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Abstract— Deep unsupervised approaches are gathering in-
creased attention for applications such as pathology detection and
segmentation in medical images since they promise to alleviate
the need for large labeled datasets and are more generalizable
than their supervised counterparts in detecting any kind of
rare pathology. As the Unsupervised Anomaly Detection (UAD)
literature continuously grows and new paradigms emerge, it
is vital to continuously evaluate and benchmark new methods
in a common framework, in order to reassess the state-of-
the-art (SOTA) and identify promising research directions. To
this end, we evaluate a diverse selection of cutting-edge UAD
methods on multiple medical datasets, comparing them against
the established SOTA in UAD for brain MRI. Our experiments
demonstrate that newly developed feature-modeling methods
from the industrial and medical literature achieve increased
performance compared to previous work and set the new SOTA
in a variety of modalities and datasets. Additionally, we show that
such methods are capable of benefiting from recently developed
self-supervised pre-training algorithms, further increasing their
performance. Finally, we perform a series of experiments in
order to gain further insights into some unique characteristics
of selected models and datasets. Our code can be found under
https://github.com/iolag/UPD study/.

Index Terms— Unsupervised, Anomaly, Detection, Segmenta-
tion, Medical, Comparative, Generative, Image-reconstruction,
Feature-modeling, Self-supervised, pre-training

I. INTRODUCTION

FROM routine check-ups to the detection and treatment
of brain tumors, pathology detection from medical im-

ages is an indispensable part of the clinical diagnosis and
treatment workflow. While generally performed manually by
clinical experts (e.g. radiologists), an ever-increasing demand
for radiological assessments in modern healthcare systems
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has prompted researchers to focus on developing algorith-
mic solutions that can assist in clinical diagnosis. Anomaly
Detection (AD) can be described as an outlier detection
problem, where the aim is to discriminate between in- and
out-of-distribution samples of a normative distribution. In the
context of Pathology Detection (PD) for medical diagnosis,
the “normal” distribution constitutes healthy samples and cases
containing pathologies can be detected as outliers. While PD
can be tackled with supervised learning strategies, the main
concerns here are twofold. Firstly, they require vast amounts of
image-level labels or pixel-level segmentations from medical
experts, but these are scarce and costly to obtain, posing
practical limitations for training such models. Additionally,
the morphological variability of pathologies is large and rare
anomalies are likely underrepresented (or not included at
all) in the datasets, posing problems for supervised methods.
On the contrary, Unsupervised Pathology Detection (UPD)
methods leverage exclusively healthy samples during training
in order to model the normal anatomy distribution. Given
that a significant part of acquired medical images, i.e. from
routine or preventive check-ups, is clinically unremarkable,
the unsupervised setting theoretically reveals a large amount
of data to train UPD models. Therefore, there has been a
recent surge in the development of UPD methods [1]–[7]. Un-
fortunately, the lack of publicly available benchmark datasets
for medical UPD forces practitioners to develop and evaluate
their models on various private and public datasets, hindering
comparability and the development of best practices in this
field. The problem is further exacerbated by the concurrent
development of UAD methods in other areas such as industrial
inspection [8].

To this end, the following work presents a thorough com-
parison of the most common current UAD paradigms, applied
to detecting pathologies in medical images. Specifically, we
evaluate the anomaly detection and localization performance
of 13 UPD methods on 4 different medical datasets with
different characteristics. To the best of our knowledge, this
is the most comprehensive study so far, covering all important
paradigms on a representative set of modalities.

II. RELATED WORK

In this section, we briefly describe recent advances in
Deep Unsupervised Anomaly Detection and Localization. We
build our categorization upon the work of Jie et al. [9] and
identify four groups: image-reconstruction [1]–[3], [5]–[7],
[10], feature-modeling [11]–[21], attention-based [22]–[24],
and self-supervised anomaly detection [25]–[29] methods.
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A. Image-reconstruction Methods

The prevailing modus operandi in UPD uses image-
reconstruction models to model normality and detect devi-
ations from it. Vanilla [7] or Variational Autoencoders [5],
Generative Adversarial Networks [3], [4], or combinations
and variations of these frameworks [1], [6], [10] have been
explored. During inference, such models use the residual
r = |x− x̂| between the input image x and its reconstruction
x̂ to generate a saliency map. As a novel extension of the
reconstruction paradigm, the restoration-approach [6], an input
image is iteratively updated until its anomalous regions are
replaced with quasi-healthy ones. Baur et al. [2] performed a
systematic evaluation of a collection of image-reconstruction
UPD algorithms in the context of brain MR imaging. We refer
the interested reader to their work, for a thorough explanation
of the above concepts.

B. Feature-modeling Methods

Newly developed algorithms, mainly from the field of
industrial inspection with UAD, have started deviating from
the image-reconstruction norm. Instead of working on the
image directly, feature-modeling methods leverage frozen,
pre-trained encoders to first transform each input sample to
an alternative, semantically-rich representation, which they
proceed to manipulate and model with a variety of techniques
in order to perform anomaly detection. A popular research
direction adopts the student-teacher learning paradigm [13]–
[15], distilling knowledge from the pre-trained encoder to a
student network. By enforcing similarity in student and teacher
activations during training, representation discrepancies can re-
veal anomalies during inference. Feature-modeling generative
approaches are also gaining traction, with researchers using
normalizing flow (NFLOW) networks to model normal em-
beddings in an attempt to estimate exact likelihoods [16], [17].
Even simpler statistical baselines that do not require gradient
optimization have achieved SOTA detection and segmentation
performance. Such methods act directly on pooled features and
often employ Multivariate Gaussian [18], [19] or K-nearest
neighbor [20], [21] modeling to capture normality. Impressive
in their simplicity and detection capabilities, these approaches
often exhibit long inference times, limiting their practical
applications. Lastly, the image-reconstruction approach has
been successfully applied to feature-embeddings [12].

C. Attention-based Methods

When learning normality with a machine learning model,
using attention maps from layer-activations or the gradient of
the normality formulation is a natural fit to extract localization
information from the trained model. This principle was applied
by Zimmerer et al. in one of their model variants in [5], and
by Liu et al., Venkataramanan et al., and Silva-Rodriguez et
al. [22]–[24] in the form of GradCAM [30] maps.

D. Self-supervised Anomaly Detection Methods

Self-supervised methods are gaining popularity in both
the medical and industrial inspection fields, with researchers

designing and performing pre-text tasks on normal data to
perform UAD. One popular research direction utilizes pre-
text tasks in order to initially perform representation learning,
and then proceeds to model the representation distribution of
normal instances [26], [28]. Such methods detect anomalies
as outliers from the modeled distribution, premised on the
notion that the trained model can generalize and effectively
map anomalous inputs in out-of-distribution areas of the rep-
resentation space. Another approach involves the application
of synthetic anomalies on otherwise normal training data and
the adoption of common supervised techniques to explicitly
[25], [29] or implicitly [27] localize them.

E. Self-supervised Pre-training Methods
Apart from anomaly detection, self-supervised methods

have predominantly been used to learn useful representations
by performing pretext tasks on unlabeled data [31]. Such tasks
include but are not limited to detecting geometric transfor-
mations [32], [33] and contrastive learning tasks [31], [34].
The learned, domain-specific representations can be used in
conjunction with detection methods in UAD pipelines or any
other downstream task.

