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Summary
Bulk-tissuemolecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-

specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age,

and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the

interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies

for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue. The interpretation of age iQTLs, however,

warrants caution because the moderation effect of age on the genotype and molecular phenotype association could be mediated by

changes in cell-type composition. Finally, we show that cell-type iQTLs contribute to cell-type-specific enrichment of diseases that,

in combination with additional functional data, could guide future functional studies. Overall, this study highlights the use of iQTLs

to gain insights into the context specificity of regulatory effects.
Introduction

Bulk-tissue molecular quantitative trait loci (molQTLs)

have been valuable in highlighting potential target genes

and gene regulatory mechanisms of disease-associated

genetic variants.1–3 However, context-specific regulatory

variants, such as cell-type-specific or response QTLs,

exhibit particular relevance for disease when compared

to standard molQTLs from steady-state tissues.4 Mapping

cell-type interaction expression QTLs by modeling the

interaction effect between the genotype of an SNP and

computationally inferred cell-type estimates has been

shown to aid in the discovery of cell-type-specific effects

of expression QTLs.5–7 Pinpointing the true mediating

cell type with this approach might still be challenging

because of the properties of the interaction model and cor-

relations between cell-type proportions. Thus, rigorous

interpretation of cell-type interaction molecular quantita-

tive trait loci (iQTLs) is important for inferring insights

about the true cell-type specificity of these effects.
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The etiology of most complex diseases is recognized to

be influenced both by genetic and environmental factors

and their interactions.8 Detecting gene-environment

(G 3 E) interactions in genome-wide association studies

(GWASs) has proven difficult as a result of small effect sizes

and computational challenges.9,10 Mapping interaction

molQTLs for physiological environments, such as age,

sex, smoking, or inflammation, offers an opportunity to

identify G 3 E interactions at the molecular level with

improved statistical power attributed to stronger effects

of regulatory variants. Recently, a transcription-based

framework has shown the potential to link genes with ge-

netic variant-age interactions to age-associated diseases,11

suggesting the benefits of focusing on regulatory variants

to study their complex interplay with other factors contrib-

uting jointly to variability in traits and diseases.

To comprehensively assess the utility of interaction

molQTLs, we performed cell-type interaction molQTL

(iQTL) mapping from gene expression (RNA-seq) and DNA

methylation (EPIC array) in 1,319 participants of diverse
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Figure 1. Study design and overview of the estimated cell-type proportions
(A) Illustration of the study design and data types profiled for 1,319 individuals.
(B) Graphical illustration of cell-type deconvolution.
(C) Correlation of cell-type proportions. Exam 5 data from three sources were used: data estimated with the CIBERSORT method from
PBMC gene expression, data estimated with the Houseman method from whole-blood DNA methylation, and cell counts measured by
flow cytometry.
(D) Sources of variability in estimated cell-type proportions with CIBERSORT and the Housemanmethod, gene expression from PBMCs,
and DNA methylation from whole-blood according to exam 5 data. The median of the total explained variation is calculated across all
the tested cell types, genes, and CpG sites. A gray dashed line denotes 1% of the total explained variance. Error bars denote the lower and
upper quartile of the total explained variation.
ancestries as part of the Trans-Omics for Precision Medicine

(TOPMed) program Multi-Ethnic Study of Atherosclerosis

(MESA) multi-omics pilot with data from two time points

(exam 1 and exam 5, 10 years apart) (Figures 1A and S1A).

This longitudinal design enabled us to assess the robustness

of cell-type iQTLs. Additionally, we characterize the sharing,

replication, and functional enrichment of cell-type iQTLs

with respect to their direction of effect. MESA phenotyping

data allows us to map age, sex, and smoking iQTLs and

study the mediation by cell-type iQTLs. Finally, we high-

light the informativeness of cell-type iQTLs for proposing

cell-type-specific mechanisms underlying diseases.
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Material and methods

MESA multi-omics pilot
MESA is a prospective cohort study with the goal of identifying the

progression of subclinical atherosclerosis.12 MESA recruited 6,814

participants, ages 45–84 years and free of clinical cardiovascular

disease, at six field centers from 2000–2002. MESA included mul-

tiple race and ethnic groups (38% non-Hispanic white, 28% Afri-

can American, 22% Hispanic, and 12% Asian Americans). It com-

prises 53% females and includes 49% ever-smokers (18% current).

