD and

depression severity, pathway enrichment analysis was conducted using
pathways pre-assigned to the metabolites by Metabolon (see sub
pathways and super pathways at Supplementary Table S1). Two classes
of pathways were assigned, 10 super pathways and 95 sub pathways. As
only 681 metabolites were classified in one of the pathways, this set was
used as the reference in the enrichment analysis. Enrichment between
significant metabolites and each pathway was computed by applying the
Fisher exact test to the contingency table.
In observational studies, it is difficult to clearly disentangle the potential

pharmacophysiological impact of antidepressant medication from the
effect of depression severity: medication use may indeed merely tag the
most severe cases, most likely representing the clinical indication for
treatment (confounding by indication). In this scenario, simple statistical
adjustment for antidepressant use may represent an over-adjustment for
depression severity. Thus, we performed different analyses to examine the
potential impact of antidepressants. Firstly, SSRI use (yes/no), TCA use (yes/
no) and SNRI use (yes/no) were added as covariates to the model.
Furthermore, effects of antidepressants (AD) were verified by computing
the associations between MDD status and metabolite concentrations while
removing the antidepressant users. To further compare effects associated
with antidepressant use and those associated with MDD status, SSRI, TCA
or SNRI use were used as predictor in the initial model but without MDD
status.
In order to perform a conservative selection of the metabolites more

reliably associated with depression to be carried forward for internal
replications and MR we performed the following step-wise selection
(Supplementary Fig. S1):

1. Metabolites significantly associated with MDD status and depression
severity (applying FDR < 0.05 for both outcomes) were selected;

2. Metabolites with betas for the association with AD use that were >2
times higher than the betas for the association with MDD status
were removed;

3. For the remaining metabolites, internal replication was checked by
analyzing associations with depression outcomes using the 6-year
follow up data (as this is done in a subset of the baseline sample, it
cannot be considered a fully independent replication). Metabolites
were selected and carried forward for MR analysis if nominal P-
values in the follow-up data for MDD status or depression severity
were smaller than 0.05, and directions of effect were consistent. In
the 6-year follow-up sample no family relations were present so
instead of GEE, linear models were used, with the same initial
covariates now assessed at the 6-year follow-up.

Mendelian randomization
For the metabolites identified in baseline data and internally replicated at
the follow up, and for which at least two independent associated SNPs
were found in the corresponding GWAS, two-sample Mendelian randomi-
zation (2SMR) analyses based on GWAS summary statistics were performed
to test the potential causal role of metabolites on lifetime depression risk.
For each metabolite, genome-wide significant independent SNPs used as
instruments were aligned on the positive strand for exposures (metabo-
lites) and outcome (MDD status). 2SMR analyses were performed based on
the inverse variance weighted estimator [24]. False discovery rate (FDR) q-
values according to Benjamini-Hochberg procedure were calculated taking
into account multiple testing. The robustness of significant results was
tested in sensitivity analyses based on weighted median [25] and MR-
Egger [26] estimators. Furthermore, heterogeneity among the included
SNPs was tested via Cochran’s Q test, single SNP, and leave-one-out SNP
analyses. The presence of potential horizontal pleiotropy (a genetic
instrument for exposure influencing the outcome by mechanisms other
than exposure) was tested using the MR-Egger intercept [27] and the MR-
PRESSO method [28]. Analyses were conducted using the R MR-Base
package [29].

RESULTS
Demographics
Metabolites from the Metabolon platform (N= 820) were mea-
sured in whole blood samples from 2770 participants (2463
recruited at NESDA baseline and 307 siblings recruited at 9-year
follow up). Participants had current MDD (N= 1101), remitted
MDD (N= 868) or were healthy controls (N= 801), were 65%
female, had a mean age of 43 years (sd 13) and a mean BMI of 26
(sd 5, Table 1). The three MDD status groups did not differ in the
proportion of subjects using lipid-modifying drugs (Supplemen-
tary Table S2).

Table 1. Sample characteristics at baseline (N= 2770) and at 6-year
follow-up (N= 1802).

