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Metrics Reloaded: Recommendations for image analysis 
validation

A full list of authors and affiliations appears at the end of the article.

Abstract

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an 

underestimated global problem. In biomedical image analysis, chosen performance metrics often 

do not reflect the domain interest, and thus fail to adequately measure scientific progress and 

hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, 

a comprehensive framework guiding researchers in the problem-aware selection of metrics. 

Developed by a large international consortium in a multi-stage Delphi process, it is based on 

the novel concept of a problem fingerprint – a structured representation of the given problem that 

captures all aspects that are relevant for metric selection, from the domain interest to the properties 

of the target structure(s), data set and algorithm output. Based on the problem fingerprint, users are 

guided through the process of choosing and applying appropriate validation metrics while being 

made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be 

interpreted as classification tasks at image, object or pixel level, namely image-level classification, 

object detection, semantic segmentation, and instance segmentation tasks. To improve the user 

experience, we implemented the framework in the Metrics Reloaded online tool. Following 

the convergence of ML methodology across application domains, Metrics Reloaded fosters the 

convergence of validation methodology. Its applicability is demonstrated for various biomedical 

use cases.
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Introduction

Automatic image processing with machine learning (ML) is gaining increasing traction in 

biological and medical imaging research and practice. Research has predominantly focused 

on the development of new image processing algorithms. The critical issue of reliable and 

objective performance assessment of these algorithms, however, remains largely unexplored. 

Algorithm performance in image processing is commonly assessed with validation metrics1 

that should serve as proxies for the domain interest. In consequence, the impact of validation 

metrics cannot be overstated; first, they are the basis for deciding on the practical (e.g. 

clinical) suitability of a method and are thus a key component for translation into biomedical 
practice. In fact, validation that is not conducted according to relevant metrics could be one 

major reason for why many artificial intelligence (AI) developments in medical imaging 

fail to reach clinical practice [32, 72]. In other words, the numbers presented in journals 

and conference proceedings do not reflect how successful a system will be when applied 

in practice. Second, metrics guide the scientific progress in the field; flawed metric use can 

lead to entirely futile resource investment and infeasible research directions while obscuring 

true scientific advancements.

Despite the importance of metrics, an increasing body of work shows that the metrics used 

in common practice often do not adequately reflect the underlying biomedical problems, 

diminishing the validity of the investigated methods [16, 23, 26, 35, 37, 47, 51, 82, 85]. 

This especially holds true for challenges, internationally respected competitions that have 

become the de facto standard for comparative performance assessment of image processing 

methods. These challenges are often published in prestigious journals [11, 69, 83] and 

receive tremendous attention from both the scientific community and industry. Among a 

number of shortcomings in design and quality control that were recently unveiled by a 

multi-center initiative [47], the choice of inappropriate metrics stood out as a core problem. 

Compared to other areas of AI research, choosing the right metric is particularly challenging 

in image processing because the suitability of a metric depends on various factors. As a 

foundation for the present work, we identified three core categories related to pitfalls in 

metric selection (see Fig. 1a):

Inappropriate choice of the problem category: The chosen metrics do not always 

reflect the biomedical need. For example, object detection problems are often framed 

as segmentation tasks, resulting in the use of metrics that do not account for the 

potentially critical localization of all objects in the scene [9, 29] (Fig. 1a, top left).

Poor metric selection: Certain characteristics of a given biomedical problem render 

particular metrics inadequate. Mathematical metric properties are often neglected, 

for example, when using the Dice Similarity Coefficient (DSC) in the presence of 

particularly small structures (Fig. 1a, top right).

Poor metric application: Even if a metric is well-suited for a given problem in 

principle, pitfalls can occur when applying that metric to a specific data set. For 

example, a common flaw pertains to ignoring hierarchical data structure, as in data 

1Not to be confused with distance metrics in the pure mathematical sense.
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from multiple hospitals or a variable number of images per patient (Fig. 1a, bottom), 

when aggregating metric values.

These problems are magnified by the fact that common practice often grows historically, 

and poor standards may be propagated between generations of scientists and in prominent 

publications. To dismantle such historically grown poor practices and leverage distributed 

knowledge from various subfields of image processing, we established the multidisciplinary 

Metrics Reloaded2 consortium. This consortium comprises international experts from the 

fields of medical image analysis, biological image analysis, medical guideline development, 

general ML, different medical disciplines, statistics and epidemiology, representing a large 

number of biomedical imaging initiatives and societies.

The mission of Metrics Reloaded is to foster reliable algorithm validation through problem-

aware, standardized choice of metrics with the long-term goal of (1) enabling the reliable 

tracking of scientific progress and (2) aiding to bridge the current chasm between ML 

research and translation into biomedical imaging practice.

Based on a kickoff workshop held in December 2020, the Metrics Reloaded framework 

(Fig. 1b and Fig. 2) was developed using a multi-stage Delphi process [7] for consensus 

building. Its primary purpose is to enable users to make educated decisions on which 

metrics to choose for a driving biomedical problem. The foundation of the metric selection 

process is the new concept of problem fingerprinting (Fig. 3). Abstracting from a specific 

domain, problem fingerprinting is the generation of a structured representation of the given 

biomedical problem that captures all properties relevant for metric selection. As depicted in 

Fig. 3, the properties captured by the fingerprint comprise domain interest-related properties, 

such as the particular importance of structure boundary, volume or center, target structure-
related properties, such as the shape complexity or the size of structures relative to the 

image grid size, data set-related properties, such as class imbalance, as well as algorithm 
output-related properties, such as the theoretical possibility of the algorithm output not 

containing any target structure.

Based on the problem fingerprint, the user is then, in a transparent and understandable 

manner, guided through the process of selecting an appropriate set of metrics while being 

made aware of potential pitfalls related to the specific characteristics of the underlying 

biomedical problem. The Metrics Reloaded framework currently supports problems in 

which categorical target variables are to be predicted based on a given n-dimensional input 

image (possibly enhanced with context information) at pixel, object or image level, as 

illustrated in Fig. 4. It thus supports problems that can be assigned to one of the following 

four problem categories: image-level classification (image level), object detection (object 

level), semantic segmentation (pixel level), or instance segmentation (pixel level). Designed 

to be imaging modality-independent, Metrics Reloaded can be suited for application in 

various image analysis domains even beyond the field of biomedicine.

2We thank the Intelligent Medical Systems (IMSY) lab members Nina Sautter, Patricia Vieten and Tim Adler for the suggestion of the 
name, inspired by the Matrix movies.
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Here, we present the key contributions of our work in detail, namely (1) the Metrics 
Reloaded framework for problem-aware metric selection along with the key findings and 

design decisions that guided its development (Fig. 2), (2) the application of the framework to 

common biomedical use cases, showcasing its broad applicability (selection shown in Fig. 5) 

and (3) the open online tool that has been implemented to improve the user experience with 

our framework.

Metrics Reloaded Framework

Metrics Reloaded is the result of a multi-stage Delphi process, comprising five international 

workshops, nine surveys, numerous expert group meetings, and crowdsourced feedback 

processes, all conducted between 2020 and 2022. As a foundation of the recommendation 

framework, we identified common and rare pitfalls related to metrics in the field of 

biomedical image analysis using a community-powered process, detailed in this work’s 

sister publication [65]. We found that common practice is often not well-justified, and poor 

practices may even be propagated from one generation of scientists to the next. Importantly, 

many pitfalls generalize not only across the four problem categories that our framework 

addresses but also across domains (Fig. 4). This is because the source of the pitfall, such 

as class imbalance, uncertainties in the reference, or poor image resolution, can occur 

irrespective of a specific modality or application.

Following the convergence of AI methodology across domains and problem categories, we 
therefore argue for the analogous convergence of validation methodology.

