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The T1DI Cohort:
• Combined and harmonized

data from five prospec�ve
birth cohort studies of
children at elevated gene�c
risk of type 1 diabetes.

•

• Median follow-up: 12.3 years
• 1,845 children developed ≥1

IAb, and 498 (27%) progressed to
stage 3 type 1 diabetes.

Aim:
Characterize dis�nct IAb profiles
informing future stage 3 type 1
diabetes risk 

Methods:
• Novel similarity 

algorithm based 
on age and IAb
profile over �me

• Unsupervised 
hierarchic
clustering yields 
individuals in 
unique clusters

Dis�nct longitudinal islet autoan�body (IAb) profiles and associated risk of stage 3 type 1 diabetes
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ARTICLE HIGHLIGHTS

� Why did we undertake this study?
Heterogeneity of islet autoimmunity before diagnosis of type 1 diabetes necessitates further investigation. We established a large combined and
harmonized data set of individuals with prospective follow-up and a novel clustering algorithm to define the patterns of islet autoimmunity.

� What is the specific question(s) we wanted to answer?
Which are the main longitudinal islet autoantibody profiles and their associations with progression rates from islet autoimmunity to clinical
diabetes?

� What did we find?
We identified five main clusters of individuals with distinct autoantibody profiles and progression rates to type 1 diabetes.

� What are the implications of our findings?
The results strongly support the existence of disease subtypes of type 1 diabetes. These data can be used for planning targeted clinical trials to
prevent type 1 diabetes.
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OBJECTIVE

To characterize distinct islet autoantibody profiles preceding stage 3 type 1
diabetes

RESEARCH DESIGN AND METHODS

The T1DI (Type 1 Diabetes Intelligence) study combined data from 1,845 genetically
susceptible prospectively observed children whowere positive for at least one islet au-
toantibody: insulin autoantibody (IAA), GAD antibody (GADA), or islet antigen 2 anti-
body (IA-2A). Using a novel similarity algorithm that considers an individual’s temporal
autoantibody profile, age at autoantibody appearance, and variation in the positivity
of autoantibody types, we performed an unsupervised hierarchical clustering analysis.
Progression rates to diabetes were analyzed via survival analysis.

RESULTS

We identified five main clusters of individuals with distinct autoantibody profiles
characterized by seroconversion age and sequence of appearance of the three auto-
antibodies. The highest 5-year risk from first positive autoantibody to type 1 diabetes
(69.9%; 95% CI 60.0–79.2) was observed in children who first developed IAA in early
life (median age 1.6 years) followed by GADA (1.9 years) and then IA-2A (2.1 years).
Their 10-year risk was 89.9% (95% CI 81.9–95.4). A high 5-year risk was also found in
children with persistent IAA and GADA (39.1%) and children with persistent GADA
and IA-2A (30.9%). A lower 5-year risk (10.5%) was observed in children with a late
appearance of persistent GADA (6.1 years). The lowest 5-year diabetes risk (1.6%)
was associated with positivity for a single, often reverting, autoantibody.

CONCLUSIONS

The novel clustering algorithm identified children with distinct islet autoantibody
profiles and progression rates to diabetes. These results are useful for prediction,
selection of individuals for prevention trials, and studies investigating various
pathways to type 1 diabetes.

Clinical diagnosis of type 1 diabetes is preceded by asymptomatic islet autoimmunity
(IA) with the presence of islet autoantibodies (IAbs) such as insulin autoantibody (IAA),
antibody against GAD (GADA), and islet antigen 2 antibody (IA-2A). IA predicts develop-
ment of type 1 diabetes, but heterogeneous islet autoantibody (IAb) profiles and dy-
namics before diagnosis require further investigation. The rate of progression from the
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initiation of IA to type 1 diabetes is highly
variable (1–6). Several studies have investi-
gated characteristics of different subgroups
of patients who progress differently to
type 1 diabetes, which ultimately could be
useful for identifying children at risk of
rapid or slow progression to the disease.
For example, individuals have been catego-
rized by family history of type 1 diabetes,
genetic risk, age at development of IA, or
type of first appearing IAb. In young chil-
dren, IAA is the most sensitive and IA-2A is
the most specific predictor for develop-
ment of diabetes, and children who de-
velop multiple IAbs early in life progress
faster to diabetes than those who develop
multiple IAbs at a later age (7–10). The
TEDDY study showed that the presence of
IA-2A predicts fast progression to clinical
diabetes in young children (11). However,
the development of IAbs over time can
be heterogeneous; therefore, further in-
vestigation is required to define the IAb
patterns associated with rapid or slow
progression and understand the role of
phenomena such as reversion of individ-
ual IAbs (12). In our collaboration, the
T1DI (Type 1 Diabetes Intelligence) study
group, we combined and harmonized data
from five prospective studies of type 1 dia-
betes (13) for such analyses.
In most previous studies, subgroups of