III. MOTIVATION AND CONTRIBUTION

The primary objective of this work is to gain a clear
and up-to-date picture of the state of Unsupervised Pathol-
ogy Detection. To this end, we conducted a comparative
study of state-of-the-art UAD approaches on multiple medical
imaging modalities. Prompted by the limitations of image-
reconstruction methods [35], [36] and the latest developments
in industrial UAD, especially regarding the overwhelming
popularity of the feature-modeling paradigm, we included a
group of unique feature-modeling approaches next to methods
trained with self-supervised learning, recent attention-based
methods, and the SOTA in image-reconstruction brain MR
UPD as established in the recent work of Baur et al. [2].
As industrial UAD methods are mainly developed for defect
detection applications and evaluated on MVTec AD [8], a
dataset constituting an average of 242 low variation RGB
samples per class, we are also interested in whether high
performance on it generally translates to the much different
Medical Imaging domain. Furthermore, we studied the effects
of self-supervised pre-training on all methods. As feature-
modeling approaches make use of pre-trained, frozen en-
coders, the ability of methods to take advantage of SOTA pre-
training schemes is especially relevant to our investigation.
We chose to evaluate the selected methods on 4 publicly
available datasets of 3 different medical imaging modalities.
By studying how selected approaches fare against this diverse
selection of datasets with different characteristics regarding
image and anomaly appearance, normal anatomy variation as
well as the number of available samples, we can get a fuller
picture of each method’s capabilities, and also gain valuable
insights into the modalities themselves. Finally, we performed
a time- and space-complexity analysis, and examined how le-
sion size and intensity as well as the number of available train
samples affects UPD performance, gaining valuable insights
into selected methods and datasets.
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IV. REVIEWED METHODS

In this section, we briefly describe the methods included in
our study.

A. Image-reconstruction Models

To allow us to set our results into perspective with those
reported in Baur et al. [2], we selected the 3 best-performing
methods from their study as representatives of the image-
reconstruction paradigm. The methods are the dense VAE [37],
the f-AnoGAN [3], and the VAE with iterative restoration
[6], which we will denote as r-VAE in the rest of this
manuscript. We also included one of the best performers
from a transformer-based group of methods recently developed
by Ghorbel et al. [38], namely the Hierarchical Transformer
Autoencoder with Skip connections (H-TAE-S). As a novel
non-CNN-based method, it forms an Autoencoder framework
using transformer blocks, inspired by the Swin-Unet architec-
ture [39]. All of the above methods are reconstruction-based,
meaning they are trained to reconstruct a ”healthy” version of
the input image and use the residual between the input- and
the reconstructed ”healthy” image to detect anomalies.

B. Feature-modeling Models

When deciding on SOTA methods that were developed
in the context of industrial inspection, our criteria were not
limited to reported performance results on the MVTec dataset.
As mentioned above, one of our main objectives in this
study is to examine whether SOTA performance from the
diverse industrial UAD literature can translate to the medical
domain. Therefore, we incorporated approaches that employ a
wide variety of learning paradigms and techniques to perform
UAD. Still, feature extraction by a pre-trained and frozen
encoder network is the common characteristic of all selected
methods. Our first choice, Reverse Distillation (RD) [14],
combines an AE architecture with a student-teacher knowledge
distillation approach, forcing the student decoder to recreate
representations produced by the pre-trained and frozen teacher
encoder. During inference and in the presence of anomalies,
decoder and encoder activations cannot remain consistent, and
cosine distance is used to measure dissimilarities between cor-
responding feature maps and localize the anomalies. CFLOW-
AD [16] adopts a Normalizing Flow [40] framework to esti-
mate, contrary to the rest of the selected methods, exact pixel-
level likelihoods. During training, it extracts activation maps
from three specific layers of a pre-trained and frozen encoder.
It models normality on each layer independently, using three
normalizing flow decoders. At test time, it aggregates the out-
puts from all three decoders to produce the final anomaly map.
For each training sample, PaDiM [19] makes a single forward
pass through a pre-trained encoder network and creates a
dataset-wide embedding volume. It then computes the mean
and covariance of each feature vector to infer on test samples,
using the Mahalanobis distance. While being a straightforward
yet powerful approach that requires no gradient optimization,
it suffers from extreme memory demands and slow inference
times. Lastly, we included Structural Feature-Autoencoders

(FAE) [12] as an application of the reconstruction-based
paradigm on feature embeddings. It projects the image into
a higher-dimensional feature space using a feature-extraction
network and uses multi-channel residuals between model input
and output to localize anomalies in this space. FAE uses an
Autoencoder architecture and the Structural Similarity Index
Measure (SSIM) [41] as a target for optimization.

C. Attention-based Methods

As the first representative for this category, we evaluate
ExpVAE [23] on our selected medical datasets. ExpVAE
is a Variational Autoencoder, equipped with a GradCAM
mechanism applied on the the KL-divergence to generate
attention maps that can be used instead of residuals for
anomaly localization. Our second representative, AMCons
[24], extends on ExpVAE by using only the feature-activations
of a certain layer instead of the whole GradCAM formulation
and by adding a novel regularization term to its objective
function.

D. Self-supervised Anomaly Detection Methods

As a representative of self-supervised anomaly detection
methods, we used PII [25]. During training, the method first
samples a patch from a random healthy image and seamlessly
blends it into a random location of the input using Poisson
image editing [42] and a random interpolation factor. It then
trains end-to-end by learning to localize the altered patch and
predicting the interpolation factor. The trained model is later
used to directly localize anomalies. Our second choice in this
category, the Denoising Autoencoder (DAE) [27], generates
synthetic anomalous samples by adding Gaussian noise to each
input and trains a model to remove that noise. During infer-
ence, anomalous regions are detected via the pixel-wise resid-
ual between the input image and the model output, analogous
to reconstruction-based methods. Lastly, we select CutPaste
[26]. This method trains two separate encoders in order to
learn compact representations of input images (for image-level
detection) or patches (for pixel-level localisation) using a 3-
way classification task between each input and two versions
with artificial anomalies. It then performs statistical modeling
on the representations of normal samples and anomalies are
detected as outliers from the normal representation distri-
bution. Note that while DAE computes anomaly maps by
extracting residuals like the image-reconstruction methods and
CutPaste by modeling deep representations similar to feature-
modeling approaches, both are trained in a self-supervised way
using synthetic anomalies.

V. EXPERIMENTAL SETUP

A. Modalities and Datasets

Unlike its industrial inspection counterpart, the lack of
benchmark datasets specifically designed for the task remains
a pertinent issue in UPD, resulting in a plethora of different
public and private datasets used for the evaluation of individual
methods. This variety, however, hinders the comparability
between the proposed methods and prevents us from drawing
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Fig. 1: Statistics of the datasets used for pixel-wise evaluation in this study: BraTS, ATLAS, and DDR. First row: Distributions
of lesion sizes relative to the brain area (BraTS and ATLAS) or the total image (DDR). Second row: Distributions of mean
lesion intensities for normal and anomalous regions.

TABLE I: Number of images used for training, validating, and
testing each dataset.