Cross-domain approach enables integration of distributed knowledge

To break historically grown poor practices, we followed a multidisciplinary cross-domain 

approach that enabled us to critically question common practice in different communities 

and integrate distributed knowledge in one common framework. To this end, we formed 

an international multidisciplinary consortium of 73 experts from various biomedical image 

analysis-related fields. Furthermore, we crowdsourced metric pitfalls and feedback on our 

approach in a social media campaign. Ultimately, a total of 156 researchers contributed to 

this work, including 84 mentioned in the acknowledgements. Consideration of the different 

knowledge and perspectives on metrics led to the following key design decisions for Metrics 
Reloaded:

Encapsulating domain knowledge: The questions asked to select a suitable metric 

are mostly similar regardless of image modality or application: Are the classes 

balanced? Is there a specific preference for the positive or negative class? What is 

the accuracy of the reference annotation? Is the structure boundary or volume of 

relevance for the target application? Importantly, while answering these questions 
requires domain expertise, the consequences in terms of metric selection can largely 
be regarded as domain-independent. Our approach is thus to abstract from the 

specific image modality and domain of a given problem by capturing the properties 

relevant for metric selection in a problem fingerprint (Fig. 3).

Exploiting synergies across classification scales: Similar considerations apply with 

regard to metric choice for classification, detection and segmentation tasks, as they 
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can all be regarded as classification tasks at different scales (Fig. 4). The similarities 

between the categories, however, can also lead to problems when the wrong category 

is chosen (see Fig. 1a, top left). Therefore, we (1) address all four problem categories 

in one common framework (Fig. 2) and (2) cover the selection of the problem 

category itself in our framework (Extended Data Fig. 1).

Setting new standards: As the development and implementation of 

recommendations that go beyond the state of the art often requires critical mass, 

we involved stakeholders of various communities and societies in our consortium. 

Notably, out crowdsourcing-based approach led to a pool of metric candidates (Tab. 

SN 2.1) that not only includes commonly applied metrics, but also metrics that have 

to date received little attention in biomedical image analysis.

Abstracting from inference methodology: Metrics should be chosen based solely 

on the driving biomedical problem and not be affected by algorithm design choices. 

For example, the error functions applied in common neural network architectures do 

not justify the use of corresponding metrics (e.g. validating with DSC to match the 

Dice loss used for training a neural network). Instead, the domain interest should 

guide the choice of metric, which, in turn, can guide the choice of the loss term.

Exploiting complementary metric strengths: A single metric typically cannot 

cover the complex requirements of the driving biomedical problem [64]. To account 

for the complementary strengths and weakness of metrics, we generally recommend 

the usage of multiple complementary metrics to validate image analysis problems. 

As detailed in our recommendations (Suppl. Note 2), we specifically recommend the 

selection of metrics from different families.

Validation by consensus building and community feedback: A major challenge 

for research on metrics is its validation, due to the lack of methods capable of 

quantitatively assessing the superiority of a given metric set over another. Following 

the spirit of large consortia formed to develop reporting guidelines (e.g., CONSORT 

[71], TRIPOD [55], STARD [6]), we built the validation of our framework on three 

main pillars: (1) Delphi processes to challenge and refine the proposals of the expert 

groups that worked on individual components of the framework, (2) community 

feedback obtained by broadcasting the framework via society mailing lists and social 

media platforms and (3) and instantiation of the framework to a range of different 

biological and medical use cases.

Involving and educating users: Choosing adequate validation metrics is a complex 

process. Rather than providing a black box recommendation, Metrics Reloaded 
guides the user through the process of metric selection while raising awareness on 

pitfalls that may occur. In cases in which the tradeoffs between different choices 

must be considered, decision guides (Suppl. Note 2.7) assist in deciding between 

competing metrics while respecting individual preferences.

Problem fingerprints encapsulate relevant domain knowledge

To encapsulate relevant domain knowledge in a common format and then enable a modality-

agnostic metric recommendation approach that generalizes over domains, we developed the 
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concept of problem fingerprinting, illustrated in Fig. 3. As a foundation, we crowdsourced 

all properties of a driving biomedical problem that are potentially relevant for metric 

selection via surveys issued to the consortium (see Suppl. Methods). This process resulted 

in a list of binary and categorical variables (fingerprint items) that must be instantiated by a 

user to trigger the Metrics Reloaded recommendation process. Common issues often relate 

to selecting metrics from the wrong problem category, as illustrated in Fig. 1a (top left). 

To avoid such issues, problem fingerprinting begins with mapping a given problem with all 

its intrinsic and data set-related properties to the corresponding problem category via the 

category mapping shown in Extended Data Fig. 1. The problem category is a fingerprint 

item itself.

In the following, we will refer to all fingerprint items with the notation FPX.Y, where Y is a 

numerical identifier and the index X represents one of the following families:

FP1 - Problem category refers to the problem category generated by S1 (Extended 

Data Fig. 1). FP2 - Domain interest-related properties reflect user preferences and 

are highly dependent on the target application. A semantic image segmentation that 

serves as the foundation for radiotherapy planning, for example, would require exact 

contours (FP2.1 Particular importance of structure boundaries = TRUE). On the other 

hand, for a cell segmentation problem that serves as prerequisite for cell tracking, the 

object centers may be much more important (FP2.3 = TRUE). Both problems could 

be tackled with identical network architectures, but the validation metrics should be 

different.

FP3 - Target structure-related properties represent inherent properties of target 

structure(s) (if any), such as the size, size variability and the shape. Here, the term 

target structures can refer to any object/structure of interest, such as cells, vessels, 

medical instruments or tumors.

FP4 - Data set-related properties capture properties inherent to the provided data to 

which the metric is applied. They primarily relate to class prevalences, uncertainties 

of the reference annotations, and whether the data structure is hierarchical.

FP5 - Algorithm output-related properties encode properties of the output, such as 

the availability of predicted class scores.

Note that not all properties are relevant for all problem categories. For example, the shape 

and size of target structures is highly relevant for segmentation problems but irrelevant 

for image classification problems. The complete problem category-specific fingerprints are 

provided in Suppl. Note 1.3.

Metrics Reloaded addresses all three types of metric pitfalls

Metrics Reloaded was designed to address all three types of metric pitfalls identified in [65] 

and illustrated in Fig. 1a. More specifically, each of the three steps shown in Fig. 2 addresses 

one type of pitfall:

Step 1 - Fingerprinting.—A user should begin by reading the general instructions of the 

recommendation framework, provided in Suppl. Note 1.1. Next, the user should convert the 
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driving biomedical problem to a problem fingerprint. This step is not only a prerequisite 

for applying the framework across application domains and classification scales, but also 

specifically addresses the inappropriate choice of the problem category via the integrated 

category mapping. Once the user’s domain knowledge has been encapsulated in the problem 

fingerprint, the actual metric selection is conducted according to a domain- and modality-

agnostic process.

Step 2 - Metric Selection.—A Delphi process yielded the Metrics Reloaded pool of 

reference-based validation metrics shown in Tab. SN 2.1. Notable, this pool contains metrics 

that are currently not widely known in some biomedical image analysis communities. A 

prominent example is the Net Benefit (NB) [87] metric, popular in clinical prediction tasks 

and designed to determine whether basing decisions on a method would do more good 

than harm. A diagnostic test, for example, may lead to early identification and treatment 

of a disease, but typically will also cause a number of patients without disease being 

subjected to unnecessary further interventions. NB allows to consider such tradeoffs by 

putting benefits and harms on the same scale so that they can be directly compared. 