Baseline 6-year follow up

Cohort size n= 2770 n= 1802

Sex (% women) 65% 66%

Age (mean years, SD) 43.05 (13.33) 48.21 (12.99)

BMI ((mean, SD) 25.56 (4.94) 26.22 (5.17)

Education (mean years,
SD)

12.33 (3.28) 12.88 (3.32)

Physical Activity (mean
MET, SD)

3734.55
(3108.02)

3942.05
(3404.76)

Alcohol use (mean drinks/
week, SD)

6.23 (7.76) 4.98 (6.25)

chronic diseases (mean
number, SD)

0.59 (0.86) 0.62 (0.87)

Smoking (% current
smokers)

57% 41%

MDD status

no MDD. % 29% 24%

remitted MDD. % 31% 58%

Current MDD. % 40% 18%

IDS (mean score. SD) 20.7 (14.3) 15.6 (11.9)

Use of antidepressants

TCA. % 3% 3%

SSRI. % 16% 12%

SNRI. % 6% 6%

MET Metabolic Equivalent Total, minutes per week (MET level * minutes of
activity * events per week).
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Cross sectional associations between metabolites and MDD
status and depression severity at baseline
For each metabolite, a GEE model was fit (correcting for family
structure) using MDD as dependent variable (MDD as 3 level
factor, control group as reference) while correcting for demo-
graphics and technical covariates (see Methods). When comparing
controls and persons with current MDD, 139 metabolites were
significantly different (Supplementary Table S1, FDR < 5%, 92
metabolites downregulated, 47 upregulated). Most significant was
methylstearate (beta=−0.26, P= 5.6e−9, FDR= 4.5e−6), down-
regulated in the current MDD group. There were 88 metabolites
that significantly differed between the remitted and control
groups (86 downregulated); 57 of these overlapped with the
metabolites associated with current MDD. Betas of the 139
metabolites associated with current MDD were strongly correlated
with the betas from the association with remitted MDD
(Supplementary Fig. S2, r= 0.81, 99% of downregulated metabo-
lites had same direction of effect, 68% of upregulated metabolites
had same direction of effect), but most effects were stronger for
current MDD (65%). When adding BMI and lipid-lowering drug use
to the models, 134 of the 139 metabolites were still significantly
associated with current MDD (Supplementary Table S1). For each
metabolite, a GEE model was fit in the total sample using the total
IDS score for depression severity as dependent variable while
correcting for demographics and technical covariates. There were
126 metabolites associated with depression severity (FDR < 5%, 67
upregulated); 79 of them overlapped with those found for current
MDD (57% of 139 hits). From the 139 metabolites associated with
current MDD, the betas were strongly correlated with the betas
from the association with depression severity (Supplementary Fig.
S3, r= 0.89, 99% of downregulated metabolites with same
direction of effect, 100% of upregulated metabolites with same
direction of effect). For the 139 metabolites associated with
current MDD, tests for sex interaction effects were performed in
the metabolite-current MDD associations (Supplementary Table
S1). No significant findings were present after FDR correction.

Pathway enrichment
From 10 super pathways assigned to the metabolites, the 79
metabolites associated with current MDD and depression severity
included 42 lipids (significantly enriched, P= 7.2e−4). From
95 sub-pathways, the 39 metabolites downregulated in current
MDD were overrepresented with long-chain monounsaturated
fatty acids (P= 2.8e−4), long-chain saturated fatty acids (P= 2.8e
−4) and Hemoglobin and Porphyrin Metabolism (P= 6.7e−4).
The 40 metabolites upregulated in current MDD were over-
represented with lysophospholipids (P= 1.3e−4, Table 2, Supple-
mentary Table S3 for full overview).

Effects of antidepressants
From the 1101 participants with current MDD, 466 were using
antidepressants (302 used SSRIs, 42 used TCAs, 122 used SNRIs).
Since the most severe and chronic MDD patients are likely those

who use antidepressants, a potential pharmacophysiological
effect of antidepressants cannot be completely disentangled from
that of depression severity. Consistently, adding directly anti-
depressant use as an additional covariate to the model reduced
the number of significant associations: 45 of the 139 metabolites
remained significantly associated with current MDD (Supplemen-
tary Table S1). To further evaluate with different approaches
whether identified associations between metabolites and MDD
status were driven by antidepressant use, associations between
metabolites and MDD status were computed on the sample
without the 466 participants that used antidepressants. From the
79 identified metabolites that were associated with current MDD
and depression severity, the betas from the analysis without
antidepressant users correlated strongly with the betas from the
analysis including antidepressant users (Supplementary Fig. S4A,
r= 0.89, 99% of betas in the same direction) showing that the
identified directions of effects were not completely driven by
antidepressant users. To further compare effects associated with
antidepressant use and those associated with MDD status,
associations between metabolites and SSRI, TCA or SNRI use were
computed (Supplementary Table S1). Inspection of effect sizes
(Supplementary Fig. S4B, C) showed only one outlier (5-
methylthioadenosine (MTA)) with >2 times larger effect size of
TCA compared to current MDD. This metabolite was removed in
further analysis.