IAb profiles have been defined based on
clinically predefined hypotheses and not
on data-driven analyses. Interestingly, a
study from BABYDIAB (14) reported a
clustering algorithm for a cohort of 88
children with multiple positive IAbs using
their longitudinal autoantibody profiles.
However, the clustering algorithm did not
account for the age at which the IAb was
detected, and it did not differentiate be-
tween different IAb types (IAA, IA-2A,
GADA), although the specificity of IAbs
may influence the rate of progression. In
addition, no principled approach to deter-
mine the number of clusters was used. In
a more recent report, an improved clus-
tering algorithm was presented to take
into account the timing of changes in IAb
development, and the algorithm was ap-
plied to 370 children who developed mul-
tiple autoantibody types in the evenly
and frequently sampled TEDDY study
(15). However, that algorithm may not be
applicable to data with irregular measure-
ments, such as the data in the T1DI study
or in clinical practice. In the current re-
port, we present a novel clustering algo-
rithm that addresses these limitations.

We applied it to a large cohort of 1,845
IAb-positive children from the T1DI study
cohort to identify putative disease sub-
types in children with different IAb pro-
files. This data-driven approach revealed
clusters of children with distinct charac-
teristics. In addition, we explored in the
youngest children developing IA whether
the type of IAb in the first positive sample
was associated with progression to type 1
diabetes.

RESEARCH DESIGN AND METHODS

Study Populations
We analyzed data from the T1DI study co-
hort, which combined five prospective
longitudinal cohorts: the DIPP (Type 1 Dia-
betes Prediction and Prevention) study
from Finland (4), the DiPiS (Diabetes Pre-
diction in Skåne Study) from Sweden (16),
the DAISY (Diabetes Autoimmunity Study
in the Young) from the U.S. (17), the
DEW-IT (Diabetes Evaluation in Washing-
ton) study from the U.S. (18), and the
BABYDIAB study from Germany (8). The
analyzed study cohort consisted of 1,845
individuals (male 822, female 1,023) who
developed at least one IAb and had at
least three visits during follow-up. Of
these participants, 498 developed type 1
diabetes during follow-up. The median
follow-up time was 12.3 years (interquar-
tile range 8.3, 15.4), and the median age
at first IAb test was 3.5 months (inter-
quartile range 2.6, 8.9). There were 1,034
individuals from DIPP, 201 from DiPiS, 270
from DAISY, 183 from DEW-IT, and 157
from BABYDIAB. Individuals were catego-
rized into four HLA DR-DQ risk groups
based on published odds ratios for type 1
diabetes (A very high risk, B high risk,
C slightly elevated risk, and D average to
low risk) (13).

IAb Measurements and Definitions
IAbs weremeasured from serumor plasma
samples by using standard methods, as de-
scribed in each original study (13). IAb pro-
file here refers to positivity at a single visit.
For example, as shown in Supplementary
Fig. 1, the IAb profile of participant A at
age 3.2 years indicates that GADA was pos-
itive but IAA and IA-2A were negative. IAb
dynamics refers to the progression of the
IAb profile over time (i.e., how the IAb
profile changes over time). First appear-
ance of IAb refers to the time of the first
measurement where the IAb was ob-
served to be positive. Seroconversion

refers to the positivity of the same IAb
in two consecutive visits. Seroconversion
age is the age at the first of these two
measurements. Persistent IAb refers to
the IAb becoming stable positive in two
or more consecutive measurements and
not reverting to negative. Transient IAb in-
dicates that the IAb was positive once but
then reverted to negativity and became
stable negative (e.g., pos-neg-neg-neg).
Fluctuating IAb indicates that the IAb was
switching between positivity and negativity
and was unstable (e.g., pos-neg-pos-neg).
Reverting IAb indicates that the IAb was
found to be stable positive and then re-
verted to stable negative (e.g., pos-pos-
pos-pos-neg-neg-neg).