Another example is the Expected Cost (EC) metric [42], which can be seen as a 

generalization of Accuracy with many desirable added features, but is not well-known in 

the biomedical image analysis communities [21]. Based on the Metrics Reloaded pool, 

the metric recommendation is performed with a Business Process Model and Notation 

(BPMN)-inspired flowchart (see Fig. SN 5.1), in which conditional operations are based on 

one or multiple fingerprint properties (Fig. 2). The main flowchart has three substeps, each 

addressing the complementary strengths and weaknesses of common metrics. First, common 

reference-based metrics, which are based on the comparison of the algorithm output to a 

reference annotation, are selected. Next, the pool of standard metrics can be complemented 

with custom metrics to address application-specific complementary properties. Finally, non-

reference-based metrics assessing speed, memory consumption or carbon footprint, for 

example, can be added to the metric pool(s). In this paper, we focus on the step of selecting 

reference-based metrics, because this is where synergies across modalities and scales can be 

exploited.

These synergies are showcased by the substantial overlap between the different paths that, 

depending on the problem category, are taken through the mapping during metric selection. 

All paths comprise several subprocesses S (indicated by the ⊞-symbol), each of which holds 

a subsidiary decision tree representing one specific step of the selection process. Traversal of 

a subprocess typically leads to the addition of a metric to the problem-specific metric pool. 

In multi-class prediction problems, dedicated metric pools for each class may need to be 

generated as relevant properties may differ from class to class. A three-dimensional semantic 

segmentation problem, for example, could require the simultaneous segmentation of both 

tubular and non-tubular structures (e.g., liver vessels and tissue). These require different 

metrics for validation. Although this is a corner case, our framework addresses this issue in 

principle. In ambiguous cases, i.e., when the user can choose between two options in one 

step of the decision tree, a corresponding decision guide details the tradeoffs that need to be 

considered (Suppl. Note 2.7). For example, the Intersection over Union (IoU) and the DSC 
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are mathematically closely related. The concrete choice typically boils down to a simple user 

or community preference.

Fig. 2 along with the corresponding Subprocesses S1–S9 (Extended Data Fig. 1–Extended 

Data Fig. 9) captures the core contribution of this paper, namely the consensus 

recommendation of the Metrics Reloaded consortium according to the final Delphi process. 

For all ten components, the required Delphi consensus threshold (>75% agreement) was 

met. In all cases of disagreement, which ranged from 0% to 7% for Fig. 2 and S1–S9, each 

remaining point of criticism was respectively only raised by a single person. The following 

paragraphs present a summary of the four different colored paths through Step 2 - Metric 

Selection of the recommendation tree (Fig. 2) for the task of selecting reference-based 

metrics from the Metrics Reloaded pool of common metrics. More comprehensive textual 

descriptions can be found in Suppl. Note 2.

Image-level Classification (ImLC).—Image-level classification is conceptually the most 

straight- forward problem category, as the task is simply to assign one of multiple possible 

labels to an entire image (see Suppl. Note 2.2). The validation metrics are designed to 

measure two key properties: discrimination and calibration.

Discrimination refers to the ability of a classifier to discriminate between two or more 

classes. This can be achieved with counting metrics that operate on the cardinalities of a 

fixed confusion matrix (i.e., the true/false positives/negatives in the binary classification 

case). Prominent examples are Sensitivity, Specificity or F1 Score for binary settings and 

Matthews Correlation Coefficient (MCC) for multi-class settings. Converting predicted class 

scores to a fixed confusion matrix (in the binary case by setting a potentially arbitrary cutoff) 

can, however, be regarded as problematic in the context of performance assessment [65]. 

Multi-threshold metrics, such as Area under the Receiver Operating Characteristic Curve 

(AUROC), are therefore based on varying the cutoff, which enables the explicit analysis of 

the tradeoff between competing properties such as Sensitivity and Specificity.

While most research in biomedical image analysis focuses on the discrimination capabilities 

of classifiers, a complementary important property is the calibration of a model. An 

uncertainty-aware model should yield predicted class scores that represent the true 

likelihood of events [24], as detailed in Suppl. Note 2.6. Overoptimistic or underoptimistic 

classifiers can be especially problematic in prediction tasks where a clinical decision may be 

made based on the risk of the patient of developing a certain condition. Metrics Reloaded 
hence provides recommendations for validating the algorithm performance both in terms 

of discrimination and calibration. We recommend the following process for classification 

problems (blue path in Fig. 2; detailed description in Suppl. Note 2.2):

1. Select multi-class metric (if any): Multi-class metrics have the unique 

advantage of capturing the performance of an algorithm for all classes in a 

single value. With the ability of taking into account all entries of the multi-

class confusion matrix, they provide a holistic measure of performance without 

the need for customized class-aggregation schemes. We recommend using a 

multi-class metric if a decision rule applied to the predicted class scores is 
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available (FP2.6). In certain use cases, especially in the presence of ordinal 

data, there is an unequal severity of class confusions (FP2.5.2), meaning that 

different costs should be applied to different misclassifications reflected by 

the confusion matrix. In such cases, we generally recommend EC as metric. 

Otherwise, depending on the specific scenario, Accuracy, Balanced Accuracy 

(BA) and MCC may be viable alternatives. The concrete choice of metric 

depends primarily on the prevalences (e.g. frequencies) of classes in the provided 

validation set and the target population (FP4.1/2), as detailed in Subprocess S2 

(Extended Data Fig. 2) and the corresponding textual description in Suppl. Note 

2.2.

As class-specific analyses are not possible with multi-class metrics, which 

can potentially hide poor performance on individual classes, we recommend 

an additional validation with per-class counting metrics (optional) and multi-

threshold metrics (always recommended).

2. Select per-class counting metric (if any): If a decision rule applied to the 

predicted class scores is available (FP2.6), a per-class counting metric, such as 

the Fβ Score, should be selected. Each class of interest is separately assessed, 

preferably in a “one-versus-rest” fashion. The choice depends primarily on the 

decision rule and the distribution of classes (FP4.2). Details can be found in 

Subprocess S3 for selecting per-class counting metrics (Extended Data Fig. 3).

3. Select multi-threshold metric (if any): Counting metrics reduce the potentially 

complex output of a classifier (the continuous class scores) to a single value 

(the predicted class), such that they can work with a fixed confusion matrix. To 

compensate for this loss of information and obtain a more comprehensive picture 

of a classifier’s discriminatory performance, multi-threshold metrics work with 

a dynamic confusion matrix reflecting a range of possible thresholds applied to 

the predicted class scores. While we recommend the popular, well-interpretable 

and prevalence-independent AUROC as the default multi-threshold metric for 

classification, Average Precision (AP) can be more suitable in the case of high 

class balance because it incorporates predicted values, as detailed in Subprocess 

S4 for selecting multi-threshold metrics (Extended Data Fig. 4).

4. Select calibration metric (if any): If calibration assessment is requested 

(FP2.7), one or multiple calibration metrics should be added to the metric pool as 

detailed in Subprocess S5 for selecting calibration metrics (Extended Data Fig. 

5).

Semantic segmentation (SemS).—In semantic segmentation, classification occurs at 

pixel level. However, it is not advisable to simply apply the standard classification metrics 

to the entire collection of pixels in a data set for two reasons. Firstly, pixels of the same 

image are highly correlated. Hence, to respect the hierarchical data structure, metric values 

should first be computed per image and then be aggregated over the set of images. Note 

in this context that the commonly used DSC is mathematically identical to the popular 

F1 Score applied at pixel level. Secondly, in segmentation problems, the user typically 
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has an inherent interest in structure boundaries, centers or volumes of structures (FP2.1, 

FP2.2, FP2.3). The family of boundary-based metrics (subset of distance-based metrics) 

therefore requires the extraction of structure boundaries from the binary segmentation masks 

as a foundation for segmentation assessment. Based on these considerations and given all 

the complementary strengths and weaknesses of common segmentation metrics [65], we 

recommend the following process for segmentation problems (yellow path in Fig. 2; detailed 

description in Suppl. Note 2.3):

1. Select overlap-based metric (if any): In segmentation problems, counting 

metrics such as the DSC or IoU measure the overlap between the reference 

annotation and the algorithm prediction. As they can be considered the de 

facto standard for assessing segmentation quality and are well-interpretable, we 

recommend using them by default unless the target structures are consistently 

small, relative to the grid size (FP3.1), and the reference may be noisy (FP4.3.1). 