Internal replication of findings at 6-year follow up wave
We aimed to internally replicate the 78 metabolites associated
with current MDD and IDS score at baseline, which were not
strongly associated with antidepressant use, using 6-year follow-
up data (see Supplementary Fig. S1 for an overview of the
stepwise procedure leading to this selection). In 1805 respondents
(1685 overlap with baseline participants) the same metabolite
measures were done in whole blood samples (controls (N= 433),
remitted MDD (N= 1045), current MDD (N= 327)). For each
metabolite, a linear model was fitted using MDD status as the
dependent variable (MDD as 3-level factor, control group as
reference) while correcting for demographics and technical
covariates. For 34 metabolites, the nominal P-value for the
association with current MDD or depression severity was smaller
than 0.05 and the directions of effects were consistent between
baseline and follow up analysis (Table 3, Fig. 1). The betas of the
139 metabolites that were associated with current MDD at
baseline, were strongly correlated with the same betas from
6-year follow up (Supplementary Fig. S5A, r= 0.64). A similar
finding was present for the 126 metabolites associated with
depression severity at baseline (Supplementary Fig. S5B, r= 0.78),
suggesting general consistency of findings.

Mendelian randomization analyses
For the 34 internally replicated metabolites, 20 had GWAS
summary statistics available and at least two independent
associated SNPs. F-statistics (all F > 10, Supplementary Table S4)

Table 2. Enrichment analysis of metabolites upregulated (n= 40) or downregulated (n= 39) in depression.

Upregulated metabolites (n= 40) Downregulated metabolites
(n= 39)

Pathway Pathway size (%a) P FDR Overlapb P FDR Overlapb

Long-chain saturated fatty acid 7 (1%) NS NS 0 2.8E−04 1.3E−02 4 (10%)

Long-chain monounsaturated fatty acid 7 (1%) NS NS 0 2.8E−04 1.3E−02 4 (10%)

Hemoglobin and porphyrin metabolism 4 (0.6%) NS NS 0 6.7E−04 2.1E−02 3 (8%)

Lysophospholipid 16 (2.3%) 1.3E−04 1.3E−02 6 (15%) NS NS 0
aPathway size % is the percentage of all metabolites (n= 681) assigned to the pathway.
bOverlap is the number of metabolites (%) that are both in the pathway and in the significantly up or downregulated metabolite set.
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indicated that the strength of selected genetic instruments was
adequate [30]. Table 4 shows 2SMR IVW estimates of depression
risk (expressed as odds ratios [ORs] and 95% confidence intervals
[95%CIs]) per SD increase in genetically-predicted log-transformed
metabolite levels. An increased risk (OR= 1.09, 95%
CIs= 1.05–1.13) of depression was significantly (q= 2.1e−4)
associated with genetically-predicted higher levels of 1-linoleoyl-
GPE (18:2) (Supplementary Fig. S5). Sensitivity analyses confirmed
the robustness of this result: causal estimates obtained via
weighted-median (OR= 1.09, 95% CIs= 1.05–1.13) and MR-
Egger (OR= 1.09, 95% CIs= 0.98–1.21) estimators were comple-
tely in line with those from IVW analyses. Results of all MR
estimators for all metabolites are reported in Supplementary Table
S5. Additional analyses did not show statistically significant
evidence of heterogeneity (Cochran’s Q p= 0.20) or horizontal
pleiotropy (MR-Egger intercept p= 0.98; MR-PRESSO global test
p= 0.45) across SNPs indexing 1-linoleoyl-GPE (18:2) (single SNP
MR Supplementary Fig. S7A; leave-one-out SNP MR Supplemen-
tary Fig. S7B). Finally, we performed a PheWAS (phenome-wide
association scan) using the GWAS ATLAS Resource [31] to examine
the association with other traits of the instrument’s top SNP
(11:61569830, rs174546), which is located in the highly pleiotropic
3’-UTR region of FADS1 (fatty acid desaturase enzyme). The
PheWAS (Supplementary Table S6) reported significant GWAS
association with a wide array of metabolic (e.g., fatty acids,
cholesterol, triglycerides), cardiovascular (e.g., heart rate), immu-
nological (e.g. red cell, platelet), and psychiatric (e.g., sleep
duration, irritability) traits.