Time-Aware Clustering Algorithm
This novel algorithm aligns two individuals
based on their IAb dynamics. Essentially, it
computes and assigns a similarity score
based on how closely the sequences of
the two IAb profiles match each other. If
the IAb profiles in the two individuals
progress similarly, a higher similarity score
(close to 1) is assigned, indicating that the
two individuals have similar IAb dynamics.
We extended the clustering algorithm de-
scribed by Endesfelder (14) and present a
novel approach that takes into account 1)
the age at which the IAbs were measured,
2) the type of IAbs at that age, and 3)
whether the individuals match either posi-
tive or negative measurements. Detailed
development of the algorithm is described
in the Supplementary Material. In addi-
tion, we used the proportion of ambigu-
ously clustered pairs (PAC) method to
determine the number of clusters that
best describe the data (Supplementary
Fig. 3) (19). The novel approach consists
of the following steps:

Profile Similarity Score

Similarity was computed between two
IAb profiles by considering which type of
IAb was positive and when (what age) it
was detected (20).We used individual au-
toantibody profiles across time to com-
pute the similarity score (Supplementary
Fig. 1). A similarity score of 0 indicated
that the two individuals were dissimilar
with respect to their IAb sequences,
whereas a score of 1 indicated that the
two sequences of IAb were the same.
First, each individual was encoded in a bi-
nary matrix where the columns were IAb
types, the rows were visits, and the
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entries indicated whether each IAb was
positive or negative. Because a positive
IAb match between two individuals was
rarer than a negative IAb match, we as-
signed a weight to an IAb match based on
its prevalence in the data. For example, if
the IAb was rarely observed as positive, a
higher weight was assigned to emphasize
the positive match for that IAb between
two profiles, because it was unlikely to
happen otherwise. In addition, two IAb
profiles that were closer in terms of time
(i.e., the age of the two participants)
were considered more similar than two
profiles that occurred farther apart, given
that the profiles were otherwise similar.
To address this, the similarity between
two profiles was weighted based on the
time gap between the profiles and is rep-
resented by the time-aware profile dis-
tance score.

Dynamic TimeWarping Alignment

Two IAb profiles were aligned by consid-
ering their temporal dynamics using the
similarity score between a profile pair
of two individuals and the computed
time-aware profile distance scores (21).

Hierarchical Clustering

Individuals were clustered by using the
computed and aligned similarity scores
for all pairs of individuals. The hierarchi-
cal/agglomerative clustering algorithm
was applied.

Number of Clusters

The number of stable clusters in the
study cohort was determined using the
PAC algorithm (19), which uses boot-
strapping for stability analysis to identify
robust clusters.

Statistical Analysis
The characteristics of individuals in each
cluster were analyzed separately. Kaplan-
Meier survival analysis was used to ex-
amine the rate of progression from the
first positive autoantibody to diagnosis
of stage 3 type 1 diabetes. The log-rank
test was used to compute the statistical
significance between the progression
rates, and a P value <0.05 was consid-
ered significant.

Data and Resource Availability
The data supporting these findings are
available from the authors on reasonable

request. The data are not publicly avail-
able because of privacy regulations.