Depending on the specific properties of the problems, we recommend the DSC 

or IoU (default recommendation), the Fβ Score (preferred when there is a 

preference for either False Positive (FP) or False Negative (FN)) or the centerline 

Dice Similarity Coefficient (clDice) (for tubular structures). Details can be found 

in Subprocess S6 for selecting overlap-based metrics (Extended Data Fig. 6).

2. Select boundary-based metric (if any): Key weaknesses of overlap-based 

metrics include shape unawareness and limitations when dealing with small 

structures or high size variability [65]. Our general recommendation is therefore 

to complement an overlap-based metric with a boundary-based metric. If 

annotation imprecisions should be compensated for (FP2.5.7), our default 

recommendation is the Normalized Surface Distance (NSD). Otherwise, the 

fundamental user preference guiding metric selection is whether errors should be 

penalized by existence or distance (FP2.5.6), as detailed in Subprocess S7 for 

selecting boundary-based metrics (Extended Data Fig. 7).

Object detection (ObD).—Object detection problems differ from segmentation problems 

in several key features with respect to metric selection. Firstly, they involve distinguishing 

different instances of the same class and thus require the step of locating objects 

and assigning them to the corresponding reference object. Secondly, the granularity of 

localization is comparatively rough, which is why no boundary-based metrics are required 

(otherwise the problem would be phrased as an instance segmentation problem). Finally, and 

crucially important from a mathematical perspective, the absence of True Negatives (TNs) 

in object detection problems renders many popular classification metrics (e.g. Accuracy, 

Specificity, AUROC) invalid. In binary problems, for example, suitable counting metrics 

can only be based on three of the four entries of the confusion matrix. Based on these 

considerations and taking into account all the complementary strengths and weaknesses of 

existing metrics [65], we propose the following steps for object detection problems (green 

path in Fig. 2; detailed description in Suppl. Note 2.4):

1. Select localization criterion: An essential part of the validation is to decide 

whether a prediction matches a reference object. To this end, (1) the location 

of both the reference objects and the predicted objects must be adequately 
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represented (e.g., by masks, bounding boxes or center points), and (2) a metric 

for deciding on a match (e.g. Mask IoU) must be chosen. As detailed in 

Subprocess S8 for selecting the localization criterion (Extended Data Fig. 8), 

our recommendation considers both the granularity of the provided reference 

(FP4.4) and the required granularity of the localization (FP2.4).

2. Select assignment strategy: As the localization does not necessarily lead 

to unambiguous matchings, an assignment strategy needs to be chosen to 

potentially resolve ambiguities that occurred during localization. As detailed 

in Subprocess S9 for selecting the assignment strategy (Extended Data Fig. 9), 

the recommended strategy depends on the availability of continuous class scores 

(FP5.1) as well as on whether double assignments should be punished (FP2.5.8).

3. Select classification metric(s) (if any): Once objects have been located 

and assigned to reference objects, generation of a confusion matrix (without 

TN) is possible. The final step therefore simply comprises choosing suitable 

classification metrics for validation. Several subfields of biomedical image 

analysis have converged to choosing solely a counting metric, such as 

the Fβ Score, as primary metric in object detection problems. We follow 

this recommendation when no continuous class scores are available for the 

detected objects (FP5.1). Otherwise, we disagree with the practice of basing 

performance assessment solely on a single, potentially suboptimal cutoff on the 

continuous class scores. Instead, we follow the recommendations for image-level 

classification and propose complementing a counting metric (Subprocess S3, 

Extended Data Fig. 3) with a multi-threshold metric (Subprocess S4, Extended 

Data Fig. 4) to obtain a more holistic picture of performance. As multi-threshold 

metric, we recommend AP or Free-Response Receiver Operating Characteristic 

(FROC) Score, depending on whether an easy interpretation (FROC Score) or a 

standardized metric (AP) is preferred. The choice of per-class counting metric 

depends primarily on the decision rule (FP2.6).

Note that the previous description implicitly assumed single-class problems, but 

generalization to multi-class problems is straightforward by applying the validation per-

class. It is further worth mentioning that metric application is not straightforward in object 

detection problems as the number of objects in an image may be extremely small, or even 

zero, compared to the number of pixels in an image. Special considerations with respect to 

aggregation must therefore be made, as detailed in Suppl. Note 2.4.

Instance segmentation (InS).—Instance segmentation delivers the tasks of object 

detection and semantic segmentation at the same time. Thus, the pitfalls and 

recommendations for instance segmentation problems are closely related to those for 

segmentation and object detection [65]. This is directly reflected in our metric selection 

process (purple path in Fig. 2; detailed description in Suppl. Note 2.5):

1. Select object detection metric(s): To overcome problems related to instance 

unawareness (Fig. 1a, top left), we recommend selection of a set of detection 

metrics to explicitly measure detection performance. To this end, we recommend 
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almost the exact process as for object detection with two exceptions. Firstly, 

given the fine granularity of both the output and the reference annotation, our 

recommendation for the localization strategy differs, as detailed in Subprocess 

S8 (Extended Data Fig. 8). Secondly, as depicted in S3 (Extended Data Fig. 

3), we recommend the Panoptic Quality (PQ) [34] as an alternative to the Fβ 
Score. This metric is especially suited for instance segmentation, as it combines 

the assessment of overall detection performance and segmentation quality of 

successfully matched (True Positive (TP)) instances in a single score.

2. Select segmentation metric(s) (if any): In a second step, metrics to explicitly 

assess the segmentation quality for the TP instances may be selected. Here, we 

follow the exact same process as in semantic segmentation (Subprocesses S6, 

Extended Data Fig. 6 and S7, Extended Data Fig. 7). The primary difference is 

that the segmentation metrics are applied per-instance.

Importantly, the development process of the Metrics Reloaded framework was designed such 

that the pitfalls identified in the sister publication of this work [66] are comprehensively 

addressed. Tab. 1 makes the recommendations and design decisions corresponding to 

specific pitfalls explicit.

Once common reference-based metrics have been selected and, where necessary, 

complemented by application-specific metrics, the user proceeds with the application of 

the metrics to the given problem.

Step 3 - Metric Application.—Although the application of a metric to a given data set 

may appear straightforward, numerous pitfalls can occur [65]. Our recommendations for 

addressing them are provided in Extended Data Tab. 1. Following the taxonomy provided 

in the sister publication of this work [66], they are categorized in recommendations related 

to metric implementation, aggregation, ranking, interpretation, and reporting. While several 

aspects are covered in related work (e.g. [88]), an important contribution of the present 

work is the metric-specific summary of recommendations captured in the Metric Cheat 
Sheets (Suppl. Note 3.1). A further major contribution is our implementation of all Metrics 
Reloaded metrics in the open-source framework Medical Open Network for Artificial 

Intelligence (MONAI), available at https://github.com/Project-MONAI/MetricsReloaded 

(see Suppl. Methods).

Metrics Reloaded is broadly applicable in biomedical image analysis

To validate the Metrics Reloaded framework, we used it to generate recommendations for 

common use cases in biomedical image processing (see Suppl. Note 4). The traversal 

through the decision tree of our framework is detailed for eight selected use cases 

corresponding to the four different problem categories (Fig. 5):

Image-level classification (Figs. SN 5.5 - SN 5.8): frame-based sperm motility 

classification from time-lapse microscopy video of human spermatozoa (ImLC-1) 

and disease classification in dermoscopic images (ImLC-2).
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Semantic segmentation (Figs. SN 5.9 - SN 5.10): embryo segmentation in 

microscopy images (SemS-1) and liver segmentation in Computed Tomography 

(computed tomography (CT)) images (SemS-2).

