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Understanding metric-related pitfalls in image analysis
validation

A full list of authors and affiliations appears at the end of the article.

Abstract

Validation metrics are key for tracking scientific progress and bridging the current chasm between
artificial intelligence (Al) research and its translation into practice. However, increasing evidence
shows that particularly in image analysis, metrics are often chosen inadequately. While taking
into account the individual strengths, weaknesses, and limitations of validation metrics is a
critical prerequisite to making educated choices, the relevant knowledge is currently scattered and
poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by
a multidisciplinary expert consortium as well as extensive community feedback, the present work
provides the first reliable and comprehensive common point of access to information on pitfalls
related to validation metrics in image analysis. While focused on biomedical image analysis, the
addressed pitfalls generalize across application domains and are categorized according to a newly
created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key
topic in image analysis validation.

Measuring performance and progress in any given field critically depends on the availability
of meaningful outcome metrics. In a field such as athletics, this process is straightforward
because the performance measurements (e.g., the time it takes an athlete to run a given
distance) exactly reflect the underlying interest (e.g., which athlete runs a given distance

the fastest?). In image analysis, the situation is much more complex. Depending on the
underlying research question, vastly different aspects of an algorithm’s performance might
be of interest (Fig. 1) and meaningful in determining its future practical, for example
clinical, applicability. If the performance of an image analysis algorithm is not measured
according to relevant validation metrics, no reliable statement can be made about the
suitability of this algorithm in solving the proposed task, and the algorithm is unlikely

to ever reach the stage of real-life application. Moreover, unsuitable algorithms could be
wrongly regarded as the best-performing ones, sparking entirely futile resource investment
and follow-up research while obscuring true scientific advancements. In determining new
state-of- the-art methods and informing future directions, the use of validation metrics
actively shapes the evolution of research. In summary, validation metrics are the key for both
measuring and informing scientific progress, as well as bridging the current chasm between
image analysis research and its translation into practice.

and suggested pitfalls. Z.R.Y. suggested pitfalls and participated in surveys. AL.LK., J.S.-R., C.I.S., and S.S. served on the expert Delphi
panel and participated in workshops and surveys.

CODE AVAILABILITY STATEMENT

We provide reference implementations for all Metrics Reloaded metrics within the MONAI open- source framework. They are
accessible at https://github.com/Project-MONAI/MetricsReloaded.
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In image analysis, while for some applications it might, for instance, be sufficient to draw
a box around the structure of interest (e.g., detecting individual mitotic cells or regions
with apoptotic cell debris) and optionally associate that region with a classification (e.g.,

a mitotic vs an interphase cell), other applications (e.g., cell tracing for fluorescent signal
quantification) could require determining the exact structure boundaries. The suitability of
any individual validation metric thus depends crucially on the properties of the driving
image analysis problem. As a result, numerous metrics have so far been proposed in

the field of image processing. In our previous work, we analyzed all biomedical image
analysis competitions conducted within a period of about 15 years [21]. We found a

total of 97 different metrics reported in the field of biomedicine alone, each with its own
individual strengths, weaknesses, and limitations, and hence varying degrees of suitability
for meaningfully measuring algorithm performance on any given research problem. Such a
vast range of options makes tracking all related information impossible for any individual
researcher and consequently renders the process of metric selection error-prone. Thus, the
frequent reliance on flawed, historically grown validation practices in current literature
comes as no surprise. To make matters worse, there is currently no comprehensive
resource that can provide an overview of the relevant definitions, (mathematical) properties,
limitations, and pitfalls pertaining to a metric of interest. While taking into account

the individual properties and limitations of metrics is imperative for choosing adequate
validation metrics, the required knowledge is thus largely inaccessible.

As a result, numerous flaws and pitfalls are prevalent in image analysis validation, with

re- searchers often being unaware of them due to a lack of knowledge of intricate metric
properties and limitations. Accordingly, increasing evidence shows that metrics are often
selected inadequately in image analysis (e.g., [11, 17, 35]). In the absence of a central
information resource, it is common for researchers to resort to popular validation metrics,
which, however, can be entirely unsuitable, for instance due to a mismatch of the metric’s
inherent mathematical properties with the underlying research question and specifications of
the data set at hand (see Fig. 1).

The present work addresses this important roadblock in image analysis research with

a crowd- sourcing-based approach that involved both a Delphi process undergone by a
multidisciplinary expert consortium as well as a social media campaign. It represents the
first comprehensive collection, visualization, and detailed discussion of pitfalls, drawbacks,
and limitations regarding validation metrics commonly used in image analysis. Our work
provides researchers with a refiable, single point of access to this critical information. Owing
to the enormous complexity of the matter, the metric properties and pitfalls are discussed

in the specific context of classification problems, i.e., image analysis problems that can be
considered classification tasks at either the image, object, or pixel level. Specifically, these
encompass the four problem categories of image-level classification, semantic segmentation,
object detection, and instance segmentation. Our contribution includes a dedicated profile
for each metric (Suppl. Note 3) as well as the creation of a new common taxonomy that
categorizes pitfalls in a domain-agnostic manner (Fig. 2). The taxonomy is depicted for
individual metrics in provided tables (see Extended Data Tabs. 1-5) and enables researchers
to quickly grasp whether using a certain metric comes with pitfalls in a given use case.

Nat Methods. Author manuscript; available in PMC 2024 August 12.
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While our work grew out of image analysis research and practice in the field of biomedicine,
a field of high complexity and particularly high stakes due to its direct impact on human
health, we believe the identified pitfalls to be transferable to other application areas of
imaging research. It should be noted that this work focuses on identifying, categorizing,

and illustrating metric pitfalls, while the sister publication of this work gives specific
recommendations on which metrics to apply under which circumstances [22].

Information on metric pitfalls is largely inaccessible

Researchers and algorithm developers seeking to validate image analysis algorithms
frequently face the problem of choosing adequate validation metrics while at the same

time navigating a range of potential pitfalls. Following common practice is often not the
best option, as evidenced by a number of recent publications [11, 17, 21, 35]. Making an
educated choice is notably complicated by the absence of any comprehensive databases or
reviews covering the topic and thus the lack of a central resource for reliable information on
validation metrics.

This lack of accessibility is considered by experts to be a major bottleneck in image analysis
validation [21]. To illustrate this point, we searched the literature for available information
on commonly used validation metrics. The search was conducted on the platform Google
Scholar using search strings that combined different notations of the metric name, including
synonyms and acronyms, with search terms indicating problems, such as “pitfall” or
“limitation”. The mean and median number of hits for the metrics addressed in the present
work were 159,329 and 22,100, respectively, and ranged between 49 for centerline Dice
Similarity Coefficient (cIDice) and 962,000 for Sensitivity. Moreover, despite valuable
literature on individual relevant aspects (e.g., [5, 6, 13, 17, 32, 33, 35]), we did not find

a common point of entry to metric-related pitfalls in image analysis in the form of a review
paper or other credible source. We conclude that the key knowledge required for making
educated decisions and avoiding pitfalls related to the use of validation metrics is highly
scattered and not accessible by individuals.

Historically grown practices are not always justified

To obtain an initial insight into current common practice regarding validation metrics, we
prospectively captured the designs of challenges organized by the IEEE Society of the
International Symposium of Biomedical Imaging (ISBI), the Medical Image Computing and
Computer Assisted Interventions (MICCALI) Society and the Medical Imaging with Deep
Learning (MIDL) foundation. The organizers of the respective competitions were asked to
provide a rationale for the choice of metrics in their competition. An analysis of a total of
138 competitions conducted between 2018 and 2022 revealed that metrics are frequently

(in 24% of the competitions) based on common practice in the community. We found,
however, that common practices are often not well-justified, and poor practices may even be
propagated from one generation to the next.