Modality Training Validation Testing Test Val.

CamCAN 85752 4514 - -
ATLAS - - 70674 7920
BraTS - - 46557 5150
CheXpert 4267 255 720 80
DDR 5233 276 1340 150

general conclusions about different approaches. To tackle this
issue, we introduce a selection of multiple publicly available
and commonly used datasets of different modalities that allow
for direct evaluation of the methods regarding different data
characteristics and even allow future methods to assess their
performance regarding these characteristics. Unlike [2], we
decided not to use FLAIR MR scans, as most anomalies
there appear hyperintense, resulting in models only being
evaluated regarding their ”white object” detection capabilities
[35], [36]. Instead, we opted to train and test on T1- and
T2-weighted brain scans (brain-MRI). We also expanded our
evaluation with two additional modalities, namely Chest X-ray
(CXR) and Retinal Fundus Photography (RF), in an attempt
to establish a more comprehensive benchmark for UPD.

Brain-MRI We used the Cambridge Centre for Ageing and
Neuroscience dataset (CamCAN) [43] as our source of lesion-
free scans for all Brain-MRI datasets. It contains T1 and
T2-weighted brain scans of 652 healthy adult subjects. The
Anatomical Tracings of Lesions After Stroke (ATLAS) dataset
[44] provided us with 220 T1-weighted scans of stroke pa-
tients, which we use for evaluation. We also used the 2020
version of the Multimodal Brain Tumor Segmentation (BraTS)
Challenge dataset for evaluation [45]–[47]. It consists of 371
multiple-sequence MR scans of patients suffering from high-
grade glioblastomas or low-grade gliomas. We denote the sets
of T1- and T2-weighted MR scans from BraTS as BraTS-
T1 and BraTS-T2 respectively in the rest of this manuscript.
Expert lesion segmentations are provided for both ATLAS

and BraTS, allowing for pixel-level evaluation. After pre-
processing (c.f. Section V-B), the BraTS test set contains
22 422 anomal and 24 135 normal axial slices, and the ATLAS
test set 23 989 anomal and 56 590 normal ones. Note that due
to the domain shift between the training- and test-datasets, the
anomaly detection models used in this study are expected to
output higher anomaly scores for all test images. This problem
is partly mitigated because both normal and anomal images in
the test sets are from the same datasets.

CXR to evaluate our selected models on the challenging CXR
modality, we used CheXpert [48], a large publicly available
dataset containing 224 316 chest radiographs. Samples are
labeled as positive, negative, or uncertain for 14 observa-
tions, 12 of which are pathology related. The remaining two
regard the presence of support devices or the absence of
all pathologies, labeled as ”no finding”. We use the last
observation for our ”healthy” subset but we do so with caution
as the label only implies the absence of the 12 pre-defined
pathologies of interest, a common limitation in CXR datasets.
We limited the task by using images annotated with exactly
one out of three of the most common observations, namely
”pleural effusion”, ”opacity” or ”enlarged cardiomediastinal
contour”. We avoided possible confounders and biases by
discarding scans with support devices, using only radiographs
of anteroposterior view, and by enforcing an equal number of
samples of male and female patients on all consequent subsets.
We created three test sets comprising 400 ”no finding” and
400 cases labeled as positive for one of the aforementioned
observations, which left us with a train set of 4492 ”no finding”
images. Note that for CheXpert, no expert segmentations are
available so only sample-wise evaluation is possible. This
evaluation is interesting nevertheless, as pathological findings
in Chest X-ray images are very subtle, and detecting them
automatically has high clinical value.

RF Finally, we evaluated the compared methods on the DDR
dataset [49], which provides 6243 fundus photographs of
healthy individuals and 745 samples of positive Diabetic
Retinopathy (DR) cases with corresponding ground truth seg-
mentations for the four types of lesions associated with DR.
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We used 5510 healthy samples for training and created a test
set out of 745 healthy and 745 DR-positive samples. Since
UPD methods are agnostic to the types of anomalies they
detect, for each sample we combined all four provided binary
masks for the different types of lesions into a single reference
segmentation to evaluate.
The above datasets have very different characteristics in both
the distribution of normal samples and in their anomalies of
interest. While the brain-MRI and RF datasets have low intra-
sample variance, the organs seen in chest radiographs exhibit a
larger variety among different patients. Further, anomalies are
more localized in brain-MR and RF images, whereas they are
more diffuse in CXR. The DDR dataset is a special case not
only because it contains by far the smallest lesions (see Fig. 1),
but also because it is the only dataset with RGB images instead
of grayscale ones. The plots in Fig. 1 reveal that anomalies
tend to be hypo-intense in the ATLAS dataset, hyper-intense
in BraTS-T2, and neither of both in BraTS-T1 and the RF
images.

B. Pre-processing

All brain-MRI datasets were registered to the SRI24 ATLAS
[50], skull-stripped, and sliced axially into 2D images. For
both training and evaluation, we discarded slices with no brain
pixels in them and split each subset volume-wise to eliminate
patient overlap between the subsets and maintain complete
brain scans. During the image-wise evaluation, a slice with
any number of positive pixels in its ground truth mask was
considered anomalous. Across all modalities, samples were
resized to 128 × 128 pixels and scaled into the range [0, 1].
For RF, the only RGB dataset, we opted for scaling into [-1, 1]
as we noticed improved performance across the board in early
experiments. For all datasets, we kept 10% of test samples for
validation and 5% of normal samples for monitoring the loss
during training. All splits are listed in Table I.

C. Model architectures and Hyper-parameters

In contrast to Baur et al. [2], we did not use a unified archi-
tecture, as such practice does not allow for a fair comparison
given the diversity of our selected methods. Instead, we used
the original architectures and hyper-parameters, optimizing
for the datasets at hand when necessary. We still enforced
commonality in other parts of the pipeline, such as the pre-
and post-processing and in a common pre-trained backbone
choice when applicable. We refer to the respective papers for
detailed descriptions of the architectures.

D. Residual extraction and Post-processing

For residual-based methods (VAE, r-VAE, f-AnoGAN, FAE,
and DAE in this study), anomaly maps are typically extracted
from the pixel-wise absolute error r = |x− x̂| between the
input image x and its reconstruction x̂. Instead, we opted to
use the Structural Similarity Index (SSIM) [41] (as in [51]
and [12]) as a more powerful measure of dissimilarity that
takes not only differences in luminance, but also texture and
structure into account. This change increased the performance

of all selected models it was applied to. Please refer to [51]
for an analysis of this choice. For anomaly maps of MR
inputs, we discarded background pixels as possible sources
of anomalies. Aside from that, no other post-processing steps
were taken to ensure a fair comparison among methods. For
sample-level scoring, a common practice in the literature is
taking the mean over all pixel values in the anomaly map
[3], [5], [12], [25]. For brain-MRI and RF, we instead used
the value of the maximally activated pixel as the sample-level
score (as in [14], [16]), since it should be independent of the
anomaly size. Further, the anomalies in the DDR dataset are so
small that even correct localization would only lead to a slight
increase in the averaged anomaly map. On the other hand, for
CXR images that are usually littered with markers and other
artifacts that are expected to cause high activations, using the
mean proved a more robust choice in early experiments.