Object detection (Figs. SN 5.6 - SN 5.7, SN 5.11 - SN 5.12): cell detection 

and tracking during the autophagy process in time-lapse microscopy (ObD-1) and 

multiple sclerosis (MS) lesion detection in multi-modal brain magnetic resonance 

imaging (MRI) images (ObD-2).

Instance segmentation (Figs. SN 5.6 - SN 5.7, SN 5.9 - SN 5.12): instance 

segmentation of neurons from the fruit fly in 3D multi-color light microscopy images 

(InS-1) and surgical instrument instance segmentation in colonoscopy videos (InS-2).

The resulting metric recommendations (Fig. 5) demonstrate that a common framework 

across domains is sensible. In the showcased examples, shared properties of problems from 

different domains result in almost identical recommendations. In the semantic segmentation 

use cases, for example, the specific image modality is irrelevant for metric selection. What 

matters is the fact that a single object with a large size relative to the grid size should be 

segmented – properties that are captured by the proposed fingerprint. In Suppl. Note 4, we 

present recommendations for several other biomedical use cases.

The Metrics Reloaded online tool allows user-friendly metric selection

Selecting appropriate validation metrics while considering all potential pitfalls that may 

occur is a highly complex process, as demonstrated by the large number of figures in 

this paper. Some of the complexity, however, also results from the fact that the figures 

need to capture all possibilities at once. For example, many of the figures could be 

simplified substantially for problems based on only two classes. To leverage this potential 

and to improve the general user experience with our framework, we developed the Metrics 
Reloaded online tool, which is currently available as a beta version with restricted access 

(see Suppl. Methods). The tool captures our framework in a user-centric manner and can 

serve as a trustworthy common access point for image analysis validation.

DISCUSSION

Conventional scientific practice often grows through historical accretion, leading to 

standards that are not always well-justified. This holds particularly true for the validation 

standards in biomedical image analysis.

The present work represents the first comprehensive investigation and, importantly, 

constructive set of recommendations challenging the state of the art in biomedical image 

analysis algorithm validation with a specific focus on metrics. With the intention of 

revisiting – literally “re-searching” – common validation practices and developing better 

standards, we brought together experts from traditionally disjunct fields to leverage 

distributed knowledge. Our international consortium of more than 70 experts from the 

fields of biomedical image analysis, machine learning, statistics, epidemiology, biology, 

and medicine, representing a large number of relevant biomedical imaging initiatives 

and societies, developed the Metrics Reloaded framework that offers guidelines and 
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tools to choose performance metrics in a problem-aware manner. The expert consortium 

was primarily compiled in a way to cover the required expertise from various fields 

but also consisted of researchers of different countries, (academic) ages, roles, and 

backgrounds (details can be found in the Suppl. Methods). Importantly, Metrics Reloaded 
comprehensively addresses all pitfalls related to metric selection (Tab. 1) and application 

(Extended Data Tab. 1) that were identified in this work’s sister publication [66].

Metrics Reloaded is the result of a 2.5-year long process involving numerous workshops, 

surveys, and expert group meetings. Many controversial debates were conducted during this 

time. Even deciding on the exact scope of the paper was anything but trivial. Our consortium 

eventually agreed on focusing on biomedical classification problems with categorical 

reference data and thus exploiting synergies across classification scales. Generating and 

handling fuzzy reference data (e.g., from multiple observers) is a topic of its own [45, 78] 

and was decided to be out of scope for this work. Furthermore, the inclusion of calibration 

metrics in addition to discrimination metrics was originally not intended because calibration 

is a complex topic in itself, and the corresponding field is relatively young and currently 

highly dynamic. This decision was reversed due to high demand from the community, 

expressed through crowdsourced feedback on the framework.

Extensive discussions also evolved around the inclusion criteria for metrics, considering the 

tradeoff between established (potentially flawed) and new (not yet stress-tested) metrics. 

Our strategy for arriving at the Metrics Reloaded recommendations balanced this tradeoff 

by using common metrics as a starting point and making adaptations where needed. For 

example, Weighted Cohen’s Kappa (WCK), originally designed for assessing inter-rater 

agreement, is the state-of-the-art metric used in the medical imaging community when 

handling ordinal data. Unlike other common multi-class metrics, such as (Balanced) 

Accuracy or MCC, it allows the user to specify different costs for different class confusions, 

thereby addressing the ordinal rating. However, our consortium deemed the (not widely 

known) metric EC generally more appropriate due to its favorable mathematical properties. 

Importantly, our framework does not intend to impose recommendations or act as a “black 

box”; instead, it enables users to make educated decisions while considering ambiguities 

and tradeoffs that may occur. This is reflected by our use of decision guides (Suppl. Note 

2.7), which actively involve users in the decision-making process (for the example above, for 

instance, see DG2.1).

An important further challenge that our consortium faced was how to best provide 

recommendations in case multiple questions are asked for a single given data set. For 

example, a clinician’s ultimate interest may lie in assessing whether tumor progress has 

occurred in a patient. While this would be phrased as an image-level classification task 

(given two images as input), an interesting surrogate task could be seen in a segmentation 

task assessing the quality of tumor delineation and providing explainability for the results. 

Metrics Reloaded addresses the general challenge of multiple different driving biomedical 

questions corresponding to one data set pragmatically by generating a recommendation 

separately for each question. The same holds true for multi-label problems, for example, 

when multiple different types of abnormalities potentially co-occur in the same image/

patient.
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Another key challenge we faced was the validation of our framework due to the lack of 

ground truth “best metrics” to be applied for a given use case. Our solution builds upon 

three pillars. Firstly, we adopted established consensus building approaches utilized for 

developing widely used guidelines such as CONSORT [71], TRIPOD [55], or STARD [6]). 

Secondly, we challenged our initial recommendation framework by acquiring feedback via a 

social media campaign. Finally, we instantiated the final framework to a range of different 

biological and medical use cases. Our approach showcases the benefit of crowdsourcing 

as a means of expanding the horizon beyond the knowledge peculiar to specific scientific 

communities. The most prominent change effected in response to the social media feedback 

was the inclusion of the aforementioned EC, a powerful metric from the speech recognition 

community. Furthermore, upon popular demand, we added recommendations on assessing 

the interpretability of model outputs, now captured by Subprocess S5 (Extended Data Fig. 

5).

After many highly controversial debates, the consortium ultimately converged on a 

consensus recommendation, as indicated by the high agreement in the final Delphi process 

(median agreement with the Subprocesses: 93%). While some subsprocesses (S1, S7, S8) 

were unanimously agreed on without a single negative vote, several issues were raised by 

individual researchers. While most of them were minor (e.g., concerning wording), a major 

debate revolved around calibration metrics. Some members, for example, questioned the 

value of stand-alone calibration metrics altogether. The reason for this view is the critically 

important misconception that the predicted class scores of a well-calibrated model express 

the true posterior probability of an input belonging to a certain class [62] – e.g., a patient’s 

risk for a certain condition based on an image. As this is not the case, several researchers 

argued for basing calibration assessment solely on proper scoring rules (such as the Brier 

Score (BS)), which assess the quality of the posteriors better than the stand-alone calibration 

metrics. We have addressed all these considerations in our recommendation framework 

including a detailed rationale for our recommendations, provided in Suppl. Note 2.6.

While we believe our framework to cover the vast majority of biomedical image analysis 

use cases, suggesting a comprehensive set of metrics for every possible biomedical 

problem may be out of its scope. The focus of our framework lies in correcting poor 

practices related to the selection of common metrics. However, in some use cases, common 

reference-based metrics – as a matter of principle – be unsuitable. In fact, the use of 

application-specific metrics may be required in some cases. A prominent example are 

instance segmentation problems in which the matching of reference and predicted instances 

is infeasible, causing overlap-based localization criteria to fail. Metrics such as Rand Index 

(RI) [63] and Variation of Information (VoI) [53] address this issue by avoiding one-to-

one correspondences between predicted and reference instances. To make our framework 

applicable to such specific use cases, we integrated the step of choosing application-specific 

metrics in the main workflow (Fig. 2). Examples of such application-specific metrics can be 

found in related work [17, 20].