One remarkable example for this issue is the widespread adoption of an incorrect
naming and inconsistent mathematical formulation of a metric proposed for cell instance

Nat Methods. Author manuscript; available in PMC 2024 August 12.
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segmentation. The term “mean Average Precision (mAP)” usually refers to one of the most
common metrics in object detection (object-level classification) [20, 28]. Here, Precision
denotes the Positive Predictive Value (PPV), which is “averaged” over varying thresholds on
the predicted class scores of an object detection algorithm. The “mean” Average Precision
(AP) is then obtained by taking the mean over classes [10, 28]. Despite the popularity of
mAP, a widely known challenge on cell instance segmentation1 introduced a new “Mean
Average Precision” in 2018. Although the task matches the task of the original “mean”

AP, object detection, all terms in the newly proposed metric (mean, average, and precision)
refer to entirely different concepts. For instance, the common definition of Precision from
literature TP/(TP + FP) was altered to TP/(TP + FP + FN), where TP, FP, and FN refer to
the cardinalities of the confusion matrix (i.e., the true/false positives/negatives). The latter
formula actually defines the Intersection over Union (loU) metric. Despite these problems,
the terminology was adopted by subsequent influential works [16, 30, 31, 39], indicating
widespread propagation and usage within the community.

A multidisciplinary Delphi process reveals numerous pitfalls in biomedical

image analysis validation

With the aim of creating a comprehensive, reliable collection and future point of access to
biomedical image analysis metric definitions and limitations, we formed an international
multidisciplinary consortium of 62 experts from various biomedical image analysis-related
fields that engaged in a multi-stage Delphi process [2] for consensus building. The Delphi
process comprised multiple surveys, developed by a coordinating team and filled out by the
remaining members of the consortium. Based on the survey results, the list of pitfalls was
iteratively refined by collecting pitfall sources, specific feedback and suggestions on pitfalls,
and final agreement on which pitfalls to include and how to illustrate them. Further pitfalls
were crowdsourced through the publication of a dynamic preprint of this work [28] as well
as a social media campaign, both of which asked the scientific community for contributions.
This approach allowed us to integrate distributed, cross-domain knowledge on metric-related
pitfalls within a single resource. In total, the process revealed 37 distinct sources of pitfalls
(see Fig. 2). Notably, these pitfall sources (e.g., class imbalances, uncertainties in the
reference, or poor image resolution) can occur irrespective of a specific imaging modality

or application. As a result, many pitfalls generalize across different problem categories in
image processing (image-level classification, semantic segmentation, object detection, and
instance segmentation), as well as imaging modalities and domains. A detailed discussion of
all pitfalls can be found in Suppl. Note 2.

A common taxonomy enables domain-agnostic categorization of pitfalls

One of our key objectives was to facilitate information retrieval and provide structure within
this vast topic. Specifically, we wanted to enable researchers to identify at a glance which
metrics are affected by which types of pitfalls. To this end, we created a comprehensive
taxonomy that categorizes the different pitfalls in a semantic fashion. The taxonomy was

L https://www.kaggle.com/competitions/data-science-bowl-2018/overview/evaluation
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created in a domain- agnostic manner to reflect the generalization of pitfalls across different
imaging domains and modalities. An overview of the taxonomy is presented in Fig. 2, and
the relations between the pitfall categories and individual metrics can be found in Extended
Data Tabs. 1-5. We distinguish the following three main categories:

[P1] Pitfalls related to the inadequate choice of the problem category.

A common pitfall lies in the use of metrics for a problem category they are not suited

for because they fail to fulfill crucial requirements of that problem category, and hence

do not reflect the domain interest (Fig. 1). For instance, popular voxel-based metrics, such
as the Dice Similarity Coefficient (DSC) or Sensitivity, are widely used in image analysis
problems, although they do not fulfill the critical requirement of detecting all objects in a
data set. In a cancer monitoring application they fail to measure instance progress, i.e., the
potential increase in number of lesions (Fig. 1), which can have serious consequences for the
patient. For some problems, there may even be a lack of matching problem category (Fig.
SN 2.2), rendering common metrics inadequate. We present further examples of pitfalls in
this category in Suppl. Note 2.1.

[P2] Pitfalls related to poor metric selection.

Pitfalls of this category occur when a validation metric is selected while disregarding
specific properties of the given research problem or method used that make this metric
unsuitable in the particular context. [P2] can be further divided into the following four
subcategories:

[P2.1] Disregard of the domain interest.—Commonly, several requirements arise from
the domain interest of the underlying research problem that may clash with particular metric
limitations. For example, if there is particular interest in the structure boundaries, it is
important to know that overlap-based metrics such as the DSC do not take the correctness

of an object’s boundaries into account, as shown in Fig. 4(a). Similar issues may arise if the
structure volume (Fig. SN 2.4) or center(line) (Fig. SN 2.5) are of particular interest. Other
domain interest-related properties may include an unequal severity of class confusions. This
may be important in an ordinal grading use case, in which the severity of a disease is
categorized by different scores. Predicting a low severity for a patient that actually suffers
from a severe disease should be substantially penalized. Common classification metrics do
not fulfill this requirement. An example is provided in Fig. 4(b). On pixel level, this property
relates to an unequal severity of over- vs. undersegmentation. In applications such as
radiotherapy, it may be highly relevant whether an algorithm tends to over- or undersegment
the target structure. Common overlap-based metrics, however, do not represent over- and
undersegmentation equally [38]. Further pitfalls may occur if confidence awareness (Fig. SN
2.6), comparability across data sets (Fig. SN 2.7), or a cost-benefit analysis (Fig. SN 2.9) are
of particular importance, as illustrated in Suppl. Note 2.2.1.

[P2.2] Disregard of the properties of the target structures.—For problems that
require capturing local properties (object detection, semantic or instance segmentation), the
properties of the target structures to be localized and/or segmented may have important
implications for the choice of metrics. Here, we distinguish between size-related and shape-

Nat Methods. Author manuscript; available in PMC 2024 August 12.
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and topology-related pitfalls. Common metrics, for example, are sensitive to structure
sizes, such that single-pixel differences may hugely impact the metric scores, as shown

in Extended Data Fig. 1(a). Shape- and topology-related pitfalls may relate to the fact that
common metrics disregard complex shapes (Extended Data Fig. 1(b)) or that bounding
boxes do not capture the disconnectedness of structures (Fig. SN 2.14). A high variability
of structure sizes (Fig. SN 2.11) and overlapping or touching structures (Fig. SN 2.13) may
also influence metric values. We present further examples of [P2.2] pitfalls in Suppl. Note
2.2.2.

[P2.3] Disregard of the properties of the data set.—Various properties of the data
set such as class imbalances (Fig. 5(a)), small sample sizes (Fig. 5(b)), or the quality of

the reference annotations, may directly affect metric values. Common metrics such as the
Balanced Accuracy (BA), for instance, may yield a very high score for a model that predicts
many False Positive (FP) samples in an imbalanced setting (see Fig. 5(a)). When only small
test data sets are used, common calibration metrics (which are typically biased estimators)
either underestimate or overestimate the true calibration error of a model (Fig. 5(b)) [14].
On the other hand, metric values may be impacted by reference annotations (Fig. SN 2.17).
Spatial outliers in the reference may have a huge impact on distance-based metrics such as
the Hausdorff Distance (HD) (Fig. 5(c)). Additional pitfalls may arise from the occurrence
of cases with an empty reference (Extended Data Fig. 2(b)), causing division by zero errors.
We present further examples of [P2.3] pitfalls in Suppl. Note 2.2.3.