E. Metrics

To evaluate image-level detection performance, we used
the area under the receiver operating characteristic curve
(AUROC) and image-wise average precision (APi), which is
equivalent to the area under the precision-recall curve. Both
metrics allow for model assessment without the need to choose
an Operating Point (OP). For the evaluation of pixel-level
performance, we used pixel-wise average precision (APp) and
an estimate of the best possible Sørensen-Dice index (⌈Dice⌉).
All metrics were computed dataset-wise.

VI. RESULTS AND DISCUSSION

A. Main Results

Tables II and III include evaluation results for all selected
approaches and modalities. We report the mean over three
runs of different seeds. For each dataset, we also include the
performance a random classifier would achieve as a baseline
value for AP. This allows us to set the results of the heavily
unbalanced segmentation tasks into perspective. Below, we
analyze and discuss these results.

BraTS-T2: Big, hyper-intense lesions. As shown in Fig. 1,
BraTS-T2 is characterized by relatively large, rather hyper-
intense lesions. This is a setting most similar to the FLAIR
datasets in Baur et al. [2], although the overlap between
the intensities of normal and anomal regions is significantly
bigger in T2 than in FLAIR. We observe superior performance
of RD and FAE compared to the rest of the architectures.
Direct runner-ups are DAE and AMCons. Note, however, that
these methods were developed for tumor detection on BraTS.
Other candidates from the attention-based and self-supervised
groups are among the worst-performing models along with f-
AnoGAN and H-TAE-S. r-VAE is the best-performing image-
reconstruction method, surpassing PaDiM and CFLOW-AD.

BraTS-T1: Effects of limited contrast. The anomalies in
BraTS-T1 are as large as in BraTS-T2, but generally, neither
hyper- nor hypo-intense (see Figure 1), making them harder
to detect. As a result, a drop in performance (especially for
segmentation) can be noticed for all methods, compared to
the T2 case. The least affected and still the best-performing
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TABLE II: Detection and localization results of the image-reconstruction (IR), feature-modeling (FS), attention-based (AB),
and self-supervised anomaly detection (S-S) methods on the brain-MRI and RF datasets. Best scores are bold.

BraTS-T2 BraTS-T1 ATLAS DDR

image-level pixel-level image-level pixel-level image-level pixel-level image-level pixel-level
Method APi AUROC APp ⌈Dice⌉ APi AUROC APp ⌈Dice⌉ APi AUROC APp ⌈Dice⌉ APi AUROC APp ⌈Dice⌉

IR

VAE 0.68 0.73 0.28 0.33 0.64 0.70 0.13 0.19 0.57 0.76 0.11 0.20 0.48 0.48 0.02 0.05
r-VAE 0.75 0.77 0.36 0.40 0.70 0.76 0.13 0.19 0.60 0.78 0.09 0.17 0.52 0.50 0.03 0.09
f-AnoGAN 0.56 0.61 0.15 0.21 0.48 0.53 0.06 0.12 0.26 0.46 0.02 0.06 0.44 0.45 0.01 0.01
H-TAE-S 0.68 0.70 0.21 0.12 0.54 0.57 0.06 0.12 0.29 0.49 0.01 0.03 0.51 0.51 0.01 0.01

FM

FAE 0.87 0.87 0.51 0.52 0.86 0.85 0.42 0.45 0.50 0.73 0.08 0.18 0.64 0.63 0.07 0.15
PaDiM 0.66 0.68 0.34 0.38 0.60 0.65 0.21 0.28 0.34 0.56 0.05 0.13 0.55 0.55 0.02 0.07
CFLOW-AD 0.71 0.72 0.31 0.35 0.65 0.69 0.16 0.24 0.40 0.62 0.04 0.10 0.51 0.51 0.03 0.08
RD 0.85 0.85 0.47 0.50 0.81 0.83 0.36 0.42 0.55 0.77 0.11 0.22 0.66 0.64 0.10 0.19

A
B ExpVAE 0.63 0.66 0.12 0.18 0.56 0.56 0.07 0.13 0.37 0.57 0.01 0.03 0.53 0.54 0.004 0.01

AMCons 0.78 0.78 0.35 0.40 0.61 0.64 0.05 0.12 0.32 0.53 0.01 0.03 0.49 0.49 0.004 0.01

S-
S

PII 0.57 0.62 0.13 0.22 0.54 0.64 0.13 0.22 0.37 0.60 0.03 0.07 0.62 0.63 0.01 0.01
DAE 0.81 0.80 0.47 0.49 0.70 0.74 0.13 0.20 0.44 0.65 0.05 0.13 0.54 0.55 0.01 0.03
CutPaste 0.59 0.63 0.22 0.26 0.61 0.65 0.07 0.13 0.37 0.58 0.03 0.06 0.64 0.60 0.02 0.06

Random 0.48 0.50 0.06 0.11 0.48 0.50 0.06 0.11 0.30 0.50 0.02 0.03 0.50 0.50 0.004 0.01

models for this modality are the feature-modeling methods
(especially FAE and RD), suggesting that these methods either
benefit from bigger lesions and/or are more capable of captur-
ing morphological and texture discrepancies. Note, however,
that FAE was developed for good performance on this dataset
and also by multiple authors of this manuscript. In the image-
reconstruction group, the segmentation performance of all
methods is more than halved and the scores of f-AnoGAN
and H-TAE-S are only slightly above random, confirming the
findings of [36] that this class of methods is unable to localize
anomalies that are neither hyper- nor hypo-intense. Surpris-
ingly, AMCons fails dramatically on BraTS-T1, a behavior
that we will also observe in all later datasets. Please refer to
Section VI-D for further analysis of this phenomenon. In the
self-supervised category, PII and CutPaste remain on a low
level and DAE drops dramatically. The answers to the large
performance drop of DAE can be found in the method itself. It
was trained to remove upsampled Gaussian noise, i.e. hyper-
or hypo-intense blobs, from the images. If the anomalies of
interest are neither, the model has little chance of finding them.

ATLAS: Smaller and hypo-intense. Compared to BraTS-
T1 and -T2, the lesions in the ATLAS dataset are generally
smaller and appear hypo-intense to the normal tissue (see
Figure 1). Here, r-VAE and VAE slightly outperform RD in
image-level detection, while VAE and RD are the strongest
in segmentation. Compared to their results on BraTS-T2,
PaDiM, and CFLOW-AD clearly underperform here, revealing
a potential weakness with small lesions. We hypothesize this
to be rooted in the spatially reduced activation maps used
by feature-modeling methods. The performance of the self-
supervised methods drops the most, suggesting that their
synthetic anomalies and pre-text tasks do not generalize well
to smaller, hypo-intense anomalies. For DAE this is not
surprising, given that the upsampling factor of the added
Gaussian noise was optimized for best performance on BraTS.
In the attention-based group, ExpVAE and AMCons once
again showcase little to no performance. While the relative
performance of most models compared to a random classifier
dropped from BraTS-T1 to ATLAS, it increased for VAE and

r-VAE. Thus, lesion size does not seem to have a significant
influence on these two models. A further discussion on this
follows in Section VI-C. This, however, does not hold for the
other two image-reconstruction methods.
DDR. As DDR has by far the smallest anomalies that even
SOTA supervised methods struggle to localize [49], low per-
formance by all methods was expected. Surprisingly, FAE
and RD show some significant performance, especially in
the localization task. Analogous to the ATLAS dataset, some
feature-modeling methods (PaDiM and CFLOW-AD) fail.
In contrast to the results on ATLAS, however, the image-
reconstruction methods fail as well. These observations are
in line with our previous hypotheses: for image-reconstruction
methods, localization performance strongly correlates with the
contrast between lesions and healthy tissue, whereas feature-
modeling methods are seemingly more capable of spotting
abnormalities in morphology and texture, though struggle
with small lesions. Among the self-supervised methods, PII
and CutPaste achieve comparably high detection scores, but
localize poorly, a common hint for confounding variables.