DISCUSSION
This analysis is the largest untargeted metabolomics study of MDD
to date, performed in a clinical sample with two measurement
waves. We identified new metabolites, not previously associated
with MDD for which consistent associations were found using
similar data from the same subjects measured after six years.
Approximately half of the identified metabolites were lipids,
showing specific patterns of downregulation in long-chain
monounsaturated and saturated fatty acids and upregulation of
lysophospholipids in depression. The other half of the metabolites
were non-lipid components of a wide range of pathways
discussed below. Using genetic data, a potential causal effect of
lysophospholipid 1-linoleoyl-GPE on depression was confirmed.
The associations of the 139 metabolites associated in patients

with current MDD were also apparent in the remitted MDD
patients, with a remarkable similarity in effect sizes, particularly for
the downregulated metabolites. That these seemingly persistently
downregulated metabolites were largely unaffected by the state
of depression could be due to either consequences (scars) of the
illness or potentially represent antecedents of illness onset. The 79
metabolites associated with current MDD and depression severity
were 53% lipids but also covered 7 out of 9 super pathways and
39% of all sub pathways, indicating a dysregulation of metabolites
in depressed patients that does not only concern lipids but a wide
spectrum of metabolic processes. The two pathways enriched in
these 79 metabolites were both lipid pathways: lysophospholipids
were upregulated and long chain fatty acids (both monounsatu-
rated and saturated) were downregulated in the current MDD
group. These pathways have been shown to be inter-connected
by common chemical steps controlled by genetic variation within
the fatty acid desaturase (FADS) locus on chromosome 11
(11q12.2–q13.1, containing the genes FADS1, FADS2 and FADS3
genes) [32]. This fatty-acid transforming metabolic pathway is
responsible for the synthesis of over 100 individual polyunsatu-
rated fatty acids (PUFA)- and long-chain PUFA-containing
phospholipid and lysophospholipid molecular species that have
been differently linked to innate immunity, energy homeostasis,
brain development, and neurocognitive functions [33–35].Ta
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Lysophospholipids have not been associated with depression in
prior large-scale studies because they are not targeted by most
lipid-based platforms. Out of 16 measured lysophospholipids, the
6 associated with current MDD all cluster with intercorrelations
between 0.32 and 0.78. Lysophospholipids activate specific G-
protein-coupled receptors and are regulators of cell growth and
survival, cell-to-cell contacts and adhesion, and calcium depen-
dent functions. Through these actions, lysophospholipids play a
role in the development of the nervous system, cancer growth,
and inflammation [36]. Studies in both rodent models and human
plasma with small sample size (N < 120) have shown higher
lysophospholipids in depression as compared to controls [37–40].
The lysophospholipids we identified are not well known; however
two of the best-characterized lysophospholipids, lysophosphatidic
acid and sphingosine-1-phosphate, are crucial in neurodegenera-
tive diseases, especially Alzheimer’s disease [41]. Dysfunction of
these metabolites can lead to accumulation of amyloid-β
peptides, neurofibrillary tangles and neuroinflammation [42, 43].

From these two metabolites, only sphingosine-1-phosphate was
measured by the Metabolon platform we used, but it did not show
an association with depression.
Two recent large-scale studies using the Nightingale platform

[2, 3] both reported lower total cholesterol, and higher
triglycerides, saturated fatty acids and monounsaturated fatty
acids (MUFAs) in patients with lifetime diagnosis of MDD
compared to controls. A comparison between these two studies
and ours is not straightforward due to the differences in design
(population-based sample vs clinical sample) and the difference in
platforms (triglycerides and component measures of total
cholesterol are not measured by the Metabolon platform, and
the Nightingale platform does not measure any individual fatty
acids, providing only summed measures of the MUFAs). The
downregulation of MUFAs and saturated fatty acids we observed
in current MDD is not consistent with these two large studies
[2, 3]. However, all measured PUFAs were lower in patients with
depression in our study, which was similarly found in the UKBB
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and NESDA studies [3, 44]. There is a lot of debate about the
possible role for PUFAs in depression and in particular their
potential role in the prevention of depression, with inconsistent
findings in the literature. A large-scale meta-analysis of observa-
tional studies found a decrease of the PUFA omega-3 associated
with depression [45], but a meta-analysis of prevention studies
using omega 3 did not show positive results [46]. Recent work
suggests many trials of PUFAs may have used doses too low to
have a significant antidepressant or preventive effect, with 4
grams/day of eicosapentaenoic acid have both positive effects on
both clinical and inflammatory outcomes [47, 48].
Two recent studies evaluated metabolites measured with the