[P2.4] Disregard of the properties of the algorithm output.—Reference-based
metrics compare the algorithm output to a reference annotation to compute a metric score.
Thus, the content and format of the prediction are of high importance when considering
metric choice. Overlapping predictions in segmentation problems, for instance, may return
misleading results. In Extended Data Fig. 2(a), the predictions only overlap to a certain
extent, not representing that the reference instances actually overlap substantially. This is

not detected by common metrics. Another example are empty predictions that may cause
division by zero errors in metric calculations, as illustrated in Extended Data Fig. 2(b), or the
lack of predicted class scores (Fig. SN 2.20). We present further examples of [P2.4] pitfalls
in Suppl. Note 2.2.3.

[P3] Pitfalls related to poor metric application.

Once selected, the metrics need to be applied to an image or an entire data set. This step is
not straightforward and comes with several pitfalls. For instance, when aggregating metric
values over multiple images or patients, a common mistake is to ignore the hierarchical
data structure, such as data from several hospitals or a varied number of images per patient.
We present three examples of [P3] pitfalls in Fig. 6; for more pitfalls in this category,
please refer to Suppl. Note 2.3. [P3] can further be divided into five subcategories that are
presented in the following paragraphs.

[P3.1] Inadequate metric implementation.—Metric implementation is, unfortunately,
not standardized. As shown by [12], different researchers typically employ various different
implementations for the same metric, which may yield a substantial variation in the metric

Nat Methods. Author manuscript; available in PMC 2024 August 12.
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scores. While some metrics are straightforward to implement, others require more advanced
techniques and offer different possibilities. In the following, we provide some examples for
inadequate metric implementation:

. The method of how identical confidence scores are handled in the computation
of the AP metric may lead to substantial differences in the metric scores.
Microsoft Common Objects in Context (COCO) [20], for instance, processes
each prediction individually, while CityScapes [7] processes all predictions with
the same score in one joint step. Fig. 6(a) provides an example with two
predictions having the same confidence score, in which the final metric scores
differ depending on the chosen handling strategy for identical confidence scores.
Similar issues may arise with other curve-based metrics, such as Area under
the Receiver Operating Characteristic Curve (AUROC), AP, or Free-Response
Receiver Operating Characteristic (FROC) scores (see e.g., [24]).

. Metric implementation may be subject to discretization issues such as the chosen
discretization of continuous variables, which may cause differences in the metric
scores, as exemplary illustrated in Fig. SN 2.22.

. For metrics assessing structure boundaries, such as the Average Symmetric
Surface Distance (ASSD), the exact boundary extraction method is not
standardized. Thus, for example, the boundary extraction method implemented
by the Liver Tumor Segmentation (LiTS) challenge [1] and that implemented by
Google DeepMind2 may produce different metric scores for the ASSD. This is
especially critical for metrics that are sensitive to small contour changes, such as
the HD.

. Suboptimal choices of hyperparameters may also lead to metric scores that do
not reflect the domain interest. For example, the choice of a threshold on a
localization criterion (see Fig. SN 2.23) or the chosen hyperparameter for the Fg
Score will heavily influence the subsequent metric scores [34].

More [P3.1] pitfalls can be found in Suppl. Note 2.3.1.

[P3.2] Inadequate metric aggregation.—A common pitfall with respect to metric
application is to simply aggregate metric values over the entire data set and/or all classes.
As detailed in Fig. 6(b) and Suppl. Note 2.3.2, important information may get lost in

this process, and metric results can be misleading. For example, the popular TorchMetrics
framework calculates the DSC metric by default as a global average over all pixels in the
data set without considering their image or class of origin3. Such a calculation eliminates
the possibility of interpreting the final metric score with respect to individual images and
classes. For example, errors in small structures may be suppressed by correctly segmented
larger structures in other images (see e.g., Fig. SN 2.26). An adequate aggregation scheme is
also crucial for handling hierarchical class structure (Fig. SN 2.27), missing values (Fig. SN

2. https://github.com/deepmind/surface-distance
- https://torchmetrics.readthedocs.io/en/stable/classification/dice.html?highlight=dice
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2.29), and potential biases (Fig. SN 2.28) of the algorithm. Further [P3.2] pitfalls are shown
in Suppl. Note 2.3.2.

[P3.3] Inadequate ranking scheme.—Rankings are often created to compare algorithm
performances. In this context, several pitfalls pertain to either metric relationships or ranking
uncertainty. For example, to assess different properties of an algorithm, it is advisable to
select multiple metrics and determine their values. However, the chosen metrics should
assess complementary properties and should not be mathematically related. For example,
the DSC and loU are closely related, so using both in combination would not provide any
additional information over using either of them individually (Fig. SN 2.30). Note in this
context that unawareness of metric synonyms can equally mislead. Metrics can be known
under different names; for instance, Sensitivity and Recall refer to the same mathematical
formula. Despite this fact potentially appearing trivial, an analysis of 138 biomedical image
analysis challenges [22] found three challenges that unknowingly used two versions of the
same metric to calculate their rankings. Moreover, rankings themselves may be unstable
(Fig. SN 2.31). [21] and [37] demonstrated that rankings are highly sensitive to altering the
metric aggregation operators, the underlying data set, or the general ranking method. Thus,
if the robustness of rankings is disregarded, the winning algorithm may be identified by
chance rather than true superiority.

[P3.4] Inadequate metric reporting.—A thorough reporting of metric values and
aggregates is important both in terms of transparency and interpretability. However, several
pitfalls are to be avoided in this regard. Notably, different types of visualization may vary
substantially in terms of interpretability, as shown in Figs 6(c). For example, while a box
plot provides basic information, it does not depict the distribution of metric values. This may
conceal important information, such as specific images on which an algorithm performed
poorly. Other pitfalls in this category relate to the non-determinism of algorithms, which
introduces a natural variability to the results of a neural network, even with fixed seeds (Fig.
SN 2.32). This issue is aggravated by inadequate reporting, for instance, reporting solely the
results from the best run instead of proper cross-validation and reporting of the variability
across different runs. Generally, shortcomings in reporting, such as providing no standard
deviation or confidence intervals in the presented results, are common. Concrete examples of
[P3.4] pitfalls can be found in Suppl. Note 2.3.4.

[P3.5] Inadequate interpretation of metric values.—Interpreting metric scores and
aggregates is an important step for the analysis of algorithm performances. However, several
pitfalls can arise from the interpretation. In rankings, for example, minor differences in
metric scores may not be relevant from an application perspective but may still yield better
ranks (Fig. SN 2.36). Furthermore, some metrics do not have upper or lower bounds, or the
theoretical bounds may not be achievable in practice, rendering interpretation difficult (Fig.
SN 2.35). More information on interpretation-based pitfalls can be found in Suppl. Note
2.3.4.
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The first illustrated common access point to metric definitions and pitfalls

To underline the importance of a common access point to metric pitfalls, we conducted a
search for individual metric-related pitfalls on the platforms Google Scholar and Google,
with the purpose of determining how many of the pitfalls identified through our work
could be located in existing resources. We were only able to locate a portion of the pitfalls
identified by our approach in existing research literature (68%) or online resources such as
blog posts (11%; 8% were found in both). Only 27% of the located pitfalls were presented
visually.

Our work now provides this key resource in a highly structured and easily understandable
form. Suppl. Note 2, contains a dedicated illustration for each of the pitfalls discussed,

thus facilitating reader comprehension and making the information accessible to everyone
regardless of their level of expertise. A further core contribution of our work are the metric
profiles presented in Suppl. Note 2, which, for each metric, summarize the most important
information deemed of particular relevance by the Metrics Reloaded consortium of the sister
work to this publication [22]. The profiles provide the reader with a compact, at-a-glance
overview of each metric and an enumeration of the limitations and pitfalls identified in the
Delphi process conducted for this work.