TABLE III: Image-level anomaly detection performance of the
compared methods on the CheXpert dataset.

Pleural Effusion Opacity Enlarged Card.

Method APi AUROC APi AUROC APi AUROC

IR

VAE 0.55 0.57 0.51 0.54 0.56 0.56
r-VAE 0.52 0.57 0.47 0.50 0.52 0.56
f-AnoGAN 0.59 0.61 0.49 0.51 0.57 0.59
H-TAE-S 0.51 0.51 0.50 0.50 0.53 0.51

FM

FAE 0.73 0.77 0.57 0.61 0.63 0.66
PaDiM 0.61 0.66 0.50 0.52 0.60 0.63
CFLOW-AD 0.67 0.73 0.52 0.54 0.62 0.66
RD 0.65 0.71 0.54 0.58 0.61 0.63

A
B ExpVAE 0.51 0.52 0.52 0.51 0.52 0.52

AMCons 0.39 0.31 0.49 0.48 0.41 0.37

S-
S

PII 0.64 0.65 0.53 0.54 0.56 0.56
DAE 0.63 0.65 0.52 0.55 0.58 0.60
CutPaste 0.58 0.59 0.53 0.54 0.57 0.58

Random 0.50 0.50 0.50 0.50 0.50 0.50

CheXpert. The ability of UPD methods to detect one of
the three selected pathologies in CheXpert is generally low.
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Fig. 2: Pixel-wise Dice scores of r-VAE, ExpVAE, FAE, and DAE for anomalies of different size and intensity in BraTS-T2
images. The red arrows indicate the relative influence of each axis on the Dice score.

The winners are - like in the other modalities - FAE and RD.
Also, CFLOW-AD is among the better-performing methods in
this evaluation. A clear finding here is that feature-modeling
methods again outperform image-reconstruction ones in a low-
contrast setting. Interestingly, pleural effusion gets consistently
better detected by all models than opacity or enlarged cardio-
mediastinal contour.

B. Summary of the Main Results

Feature-modeling methods clearly dominate the leader-
boards. For every but the image-level task on ATLAS, there
is a feature-modeling method that surpasses the best method
from all other groups. The clear outlier performances on brain-
MRI, RF, and CXR come from FAE and RD, with FAE having
a slight edge on the bigger lesions of BraTS, and RD being the
best at segmenting the smaller lesions of ATLAS and DDR.

C. Influence of Size and Intensity

In this section, we evaluate the sensitivity of representative
models to differences in intensity and size of the anomalies on
BraTS-T2. We compute anomaly segmentations (binarized at
the optimal operating point given by ⌈Dice⌉ in Table II) from r-
VAE, ExpVAE, FAE, and DAE for images with different lesion
sizes (relative to the brain area) and intensities (compared to
the average intensity in the slice). The scatter-plots in Figure
2 show the pixel-wise Dice scores of each image and the
relative influence of size and intensity on the performance
of each model, indicated by red arrows. Here, the individual
influence of size and intensity of the lesions on their detection
performance by different models can be observed.

As expected from the previous experiments, all methods
struggle with small and non-hyperintense anomalies (bottom
left corner). Whereas r-VAE, ExpVAE, and DAE are strongly
influenced by lesion intensity, the performance of FAE is less
dependent on it, which is consistent with our findings and
hypotheses from Section VI-A. Interestingly, DAE performs
exceptionally well for large and hyperintense anomalies, but
the good performance is focused mostly on that region (with
some outliers). This behavior mirrors the results of DAE
from Section VI-A and highlights how a pre-text task with
strong priors can lead to SOTA results, but at the cost of
generalizability and versatility. Moreover, while VAE is highly
sensitive to the relative intensities of anomalies, it seems
largely invariant to their size, confirming the findings from

Section VI-A. Finally, apart from showcasing the worst detec-
tion performance among the 4 models, ExpVAE achieves very
low Dice scores even for some large, hyperintense anomalies,
suggesting that the gradient w.r.t. the KL-divergence is not a
reliable measure for detecting anomalies.

D. Qualitative Results

Uncurated, qualitative results of anomaly maps (and recon-
structions where available) are shown in Fig. 3. It is clearly
noticeable, that the anomaly maps of image-reconstruction
models rarely look useful. This is in stark contrast to the
feature-modeling methods that - although being coarse - often
show higher anomaly values for anomalous regions. The maps
of FAE and RD seem to be most localized, which is in
accordance with their good overall performance. From the
outputs of DAE, it can be seen that the model fails to faithfully
remove anomalies. Considering also PII and the quantitative
results of the two methods, we conclude that self-supervised
learning with synthetic anomalies assumes strong priors and
rarely generalizes well across different anomalies. In the
anomaly maps of AMCons, which are the activations from the
first convolutional layer, we can observe amplification of high-
and low-intensity regions from the input images. This poses
difficulties if anomalies are not hyper-intense and explains the
low performance of the method in all datasets but BraTS-T2.

The anomaly maps generated to localize the sample of
pleural effusion on CheXpert show no useful information,
which opens questions, since pleural effusion is generally a
local pathology, and the quantitative performance - especially
of FAE - is noticeable. We can not rule out that the detection
performance is considerable because of images with very dif-
ferent positions, anatomies, and even severe image corruptions
in the part of the test set that is labeled with pleural effusion.
Out-of-distribution samples are also considered anomalous by
UAD methods, even when the anomalies of interest are only
pathologies. Meissen et al. recently raised awareness to this
problem in [53]. The DDR sample shows another surprising
finding. Here, the feature-modeling methods (especially RD)
manage to localize the extremely small anomaly correctly.

E. Self-Supervised Pre-training

In this experiment, we investigate the effect of domain-
specific self-supervised pre-training on the reviewed methods.
To do so, we pre-train the encoder parts of all reviewed
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Fig. 3: Examples of model outputs (odd columns) and anomaly maps (even columns) of the reviewed methods for each
modality. The first row includes the inputs, the corresponding lesion segmentations for BraTS and DDR, and one of the two
Pleural Effusion ROI segmentations provided by the pixel level annotated subset of CheXpert [52].

methods using CCD [54], which combines the powerful
contrastive loss of SimCLR [31] with two self-supervised
transformation prediction tasks to learn domain-specific
representations in an unsupervised manner. We hereby
differentiate two distinct cases: For image-reconstruction,
attention-based, and self-supervised anomaly detection
methods, we investigate the effects of initialization with
pre-trained over random features.*. For feature-modeling
methods that leverage a frozen encoder (FAE, PaDiM,
CFLOW-AD, and RD), we are interested to examine whether
domain-specific representations created in a self-supervised
manner are more effective for UPD performance than general

*Note that H-TAE-S uses a Swin Transformer-type architecture and is
thus not easily compatible with CCD.

purpose ones, created by pre-training on big natural image
datasets. The effects of pre-training can be seen in Table IV.