RESULTS

When applying the novel data-driven
time-aware clustering algorithm to the
1,845 IAb-positive individuals, five large
clusters of individuals with different IAb
profiles and dynamics were discovered:
5C1, 5C2, 5C3, 5C4, and 5C5 (Fig. 1A–E).
The characteristics of children in these
clusters, including the 5- and 10-year
risks of type 1 diabetes, are presented in
Table 1. The cumulative incidences of
type 1 diabetes for the five clusters are
shown in Fig. 1F. The children in cluster
5C2 (n = 89) had a high progression rate
to diabetes (5-year risk of 69.9% and
10-year risk of 89.9%). All three IAbs
were persistently positive in cluster 5C2;
however, on average, IAA appeared first
and was quickly followed by GADA and
IA-2A, and diabetes was diagnosed at a
median age of 4.3 years (Fig. 1B and
Table 1). The individuals in clusters 5C3
(n = 464) and 5C4 (n = 49) also had rela-
tively high progression rates to diabetes
(5-year risks of 30.9% and 39.1%, respec-
tively), but their median age at diagnosis
was older than that in cluster 5C2 (9.2
and 8.2 years, respectively). Clusters 5C3
and 5C4 were characterized by two per-
sistent IAbs: 5C3 by persistent IA2A and
GADA but less frequent and reverting
IAA, and 5C4 by persistent IAA and GADA
but rare and transient IA-2A (Fig. 1C and
D and Table 1). Most individuals in cluster
5C5 (n = 168) (Fig. 1E and Table 1) devel-
oped late persistent GADA. During follow-
up, IAA was positive in 64.3% of the indi-
viduals in 5C5, but it often reverted, and
only 7.2% were IAA positive in their last
positive sample. IA-2A was positive in
34.5% of the individuals in 5C5, rarely in
the first positive sample and infrequently
also in the last positive sample. The
5-year risk of type 1 diabetes in cluster
5C5 was 10.5%. Finally, cluster 5C1 (n =
1,075) (Fig. 1A and Table 1) consisted of
individuals who developed mainly single
and transient IAbs, most often IAA or
GADA, and had an estimated 5-year risk
of type 1 diabetes of only 1.6%. The pro-
portions of the four class II HLA genotype
groups did not differ between the five
main clusters (Table 1).

The PAC analysis also revealed 18
smaller but still stable clusters of indi-
viduals with typical progression patterns

of IA. These 18 clusters were subclusters
for the five main clusters (Fig. 2A). The
cumulative type 1 diabetes incidence in
the children in the 18 subclusters is
shown in Fig. 2B. Subclusters 18C1, 18C2,
and 18C4 originated from 5C1 and were
characterized with positivity for a single,
often reverting, IAb (IA-2A, IAA, or GADA,
respectively) and low 5- and 10-year dia-
betes risks (Supplementary Fig. 4A–C and
Supplementary Table 2). Eight of the re-
maining 15 subclusters (18C7, 18C10,
18C12, 18C13, 18C14, 18C16, 18C17, and
18C18) had at least 10 participants per clus-
ter, and their IAb dynamics and clinical char-
acteristics are also shown in Supplementary
Fig. 4D–K and Supplementary Table 2).

We also validated the hypothesis that
the long-term risk of type 1 diabetes is
different based on the first appearing
IAb in early life. We observed that
children who seroconverted before age
2 years and developed two or more IAbs
(n = 254) represented two groups based
on IAA status in the first positive sample.
In group A (n = 194), IAA was positive
with or without other IAbs in the first
positive sample, whereas in group B
(n = 60), IAbs other than IAA were pre-
sent in the first positive sample. Progres-
sion rates to diabetes in these two groups
were significantly different (log-rank test
P = 0.0002) (Fig. 3). Children who were
IAA positive in their first positive sample
had a 10-year risk of 71.4% (95% CI
64.5–77.9), 15-year risk of 82.7% (95% CI
76.1–88.3), and 20-year risk of 92.1%
(95% CI 81.3–97.9), whereas children
without IAA in their first positive sample
had a 10-year risk of 47.6% (95% CI
35.2–61.8), 15-year risk of 53.9% (95% CI
40.2–68.7), and 20-year risk of 61.6%
(95% CI 44.0–79.3).

CONCLUSIONS

Identification of IAb temporal patterns
that are associated with progression rates
to type 1 diabetes is crucial to improve
prediction, understand various disease
pathways, and design targeted preven-
tion trials. For example, young children
with IAb profiles and dynamics associated
with a high 5-year progression rate need
early interventions specific for their dis-
ease subtype. In addition, information on
distinct IAb profiles and expected risk of
progression to clinical diabetes will be
valuable when providing counseling
on diabetes risk to individuals with IAb
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positivity. Here we present a novel cluster-
ing algorithm that matches similar chil-
dren based on their IAb dynamics and
accounts for the various types of IAbs and
the age when an IAb first appeared. More-
over, we show that this algorithm can
be applied to individuals with different
follow-up protocols. We applied the algo-
rithm to a cohort of 1,845 IAb-positive
children and discovered five main groups
of children with different IAb profiles and
dynamics, which were strongly associated
with different progression rates to stage 3
type 1 diabetes. Two of the discovered
clusters had similar patterns of IAb devel-
opment and diabetes risk reported in ear-
lier studies, but three of the clusters

represented less well-described novel pat-
terns of IA.