DISCUSSION

Flaws in the validation of biomedical image analysis algorithms significantly impede the
translation of methods into (clinical) practice and undermine the assessment of scientific
progress in the field [19]. They are frequently caused by poor choices due to disregarding
the specific properties and limitations of individual validation metrics. The present work
represents the first comprehensive collection of pitfalls and limitations to be considered
when using validation metrics in image-level classification, semantic segmentation, instance
segmentation, and object detection tasks. Our work enables researchers to gain a deep
understanding of and familiarity with both the overall topic and individual metrics

by providing a common access point to previously largely scattered and inaccessible
information — key knowledge they can resort to when conducting validation of image
analysis algorithms. This way, our work aims to disrupt the current common practice of
choosing metrics based on their popularity rather than their suitability to the underlying
research problem. This practice, which, for instance, often manifests itself in the unreflected
and inadequate use of the DSC, is concerningly prevalent even among prestigious, high-
quality biomedical image analysis competitions (challenges) [8, 11, 15, 17, 18, 21, 23, 35].
The educational aspect of our work is complemented by dedicated ‘metric profiles” which
detail the definitions and properties of all metrics discussed. Notably, our work pioneers

the examination of artificial intelligence (Al) validation pitfalls in the biomedical domain, a
domain in which they are arguably more critical than in many others as flaws in biomedical
algorithm validation can directly affect patient wellbeing and safety.

We posited that shortcomings in current common practice are marked by the low
accessibility of information on the pitfalls and limitations of commonly used validation
metrics. A literature search conducted from the point of view of a researcher seeking
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information on individual metrics confirmed that the number of search results far exceeds
any amount that could be overseen within reasonable time and effort, as well as the lack of
a common point of entry to reliable metric information. Even when knowing the specific
pitfalls and related keywords uncovered by our consortium, only a fraction of those pitfalls
could be found in existing literature, indicating the novelty and added value of our work.

For transparency, several constraints regarding our literature search must be noted. First, it
must be acknowledged that the remarkably high search result numbers inevitably include
duplicates of papers (e.g., the same work in a conference paper and on arXiv) as well as
results that are out of scope (e.g., [3], [9]), in the cited examples for instance due to a
metric acronym (AUC) simultaneously being an acronym for another entity (a trinucleotide)
in a different domain, or the word “sensitivity” being used in its common, non-metric
meaning. Moreover, common words used to describe pitfalls such as “problem” or “issue”
are by nature present in many publications discussing any kind of research, rendering them
unusable for a dedicated search, which could, in turn, account for missing publications that
do discuss pitfalls in these terms. Similarly, when searching for specific pitfalls, many of
the returned results containing the appropriate keywords did not actually refer to metrics

or algorithm validation but to other parts of a model or biomedical problem (e.g., the need
for stratification is commonly discussed with regard to the design of clinical studies but not
with regard to their validation). Character limits in the Google Scholar search bar further
complicate or prevent the use of comprehensive search strings. Finally, it is both possible
and probable that our literature search did not retrieve all publications or non-peer-reviewed
online resources that mention a particular pitfall, since even extensive search strings might
not cover the particular words used for a pitfall description.

None of these observations, however, detracts from our hypothesis. In fact, all of the above
observations reinforce our finding that, for any individual researcher, retrieving information
on metrics of interest is difficult to impossible. In many cases, finding information on
pitfalls only appears feasible if the specific pitfall and its related keywords are exactly
known, which, of course, is not the situation most researchers realistically find themselves
in. Overall accessibility of such vital information, therefore, currently leaves much to be
desired.

Compiling this information through a multi-stage Delphi process allowed us to leverage
distributed knowledge from experts across different biomedical imaging domains and thus
ensure that the resulting illustrated collection of metric pitfalls and limitations is both
comprehensive and of maximum practical relevance. Continued proximity of our work

to issues occurring in practical application was achieved through sharing the first results
of this process as a dynamic preprint [27] with dedicated calls for feedback, as well as
crowdsourcing further suggestions on social media.

Although their severity and practical consequences might differ between applications,

we found that the pitfalls generalize across different imaging modalities and application
domains. By categorizing them solely according to their underlying sources, we were able to
create an overarching taxonomy that goes beyond domain-specific concerns and thus enjoys
broad applicability. Given the large number of identified pitfalls, our taxonomy crucially
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establishes structure in the topic. Moreover, by relating types of pitfalls to the respective
metrics they apply to and illustrating them, it enables researchers to gain a deeper, systemic
understanding of the causes of metric failure.

Our complementary Metrics Reloaded recommendation framework, which guides
researchers towards the selection of appropriate validation metrics for their specific tasks
and is introduced in a sister publication to this work [22], shares the same principle

of domain independence. Its recommendations are based on the creation of a ‘problem
fingerprint’ that abstracts from specific domain knowledge and, informed by the pitfalls
discussed here, captures all properties relevant to metric selection for a specific biomedical
problem. In this sister publication, we present recommendations to avoid the pitfalls
presented in this work. Importantly, the finding that pitfalls generalize and can be
categorized in a domain-independent manner opens up avenues for future expansion of our
work to other fields of ML-based imaging, such as general computer vision (see below), thus
freeing it from its major constraint of exclusively focusing on biomedical problems.

It is worth mentioning that we only examined pitfalls related to the tasks of image-level
classification, semantic segmentation, instance segmentation, and object detection, as these
can all be considered classification tasks at different levels (image/object/pixel) and hence
share similarities in their validation. While including a wider range of biomedical problems
not considered classification tasks, such as regression or registration, would have gone
beyond the scope of the present work, we envision this expansion in future work. Moreover,
our work focused on pitfalls related to reference-based metrics. Including pitfalls pertaining
to non-reference-based metrics, such as metrics that assess speed, memory consumption,

or carbon footprint, could be a future direction to take. Finally, while we aspired to be

as comprehensive as possible in our compilation, we cannot exclude that there are further
pitfalls to be taken into account that the consortium and the participating community have
so far failed to recognize. Should this be the case, our dynamic Metrics Reloaded online
platform, which is currently under development and will continuously be updated after
release, will allow us to easily and transparently append missed pitfalls. This way, our work
can remain a reliable point of access, reflecting the state of the art at any given moment

in the future. In this context, we note that we explicitly welcome feedback and further
suggestions from the readership of Nature Methods.

The expert consortium was primarily compiled in a way to cover the required expertise
from various fields but also consisted of researchers of different countries, (academic) ages,
roles, and backgrounds (details can be found in the Suppl. Methods). It mainly focused on
biomedical applications. The pitfalls presented here are therefore of the highest relevance
for biological and clinical use cases. Their clear generalization across different biomedical
imaging domains, however, indicates broader generalizability to fields such as general
computer vision. Future work could thus see a major expansion of our scope to Al validation
well beyond biomedical research. Regardless of this possibility, we strongly believe that

by raising awareness of metric-related pitfalls, our work will kick off a necessary scientific
debate. Specifically, we see its potential in inducing the scientific communities in other
areas of Al research to follow suit and investigate pitfalls and common practices impairing
progress in their specific domains.
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In conclusion, our work presents the first comprehensive and illustrated access point to
information on validation metric properties and their pitfalls. We envision it to not only
impact the quality of algorithm validation in biomedical imaging and ultimately catalyze
faster translation into practice, but to raise awareness on common issues and call into
question flawed Al validation practice far beyond the boundaries of the field.

Extended Data

[P2] [P2.2]
Pitfalls related to Disregard of the

poor metric properties of the
selection target structure

(Sufficiently)
large structure

Small
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(a) Common metrics are sensitive (b) Common overlap-based metrics are unaware
to structure sizes of complex structure shapes
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Extended Data Fig. 1. [P2.2] Disregard of the properties of the target structures.
[P2.2] Disregard of the properties of the target structures. (a) Small structure sizes.