All MESA participants provided written informed consent, and the

study was approved by the institutional review boards of collabo-

rating institutions.
4, 2024



The MESA multi-omics pilot data include 303 whole-genome

sequencing (WGS) of �4,600 individuals through the Trans-

Omics for Precision Medicine (TOPMed) project,13 wherein

�1,000 participant samples were collected at two time points

(exam 1 and exam 5, ten years apart). Whole-blood and/or cell

types (peripheral blood mononuclear cells (PBMCs), monocytes,

and T cells) were assayed for transcriptome (RNA-seq), Illumina

EPIC methylomics data, plasma targeted and untargeted metabo-

lomics data, and plasma proteomics data. The MESA multi-omics

pilot biospecimen collection, molecular phenotype data produc-

tion, and quality control (QC) are described in detail in the supple-

mental material and methods.

Here, we included data from 1,319 participants (701 women and

618 men; an average age of 60.4 in exam 1 and 69.7 in exam 5) of

the MESA multi-omics pilot in the analyses. Specifically, we

analyzed PBMC gene expression data for 19,699 genes from

exam 1 (n ¼ 931) and exam 5 (n ¼ 864), and whole-blood DNA

methylation (DNAm) data for 747,868 CpG sites from exam 1

(n ¼ 900; 740,291 CpG sites passed QC) and/or exam 5 (n ¼
899; 747,771 CpG sites passed QC), together with genotype data

from TOPMed Freeze 8.

Cell-type deconvolution
We estimated the cell-type composition of PBMC expression and

whole-blood DNAm by applying two widely used methods:

CIBERSORT14 and the Houseman method,15 respectively.

We employed the R implementation of CIBERSORT with default

settings and utilized the LM22 gene signature matrix provided with

the software. CIBERSORT was run on the TPM gene expression ma-

trix containing the 2,648 analysis freeze samples, which included

samples that passed QC and also samples that came from related in-

dividuals but were left out in interaction cis-eQTL (ieQTL) mapping.

Specifically, the analysis freeze contained 972 samples from PBMC

exam 1, 916 samples from PBMC exam 5, 375 samples from sorted

CD19þ monocytes, and 385 samples from sorted CD4þ T cells. For

duplicate gene symbols, the gene with the highest mean expression

across all samples was retained, and others were removed from the

input. The proportions of cell-type subcategories were summed, re-

sulting in proportions for the following broad cell-type categories: B

cells, dendritic cells, eosinophils, macrophages, mast cells, mono-

cytes, natural killer (NK) cells, neutrophils, plasma cells, and T cells.

Weused theHousemanmethod implemented in themeffilRpack-

age,16 along with the whole-blood reference from Reinius et al.,17,18

and used the meffil.qc function with the "blood gse35069 com-

plete" reference applied to the DNAm IDAT files. Importantly, in

meffil each sample is individually normalized to the cell-type refer-

ence dataset so that dependence between other samples and cell-

type composition estimates is avoided.

For downstream analysis of cell-type estimates, for each cell type

we excluded data points that were more than 53 standard devia-

tions (SD) from the mean.

Variability in cell-type composition, gene expression,

and DNAm
To estimate the unique contribution of different traits to varia-

tion in estimated cell-type proportions, gene expression, and

DNAm, we used fixed-effects linear models with no interactions

as follows:

estimated cell type proportion � extrinsic technical and =

or biological factorsþ intrinsic biological variables
The Americ
gene expression =DNAm � cis geneticsþ cell-type compositionþ

extrinsic technical and=or biological factors

þ intrinsic biological variables;

where (1) cis genetics include lead cis-molQTLs mapped in MESA

(supplemental material and methods); (2) cell-type composition in-

cludescenteredandscaled,moderatelycorrelatedestimatedcell-type

proportions (pairwise |r |< 0.6); (3) extrinsic technical and/or biolog-

ical factors include batch variables, donor site, and season; and (4)

intrinsic biological variables include centered and scaled genotype

principal components (PCs), which are moderately correlated in

MESA (pairwise |r | < 0.6), from TOPMed Freeze 8 and centered and

scaled age, sex, smoking status, and educational attainment as a

proxy for socioeconomic status.We applied inverse normal transfor-

mation on the response variable (cell-type proportions, gene expres-

sion levels of autosomal genes, and DNA methylation levels of

100,000 randomly selected autosomal CpG sites). Of note, to avoid

ties, we added random noise from a normal distribution N(0,

10�16) to cell-typeproportions before applying inversenormal trans-

formation.More specifically,weused the type II test for computation

of sums of squares (SS) to assess the significance of themain effects19

by using the car R package. To calculate the proportion of variation

uniquely explained by a given trait, we used the eta-squaredmetric,

which involves dividing the SS of each term by the total SS.
Association between estimated cell-type proportions

and different traits
Wemeasured the effect of various traits on estimated cell-type pro-