Metrics Reloaded primarily provides guidance for the selection of metrics that measure 

some notion of the “correctness” of an algorithm’s predictions on a set of test cases. It 

should be noted that holistic algorithm performance assessment also includes other aspects. 
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One of them is robustness. For example, the accuracy of an algorithm for detecting disease 

in medical scans should ideally be the same across different hospitals that may use different 

acquisition protocols or scanners from different manufacturers. Recent work, however, 

shows that even the exact same models with nearly identical test set performance in terms of 

predictive accuracy may behave very differently on data from different distributions [18].

Reliability is another important algorithmic property to be taken into account during 

validation. A reliable algorithm should have the ability to communicate its confidence 

and raise a flag when the uncertainty is high and the prediction should be discarded 

[70]. For calibrated models, this can be achieved via the predicted class scores, although 

other methods based on dedicated model outputs trained to express the confidence or on 

density estimation techniques are similarly popular. Importantly, an algorithm with reliable 

uncertainty estimates or increased robustness to distribution shift might not always be the 

best performing in terms of predictive performance [28]. For safe use of classification 

systems in practice, careful balancing of the tradeoff between robustness and reliability over 

accuracy might be necessary.

So far, Metrics Reloaded focuses on common reference-based methods that compare 

model outputs to corresponding reference annotations. We made this design choice due 

to our hypothesis that reference-based metrics can be chosen in a modality- and application-

agnostic manner using the concept of problem fingerprinting. As indicated by the step of 

choosing potential non-reference-based metrics (Fig. 2), however, it should be noted that 

validation and evaluation of algorithms should go far beyond purely technical performance 

[19, 80]. In this context, Jannin introduced a global concept of “responsible research” 

to encompass all possible high-level assessment aspects of a digital technology [30], 

including environmental, ethical, economical, social and societal aspects. For example, 

there are increasing efforts specifically devoted to the estimation of energy consumption 

and greenhouse gas emission of machine learning algorithms [39, 61, 76]. For these 

considerations, we would like to point the reader to available tools such as the Green 

Algorithms calculator [40] or Carbontracker [89].

It must further be noted that while Metrics Reloaded places a focus on the selection of 

metrics, adequate application is also important. Detailed failure case analysis [68] and 

performance assessment on relevant subgroups, for example, have been highlighted as 

critical components for better understanding when and where an algorithm may fail [10, 

58]. Given that learning-based algorithms rely on the availability of historical data sets 

for training, there is a real risk that any existing biases in the data may be picked up 

and replicated or even exacerbated when an algorithm makes predictions [1, 22]. This 

is of particular concern in the context of systemic biases in healthcare, such as the 

scarcity of representative data from underserved populations and often higher error rates 

in diagnostic labels in particular subgroups [27, 59]. Relevant meta information such as 

patient demographics, including biological sex and ethnicity, needs to be accessible for the 

test sets such that potentially disparate performance across subgroups can be detected [52]. 

Here, it is important to make use of adequate aggregations over the validation metrics as 

disparities in minority groups might otherwise be missed.
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Finally, it must be noted that our framework addresses metric choice in the context of 

technical validation of biomedical algorithms. For translation of an algorithm into, for 

example, clinical routine, this validation may be followed by a (clinical) validation step 

assessing its performance compared to conventional, non-algorithm-based care according to 

patient-related outcome measures, such as overall survival [60].

A key remaining challenge for Metric Reloaded is its dissemination such that it will 

substantially contribute to raising the quality of biomedical imaging research. To encourage 

widespread adherence to new standards, entry barriers should be as low as possible. While 

the framework with its vast number of subprocesses may seem very complex at first, it is 

important to note that from a user perspective only a fraction of the framework is relevant for 

a given task, making the framework more tangible. This is notably illustrated by the Metric 
Reloaded online tool, which substantially simplifies the metric selection procedure. As is 

common in scientific guideline and recommendation development, we intend to regularly 

update our framework to reflect current developments in the field, such as the inclusion 

of new metrics or biomedical use cases. This is intended to include an expansion of the 

framework’s scope to further problem categories, such as regression and reconstruction. In 

order to accommodate future developments in a fast and efficient manner, we envision our 

consortium building consensus through accelerated Delphi rounds organized by the Metric 
Reloaded core team. Once consensus is obtained, changes will be implemented in both the 

framework and online tool and highlighted so that users can easily identify changes to the 

previous version, which will ensure full transparency and comparability of results. In this 

way, we envision the Metrics Reloaded framework and online tool as a dynamic resource 

reliably reflecting the current state of the art at any given time point in the future, for years 

to come.

Of note, while the provided recommendations originate from the biomedical image analysis 

community, many aspects generalize to imaging research as a whole. Particularly the 

recommendations derived for individual fingerprints (e.g., implications of class imbalance) 

hold across domains, although it is possible that for different domains the existing 

fingerprints would need to be complemented by further features that this community is 

not aware of.

In conclusion, the Metrics Reloaded framework provides biomedical image analysis 

researchers with the first systematic guidance on choosing validation metrics across different 

imaging tasks in a problem-aware manner. Through its reliance on methodology that can 

be generalized, we envision the Metrics Reloaded framework to spark a scientific debate 

and hopefully lead to similar efforts being undertaken in other areas of imaging research, 

thereby raising research quality on a much larger scale than originally anticipated. In this 

context, our framework and the process by which it was developed could serve as a blueprint 

for broader efforts aimed at providing reliable recommendations and enforcing adherence to 

good practices in imaging research.

MAIER-HEIN et al. Page 18

Nat Methods. Author manuscript; available in PMC 2024 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Tab. 1.
Recommendations for metric application addressing the 
pitfalls collected in [19].

The first column comprises all sources of pitfalls captured by the published taxonomy that 

relate to the application of (already selected) metrics. The second column provides the 

Metrics Reloaded recommendation. The notation FPX.Y refers to a fingerprint item (Suppl. 

Note 1.3).

Source of Pitfall Recommendation

Metric implementation

Non-standardized metric 
definition and undefined corner 
cases

Use reference implementations provided at https://github.com/Project-MONAI/
MetricsReloaded

Discretization issues Use unbiased estimates of properties of interest if possible (Suppl. Note 2.6).

Metric-specific issues including 
sensitivity to hyperparameters

Read metric-specific recommendations in the cheat sheets (Suppl. Note 3.1).

Aggregation

Hierarchical label/class structure Address the potential correlation between classes when aggregating [Kang & 
Sukthankar, 2006].

Multi-class problem Complement validation with multi-class metrics such as Expected Cost (EC) 
or Matthews Correlation Coefficient (MCC) with per-class validation (Fig. 2); 
perform weighted class aggregation if FP2.5.1 Unequal interest across classes 
holds.

Non-independence of test cases 
(FP4.5)

Respect the hierarchical data structure when aggregating metrics [Liang & Zeger, 
1986].

Risk of bias Leverage metadata (e.g. on imaging device/protocol/center) to reveal potential 
algorithmic bias [Badgeley et al., 2019].

Possibility of invalid prediction 
(FP5.3)

Follow category-specific aggregation strategy detailed in Suppl. Note 2.

Ranking

Metric relationships Avoid combining closely related metrics (see Fig. SN 2.1) when choosing metrics 
to be used in algorithm ranking.

Ranking uncertainties Provide information beyond plain tables that make possible uncertainties in 
rankings explicit as detailed in [30].

Reporting

Non-determinism of algorithms Consider multiple test set runs to address the variability of results resulting from 
non-determinism [Khan et al., 2019, Summers & Dinneen, 2021].

Uninformative visualization Include a visualization of the raw metric values [30] and report the full confusion 
matrix unless FP2.6 = no decision rule applied holds.