The predictions of two algorithms (Prediction 1/2) differ in only a single pixel. In the case
of the small structure (bottom row), this has a substantial effect on the corresponding Dice
Similarity Coefficient (DSC) metric value (similar for the Intersection over Union (loU)).
This pitfall is also relevant for other overlap-based metrics such as the centerline Dice
Similarity Coefficient (cIDice), and localization criteria such as Box/Approx/Mask loU and
Intersection over Reference (IoR). (b) Complex structure shapes. Common overlap-based
metrics (here: DSC) are unaware of complex structure shapes and treat Predictions 1 and 2
equally. The cIDice uncovers the fact that Predictions 1 misses the fine-granular branches of
the reference and favors Predictions 2, which focuses on the center line of the object. This
pitfall is also relevant for other overlap-based such as metrics loU and pixel-level Fg Score
as well as localization criteria such as Box/Approx/Mask loU, Center Distance, Mask loU >
0, Point inside Mask/Box/Approx, and IoR.
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[P2] [P2.4]
Pitfalls related to Disregard of the

poor metric properties of the
Selection algorithm output

(a) Common segmentation metrics may yield misleading results in the presence of
overlapping structures
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Extended Data Fig. 2. [P2.4] Disregard of the properties of the algorithm output.
[P2.4] Disregard of the properties of the algorithm output. (a) Possibility of overlapping

predictions. If multiple structures of the same type can be seen within the same image (here:
reference objects RZ and R2), it is generally advisable to phrase the problem as instance
segmentation (InS; right) rather than semantic segmentation (SemsS; left). This way, issues
with boundary-based metrics resulting from comparing a given structure boundary to the
boundary of the wrong instance in the reference can be avoided. In the provided example,
the distance of the red boundary pixel to the reference, as measured by a boundary-based
metric in SemS problems, would be zero, because different instances of the same structure
cannot be distinguished. This problem is overcome by phrasing the problem as InS. In this
case, (only) the boundary of the matched instance (here: R2) is considered for distance
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computation. (b) Possibility of empty prediction or reference. Each column represents a
potential scenario for per-image validation of objects, categorized by whether True Positives
(TPs), False Negatives (FNs), and False Positives (FPs) are present (n > 0) or not (n = 0)
after matching/assignment. The sketches on the top showcase each scenario when setting “n
> 0" to “n = 1”. For each scenario, Sensitivity, Positive Predictive Value (PPV), and the F;
Score are calculated. Some scenarios yield undefined values (Not a Number (NaN)).
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Extended Data Tab. 1.
Overview of pitfall sources for image-level classification

metrics

((a): counting metrics, (b): multi-threshold metrics) related to poor metric selection [P2].
Pitfalls for semantic segmentation, object detection and instance segmentation are provided
in Extended Data Tabs. 2-5 respectively. A warning sign indicates a potential pitfall for the
metric in the corresponding column, in case the property represented by the respective row
holds true. Comprehensive illustrations of pitfalls are available in Suppl. Note 2. A
comprehensive list of pitfalls is provided separately for each metrics in the metrics cheat
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sheets (Suppl. Note 3). Note that we only list sources of pitfalls relevant to the considered
metrics. Other sources of pitfalls are neglected for this table.
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(a) Counting metrics. Considered metrics: Accuracy (Fig. SN 3.38), Balanced Accuracy (BA) (Fig. SN
3.39), Expected Cost (EC) (Fig. SN 3.42), F Score (Fig. SN 3.43), Matthews Correlation Coefficient
(MCC) (Fig. SN 3.46), Net Benefit (NB) (Fig. SN 3.47), Negative Predictive Value (NPV) (Fig. SN 3.48),
Positive Likelihood Ratio (LR+) (Fig. SN 3.50), Positive Predictive Value (PPV) (Fig. SN 3.51), Sensitivity
(Sens) (Fig. SN 3.52), Specificity (Spec) (Fig. SN 3.53), Weighted Cohen’s Kappa (WCK) (Fig. SN 3.54).

Source of Accuracy | BA EC Fa LR+ McCC NB PPV/ | Sens/ | WCK
pitfall Score NPV Spec
Importance A- At Ac At A- A- Aa A- At At
of confidence
awareness
Importance of | A\ A A A A A A
comparability | (Fig.SN2.7) (Fig. SN | (Fig. SN (Fig. SN | (Fig. (Fig. SN (Fig. SN
actoss data 2.7) 2.7) 2.7) sN2.7) | 2.7) 2.7)
sets
Unequal A (Fig. A A A A A A
severity 4ab) (Fig. *** (Fig. | (Fig. (Fig. (Fig. 4b) | (Fig. 4b)
of class 4b) 4b) 4b) 4b)
confusions
Importance of | 4\ (Fig. A A A A A A
cost-benefit SN 2.9) (Fig. *** (Fig. | (Fig. (Fig. SN (Fig. SN | (Fig. SN
analysis SN 2.9) SN 2.9) SN29) | 29) 2.9) 2.9)
High class A (Figs. A A. A A NPV: A A
imbalance sa, SN 2.15) | (Fig. (Fig. (Fig. (Figs. A (Sens: (Figs.
5a) 5a) 5a) 5a, SN (Figs. Fig. Sa; 5a, SN
2.15) 5a, SN | Spec: 2.15)
2.15) Figs. 5a,
SN 2.15)
Small test set A (Fig. £ A A A A A A A A
size SN 2.16) (Fig. (Fig. SN | (Fig. SN (Fig. (Fig. SN | (Fig. (Fig. SN | (Fig. SN (Fig. SN
SN 2.16) 2.16) SN 2.16) SN 2.16) 2.16) 2.16)
2.16) 2.16) 2.16)

* Discrimination metrics do not assess whether the predicted class scores reflect the confidence of the classifier. This is
typically achieved with additional calibration metrics, which come with their own pitfalls (see Figs. SN 2.6 and SN 2.22,
Extended Data Fig.1b and the metric profiles in Suppl. Note 3.2).

** The weights in EC can be adjusted to avoid this pitfall.

*** The hyperparameter [3 can be used as a penalty for class confusions in the binary case. This property is not applicable to
multi-class problems.

(b) Multi-threshold metrics. Considered metrics: Area under the Receiver Operating Characteristic
Curve (AUROC) (Fig. SN 3.55) and Average Precision (AP) (Fig. SN 3.56).

Source of pitfall AP AUROC
Importance of confidence A . A .
awareness

Importance of comparability A

across data sets (Fig. SN 2.7)

High class imbalance A {Fig. 5a)
Small test set A (Fig. SN 2.16) A (Fig. SN 2.16)
size

Lack of predicted class scores A {Fig SN 2.20) A {Fig. SN 2.20)

* Discrimination metrics do not assess whether the predicted class scores reflect the confidence of the classifier. This is
typically achieved with additional calibration metrics, which come with their own pitfalls (see Figs. SN 2.6 and SN 2.22,
Extended Data Fig.1b and the metric prafiles in Suppl. Note 3.2).
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Extended Data Tab. 2.
Overview of pitfall sources for

((a): overlap-based metrics, (b): boundary-based metrics) related to poor metric selection
[P2]. A warning sign indicates a potential pitfall for the metric in the corresponding column,
in case the property represented by the respective row holds true. Comprehensive
illustrations of pitfalls are available in Suppl. Note 2. A comprehensive list of pitfalls is
provided separately for each metrics in the metrics cheat sheets (Suppl. Note 3). Note that
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we only list sources of pitfalls relevant to the considered metrics. Other sources of pitfalls

are neglected for this table.