Earlier efforts to identify IAb temporal
patterns had some limitations and were
applied in much smaller cohorts than our
T1DI cohort. We developed a novel clus-
tering algorithm that addresses several
limitations of the earlier algorithms and
applied it to a large cohort of individuals
with one or more positive IAb (IAA, GADA,
and/or IA-2A). The T1DI cohort is the larg-
est cohort of IAb-positive children cur-
rently available and represents individuals
from five prospective studies from Europe
and the U.S. This also imposed some chal-
lenges in using the combined data, such
as how to cluster children with different

sampling frequencies (0.6–2.0 years in
the five original cohorts). Our novel time-
aware clustering algorithm addresses
the variation in sampling interval and
matches children based on types and
combinations of IAbs over time and by
the ages at which the IAbs were observed.
In addition, the novel algorithm accounts
for the overall variation in positivity for the
various autoantibody types in the cohort.
The prevalence of IAA in the entire T1DI
cohort was 5%, and that of GADA was 8%,
showing that IAA was less often observed
than GADA (Supplementary Table 1). Hav-
ing two measurements with positive IAA
should therefore be weighted more
heavily than two measurements with

BA

DC

FE

Figure 1—Distinct longitudinal IAb profiles and associated risk of stage 3 type 1 diabetes. A–E: Longitudinal patterns of the three islet autoantibodies
(IAA, GADA, and IA-2A, shown on x-axis of each panel) in the five clusters of children with distinct dynamics of IA. Age (years) is shown on
x-axis. Green indicates fraction of positivity for each antibody across all measurements at each age (dark green indicates mostly positive samples, light
green indicates that only a small proportion of samples were positive, and yellow shows that samples measured at corresponding age were negative).
Middle section in each panel (Diabetes) shows in red the cumulative proportion of children progressing to stage 3 type 1 diabetes. For example, light red
color in B (cluster 5C2) indicates that children start to progress to diabetes from age�2 years, and dark red shows that most of them progress to diabe-
tes during follow-up. Similarly, bottom section in each panel (#Visits) shows in purple the number of measurements collected at each age. F: Cumulative
incidence of stage 3 type 1 diabetes (% with 95% CI) for the five clusters of children with distinct IAb patterns discovered by the novel clustering algo-
rithm. Number of individuals progressing to type 1 diabetes and total number of participants in each cluster are reported for each curve.
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positive GADA.We addressed this issue by
weighting the positivity match differently
for different IAb types. Furthermore, we
used a principled way to determine the
number of stable clusters in the cohort.

We discovered five distinct clusters,
each with a typical IAb pattern and timing.
In addition, the novel algorithm distin-
guished a total of 18 smaller subclusters
that were stable and represented sub-
groups of children from the five main clus-
ters. Cluster 5C2 and subcluster 18C7
included children with early initiation of IA,
with persistent IAA, GADA, and IA-2A, and
diagnosis of type 1 diabetes at age�4 years.
This group represents a specific and ag-
gressive subtype of type 1 diabetes that
has also been recognized in earlier studies
(1,10,15,22). Interestingly, the 464 children
in cluster 5C3 were also characterized by

persistent GADA, IA-2A, and IAA at an early
age, but they frequently lost IAA during
follow-up and were diagnosed with diabe-
tes later, at age �9 years. This pattern in
cluster 5C3 has been less described in the
literature, with inconsistent conclusions.
The pattern of being positive for the three
IAbs and then losing IAAwas also described
by Endesfelder et al. (14), who reported a
lower 10-year risk of 23% in children losing
IAA compared with 76% in those who
maintained IAA positivity. In contrast, the
TEDDY study reported that in multipositive
children, IAA reversion had little effect on
the risk of type 1 diabetes (12). Cluster 5C4
included children with persistent positivity
for IAA and GADA from age 3 years, but
only few of them were ever positive for
IA-2A.This is also a novel group, with a high
10-year risk of type 1 diabetes of 73.8%,

and demonstrates that although the pres-
ence of IA-2A has been shown to be an
important predictor of diabetes in young
children (11,22), it is not necessary for
disease development. The third relatively
novel cluster included children in cluster 5C5
(and subcluster 18C17) who typically devel-
oped persistent GADA at age�6 years, less
frequently had positivity for IAA or IA-2A,
and progressed to type 1 diabetes rather
late, at age �12 years. Single positivity for
GADA is commonly observed in adults
diagnosed with type 1 diabetes but is
less described in children. The pattern in
cluster 5C5 is in line with observations
from the TEDDY study, reporting a signifi-
cantly higher 5-year risk of diabetes in
children with single but stable positivity
for IAA than in those with single and stable
GADA positivity (15). The largest cluster,