portions by using a linear model. First, we applied inverse normal

transformation on the estimated cell-type proportions to justify

the assumptions of linear regression. To avoid ties, we added

random noise from a normal distribution N(0, 10�16) before the

transformation. Second, we leveraged the rich phenotype data

available in MESA. We selected traits from 11 different categories,

defined as baseline covariates (including age, sex, and genotype

PCs from TOPMed Freeze 8), anthropometric characteristics,

smoking habits, alcohol consumption, physical activity, athero-

sclerosis, blood pressure, inflammation, kidney function, lipids,

and lung function. We applied a log transformation with a

pseudo-count of 1 to the molecular traits. We exclude data points

that were >|3| SD from the mean and scaled numeric variables by

dividing by two times their SD. This transformation ensured that

the resulting coefficients were comparable for both untransformed

binary traits and numeric traits.20 Third, we fit linear regression

with a cell-type proportion as the response variable and a trait as

the explanatory variable and adjusted for age, sex, self-reported

race or ethnicity, educational attainment, site, and season of sam-

ple collection. If genotype PCs were the traits of interest, then self-

reported race or ethnicity was excluded from the list of covariates.

To adjust for multiple testing, we applied Bonferroni correction

and considered associations to be significant if p value/(# of traits

groups 3 # cell type groups) < 0.05, where the count of cell-type

groups is equal to 5, corresponding to B cells; T cells, CD4

T cells, or CD8 T cells; NK cells; monocytes; and neutrophils.
Mapping of interaction QTLs (iQTLs)
Interaction QTLs (iQTLs), which serve as a proxy for cell-type-spe-

cific QTLs, are molQTLs, whose effect is dependent on the cell-

type abundance.7 Importantly, the iQTL model is not suitable

for detecting molQTLs that are present only in one cell type and
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the molecular phenotype is expressed only in that particular cell

type (Note S1). Although the total expression of a molecular

phenotype is correlated with the proportion of the given cell

type in the tissue sample, there is no interaction between the ge-

notype and cell-type abundance because the molQTL effect stays

constant across the range of the given cell-type abundance in

the tissue sample.

Wemapped iQTLs by using TensorQTL.21 Namely, we fit a linear

regression model Y � G þ Eþ G 3 E þ C, where Y is the molecular

phenotype (gene expression or DNAm; inverse normal-trans-

formed), G is the genotype of the genetic variant with

MAF > 0.01 in the MESA multi-omics pilot data, E is the environ-

mental variable (estimated cell-type proportions, age, sex, smok-

ing phenotype; mean-centered), G 3 E is the interaction effect be-

tween the genotype and environmental variable, and C represents

additional covariates that correspond to 11 genotype PCs from

TOPMed Freeze 8, sex, and probabilistic estimation of expression

residuals (PEER22) factors to account for unobserved confounders

in the molecular data. The estimation of PEER factors is described

in the supplemental material and methods. We applied inverse

normal transformation to the molecular phenotypes to minimize

outlier effects and to satisfy the assumptions of the linear regres-

sion model. Importantly, because transformed molecular pheno-

types are the response variables in the iQTL model, interaction ef-

fect size might lack biological interpretation, as previously noted

for cis-regulatory effect size in eQTL studies.23 Besides the lack of

biological interpretability, as a result of a non-linear transforma-

tion (such as log transformation or inverse normal transforma-

tion) of the response variable, a significant interaction effect on

the transformed scale in an additive model is multiplicative on

the original scale. The absence of an interaction effect on the

transformed scale does not automatically imply the absence of

an interaction on the original scale. However, ieQTL validation us-

ing allele-specific expression (ASE) data of eQTL heterozygotes

assured that ieQTLs are not statistical artifacts of the linear model

with an interaction term.7 We mean-centered environmental vari-

ables by subtracting the sample mean from every value of a vari-

able to better interpret the main effects. Smoking phenotypes

that were considered as environmental variables included current

smoking (a binary variable), smoking status (a numeric variable

whereby current smokers are coded as 2, former smokers as 1,

and never smokers as 0), and cotinine levels (inverse normal trans-

formed with random noise added from a normal distribution N(0,

10�16) before the transformation so that ties were avoided).

As for regular QTL mapping in the MESA multi-omics data (sup-

plemental material and methods), iQTLs were tested for

variants 51 Mb of the gene’s transcription start site (TSS)

or 5500 kb of the CpG site. To avoid potential outlier effects in

cell-type iQTLs, we only included variants with MAF > 0.05 in

the samples belonging to the top and bottom halves of the distri-

bution of estimated cell-type proportions in the analyses. For age,

sex, and smoking iQTLs, we applied a more stringent MAF filter to

the top and bottom halves of interaction values (MAF

interaction > 0.1).