(a) Overlap-based metrics. Considered metrics: centerline Dice Similarity Coefficient (clDice) (Fig. SN
3.40), Dice Similarity Coefficient (DSC) (Fig. SN 3.41), Fg Score (Fig. SN 3.43), Intersection over Union

(loU) (Fig. SN 3.45).

Extended Data Fig. 1a)

Extended Data Fig. 1a)

Source of potential pitfall cIDice DSC/loU Fp Score
Importance of structure
boundaries (Fig. 4a) (Fig. 4a) (Fig. 4a)
Importance of structure
center(line) (Fig. SN 2.5, Extended (Fig. SN 2.5, Extended
Data Fig. 1b) Data Fig. 1b)
Unegual severity of class
confusions iFig, SN 28:' [FIE SN 28]
Small structure sizes
(Fig. SN 2.10, (Fig. SN 2.10, (Fig. SN 2.10,

Extended Data Fig. 1a)

High variability of structure

Extended Data Fig. 2a)

Extended Data Fig. 2a)

sizes (Fig. SN 2.11) (Fig. SN 2.11) (Fig. SN 2.11)
Complex structure shapes

(Fig. SN 2.12) (Fig. SN 2.12)
Occurrence of overlapping
or touching structures (Fig. SN 2.13) * (Fig. SN 2.13) (Fig. SN 2.13)
Imperfect reference
standard (Fig. SN 2.17) (Fig. SN 2.17)
Occurrence of cases with i !
an empty reference (Fig. SN 2.18) * (Fig. SN 2.18) (Fig. SN 2.18)
Possibility of empty
prediction (Fig. SN 2.18) (Fig. SN 2.18) * (Fig. SN 2.18)
Possibility of overlapping . \
predictions (Fig. SN 2.19, * (Fig. SN 2.19, (Fig. SN 2.19,

Extended Data Fig. 2a)

(b) Boundary-based metrics. Considered metrics: Average Symmetric Surface Distance (ASSD) (Fig.
SN 3.58), Boundary Intersection over Union (Boundary loU) (Fig. SN 3.59), Hausdorff Distance (HD)
(Fig. SN 3.60), Hausdorff Distance 95th Percentile (HD95) (Fig. SN 3.63), Mean Average Surface

Distance (MASD) (Fig. SN 3.61), Normalized Surface Distance (NSD) (Fig. SN 3.62).

Source of ASSD Boundary loU | HD HD95 MASD NSD

potential

pitfall

Importance of \

structure 4 (Fig. SN * (Fig. SN * (Fig. SN (Fig. SN * (Fig. SN (Fig. SN

volume 24] 24] 24) 24} 24) 24]

Importance of A

structure (Fig. SN * (Fig. SN (Fig. SN (Fig. SN (Fig. SN (Fig. SN

center(line) 2.5, Extended | 2.5, Extended | 2.5, Extended | 2.5, Extended | 2.5, Extended | 2.5, Extended
Data Fig. 1b) Data Fig. 1b) Data Fig. 1b) Data Fig. 1b) Data Fig. 1b) Data Fig. 1b)

Occurrence of )

overlapping or (Fig. SN (Fig. SN (Fig. SN (Fig. SN (Fig. SN (Fig. SN

touching 2.13) 2.13) 2.13) 2.13) 2.13) 2.13)

structures

Imperfect \

reference 4 (Figs. 5¢, (Figs. 5¢c, * (Figs. 5¢, (Figs. * (Figs. 5¢,
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standard SN 2.17) SN 2.17) SN 2.17) 5c*, 5N 2.17) SN 2.17)

Occurrence of

cases with an (Fig. SN (Fig. SN (Fig. SN (Fig. SN (Fig. SN (Fig. SN

empty 2.18) 2.18) 2.18) 2.18) 2.18) 2.18)

reference

Possibility of

empty (Fig. SN (Fig. SN (Fig. SN (Fig. SN (Fig. SN (Fig. SN

prediction 2.18) 2.18) 2.18) 2.18) 2.18) 2.18)

Possibility of

overlapping (Fig. SN (Fig. SN (Fig. SN (Fig. SN (Fig. SN (Fig. SN

predictions 2.19, 2.19, 2.19, 2.19, 2.19, 2.19,
Extended Data | Extended Data | Extended Data | Extended Data | Extended Data | Extended Data
Fig. 2a) Fig. 2a) Fig. 2a) Fig. 2a) Fig. 2a) Fig. 2a)

%

Can be mitigated by the choice of the percentile
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Extended Data Tab. 3.
Overview of sources of pitfalls for object detection

metrics

((a): detection metrics, (b): localization criteria) related to poor metric selection [P2]. A
warning sign indicates a potential pitfall for the metric in the corresponding column, in case
the property represented by the respective row holds true. Comprehensive illustrations of
pitfalls are available in Suppl. Note 2. A comprehensive list of pitfalls is provided separately
for each metrics in the metrics cheat sheets (Suppl. Note 3). Note that we only list sources of
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pitfalls relevant to the considered metrics. Other sources of pitfalls are neglected for this
table.
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(a) Detection metrics. Considered counting metrics: Fy Score (Fig. SN 3.43), Positive Predictive Value
(PPV) (Fig. SN 3.51), Sensitivity (Sens) (Fig. SN 3.52). Considered multi-threshold metrics: Average
Precision (AP) (Fig. SN 3.56) and Free-Response Receiver Operating Characteristic (FROC) (Fig. SN

3.57).

Source of
potential pitfall

Fp Score

PPV

FROC Score

Unequal severity
of class
confusions

A (Fig. 4b)

A (Fig. 4b)

A (Fig. 4b)

High class

P
£

Small test set size

A {Fig. SN

2.16)

A (Fig. SN

2.16)

A (Fig. SN

2.16)

Occurrence of

A (Fig. SN

A (Fig. SN

A (Fig. SN

cases with an (Fig. SN (Fig. SN

empty reference 2.18, Extended 2.18, Extended 2.18, Extended 2.18, Extended 2.18, Extended
Data Fig. 2b) Data Fig. 2b) Data Fig. 2b) Data Fig. 2b) Data Fig. 2b)

Possibility of A

empty prediction (Fig. SN (Fig. SN (Fig. SN (Fig. SN (Fig. SN
2.18, Extended 2.18, Extended 2.18, Extended 2.18, Extended 2.18, Extended
Data Fig. 2b) Data Fig. 2b) Data Fig. 2b) Data Fig. 2b) Data Fig. 2b)

Lack of predicted

class scores (Fig. SN (Fig. SN

2.20) 2.20)

* The hyperparameter [ can be used as a penalty for class confusions in the binary case. This property is not applicable to

multi-class problems.

(b) Localization criteria. Considered localization criteria: Box/Approx loU (Fig. SN 3.74), Center
Distance (Fig. SN 3.72), Mask loU > 0 (Fig. SN 3.75), and Point inside Mask/ Box/ Approx (Fig. SN

3.76).

Source of potential Box/Approx loU Center Distance Mask loU >0 Point inside Mask/
pitfall Box/ Approx
Importance of A A A

structure boundaries (Fig. 4a) (Fig. 4a) (Fig. 4a) (Fig. 4a)
Importance of

structure volume (Fig. SN 2.4) (Fig. SN 2.4) (Fig. SN 2.4)
Importance of A A

structure center(line) (Fig. SN 2.5, (Fig. SN 2.5, (Fig. SN 2.5,

Extended Data Fig.