Weight Initialization. We notice no significant benefits
to performance for any investigated method except CutPaste.
These results are consistent with Raghu et al. [55], in that
weight transfer offers marginal to no benefits over random
initialization on medical datasets, and we extend their results to
the unsupervised setting using domain-specific weights created
with self-supervision. Interestingly thought, CutPaste bene-
fits from pre-training and even becomes the best-performing
model in image-level detection on DDR. We hypothesize
that this exception may be rooted in the similarity between
CutPaste and CCD in their learning approach.



LAGOGIANNIS* AND MEISSEN* et al.: UNSUPERVISED PATHOLOGY DETECTION: A DEEP DIVE INTO THE STATE OF THE ART 9

TABLE IV: Detection and localization results of the image-reconstruction (IR), feature-modeling (FM), attention-based (AB),
and self-supervised anomaly detection (S-S) methods on the brain-MRI and RF datasets after self-supervised pre-training. The
small numbers show the change compared to the results without self-supervised pre-training and are color-coded (green and
red) if the change is statistically significant with p < 0.05 using a two-sided Welch’s t-test over multiple random seeds.

BraTS-T2 BraTS-T1 ATLAS DDR

image-level pixel-level image-level pixel-level image-level pixel-level image-level pixel-level
Method APi AUROC APp ⌈Dice⌉ APi AUROC APp ⌈Dice⌉ APi AUROC APp ⌈Dice⌉ APi AUROC APp ⌈Dice⌉

IR

VAE 0.68 +.00 0.73 +.00 0.27 –.01 0.33 +.00 0.64 +.00 0.70 +.00 0.13 +.00 0.19 +.00 0.57 +.00 0.76 +.00 0.11 +.00 0.20 +.00 0.48 +.00 0.48 +.00 0.02 +.00 0.05 +.00

r-VAE 0.75 +.00 0.77 +.00 0.36 +.00 0.40 +.00 0.70 +.00 0.76 +.00 0.13 +.00 0.19 +.00 0.61 +.01 0.79 +.01 0.09 +.00 0.17 +.00 0.49 –.03 0.48 –.02 0.02 –.01 0.09 +.00

f-AnoGAN 0.63 +.07 0.70 +.09 0.15 +.00 0.21 +.00 0.48 +.00 0.53 +.00 0.06 +.00 0.11 –.01 0.28 +.02 0.50 +.04 0.02 +.00 0.04 –.02 0.41 –.03 0.42 –.03 0.01 +.00 0.01 +.00

H-TAE-S N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

FM

FAE 0.89 +.02 0.88 +.01 0.55 +.04 0.55 +.03 0.85 –.01 0.85 +.00 0.43 +.01 0.46 +.01 0.53 +.03 0.75 +.02 0.10 +.02 0.21 +.03 0.55 –.09 0.57 –.06 0.03 –.04 0.08 –.07

PaDiM 0.81 +.15 0.81 +.13 0.47 +.14 0.48 +.10 0.74 +.14 0.78 +.13 0.26 +.05 0.32 +.04 0.41 +.07 0.65 +.09 0.07 +.02 0.16 +.03 0.54 –.01 0.54 –.01 0.02 +.00 0.05 –.02

CFLOW-AD 0.79 +.08 0.80 +.08 0.31 +.00 0.38 +.03 0.76 +.11 0.78 +.09 0.24 +.08 0.30 +.06 0.45 +.05 0.68 +.06 0.06 +.02 0.14 +.04 0.53 +.02 0.54 +.03 0.02 –.01 0.07 –.01

RD 0.84 –.01 0.85 +.00 0.39 –.08 0.44 –.06 0.74 –.07 0.78 –.05 0.28 –.08 0.35 –.07 0.42 –.13 0.64 –.13 0.05 –.06 0.09 –.13 0.53 –.13 0.54 –.10 0.04 –.06 0.09 –.10

A
B ExpVAE 0.66 +.03 0.68 +.02 0.15 +.03 0.22 +.04 0.58 +.02 0.61 +.05 0.05 –.02 0.12 –.01 0.40 +.03 0.62 +.05 0.01 +.00 0.03 +.00 0.52 –.01 0.53 –.01 0.004 +.00 0.01 +.00

AMCons 0.73 –.05 0.74 –.04 0.27 –.08 0.34 –.06 0.61 +.00 0.64 +.00 0.06 +.01 0.12 +.00 0.31 –.01 0.52 –.01 0.01 +.00 0.03 +.00 0.49 +.00 0.50 +.01 0.004 +.00 0.01 +.00

S-
S

PII 0.60 +.03 0.66 +.04 0.11 –.02 0.19 –.03 0.46 –.08 0.50 –.14 0.07 –.06 0.14 –.08 0.32 –.05 0.52 –.08 0.02 –.01 0.05 –.02 0.60 –.02 0.60 –.03 0.01 +.00 0.04 +.03

DAE 0.81 +.00 0.81 +.01 0.48 +.01 0.50 +.01 0.71 +.01 0.75 +.01 0.14 +.01 0.20 +.00 0.47 +.03 0.68 +.03 0.07 +.02 0.15 +.02 0.59 +.05 0.60 +.05 0.01 +.00 0.03 +.00

CutPaste 0.66 +.07 0.70 +.07 0.31 +.09 0.35 +.09 0.68 +.07 0.73 +.08 0.07 +.00 0.13 +.00 0.49 +.11 0.71 +.13 0.02 –.01 0.04 –.02 0.70 +.06 0.65 +.05 0.04 +.02 0.11 +.05

Random 0.48 0.50 0.06 0.11 0.48 0.50 0.06 0.11 0.30 0.50 0.02 0.03 0.50 0.50 0.004 0.01

Backbone pre-training. For all brain-MRI datasets, we notice
increased performance on every feature-modeling method but
RD, with PaDiM benefiting the most as they approach seg-
mentation performance close to the best-performing models
without pre-training on BraTS-T2. For CheXpert, performance
is mostly worse with some exceptions where we notice similar
or marginally better performance, while for DDR, the effect
of pre-training is consistently negative, with a single exception
for CFLOW-AD. An interesting outlier in this class of methods
is RD which declines strongly in performance after pre-
training. We assume that because anomaly detection with
distillation models relies on differences between the teacher
and the student, the representations of a teacher that was
trained on the domain of interest might be easier to match by
the student, and, thus, important differences might be missed.
We hypothesize that while domain-specific, self-supervised
pre-training can create useful, application-specific features that
frozen backbone methods can benefit from, the usefulness
of these representations for the downstream tasks is highly
dependent on the pretext task and might vary strongly for
different modalities, as well as anomalies. Still, the results on
BraTS showcase how the inherent ability of feature-modeling
methods to benefit from better representations can significantly
alter evaluation results, emphasizing the importance of study-
ing self-supervised pre-training algorithms in conjunction with
UAD methods in feature works.