To identify genes with significant ieQTLs (ieGenes) or CpG sites

with significant imeQTLs (imeSites), we corrected the top nominal

p values for each molecular phenotype for multiple testing at the

phenotype level by using eigenMT24 and across molecular pheno-

types by using the Benjamini-Hochberg procedure to control the

false-discovery rate (FDR). As the significance threshold, we used

FDR < 0.05 for cell-type iQTLs and FDR < 0.25 for trait iQTLs.

We further combined significant iQTLs across exams by selecting
136 The American Journal of Human Genetics 111, 133–149, January
the molecular phenotype-variant pair with the lower interaction

p value.

We note that cell-type iQTLs could be confounded by factors

that affect both the cell-type abundance and the molQTL effect

size. However, correcting cell-type abundances for these factors

and using residualized cell-type proportions in the iQTL model

can reduce study power in most typical scenarios (Note S2).

We noticed a considerably lower number of monocyte imeQTLs

than other cell-type imeQTLs, which is probably attributable to

the lower variance in monocyte estimates (SD ¼ 0.02, SD > 0.03

for other cell-type estimates). Thus, we only show data related to

monocyte imeQTLs in the supplemental figures and tables.
Direction of iQTL effect
For the continuous environmental variable used for testing the

interaction effect with a genotype, we grouped the direction of

the iQTL effect into three categories: (1) positive (increasing)—

the QTL effect size is positively correlated (increasing) with the

environmental variable, (2) negative (decreasing)—the QTL effect

size is negatively correlated (decreasing) with the environmental

variable, and (3) uncertain. Assignment of iQTLs into these three

categories was based on the estimates from the linearmodel. iQTLs

with a nominally non-significant genotypemain effect (pG> 0.05)

were assigned to the ‘‘uncertain’’ group. For clarification, with

mean-centered environmental variables, the genotype main effect

corresponds to the QTL effect when the environmental variable is

0. Thus, the genotype effect crosses in the middle when the envi-

ronmental variable is plotted against the molecular phenotype

and coloring data points according to the genotype of the iQTL

variant. iQTLs with a nominally significant genotype main effect

(pG < 0.05) were assigned to the ‘‘positive’’ or ‘‘negative’’ group

if the product of the genotype main effect and interaction effect

(bG 3 bG3I ) was greater or smaller than 0, respectively.

For binary environmental variables, we fitted QTL models sepa-

rately for both groups. We assigned iQTLs to one of the four cate-

gories: (1) no effect in one—nominally non-significant genotype

effect in one of the groups, (2) magnitude difference—nominally

significant genotype effects with the same sign of the estimate

in both of the groups, (3) opposite effect—nominally significant

genotype effect with the opposite sign of the estimate in both of

the groups, and (4) uncertain—nominally non-significant geno-

type effect in both of the groups.
Sentinel CpG sites for imeQTLs
Bisulfite DNA sequencing indicates that significant correlation in

DNAm between CpG sites (co-methylation) has been observed

for short distances up to 1 kb and decreases to baseline after 2

kb.25 To investigate the extent of co-methylation in the EPIC array,

we calculated pairwise Pearson correlation coefficients between

CpG sites within 500 kb on chromosome 22. We used inverse

normal-transformed DNAm data from exam 5 as an example.

We observed that the degree of co-methylation dropped rapidly

within 500 bp and stayed on average around 0.19 after 1 kb. Of

note, a similar observation of shorter distances for stronger co-

methylation has been previously made on the basis of the Illu-

mina 450K array.26 Because of this, for the imeQTLs, we defined

sentinel CpG sites to be used in all the downstream analyses by

keeping the CpG site-variant pair with the most significant inter-

action p value in a 2 kb window (51 kb from the most associated

CpG site).
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Reproducibility of iQTLs
We leveraged data from two time points in MESA to estimate the

reproducibility of iQTLs by treating one of the time points as the

discovery set and the other as the validation set. We calculated

the proportion of true positives27 (p1) on the basis of the interac-

tion p value observed in the validation data by using the qvalue R

package. This metric was used if more than 20 phenotype-variant

pairs were found in the validation set (in the pi0est() function,

where we set lambda ¼ 0.5 if more than 20 phenotype-variant

pairs were found or lambda ¼ 0.85 if more than 100 phenotype-

variant pairs were found). Additionally, we calculated the fraction

of phenotype-variant pairs showing at least nominal significance

of the interaction effect in the validation set.

Sharing of cell-type iQTLs
We estimated sharing among the same type of cell-type iQTLs by

using the p1 statistic as in the reproducibility of iQTLs analysis.