Extended Data Fig.
1b)

Extended Data Fig.
1b)

Unequal severity of
class confusions

A (Fig. SN 2.8)*

A{Fig. SN 2.8)

A (Fig. SN 2.8)*

Small structure sizes

1b)
A (Fig. SN 2.8)
A

(Fig. SN 2.10,
Extended Data Fig.
1a)

Complex structure
shapes

(Figs. SN 2.12,
SN 2.14)

A (Fig. SN 2.12)

A (Fig. SN 2.12)

A (Fig. SN 2.12)

Occurrence of
disconnected
structures

=

(Fig. SN 2.14)

Point inside Box:

(Fig. SN 2.14)

Imperfect reference
standard

A (Fig. 5¢)

* Criterion implies point prediction, thus overlap assessment is not applicable.
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Extended Data Tab. 4.
Overview of sources of pitfalls for instance segmentation

metrics (Part 1)

((a): detection metrics, (b): localization criteria) related to poor metric selection [P2]. A
warning sign indicates a potential pitfall for the metric in the corresponding column, in case
the property represented by the respective row holds true. Comprehensive illustrations of
pitfalls are available in Suppl. Note 2. A comprehensive list of pitfalls is provided separately
for each metrics in the metrics cheat sheets (Suppl. Note 3). Note that we only list sources of
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pitfalls relevant to the considered metrics. Other sources of pitfalls are neglected for this

table.

(a) Detection metrics. Considered counting metrics: Fg Score, Positive Predictive Value (PPV),
Panoptic Quality (PQ), Sensitivity (Sens). Considered multi-threshold metrics: Average Precision (A
(Fig. SN 3.56) and Free-Response Receiver Operating Characteristic (FROC) (Fig. SN 3.57).

Source of
potential
pitfall

Fg Score

PPV

PQ

Sens

AP

FROC Score

Unequal
severity of
class
confusions

A (Fig.

4b)*

A (Fig. 4b)

A (Fig. 4b)

A (Fig. 4b)

High class
imbalance

A (Fig. 5a)

Small test set
size

A (Fig. SN

A (Fig. SN

A (Fig. SN

A (Fig. SN

A (Fig. SN

A (Fig. SM

2.16) 2.16) 2.16) 2.16) 2.16) 2.16)
Lack of
predicted A (Fig. SN A (Fig. SH
class scores 2.20) 2.20)

* The hyperparameter [3 can be used as a penalty for class confusions in the binary case. This property is not applicable t
multi-class problems.

(b) Localization criteria. Considered localization criteria: Boundary Intersection over Union (loU) (

SN 3.59), Intersection over Reference (loR) (Fig. SN 3.73), Mask loU (Fig. SN 3.74).

Source of potential pitfall

Boundary loU

IoR

Mask loU

Importance of structure
boundaries

A (Fig. 4a)

A (Fig. 4a)

Importance of structure
volume

A (Fig. SN 2.4)

Importance of structure
center(line)

A (Fig. SN 2.5,

Extended Data Fig. 1b)

A (Fig. SN 2.5,

Extended Data Fig. 1b)

A (Fig. SN 2.5,

Extended Data Fig. 1b)

Unequal severity of class
confusions

A (Fig. SN 2.8)

A (Fig. SN 2.8)

Small structure sizes

A (Fig. SN 2.10,

Extended Data Fig. 1a)

A (Fig. SN 2.10,

Extended Data Fig. 1a)

Complex structure shapes

A (Fig. SN 2.12)

A (Fig. SN 2.12)

Imperfect reference
standard

(Fig. SN 2.17)

(Fig. SN 2.17)
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Extended Data Tab. 5.
Overview of sources of pitfalls for instance segmentation

metrics (Part 2)

((a) per instance segmentation overlap-based metrics, (b) per instance segmentation
boundary-based metrics) related to poor metric selection [P2]. A warning sign indicates a
potential pitfall for the metric in the corresponding column, in case the property represented
by the respective row holds true. Comprehensive illustrations of pitfalls are available in
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Suppl. Note 2. Note that we only list sources of pitfalls relevant to the considered metrics.
Other sources of pitfalls are neglected for this table.

1duosnuely Joyiny 1duosnue Joyiny

1duosnuepy Joyiny

(a) Per instance segmentation overlap-based metrics. Considered metrics: Considered met
centerline Dice Similarity Coefficient (cIDice) (Fig. SN 3.40), Dice Similarity Coefficient (DSC)
3.41), F Score (Fig. SN 3.43), Intersection over Union (loU) (Fig. SN 3.45).

Source of potential pitfall cIDice DSC/loU Fg Score
Importance of structure

boundaries A (Fig. 4a) A (Fig. 4a) A (Fig. 4a)
Importance of structure

center(line) A (Fig. SN 2.5, A (Fig. SN 2.5,

Extended Data Fig. 1b)

Extended Data Fig.

Unequal severity of class
confusions

A (Fig. SN 2.8)

A (Fig. SN 2.8)

Small structure sizes

A (Fig. SN 2.10,

Extended Data Fig. 1a)

A (Fig. SN 2.10,

Extended Data Fig. 1a)

A (Fig. SN 2.1C

Extended Data Fig.

Complex structure shapes

A (Fig. SN 2.12)

A (Fig. SN 2.12

Imperfect reference
standard

(Fig. SN 2.17)

A (Fig. SN 2.17

(b) Per instance segmentation boundary-based metrics. Considered metrics: Average Symr
Surface Distance (ASSD) (Fig. SN 3.58), Boundary Intersection over Union (loU) (Fig. SN 3.59
Hausdorff Distance (HD) (Fig. SN 3.60), Hausdorff Distance 95th Percentile (HD95) (Fig. SN 3
Mean Average Surface Distance (MASD) (Fig. SN 3.61) and Normalized Surface Distance (NS

SN 3.62).

Source of ASSD Boundary loU | HD HD95 MASD NSD

potential

pitfall

Importance of

p— A (Fig. SN A (Fig. SN A (Fig. SN A (Fig. SN A (Fig. SN A

volume 2.4) 2.4) 2.4) 2.4) 2.4) 2.4)

Importance of

SEPICHITE A (Fig. SN A (Fig. SN A (Fig. SN A (Fig. SN A (Fig. SN A

center(line) 2.5, Extended | 2.5, Extended | 2.5, Extended | 2.5, Extended 2.5, Extended | 2.5,E
Data Fig. 1b) Data Fig. 1b) Data Fig. 1b) Data Fig. 1b) Data Fig. 1b) Data

Imperfect ] ) ) ) )

reference (Figs. (Figs. (Figs. (Figs. (Figs.

standard 5c, SN 2.17) 5c, SN 2.17) 5c, SN 2.17) 5c, SN 2.17) 5c, SN 2.17)

*
Can be mitigated by the choice of the percentile

1duosnuely Joyiny

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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(A) POPULAR VOXEL-BASED METRICS FAIL TO CAPTURE CLINICAL INTEREST
Magnetic resonance imaging, same patient, different slices

Reference Prediction Reference Prediction

Sensitivity =
(voxel-level) x

Sensitivity = 0.50
(instance-level)
Missed lesion!

Example: Medical example - brain tumor segmentation:
A near-perfect voxel-level Sensitivity hides information on missed lesions.

(B) POPULAR RECONSTRUCTION METRICS FAIL TO CAPTURE BIOLOGICAL INTEREST
Fluorescence microscopy

Input N Reference Prediction

redl (fibrilarin) | » "« * ) prediction

Zoom Segmentation Zoom Segmentation

Pearson Correlation Coefficient =

Sensitivity = 0.49
Example: Biological example - fibrillarin prediction:
The popular Pearson Correlation Coefficient fails to capture the disagreement of
morphological properties between reference and prediction.