Metabolon platform in relation to depression. A population-based
study [8], of 1411 adults, of whom 72 had self-reported depressed
mood, identified lower levels of the medium-chain acylcarnitine
laurylcarnitine in the depressed subjects compared to controls.
Similarly, in the present study the medium-chain acylcarnitine
3-hydroxydecanoylcarnitine was negatively associated with MDD.
Interestingly, a previous genomic-based study using MR showed
that altered metabolism of the medium chain acylcarnitines
octanoylcarnitine and decanoylcarnitine is potentially causal for
the development of depression [11]. While measures of laur-
ylcarnitine, octanoylcarnitine and decanoylcarnitine were not
available in the present study, it is important to note that
acylcarinites of similar chain length share a substantial proportion
of their genetic liability, as indicated by strong genetic correlations
between them [11]. The second study is a pooled analysis of
population-based cohorts by van der Spek and colleagues [9] and
reported 53 metabolites associated with depression severity. A
total of 43 of their 53 significant metabolites were also measured
in our study, and 17 were replicated. The other way around, from
the 126 metabolites associated with depression severity in our
study, Van der Spek et al. measured 96, and 36 were replicated
(37.5%), whereas from the top 15 hits 53% were replicated
(P < 0.05, with consistent directions of effect, Supplementary Table
S7). The fatty acid findings from our study were partially replicated
(47% with P < 0.05) and had overall consistent effect sizes (73%)
but some lysophospholipid findings had opposite directions of
effect. The relatively low replication rate may stem from design
differences across studies. Van der Spek et al. performed a meta-
analysis using 5 population-based cohorts in which 4 different
self-report instruments to assess depression symptoms were used,
in contrast to the clinically enriched cohort with uniform
assessment of MDD via psychiatric interviews used in the
current paper.
The identified association between depression and the meta-

bolomic signature may stem from different, non-mutually
exclusive, causal pathways. Shared factors (e.g., lower socio-
economic status, presence of chronic somatic diseases, use of
medications) may impact both metabolite levels and depression.
However, adjustment for major sociodemographic, lifestyle and
health-related factors had only a marginal impact on the
associations identified. A potential confounding role might be
expected for BMI, whose inclusion in the statistical models
partially reduced the strength of the association between
depression and metabolites. However, BMI-adjusted estimates
should be carefully interpreted due to the complex causal
pathways between BMI, metabolite levels and depression. BMI
and adiposity in general may indeed represent a confounder, a
mediator, but also a consequence (collider) of metabolic altera-
tions affecting both metabolite concentrations and depressive
symptoms. Nevertheless, as opposed to previous large-scale
studies using the Nightingale platform [2], 95% of the associations
detected in the present study remained statistically significant
after additional statistical adjustment for BMI and lipid-lowering
drugs. In our study, the use of lipid-lowering drugs was
uncommon and not associated with MDD status, likely explaining
why adding use of lipid-lowering drug minimally impacted the

findings. Similarly, the use of antidepressant medications had a
limited impact on the metabolite-depression associations, as
shown by substantially similar estimates for all metabolites
obtained in subjects not using antidepressants. Only the level of
one metabolite, 5-methylthioadenosine, was strongly connected
to the use of tricyclic antidepressants. Moreover, AD use may
merely be a proxy for depression severity, likely representing the
clinical indication for treatment (thus, confounding by indication)
[49]. In this sense, adjusting associations between depression and
metabolites for AD use would introduce substantial overadjust-
ment for depression severity. Further mechanistic and experi-
mental medicine approach are needed to properly disentangle
the specific effect of antidepressant medications. In another causal
scenario, depression could impact metabolite levels via
depression-related behavioral symptoms, For instance, worsening
of diet may reduce the intake of fatty acids included in
metabolites pathways found to be downregulated in depression,
such as long-chain monounsaturated and saturated fatty acids.
Alternatively, alterations in metabolite metabolism may have a
direct causal action on depression pathophysiology. In a previous
genomic study leveraging Mendelian randomization techniques,
we showed that alteration in metabolism of medium-chain
acylcarnitines, which are involved in fatty acid transport into
mitochondria for beta-oxidation, may have a potential causal
role for the development of depression [11]. In the present study,
the medium-chain 3-hydroxydecanoylcarnitine was consistently
associated with depression across different measures and
assessments.
Leveraging summary statistics from large-scale GWAS, we