To estimate sharing between cell-type ieQTLs and sentinel cell-

type imeQTLs (FDR < 0.05 in exam 1 or exam 5), we focused on

ieQTLs that are in LD (r2 R 0.5 within 1 Mb) with imeQTLs,

and vice versa. First, we calculated LD between the cell-type iQTLs

by using MESA multi-omics pilot data. Second, for a given query

and validation set, we calculated what proportion of variants

from the query set was in LD with the variants from the validation

set. For this, we set the denominator to the minimum number of

variants from the query and validation sets; this number was

termed the normalized overlap. Third, to estimate the significance

of sharing between a cell-type ieQTL (query set) and a cell-type im-

eQTL (validation set), or vice versa, we asked whether the query set

with positive direction is more likely to overlap with the valida-

tion set with positive direction than with the validation set with

negative direction. For this, we calculated the odds ratio (OR) as

the ratio of the odds of the two aforementioned events. To esti-

mate the OR if any cell is equal to zero in the 2 3 2 table, we

applied the Haldane-Anscombe correction28 by adding a fixed

value of 0.5 to all cells.

Sharing of cell-type iQTLs across populations
To assess the sharing of cell-type iQTLs across self-reported race or

ethnicity groups in MESA, we leveraged eQTL data from purified

cell types from MESA. Namely, expression data from monocytes

and T cells were available for a subset of individuals from exam 5

(n ¼ 355 and n ¼ 362, respectively). We chose monocytes as the

cell type of interest for this analysis because of the high quality

of the data. There was more variability among estimated cell-

type proportions from T cell data. eQTL mapping in monocytes

was done according to the standard pipeline (supplemental mate-

rial and methods). Monocyte eQTLs were fine mapped via SuSiE29

to 95% credible sets of putative causal variants across all the indi-

viduals and by self-reported race or ethnicity groups. Then, we

calculated the maximum LD between the monocyte ieQTLs and

fine-mapped variants from the credible set across all individuals

with expression data from monocytes or by self-reported race or

ethnicity. For comparison between self-reported race or ethnicity

groups, we focused on whether the ieGene has been fine-mapped

to putative causal variants in monocytes and, if so, whether the

maximum LD is above or below a specified threshold.

Replication of cell-type ieQTLs in the eQTL Catalogue
We performed replication analysis of cell-type ieQTLs in 45 eQTL

datasets from purified blood cell types (with and without stimula-
The Americ
tion) from the eQTL Catalogue.30 For studies based on microarray

technology, if multiple probes per gene existed, we chose the one

with the lowest eQTL p value.

We estimated replication by using three differentmetrics: (1) the

proportion of true positives27 (p1) determined with the qvalue R

package if more than 20 or more than 100 gene-variant pairs

were found in the replication data when lambda ¼ 0.5 or

lambda ¼ 0.85 in the pi0est() function, respectively; (2) effect

size quantified as the absolute value of themedian of the genotype

effect in the replication data; and (3) concordance in allelic direc-

tion, defined as the proportion of gene-variant pairs having the

same directionality of the genotype effect in the replication data

and genotype main effect in the cell-type iQTL data.
Functional enrichment analysis
For functional enrichment analysis, we used the registry of candi-

date cis-regulatory elements (cCREs) produced by the ENCODE

consortium.31 The registry V2 consisted of 926,535 human cCREs

covering 839 cell and tissue types. We downloaded 61 files repre-

senting unique samples with cCREs from various blood cell types,

corresponding to 19 unique blood cell types. To maximize data

about cCREs available per cell type, we combined data across

different samples per cell type. For example, for a H3K27ac-high

feature, we required that all samples with H3K27ac data available

have an indication of high H3K27ac signal.

To test for the significance of overlap between cell-type iQTLs

and cCREs, we used the Genomic Annotation Shifter32 (GoShifter)

method. GoShifter tests for enrichment by locally shifting annota-

tions within the boundaries of associated loci. To generate a null

distribution, we repeated the shifting process 10,000 times. As

input, we only used independent (sentinel) cell-type iQTLs that

had FDR< 0.05 in exam 1 or exam 5 and that had positive or nega-

tive direction, and we provided a list of their LD proxies. To ensure

independence of cell-type iQTLs, we performed LD pruning with

PLINK33 at an r2 threshold of 0.1 in a window consisting of

1,000 variants sliding by one variant at a time. LD proxies were

defined as variants with r2 R 0.8 within 100 kb of the cell-type

iQTLs. LD was calculated on the basis of the unrelated 1,319 indi-

viduals from the MESA multi-omics pilot.