F. Complexity Analysis

Fast diagnosis is critical for several clinical applications, e.g.
in the emergency department. Moreover, real-time diagnostic
procedures like Colonoscopy require algorithms capable of
online evaluation. Therefore, a focus has been placed on the
development of methods with fast inference [3], [56]. In Table
VI, we report inference times for all reviewed methods. Results
are created using a single Nvidia Quadro RTX 8000 GPU
and an AMD Ryzen Threadripper 3960X CPU. As timing
measurements are very machine/setup dependant, results can
vary and are presented here only for qualitative comparisons.
We notice that even though r-VAE and PaDiM can show strong

TABLE V: Image-level anomaly detection performance of
the compared methods on CheXpert after self-supervised pre-
training. The small numbers show the change compared to
the results without self-supervised pre-training and are color-
coded (green and red) if the change is statistically significant
with p < 0.05 using a two-sided Welch’s t-test over multiple
random seeds.

Pleural Effusion Opacity Enlarged Card.

Method APi AUROC APi AUROC APi AUROC

IS

VAE 0.56 +.01 0.58 +.01 0.52 +.01 0.54 +.00 0.56 +.00 0.57 +.01

r-VAE 0.52 +.00 0.57 +.00 0.47 +.00 0.49 –.01 0.52 +.00 0.56 +.00

f-AnoGAN 0.60 +.01 0.62 +.01 0.50 +.01 0.52 +.01 0.58 +.01 0.60 +.01

H-TAE-S N/A N/A N/A N/A N/A N/A

FS

FAE 0.74 +.01 0.78 +.01 0.55 –.02 0.58 –.03 0.65 +.02 0.68 +.02

PaDiM 0.59 –.02 0.63 –.03 0.48 –.02 0.49 –.03 0.58 –.02 0.60 –.03

CFLOW-AD 0.58 –.09 0.62 –.11 0.47 –.05 0.48 –.06 0.58 –.04 0.60 –.06

RD 0.66 +.01 0.69 –.02 0.55 +.01 0.58 +.00 0.61 +.00 0.62 –.01

A
B ExpVAE 0.48 –.03 0.47 –.05 0.51 –.01 0.49 –.02 0.49 –.03 0.48 –.04

AMCons 0.43 +.04 0.40 +.09 0.50 +.01 0.52 +.04 0.45 +.04 0.43 +.06

S-
S

PII 0.65 +.01 0.66 +.01 0.52 –.01 0.53 –.01 0.58 +.02 0.59 +.03

DAE 0.62 –.01 0.64 –.01 0.52 +.00 0.54 –.01 0.58 +.00 0.60 +.00

CutPaste 0.55 –.03 0.58 –.01 0.52 –.01 0.54 +.00 0.55 –.02 0.56 –.02

Random 0.50 0.50 0.50 0.50 0.50 0.50

TABLE VI: Inference speed in frames per second and size
complexity in million parameters for all selected methods.

Method Speed [fps] Params (M) Method Speed [fps] Params (M)

VAE 443.8 3 PaDiM 0.5 69
r-VAE 0.4 3 CFLOW-AD 72.9 237
f-AnoGAN 47.0 28 RD 109.7 161
H-TAE-S 131.3 47 PII 568.8 3
AMCons 265.9 48 CutPaste 398.9 27
ExpVAE 194.0 269 DAE 241.9 276
FAE 191.5 21

performance on the MR datasets, they are significantly slower
than the other methods.

We also report the number of parameters as a measure
of space complexity. As expected, RD, CFLOW-AD, and to
a lower extent PaDiM, are notably more resource-intensive,
since they are implemented with a Wide ResNet-50-2 back-
bone [57]. While this can limit their usability with mobile
or older systems, feature-modeling methods enable a trade-off
between complexity and UPD performance, as their backbones
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Fig. 4: Detection and localization results of RD, FAE, VAE, and DAE when trained on different fractions of the training set.

can be easily exchanged. Also, pruning of the backbone can
be considered here to considerably save computation power.

G. The Effects of Limited Training Data

We further study the model performance when utiliz-
ing subsets of each training dataset. In Fig. 4, we plot
image- and pixel-level AP of FAE, RD, DAE and VAE
when trained with x% of each modality’s training set ∀x ∈
{0, 1, 5, 10, 25, 50, 75, 100}, with x = 0 corresponding to just
a single image or MRI volume.

On all datasets but DDR, we observe a – usually steep
– increase in performance from single image/volume to 1%
and at around 10 to 25%, performance generally plateaus,
except for VAE on ATLAS, where performance increases until
50 to 75%. Interestingly, all three other methods are on par
or outperform VAE on the segmentation task of BraTS-T2
even when trained on a single volume. This is an interesting
behavior that brings into question the ability of anomaly
detection models to effectively utilize large amounts of data,
one of the main advantages of UPD as described in Section
I. On the other hand, it might also point towards an increased
data-efficiency for these models. In any case, it requires further
investigation in the future. Finally, models provided with
an increasing number of DDR train samples demonstrate a
behavior closer to the theoretically expected one. For Image-
level detection, performance slowly increases as we allow
more train samples and saturates closer to x = 100%. For
segmentation, performance seemingly still tends to increase at
x = 100%, suggesting a bottleneck in the number of available
train samples.

VII. DISCUSSION AND LIMITATIONS

Our experiments have shown that feature-modeling methods
significantly outperform methods from the other categories
evaluated in this work. They have proven to be more general-
izable to different types of anomalies that appear in medical

images and are less reliant on intensity differences between
normal and abnormal tissue. However, we have also identified
a weakness of feature-modeling methods with regard to small
anomalies. Our experiments have further revealed that the
strong priors of methods that use artificial anomalies and
pretext tasks hinder their generalization to anomalies with
even slightly different characteristics than those they have been
designed for.

Another interesting finding from our experiments is that
good performance on the MVTec-AD dataset [8] does not
necessarily translate to good performance on medical images.
While RD is clearly among the best-performing models in
our study, PaDiM, CFLOW-AD, and CutPaste perform rather
poorly. Given the diversity in the approaches, a common
design choice for this performance drop is difficult to pin
down. The classes in MVTec-AD, however, have simpler
structures than the medical images considered in our study
and exhibit lower inter-sample variance, making the normative
distribution easier to learn, such that good anomaly detection
performance is easier to achieve.