Figure 1:
Examples of metric-related pitfalls in image analysis validation. (A) Medical image analysis

example: Voxel-based metrics are not appropriate for detection problems. Measuring the
voxel-level performance of a prediction yields a near-perfect Sensitivity. However, the
Sensitivity at the instance level reveals that lesions are actually missed by the algorithm.
(B) Biological image analysis example: The task of predicting fibrillarin in the dense
fibrillary component of the nucleolus should be phrased as a segmentation task, for which
segmentation metrics reveal the low quality of the prediction. Phrasing the task as image
reconstruction instead and validating it using metrics such as the Pearson Correlation
Coefficient yields misleadingly high metric scores [4, 26, 29, 36, 36].
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SOURCES OF POTENTIAL PITFALLS
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Figure 2:
Overview of the taxonomy for metric-related pitfalls. Pitfalls can be grouped into three

main categories: [P1] Pitfalls related to the inadequate choice of the problem category, [P2]
pitfalls related to poor metric selection, and [P3] pitfalls related to poor metric application.
[P2] and [P3] are further split into subcategories. For all categories, pitfall sources are
presented (green), with references to corresponding illustrations of representative examples.
Note that the order in which the pitfall sources are presented does not correlate with
importance.
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Reference Prediction 1

DSC=0.92

1 object detected ¥

>>

Inadequate choice of the problem category returns misleading results

Prediction 2

O
|
3 objects detected+”
DSC=0.79

Figure 3:

[P1] Pitfalls related to the inadequate choice of the problem category. Wrong choice of
problem category. Effect of using segmentation metrics for object detection problems. The
pixel-level Dice Similarity Coefficient (DSC) of a prediction recognizing every structure
(Prediction 2) is lower than that of a prediction that only recognizes one of the three

structures (Prediction 1).

Nat Methods. Author manuscript; available in PMC 2024 August 12.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Page 39

[P2] [P2.1]
Pitfalls related to Disregard of

the domain

poor metric .
interest

selection

(a) Overlap-based metrics disregard structure boundaries

Reference Prediction 1 Prediction 2
N
1
DSC=0.78 DSC=0.78

(b) Common multi-class metrics ignore ordinal grading

Reference Prediction 1 Prediction 2
Patient 1

@ Class 0 Class 0 Class 0
Ordinal classes

J A Patient 2
@ Class 1 Class 1 Class 1
0 1 2

Patient 3

@ Class 2 Class 0 3¢ Class 1

Accuracy =0.67 = Accuracy =0.67
EC=0.83 >> EC=0.33

Figure 4: [P2.1] Disregard of the domain interest.
(a) Importance of structure boundaries. The predictions of two algorithms (Prediction

1/2) capture the boundary of the given structure substantially differently, but lead to the
exact same Dice Similarity Coefficient (DSC), due to its boundary un- awareness. This
pitfall is also relevant for other overlap-based metrics such as centerline Dice Similarity
Coefficient (cIDice), pixel-level Fz Score, and Intersection over Union (loU), as well as
localization criteria such as Box/Approx/Mask loU, Center Distance, Mask loU > 0, Point
inside Mask/Box/Approx, and Intersection over Reference (IoR). (b) Unequal severity

of class con- fusions. When predicting the severity of a disease for three patients in an
ordinal classification problem, Prediction 1 assumes a much lower severity for Patient 3than
actually observed. This critical issue is overlooked by common metrics (here: Accuracy),
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which measure no difference to Prediction 2, which assesses the severity much better.
Metrics with pre-defined weights (here: Expected Cost (EC)) correctly penalize Prediction 1
much more than Prediction 2. This pitfall is also relevant for other counting metrics, such as
Balanced Accuracy (BA), Fg Score, Positive Likelihood Ratio (LR+), Matthews Correlation
Coefficient (MCC), Net Benefit (NB), Negative Predictive Value (NPV), Positive Predictive
Value (PPV), Sensitivity, and Specificity.
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[P2] [P2.3]
Pitfalls related to Disregard of the
poor metric properties of the
selection data set
(a) Common metrics yield implausible (b) Common calibration metrics
results in the presence of class imbalance depend on sample size
Perfectly calibrated model
PREDICTED 100
Positive  Negative C _. j ECE = 0.074
g\ FN .
g 5 1 5 5 n=1,000
G, 0000000 00  ECE=002
<2 TN S
3 95,000 n = 10,000
= 00000000000000000000
Accuracy =0.95 x 00000000000000000000
BA = 0.85 00000000000000000000 ECE = 0.005
’ 00000000000000000000 e
MCC =0.05 J 00000000000000000000
(c) Annotation errors may have huge impact on metric scores
Reference Prediction
B < Annotation O
error
HD =11.31
HD95 = 6.79

Figure 5: [P2.3] Disregard of the properties of the data set.
(a) High class imbalance. In the case of underrepresented classes, common metrics may

yield misleading values. In the given example, Accuracy and Balanced Accuracy (BA) have
a high score despite the high amount of False Positive (FP) samples. The class imbalance

is only uncovered by metrics considering predictive values (here: Matthews Correlation
Coefficient (MCC)). This pitfall is also relevant for other counting and multi-threshold
metrics such as Area under the Receiver Operating Characteristic Curve (AUROC),
Expected Cost (EC) (depending on the chosen costs), Positive Likelihood Ratio (LR+),

Net Benefit (NB), Sensitivity, Specificity, and Weighted Cohen’s Kappa (WCK). (b) Small
test set size. The values of the Expected Calibration Error (ECE) depend on the sample size.
Even for a simulated perfectly calibrated model, the ECE will be substantially greater than
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zero for small sample sizes [14]. (c) Imperfect reference standard. A single erroneously
annotated pixel may lead to a large decrease in performance, especially in the case of the
Hausdorff Distance (HD) when applied to small structures. The Hausdorff Distance 95th
Percentile (HD95), on the other hand, was designed to deal with spatial outliers. This pitfall
is also relevant for localization criteria such as Box/Approx Intersection over Union (loU)
and Point inside Box/Approx. Further abbreviations: True Positive (TP), False Negative
(FN), True Negative (TN).
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[P3]

Pitfalls related to

poor metric
application

(a) Common metrics suffer from implementation ambiguities, in this case resulting from
identical confidence scores

Prediction
Reference D Prediction
bounding box bounding box
Implementation 1 (COCO): Implementation 2 (COCO):
Conf =0.95 One step for each prediction One step for each prediction
e I and interpolation and no interpolation
TP
Confi—0.70 AP =0.57 AP =0.53
Conf.=0.90 i
Conf.=0.80 Implementation 3 (CityScapes): Implementation 4 (CityScapes):
P ™ Predictions with identical scores  Predictions with identical scores
in single step and interpolation  in single step and no interpolation
P AP =0.55 AP =0.51
Conf.=0.80

(b) Simple averaging disregards non-independence of test data

s
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(c) Common visualization schemes hide relevant information
Boxplot Dot and boxplot, color-coded
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Figure 6: [P3] Pitfalls related to poor metric application.
(a) Non-standardized metric implementation. In the case of the Average Precision (AP)

metric and the construction of the Precision- Recall (PR)-curve, the strategy of how identical
scores (here: confidence score of 0.80 is present twice) are treated has a substantial impact
on the metric scores. Microsoft Common Objects in Context (COCQO) [20] and CityScapes
[7] are used as examples. (b) Non-independence of test cases. The number of images taken
from Patient 1 is much higher compared to that acquired from Patients 2-5. Averaging over
all Dice Similarity Coefficient (DSC) values, denoted by &, results in a high averaged score.
Aggregating metric values per patient reveals much higher scores for Patient 1 compared

to the others, which would have been hidden by simple aggregation. (c) Uninformative
visualization. A single box plot (left) does not give sufficient information about the raw
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metric value distribution. Adding the raw metric values as jittered dots on top (right) adds
important information (here: on clusters). In the case of non-independent validation data,
color/shape-coding helps reveal data clusters.
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