To quantify the observed enrichment, we used the delta-overlap

parameter. Delta overlap is defined as the difference between the

observed proportion of loci overlapping a cCRE and the mean of

the proportion of loci overlapping the cCRE under the null distri-

bution. Thus, larger delta-overlap values show stronger enrich-

ment. To estimate the significance of the enrichment, we calcu-

lated one-sided permutation p value as the proportion of

permuted loci overlapping a cCRE is equal to or greater than the

observed overlap (adding a pseudo-count of 1 to numerator and

denominator). To account for multiple testing, we applied the

Bonferroni correction method and accounted for the number of

target cell types with the given cCRE data available, the number

of cell types tested for interaction effect, and the number of groups

of direction of effect. This was applied separately for each of the

tested cCRE and cell-type iQTL combinations.
Colocalization analysis of cell-type iQTLs
To investigate whether cell-type iQTLs provide insights into cell-

type-specific mechanisms of disease, we performed colocalization

analysis with cell-type iQTLs with positive or negative direction

and selected diseases and traits. We focused on seven immunolog-

ical diseases (asthma,34 hay fever,34 Crohn disease,35
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inflammatory bowel disease,35 rheumatoid arthritis,36 systemic

lupus erythematosus,37 and ulcerative colitis35) and three meta-

bolic traits (HDL cholesterol,38 LDL cholesterol,38 and triglycer-

ides38). We used the GWAS summary statistics harmonized and

imputed by the GTEx consortium.39 For this analysis, we used

autosomal cell-type ieQTLs with FDR < 0.25 in exam 1 or exam

5 and autosomal sentinel cell-type imeQTLs with FDR < 0.05 in

exam 1 or exam 5, with either a positive or negative direction of

effect.

We performed colocalization analysis with coloc40 by using the

coloc R package and assuming one causal variant. Coloc was run on

a 400 kb region centered on each cell-type iQTL (5200 kb from

the iQTL) that had at least one GWAS variant with p value

<10�5 within 100 kb of the iQTL. Priors were set as follows: p1 ¼
10�4, p2 ¼ 10�4, p3 ¼ 5 3 10�6, as suggested.41 As input for cell

type iQTL data, we used regression beta and the variance of beta,

and for GWAS data, we used the p values. We excluded loci, where

the molecular phenotype (TSS of a gene or CpG site) fell into the

MHC region, due to complicated LD patterns in this region. Poste-

rior probability for colocalization (PP4) > 0.5 was used as evidence

for colocalization. For visualization of colocalized loci, we used lo-

cuszoom-like figures with LD calculated based on MESA individ-

uals used for iQTL mapping.

Next, we testedwhether we observedmore colocalized loci for cell

type iQTLs with a positive direction and a given disease/trait

compared to height.34 Height was used as a comparison to account

for the enrichmentof regulatory variants among trait-associated var-

iants.We calculated the odds ratio (OR) as the ratio of theodds of cell

type iQTL colocalizing with a trait of interest to the odds of cell type

iQTL colocalizingwith height. To estimate theOR if any cell is equal

to zero in the 2x2 table, we applied the Haldane-Anscombe correc-

tion28byaddingafixedvalueof0.5 toall cells.To test the significance

of theOR,we required that at least 10 loci be tested for colocalization

with the trait of interest. Bonferroni correction was applied sepa-

rately for cell type ieQTLs and cell type imeQTLs to account for the

number of cell type iQTL and disease/trait pairs used in enrichment

testing.
Mediated moderation
We hypothesized that trait iQTLs may be mediated by G 3 cell-

type effects. First, we assessed whether we observed enrichment

of cell-type iQTL effects among our trait iQTLs (age, sex, and smok-

ing iQTLs). For this, we evaluated the interaction effect between

the genotype of the iQTL variant and cell-type proportions of

the trait iQTLs. Enrichment was estimated from the inflation

marker lambda (l), which is calculated as the ratio of the median

observed c2 test statistic to the median expected c2 test statistic

under the null hypothesis.

Second, to formally assess mediation, we formulated the medi-

ated moderation model,42 where the effect of a moderator (W,

e.g., age) on the association between the independent variable

(G, e.g., genotype) and dependent variable (Y, e.g., molecular

phenotype) is transmitted through a mediator (M, e.g., cell-type

proportion). Structural equation modeling (SEM) has been pro-

posed for the analysis of mediated moderation.42 Because the

mediated moderation effect is described by the path XW / XM

/ Y, we observed in a simulation analysis that we could obtain

similar results by using mediation analysis techniques instead of

SEM. Thus, we applied mediation analysis by using the mediation

R package43 for added flexibility to account for additional covari-
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ates. More precisely, we defined the mediator and outcomemodels

as follows:

mediation model : G 3 M ¼ b0 þ b1Gþ b2Wþ

b3G3Wþ b4Mþ b5�kCþ ε;

outcome model : Y ¼ b0 þ b1Gþ b2Wþ b3G3Wþ

b4Mþ b5G3Mþ b6� kCþ ε;

where C is the covariate matrix, including 11 genotype PCs from

TOPMed, sex, and PEER factors. G, M, and W were mean-centered

for the mediation analysis.