Interpretation

Low resolution Read metric-related recommendations to obtain awareness of the pitfall (Suppl. 
Note 3.1).

Lack of lower/upper bounds Read metric-related recommendations to obtain awareness of the pitfall (Suppl. 
Note 3.1).

Insufficient domain relevance of 
metric score differences

Report on the quality of the reference (e.g. intra-rater and inter-rater variability) 
[Kottner et al., 2011]. Choose the number of decimal places such that they reflect 
both relevance and uncertainties of the reference. More than one decimal number is 
often not useful given the typically high inter-rater variability.
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Extended Data Fig. 1: 
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Subprocess S1 for selecting a problem category. Subprocess S1 for selecting a problem 

category. The Category Mapping maps a given research problem to the appropriate problem 

category with the goal of grouping problems by similarity of validation. The leaf nodes 

represent the categories: image-level classification, object detection, instance segmentation, 

or semantic segmentation. FP2.1 refers to fingerprint 2.1 (see Fig. SN 1.10). An overview of 

the symbols used in the process diagram is provided in Fig. SN 5.1.

Extended Data Fig. 2: 
Subprocess S2 for selecting multi-class metrics (if any).Subprocess S2 for selecting multi-

class metrics (if any). Applies to: image-level classification (ImLC). In the case of presence 

of class imbalance and no compensation of class imbalance being requested, one should 
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follow the “No” branch. Decision guides are provided in Suppl. Note 2.7.1. A detailed 

description of the subprocess is given in Suppl. Note 2.2.

Extended Data Fig. 3: 
Subprocess S3 for selecting a per-class counting metric (if any). Subprocess S3 for selecting 

a per-class counting metric (if any). Applies to: image-level classification (ImLC), object 

detection (ObD), and instance segmentation (InS). Decision guides are provided in Suppl. 

Note 2.7.2. A detailed description of the subprocess is given in Suppl. Notes 2.2, 2.4, and 

2.5.
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Extended Data Fig. 4. 
Subprocess S4 for selecting a multi-threshold metric (if any). Subprocess S4 for selecting 

a multi-threshold metric (if any). Applies to: image-level classification (ImLC), object 

detection (ObD), and instance segmentation (InS). Decision guides are provided in Suppl. 

Note 2.7.3. A detailed description of the subprocess is given in Suppl. Notes 2.2, 2.4, and 

2.5.
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Extended Data Fig. 5: 
Subprocess S5 for selecting a calibration metric (if any). Subprocess S5 for selecting a 

calibration metric (if any). Applies to: image-level classification (ImLC). Decision guides 

are provided in Suppl. Note 2.7.4. A detailed description of the subprocess is given in Suppl. 

Note 2.6. Further suggested calibration metrics include the calibration loss [8], calibration 

slope [76], Expected Calibration Index (ECI) [87] and Observed:Expected ratio (O:E ratio) 

[68].
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Extended Data Fig. 6: 
Subprocess S6 for selecting overlap-based segmentation metrics (if any). Subprocess S6 for 

selecting overlap-based segmentation metrics (if any). Applies to: semantic segmentation 

(SemS) and instance segmentation (InS). Decision guides are provided in Suppl. Note 2.7.5. 

A detailed description of the subprocess is given in Suppl. Notes 2.3 and 2.5.
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Extended Data Fig. 7: 
Subprocess S7 for selecting a boundary-based segmentation metric (if any). Subprocess 

S7 for selecting a boundary-based segmentation metric (if any). Applies to: semantic 

segmentation (SemS) and instance segmentation (InS). Decision guides are provided in 

Suppl. Note 2.7.6. A detailed description of the subprocess is given in Suppl. Notes 2.3 and 

2.5.

MAIER-HEIN et al. Page 26

Nat Methods. Author manuscript; available in PMC 2024 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 8: 
Subprocess S8 for selecting the localization criterion. Subprocess S8 for selecting the 

localization criterion. Applies to: object detection (ObD) and instance segmentation (InS). 

Definitions of the localization criteria can be found in [66]. Decision guides are provided in 

Suppl. Note 2.7.7. A detailed description of the subprocess is given in Suppl. Notes 2.4 and 

2.5.
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Extended Data Fig. 9: 
Subprocess S9 for selecting the assignment strategy. Subprocess S9 for selecting the 

assignment strategy. Applies to: object detection (ObD) and instance segmentation (InS). 

Assignment strategies are defined in [66]. Decision guides are provided in Suppl. Note 2.7.8. 

A detailed description of the subprocess is given in Suppl. Notes 2.4 and 2.5.
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Figure 1: Contributions of the Metrics Reloaded framework.
a) Motivation: Common problems related to metrics typically arise from (top left) 

inappropriate choice of the problem category (here: object detection confused with semantic 

segmentation), (top right) poor metric selection (here: neglecting the small size of structures) 

and (bottom) poor metric application (here: inappropriate aggregation scheme). Pitfalls 

are highlighted by lightning bolts, ∅ refers to the average Dice Similarity Coefficient 
(DSC) values. Green metric values correspond to a good metric value, whereas red values 

correspond to a poor value. Green check marks indicate desirable behavior of metrics, red 

crosses indicate undesirable behavior. b) Metrics Reloaded addresses these pitfalls. (1) To 

enable the selection of metrics that match the domain interest, the framework is based on 

the new concept of problem fingerprinting, i.e., the generation of a structured representation 
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of the given biomedical problem that captures all properties that are relevant for metric 

selection. Based on the problem fingerprint, Metrics Reloaded guides the user through the 

process of metric selection and application while raising awareness of relevant pitfalls. (2) 

An instantiation of the framework for common biomedical use cases demonstrates its broad 

applicability. (3) A publicly available online tool facilitates application of the framework.

MAIER-HEIN et al. Page 42

Nat Methods. Author manuscript; available in PMC 2024 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Metrics Reloaded recommendation framework from a user perspective.
In step 1 - problem fingerprinting, the given biomedical image analysis problem is mapped 

to the appropriate image problem category, namely image-level classification (ImLC), 
semantic segmentation (SemS), object detection (ObD), or instance segmentation (InS) 
(Fig. 4). The problem category and further characteristics of the given biomedical problem 

relevant for metric selection are then captured in a problem fingerprint (Fig. 3). In step 
2 - metric selection, the user follows the respective coloured path of the chosen problem 

category (ImLC →, SemS →, ObD →, or InS →) to select a suitable pool of metrics 

from the Metrics Reloaded pools shown in green. When a tree branches, the fingerprint 

MAIER-HEIN et al. Page 43

Nat Methods. Author manuscript; available in PMC 2024 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



items determine which exact path to take. Finally, in step 3 - metric application, the 

user is supported in applying the metrics to a given data set. During the traversal of the 

decision tree, the user goes through subprocesses, indicated by the ⊞-symbol, which are 

provided in Extended Data Figs. 1–9 and represent relevant steps in the metric selection 

process. Ambiguities related to metric selection are resolved via decision guides (Suppl. 

Note 2.7) that help users make an educated decision when multiple options are possible. A 

comprehensive textual description of the recommendations for all four problem categories 

as well as for the selection of corresponding calibration metrics (if any) is provided in 

Suppl. Note 2.2 - Suppl. Note 2.6. An overview of the symbols used in the process diagram 

is provided in Fig. SN 5.1. Condensed versions of the mappings for every category can 

be found in Suppl. Note 2.2 for image-level classification, Suppl. Note 2.3 for semantic 

segmentation, Suppl. Note 2.4 for object detection, and Suppl. Note 2.5 for instance 

segmentation.
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Figure 3: Relevant properties of a driving biomedical image analysis problem are captured by 
the problem fingerprint
(selection for semantic segmentation shown here). The fingerprint comprises a set of items, 

each of which represents a specific property of the problem, is either binary or categorical, 

and must be instantiated by the user. Besides the problem category, the fingerprint comprises 

domain interest-related, target structure-related, data set-related and algorithm output-related 
properties. A comprehensive version of the fingerprints for all problem categories can be 

found in Figs. SN 2.7–SN 2.9 (image-level classification), Figs. SN 2.10/SN 2.11 (semantic 

segmentation), Figs. SN 2.12–SN 2.14 (object detection) and Figs. SN 2.15–SN 2.17 

(instance segmentation). Used abbreviations: Prediction (Pred), Reference (Ref).
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Figure 4: Metrics Reloaded fosters the convergence of validation methodology across modalities, 
application domains and classification scales.
The framework considers problems in which categorical target variables are to be 

predicted at image, object and/or pixel level, resulting (from top to bottom) in image-level 
classification, object detection, instance segmentation or semantic segmentation problems. 