applied Mendelian randomization in the present study to examine
the potential causal role in depression onset of 20 metabolites (13
lipids, 2 carbohydrates, 2 amino acids, 1 cofactor/vitamin and 2
unidentified). Results from Mendelian randomization suggest that
higher levels of 1-linoleoyl-GPE (18:2), or the mechanism translat-
ing genetic variation to higher levels of this metabolite, are
potentially causally involved in the development of depression. 1-
linoleoyl-GPE (18:2) is a lysophospholipid, part of the cluster of
lysophospholipids mentioned above. The precursor of this
lysophospholipid is 18:2 fatty acid which is comprised of two
isomers with double bond locations at n-6 and n-9 positions,
respectively. The n-6 isomer represents the majority of this
precursor and is largely obtained from dietary sources [50].
However, the n-9 isomer of this fatty acid involves the activity of
desaturases such as FADS1. Therefore, similar to other PUFA-
containing lysophospholipids, phospholipids, free fatty acids and
endocannabinoids, the metabolism 1-linoleoyl-GPE (18:2) is tightly
regulated by the FADS1 (fatty acid desaturase) gene. The genetic
instrument indexing 1-linoleoyl-GPE (18:2) includes the SNP
rs174546 in the 3′-UTR regulatory region of FADS1. Findings from
a recent genomic sequencing study showed that this variant was
the top signal in the association between the FADS locus and 52
lipids containing fatty acids [32]. Consistently, the wide-range
examination of previous GWAS results (pheWAS) performed in the
present study showed that rs174546 is associated with a wide
array of metabolic, cardiovascular, immunological, or psychiatric
traits. This biological complexity suggests caution in interpreting
MR results using instruments including variants from the FADS
locus that could index different metabolites. A previous MR-based
study suggested a potential causal role in depression for
polyunsaturated fatty acids such as omega-3, indexed by FADS
SNPs [51]. This conclusion is in contrast with different large-scale
RCTs showing no effect of omega-3 supplementation in the
prevention of depression [52, 53]. Rather than attributing the
complex FADS genetic signal to a specific metabolite, a more
cautious interpretation of MR results points to a potentially
broader involvement in depression pathophysiology of FADS-
regulated metabolic processes, which may be involved in various
metabolic, cardiovascular and immunological functions. Deeper
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mechanistic studies are needed to disentangle the specific
metabolite effector relevant for depression.
The major strengths of our study included it being the largest

study of metabolomics in MDD to date, along with using data
from two time points, with untargeted metabolomics and deep
characterization of MDD diagnosis and depression symptom
severity. A potential limitation was that the internal replication
was based on a subset of the sample used for the discovery,
measured 6 years later, and therefore cannot be considered a fully
independent replication. Although our results were partially
replicated in a similar previous study [9] many of the identified
metabolites will need to be confirmed in other large samples,
ideally with similar clinical assessments. The cross-sectional design
of our study did not permit drawing inferences on causality, other
than those suggested by the MR analysis. Furthermore, estimates
from MR describe a potential average lifetime causal effect unable
to distinguish specific critical windows or acute events. Finally, our
genetic instruments were derived from GWAS based on samples
of participants of European ancestry, so results may not generalize
to different populations.
In conclusion, this study confirmed previously established

metabolite pathways involved in depression and identified
associations with some novel metabolites. The untargeted
whole-metabolome approach demonstrated that a wide range
of metabolites are dysregulated in depression, involving various
metabolites interconnected around the FADS metabolic pathways.
This may represent the biological substrate connecting depression
with different cardiometabolic health outcomes. Furthermore,
genomics-based analyses suggested a potential causal effect of
this pathway in the pathophysiology of depression. This
metabolomic signature is a promising target for treatment
development. Nevertheless, future mechanistic studies are
required to unravel the exact causal mechanisms across the
complex network of processes around the FADS pathways.
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