We estimated the significance of the average causal mediation

effect (ACME), average direct effect (ADE), total effect, and pro-

portion of mediated effect by bootstrapping with k ¼ 1,000

Monte Carlo draws and calculated 95% confidence intervals

by using the bias-corrected and accelerated (BCa) method. A

p value for ACME < 0.05 was used as an indicator of support

for mediation.
Cell-type composition probes
To evaluate whether imeSites are likely to be associated with cell-

type composition, we used the ‘‘Cell Composition Association

Table’’ from the FlowSorted.Blood.450k R package.44 This table sum-

marizes the association, determined by ANOVA, between each

autosomal probe that is included in the Illumina 450k array and

does not contain annotated SNPs and blood cell composition.
Results

Cell-type composition of blood tissue

We used two methods to characterize the cellular composi-

tion of peripheral blood mononuclear cells (PBMCs) from

RNA-seq and whole blood from DNA methylation

(DNAm) data in MESA—CIBERSORT14 and the Houseman

method,15 respectively. These deconvolution methods

leverage external purified leukocyte data to infer the pro-

portions of white blood cells (WBCs) in heterogeneous tis-

sue samples by modeling bulk tissue data as the sum of

weighted cell-type-specific expression or DNAm signatures

(Figure 1B).

Neutrophils were the most abundant cell type in whole-

blood samples, as expected, but were depleted in PBMC

samples, where monocytes and T cells constituted a major-

ity of the cell populations (Figure S1B). We observed a

moderate correlation between the CIBERSORT and House-

man estimates for the same cell type (Pearson correlation

0.42 < r < 0.57 in exam 5 data for B cell, NK cell, and

T cell comparisons, Figure S2). Furthermore, clustering of

the cell-type abundances showed good concordance be-

tween the estimated proportions from different molecular

datasets and measured cell-type estimates available for a

subset of individuals at the exam 5 time point

(Figure 1C). However, more rare cell types, such as eosino-

phils, were not estimated as accurately as more abundant

cell types (Figure S3). Of note, for more abundant cell

types, correlation coefficients were similarly high across
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the different self-reported race and ethnicity groups

(Figure S4). Also, there were significant differences by

exam in cell-type composition, reflecting the impact of a

10-year difference between the exams (Figure S5).

Next, we sought to identify factors that account for vari-

ability in cell-type composition. Genotype PCs that reflect

genome-wide genetic effects and population structure ex-

plained the highest median proportion of variance

(�7%), followed by age, sex and donor site (Figure 1D).

For a more detailed quantification of the unique contribu-

tions to total variation in gene expression and DNAm, we

studied four categories of factors: (1) cis genetics—lead cis-

molQTLs mapped in MESA (supplemental material and

methods), (2) cell-type composition—estimated cell-type

proportions, (3) extrinsic technical and/or biological fac-

tors—batch variables, donor site, and season, and (4)

intrinsic biological variables—genotype PCs, age, sex,

smoking status, and educational attainment as a proxy

for socioeconomic status. The total amount of variability

explained by all considered factors varied greatly: it ranged

from �5% to 90% per gene or CpG site (medians ranged

from 40% to 20%, respectively, Figure S6). Both in gene

expression and DNAm data, the largest fraction of inter-

sample variation was accounted for by batch variables, esti-

mated cell-type proportions, and lead cis-molQTLs after

other variables were controlled for (Figure 1D). Although

the median contribution of intrinsic biological variables

was lower than that of other categories, the loci where a

large proportion of variation was explained by age or

smoking status highlighted known molecular biomarkers

for aging (e.g., CD248,45 ELOVL2, and FHL246), or smoking

(e.g., AHRR47,48 andGPR1549) (Figure S6). Discovery of age-

related differences might be confounded, however, by rela-

tive changes in cell-type composition because of the

impact of age on cell-type proportions.44 This issue is

generalizable to any outcome of interest that correlates

with cell-type composition. This highlights the impor-

tance of accounting for cell-type composition as one of

the largest sources of variability in studies analyzing gene

expression or DNAm.

Cell-type interaction expression QTLs and interaction

methylation QTLs in blood

Variability in cell-type composition can be exploited to

identify cell-type interaction QTLs,7,50,51 where the effect

size of the regulatory variants increases (positive direction

of effect) or decreases (negative direction of effect) depend-

ing on cell-type abundance; cell-type interaction QTLs can

thus serve as proxies for cell-type-specific QTLs (Figure 2A).