Table 1—Characteristics of children positive for IAbs in five main clusters

5C1 5C2 5C3 5C4 5C5

N of individuals 1,075 89 464 49 168
Male sex 492 32 199 22 77

N of individuals with type 1 diabetes 29 82 313 33 41

Age at diagnosis, years 8.3 (5.7, 11.1) 4.3 (3.0, 7.5) 9.2 (6.3, 12.2) 8.2 (4.4, 11.2) 12.5 (9.8, 14.5)

HLA class II group, %

A 17 34 30 43 22
B 43 45 51 33 48
C 18 11 7 12 12
D 21 10 13 12 17

Follow-up time, years 13.4 (10.0, 15.5) 4.2 (3.0, 6.8) 10.3 (7.0, 13.7) 8.5 (4.5, 11.5) 14.5 (11.3, 17.8)

First sample positive*

IAA 4.3 (600) 1.6 (89) 3.1 (374) 3.0 (48) 6.0 (108)
GADA 4.6 (481) 1.9 (89) 3.9 (425) 3.1 (48) 6.1 (159)
IA-2A 3.7 (142) 2.1 (89) 4.3 (464) 4.7 (9) 8.1 (58)

Last sample positive*

IAA 6.3 (600) 4.2 (89) 8.4 (374) 8.5 (48) 10.3 (108)
GADA 6.0 (481) 4.2 (89) 10.1 (425) 8.4 (48) 14.2 (159)
IA-2A 4.4 (142) 4.2 (89) 10.3 (464) 5.5 (9) 11.1 (58)

Age at seroconversion, years† 5.0 (2.0, 8.1) 1.5 (1.0, 2.6) 3.5 (1.8, 6.0) 3.1 (1.5, 5.3) 6.1 (3.1, 9.1)

N of seroconverted individuals† 250 89 464 49 162

IAb profile‡

IAA only 49.9/50.0 49.4/0.0 19.2/0.0 55.1/2.0 22.0/0.6
GADA only 37.2/38.7 10.1/0.0 29.5/0.2 24.5/4.1 57.7/79.2
IA-2A only 8.5/9.2 1.1/0.0 8.8/19.4 0.0/0.0 0.6/8.9
IAA 1 GADA, negative IA-2A 1.2/0.7 28.1/0.0 15.7/0.0 20.4/93.9 16.7/5.4
IAA 1 IA-2A, negative GADA 0.8/0.4 6.7/1.1 6.2/15.1 0.0/0.0 0.0/1.2
GADA 1 IA-2A, negative IAA 2.1/0.9 3.4/0.0 10.1/46.6 0.0/0.0 2.4/4.8
IAA 1 GADA 1 IA-2A 0.3/0.1 1.1/98.9 10.3/18.8 0.0/0.0 0.6/0.0

Risk of type 1 diabetes, %

5 year 1.6 (1.0–2.7) 69.9 (60.0–79.2) 30.9 (26.8–35.5) 39.1 (26.6–54.8) 10.5 (6.6–16.6)
10 year 4.0 (2.7–5.9) 89.9 (81.9–95.4) 68.2 (63.3–72.9) 73.8 (59.2–86.4) 24.7 (18.0–33.4)

Data are given as median (IQR) or % (95% CI) unless otherwise indicated. *Median age (n of individuals positive for each IAb), years.

†Seroconversion was defined as first of two consecutive visits with positivity for same type of IAb. ‡IAb profile included seven mutually exclu-
sive possibilities in first/last positive sample (%).
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5C1, represented individuals with mainly
single and transient IAbs associated with
a low risk of progression to diabetes. This
group is well known from earlier studies
but can only be identified by observing
IAbs in consecutive samples after first
detection.
It is tempting to hypothesize that the ini-

tiatory factors of early and aggressively
progressing disease subtypes are different
from those triggering a different IAb pattern
later in childhood. Therefore, for example,

the children in clusters 5C2 and 5C5 should
be studied in greater detail to identify possi-
ble specific initiators of the disease, such as
whether they were environmental or
genetic or a combination of both. The ef-
fective preventive interventions may be
different for children in these groups.