Although the results of some methods are impressive –
especially on brain MRI – the overall performance is far from
being clinically useful yet. Moreover, while great care has
been taken in both the selection of datasets, and optimization
of methods, we can neither guarantee that the datasets are
representative of the domain of medical images nor that all
methods have reached their optimal performance. Especially
some of the well-performing models on industrial defect de-
tection mentioned above underperform in our study. While our
conclusion for this finding lies in the differences between these
datasets, the risk that certain models have not reached their
optimal hyperparameter configuration cannot be excluded. On
the other end, FAE was developed by multiple authors of
this manuscript and is thus likely to have reached its optimal
performance.
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VIII. CONCLUSION

This work has thoroughly evaluated the current state of the
art in unsupervised pathology detection in medical images. It
has not only answered questions and put various approaches
into perspective, but it has also opened new questions to be
researched in works to come: First of all, feature-modeling
methods are currently under-explored in the medical UAD
domain yet have shown great potential in our evaluations.
In this context, domain-specific pre-training is also under-
explored. While we have seen increased performance in some
datasets through this technique, it was harmful to others.
Further research must therefore be conducted to investigate
the effectiveness of different pretext tasks and pre-training
techniques for UPD. So far, none of the methods considered in
this study considered the context-dependent notion of normal-
ity. What might be regarded as anomalous for a young adult
might still be in the realm of normality for an elderly person.
We consider this a valuable future venue with great potential
for increased performance. Lastly, our work has touched
upon a topic with great ethical implications: Currently, the
saturation of performance after only a few samples (Section
VI-G) is preventing the effective use of large datasets. The
same dilemma will cause models to skip underrepresented
variations if the bottleneck is too small. Since the distribution
of minorities in a society is inherently underrepresented, UPD
is expected to work worse for minorities. In the context of this
study, we want to raise awareness of this problem and urge
researchers to develop solutions to mitigate it.
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[4] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and
G. Langs, “Unsupervised anomaly detection with generative adversarial
networks to guide marker discovery.” in IPMI, ser. Lecture Notes in
Computer Science, M. Niethammer, M. Styner, S. R. Aylward, H. Zhu,
I. Oguz, P. Yap, and D. Shen, Eds., vol. 10265. Springer, 2017, pp.
146–157.

[5] D. Zimmerer, F. Isensee, J. Petersen, S. Kohl, and K. Maier-Hein,
“Unsupervised anomaly localization using variational auto-encoders,”
in Medical Image Computing and Computer Assisted Intervention –
MICCAI 2019, D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert,
S. Zhou et al., Eds. Cham: Springer International Publishing, 2019,
pp. 289–297.

[6] S. You, K. C. Tezcan, X. Chen, and E. Konukoglu, “Unsupervised
lesion detection via image restoration with a normative prior,” in
Proceedings of The 2nd International Conference on Medical Imaging
with Deep Learning, ser. Proceedings of Machine Learning Research,
M. J. Cardoso, A. Feragen, B. Glocker, E. Konukoglu, I. Oguz, G. Unal
et al., Eds., vol. 102. PMLR, 08–10 Jul 2019, pp. 540–556.

[7] H. E. Atlason, A. Love, S. Sigurdsson, V. Gudnason, and L. M.
Ellingsen, “Unsupervised brain lesion segmentation from MRI using a
convolutional autoencoder,” in Medical Imaging 2019: Image Process-
ing, E. D. Angelini and B. A. Landman, Eds. SPIE, mar 2019.

[8] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Mvtec ad — a
comprehensive real-world dataset for unsupervised anomaly detection,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 9584–9592, 2019.

[9] J. Yang, R. Xu, Z. Qi, and Y. Shi, “Visual anomaly detection for images:
A survey,” arXiv preprint arXiv:2109.13157, 2021.

[10] X. Chen and W. Konukoglu, “Unsupervised detection of lesions in brain
MRI using constrained adversarial auto-encoders,” in Medical Imaging
with Deep Learning, 2018.

[11] J. Yang, Y. Shi, and Z. Qi, “Dfr: Deep feature reconstruction for
unsupervised anomaly segmentation,” 2020.

[12] F. Meissen, J. C. Paetzold, G. Kaissis, and D. Rueckert, “Unsupervised
anomaly localization with structural feature-autoencoders,” 2022.

[13] G. Wang, S. Han, E. Ding, and D. Huang, “Student-teacher feature
pyramid matching for anomaly detection,” 2021.

[14] H. Deng and X. Li, “Anomaly detection via reverse distillation from
one-class embedding,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 9737–
9746.

[15] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Uninformed
students: Student-teacher anomaly detection with discriminative latent
embeddings,” in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, jun 2020.

[16] D. Gudovskiy, S. Ishizaka, and K. Kozuka, “CFLOW-AD: Real-time
unsupervised anomaly detection with localization via conditional nor-
malizing flows,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), January 2022, pp. 98–107.

[17] J. Yu, Y. Zheng, X. Wang, W. Li, Y. Wu, R. Zhao et al., “Fastflow:
Unsupervised anomaly detection and localization via 2d normalizing
flows,” 2021.

[18] O. Rippel, P. Mertens, and D. Merhof, “Modeling the distribution of
normal data in pre-trained deep features for anomaly detection,” in 2020
25th International Conference on Pattern Recognition (ICPR). IEEE,
2021, pp. 6726–6733.

[19] T. Defard, A. Setkov, A. Loesch, and R. Audigier, “Padim: A patch dis-
tribution modeling framework for anomaly detection and localization,”
in Pattern Recognition. ICPR International Workshops and Challenges,
A. Del Bimbo, R. Cucchiara, S. Sclaroff, G. M. Farinella, T. Mei,
M. Bertini et al., Eds. Springer International Publishing, 2021, pp.
475–489.

[20] T. Reiss, N. Cohen, L. Bergman, and Y. Hoshen, “Panda: Adapting
pretrained features for anomaly detection and segmentation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 2806–2814.

[21] N. Cohen and Y. Hoshen, “Sub-image anomaly detection with deep
pyramid correspondences,” 2020.

[22] S. Venkataramanan, K. Peng, R. V. Singh, and A. Mahalanobis, “At-
tention guided anomaly localization in images,” in ECCV. Springer,
2020.

[23] W. Liu, R. Li, M. Zheng, S. Karanam, Z. Wu, B. Bhanu, R. J. Radke,
and O. Camps, “Towards visually explaining variational autoencoders,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 8642–8651.

[24] J. Silva-Rodrı́guez, V. Naranjo, and J. Dolz, “Constrained unsupervised
anomaly segmentation,” Medical Image Analysis, vol. 80, p. 102526,
2022.

[25] J. Tan, B. Hou, T. Day, J. Simpson, D. Rueckert, and B. Kainz,
“Detecting outliers with poisson image interpolation,” in International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention. Springer, 2021, pp. 581–591.

[26] C. Li, K. Sohn, J. Yoon, and T. Pfister, “Cutpaste: Self-supervised
learning for anomaly detection and localization,” in 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 9659–9669.

[27] A. Kascenas, N. Pugeault, and A. Q. O’Neil, “Denoising autoencoders
for unsupervised anomaly detection in brain MRI,” in Medical Imaging
with Deep Learning, 2022.

[28] J. Yi and S. Yoon, “Patch svdd: Patch-level svdd for anomaly detection
and segmentation,” in ACCV, 2020.

[29] F. Meissen, G. Kaissis, and D. Rueckert, “Autoseg-steering the inductive
biases for automatic pathology segmentation,” in International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2021, pp. 127–135.

[30] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in CVPR, 2017.

[31] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proceedings of
the 37th International Conference on Machine Learning, ser. ICML’20.
JMLR.org, 2020.



12

[32] I. Golan and R. El-Yaniv, “Deep anomaly detection using geometric
transformations,” in Advances in Neural Information Processing Sys-
tems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018.

[33] D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, “Using self-
supervised learning can improve model robustness and uncertainty,”
in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
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