These problem categories are relevant across modalities (here computed tomography (CT), 

microscopy and endoscopy) and application domains. From left to right: annotation of (left) 

benign and malignant lesions in CT images [3], (middle) different cell types in microscopy 

images [46], and (right) medical instruments in laparoscopy images [48].
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Figure 5: Instantiation of the framework with recommendations for concrete biomedical 
questions.
From top to bottom: (1) Image classification for the examples of sperm motility 

classification [25] and disease classification in dermoscopic images [12, 84]. (2) Semantic 

segmentation of large objects for the examples of embryo segmentation from microscopy 

[79] and liver segmentation in computed tomography (CT) images [2, 73]. (3) Detection of 

multiple and arbitrarily located objects for the examples of cell detection and tracking during 

the autophagy process [56, 90] and multiple sclerosis (MS) lesion detection in multi-modal 

brain magnetic resonance imaging (MRI) images [14, 36]. (4) Instance segmentation of 

tubular objects for the examples of instance segmentation of neurons from the fruit fly [50, 
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54, 81] and surgical instrument instance segmentation [48]. The corresponding traversals 

through the decision trees are shown in Suppl. Note 4. An overview of the recommended 

metrics can be found in Suppl. Note 3.1, including relevant information for each metric.
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Table 1.
Metrics Reloaded addresses common and rare pitfalls in metric selection, as compiled in 
[66].

The first column lists all pitfall sources captured by the published taxonomy that relate to either the inadequate 
choice of the problem category or poor metric selection. The second column summarizes how Metrics 
Reloaded addresses these pitfalls. The notation FPX.Y refers to a fingerprint item (Suppl. Note 1.3).

Source of Pitfall Addressed in Metrics Reloaded by

Inadequate choice of the problem category

Wrong choice of problem 
category

Problem category mapping (Subprocess S1, Fig. 4) as a prerequisite for metric selection.

Disregard of the domain interest

Importance of structure 
boundaries

FP2.1 - Particular importance of structure boundaries; recommendation to complement common overlap-
based segmentation metrics with boundary-based metrics (Fig. 2, Suppl. Note 2.3) if the property holds.

Importance of structure 
volume

FP2.2 - Particular importance of structure volume; recommendation to complement common overlap-based 
and boundary-based segmentation metrics with volume-based metrics (see Suppl. Note 2.3) if the property 
holds.

Importance of structure 
center(line)

FP2.3 - Particular importance of structure center(line); recommendation of the centerline Dice Similarity 
Coefficient (clDice) as alternative to the common Dice Similarity Coefficient (DSC) or Intersection over 
Union (IoU) in segmentation problems (Subprocess S6, Extended Data Fig. 6) and recommendation of center 
point-based localization criterion in object detection (Subprocess S8, Extended Data Fig. 8) if the property 
holds.

Importance of confidence 
awareness

FP2.7.1 - Calibration assessment requested; dedicated recommendations on calibration (Suppl. Note 2.6).

Importance of comparability 
across data sets

FP4.2 - Provided class prevalences reflect the population of interest; used in the Subprocesses S2–S4 
(Extended Data Figs. 2–4); general focus on prevalence dependency of metrics in the framework.

Unequal severity of class 
confusions

FP2.5 - Penalization of errors; recommendation of the so far uncommon metric Expected Cost (EC) as 
classification metric (Subprocess S2, Extended Data Fig. 2); setting β in the Fβ Score according to preference 
for False Positive (FP) (oversegmentation) and False Negative (FN) (undersegmentation) (see DG3.3 in Suppl. 
Note 2.7.2).

Importance of cost-benefit-
analysis

FP2.6 - Decision rule applied to predicted class scores: incorporation of a decision rule that is based on 
cost-benefit analysis; recommendation of the so far uncommon metrics Net Benefit (NB) (Fig. SN 3.11) and 
EC (Fig. SN 3.6).

Disregard of target structure properties

Small structure sizes FP3.1 - Small size of structures relative to pixel size; recommendation to consider the problem an object 
detection problem (Suppl. Note 2.4); complementation of overlap-based segmentation metrics with boundary-
based metrics in the case of small structures with noisy reference (Subprocess S6, Extended Data Fig. 6); 
recommendation of lower object detection localization threshold in case of small sizes (see DG8.3 in Suppl. 
Note 2.7.7).

High variability of structure 
sizes

FP3.2 - High variability of structure sizes; recommendation of lower object detection localization threshold 
(see DG8.3 in Suppl. Note 2.7.7) and size stratification (Suppl. Note 2.4) in case of size variability.

Complex structure shapes FP3.3 - Target structures feature tubular shape; recommendation of the clDice as alternative to the common 
DSC in segmentation problems (Subprocess S6, Extended Data Fig. 6) and recommendation of Point inside 
Mask/Box/Approx as localization criterion in object detection if the property holds (Subprocess S8, Extended 
Data Fig. 8).

Occurrence of overlapping or 
touching structures

FP3.5 - Possibility of overlapping or touching target structures; explicit recommendation to phrase problem 
as instance segmentation rather than semantic segmentation problem (Suppl. Note 2.3); recommendation of 
higher object detection localization threshold in case of small sizes (see DG8.3 in Suppl. Note 2.7.7).

Occurrence of disconnected 
structures

FP3.6 - Possibility of disconnected target structure(s); recommendation of appropriate localization criterion 
for object detection (DG8.2 in Suppl. Note 2.7.7).

Disregard of data set properties

High class imbalance FP4.1 - High class imbalance and FP2.5.5 - Compensation for class imbalances requested; compensation of 
class imbalance via prevalence-independent metrics such as EC and Balanced Accuracy (BA).
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Source of Pitfall Addressed in Metrics Reloaded by

Small test set size Recommendation of confidence intervals for all metrics.

Imperfect reference standard: 
Noisy reference standard

FP4.3.1 - High inter-rater variability and FP2.5.7 - Compensation for annotation imprecisions requested; 
default recommendation of the so far rather uncommon metric Normalized Surface Dice (NSD) to assess the 
quality of boundaries.

Imperfect reference standard: 
Spatial outliers in reference

FP4.3.2 - Possibility of spatial outliers in reference annotation and FP2.5.6 - Handling of spatial outliers; 
recommendation of outlier-robust metrics, such as NSD in case no distance-based penalization of outliers is 
requested in segmentation problems.

Occurrence of cases with an 
empty reference

FP4.6 - Possibility of reference without target structure(s); recommendations for aggregation in the case of 
empty references according to Suppl. Note 2.4 and Extended Data Tab.1.

Disregard of algorithm output properties

Possibility of empty 
prediction

FP5.2 - Possibility of algorithm output not containing the target structure(s); selection of appropriate 
aggregation strategy in object detection (Suppl. Note 2.4).

Possibility of overlapping 
predictions

FP5.4 - Possibility of overlapping predictions; recommendation of an assignment strategy based on IoU > 0.5 
if overlapping predictions are not possible and no predicted class scores are available.

Lack of predicted class scores FP5.1 - Availability of predicted class scores; leveraging class scores for optimizing decision regions (FP2.6) 
and assessing calibration quality (FP2.7).
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