It has been hypothesized that there
are different subtypes of type 1 diabetes
based on the order of IAb appearance
(23,24). IAA as the first appearing IAb has
been associated with fast progression to

type 1 diabetes, whereas GADA as the
first appearing IAb has been associated
with a more moderate progression rate.
This was also apparent in the clusters dis-
covered by our novel algorithm. In our
validation analysis of individuals with early
seroconversion before age 2 years, positiv-
ity for IAA alone or in combination with
other IAbs in the first positive sample was
associated with a much higher progres-
sion rate to diabetes compared with IAA
negativity in the first positive sample.

Figure 3—Cumulative incidence of type 1 diabetes (T1D; % with 95% CI) for children who seroconverted before age 2 years and developed positiv-
ity for two or more islet autoantibodies. Red (group A; n = 194) represents children with IAA positivity in first positive sample. Blue (group B; n =
60) represents children who were negative for IAA in first positive sample. Progression rates were significantly different between groups A and B
(log-rank test P = 0.0002). For group A, 5-year diabetes risk was 48.5% (95% CI 41.6–55.8), and 10-year risk was 71.3% (95% CI 64.5–77.8). For
group B, 5-year diabetes risk was 31.5% (95% CI 21.1–45.3), and 10-year risk was 47.6% (95% CI 35.2–61.8).
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Figure 2—Evolution of 18 subclusters from the five main clusters of children with distinct patterns of IA. A: Evolution from the five main clusters
with distinct color codes to 18 subclusters. B: Cumulative incidence of stage 3 type 1 diabetes (%) for 11 subclusters with distinct IAb patterns dis-
covered by the novel clustering algorithm. Red indicates subcluster 18C7, which represents a majority of individuals from cluster 5C2 and has the
highest risk of progression to type 1 diabetes. Blue represents subclusters 18C10, 18C12, 18C13, and 18C14, which are associated with high risk of
progression. Similarly, yellow represents subcluster 18C16 and is also linked to high risk of progression. Green depicts subclusters 18C17 and
18C18, with intermediate risk of progression. Purple indicates three subclusters with positivity for single autoantibody and associated low risk of
progression. Data for seven subclusters that included <10 children are not included. Number of individuals progressing to type 1 diabetes and to-
tal number of individuals in each subcluster are reported for each curve.
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The strengths of this study include a
large study cohort of individuals with IAb
positivity, a long median follow-up time
of 12.3 years, and measurements of
IAA, GADA, and IA-2A from more than
260,000 individual samples. The T1DI co-
hort also includes a variety of class II HLA
genotypes (13), and therefore, the T1DI
study population resembles the general
population more than the cohorts in-
cluded in previous clustering analyses.
There are also some limitations in our
study.We did not include ZnT8A data, be-
cause the measurements were not sys-
tematically performed in the individual
study cohorts. ZnT8A measurements may
further improve risk stratification in the
future. Current knowledge suggests that
ZnT8A is not often seen at the initiation
of IA but appears later during follow-up. If
ZnT8A had been available for our analy-
ses, it is likely that we would have seen
even more heterogeneity in IAb patterns
compared with our current results. No ex-
ternal validation cohort was available to
repeat our results, and this will require
further work in the future, before poten-
tial implementation of the algorithm for
risk stratification. The clustering algorithm
could potentially be developed to include
additional factors, such as IAb levels and
comprehensive genetic risk profiles of the
participants for similarity matching. How-
ever, our results clearly demonstrate that
IA in children, although heterogeneous,
can still be used to group by disease sub-
type. It is important to learn more about
disease subtypes in the future. Large data
sets and data-driven analyses, as exempli-
fied here, are excellent tools to clarify dis-
tinct pathogenetic pathways of type 1
diabetes and inform future research and
practice.

In conclusion, we developed a cluster-
ing algorithm to define temporal patterns
of IA, applied it in a large cohort of IAb-
positive children, and discovered distinct
patterns of IA that were strongly associ-
ated with varying progression rates to
type 1 diabetes. These findings have im-
plications for type 1 diabetes prediction
and future prevention trials. Furthermore,
in ongoing screening programs of IA,
these findings may guide the interpreta-
tion of individual test results.
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