Applying this framework, we identified cell-type interac-

tion cis-eQTLs (ieQTLs) for 2,130 genes (out of

19,699, 51Mb of the TSS) and cell-type interaction cis-

meQTLs (imeQTLs) for 22,141 CpG sites (out of

747,868, 5 500 kb of the CpG site) at at least one of the

time points with false-discovery rate (FDR) < 0.05 across

ancestries (Figure 2B). Given the correlation in DNAm be-

tween proximal CpG sites,25,26 we defined 20,099 sentinel
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CpG sites for imeQTLs to represent independent loci by

keeping the most significant association in a 2 kb window;

these were used for further analyses as described below.

Discovery of both cell-type ieQTLs and imeQTLs was

dominated by the most abundant cell type, as previously

observed;51 the majority of these aforementioned iQTLs

had a positive direction of effect (Figure 2B). A relatively

small percentage of all significant cell-type iQTLs (on

average, 16.8% across cell-type iQTLs and exams) belonged

to the ‘‘uncertain’’ group enriched for variants with lower

minor-allele frequency (MAF) and higher association p

values of the interaction effect, indicative of likely false-

positive results7 (Figure S7). Using one of the time points

for discovery and the other for validation, we observed

high reproducibility rates for all cell-type iQTLs with either

positive or negative direction of effect as an internal qual-

ity measure (mean p1 of 0.84 and 0.96 for cell-type ieQTLs

and imeQTLs, respectively, Figure 2C). Cell-type iQTLs

with uncertain direction had considerably lower nominal

reproducibility rates (Figure S8) and were excluded from

subsequent analyses.

The MESA cohort design allowed us to investigate popu-

lation-specific effects of cell-type iQTLs. By comparing

allele-frequency estimates for lead monocyte ieQTLs with

positive direction across self-reported race and ethnicity

groups, we observed that 0%–14% of ieQTLs did not meet

the MAF > 0.01 criteria in one of the specific populations

(Figure S9A). To study whether the likely causal variants

are the same across populations,we leveraged the fine-map-

ped eQTL data by self-reported race or ethnicity from puri-

fiedmonocytes fromMESA exam 5 (supplemental material

and methods). First, we observed that 66.5%–74.8% of the

monocyte ieGenes with positive direction of effect were

fine mapped to likely causal eQTLs in monocytes; there

was an overlap of 883 (93.1%) ieGenes fine mapped in at

least two self-reported race or ethnicity groups

(Figure S9B). Second, we calculated LD between the lead

ieQTL and fine-mapped variants by self-reported race or

ethnicity groups. Although there were considerable

group-to-group differences between the fraction of ieGenes

with a positive direction of effect and lead ieQTLs in strong

LD (r2 > 0.5) with fine-mapped eQTLs, these differences

were less pronounced when a more lenient r2 threshold

was used (Figure S9C). This is consistent with the plausible

scenario that cell-type ieQTLs are largely shared across ma-

jor ancestral groups when differences in LD and allele fre-

quency are taken into account, as shown for eQTLs.1

Sharing between cell-type ieQTLs and imeQTLs

Next, we sought to analyze the extent of sharing between

cell-type ieQTLs and imeQTLs. We noticed that the iQTLs

for highly abundant cell types—monocyte ieQTLs and

neutrophil imeQTLs—with a negative direction of effect

can often be found as an iQTL for another cell-type with

a positive direction of effect, and vice versa (Figure S10).

In general, the high degree of sharing among cell-type

ieQTLs and imeQTLs reflected the magnitude of (anti)
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Figure 2. Discovery of cell-type ieQTLs and imeQTLs
(A) Illustration of the approach used for mapping cell-type interaction molQTLs in MESA.
(B) Number of significant cell-type ieQTLs and imeQTLs combined across exams (FDR < 0.05 in exam 1 or exam 5 data) stratified by
direction of the iQTL effect.
(C) Reproducibility of cell-type iQTLs with a positive or negative direction of effect; one of the exams was used for discovery and the
other for validation, and vice versa. The proportion of true positives (p1 statistic) is used as a measure of reproducibility.
(D) Sharing among cell-type ieQTLs and cell-type imeQTLs with a positive or negative direction of effect on the basis of exam 5 data is
quantified as the proportion of true positives (p1). The size of the square represents the correlation between the two estimated cell-type
proportions measured via the absolute value of the Pearson correlation coefficient (r).
(E) Sharing between CD4 T cell imeQTLs (query set) and cell-type ieQTLs (validation set) combined across exams is quantified as the
proportion of CD4 T cell imeQTLs that have a positive direction of effect and are in LD (r2 R 0.5) with ieQTLs that have either positive
or negative direction of effect from the given validation set. The p value shows the significance of the odds that CD4 Tcell imeQTLwith a
positive direction of effect overlaps with a cell-type ieQTL with a positive direction of effect as compared to the odds that a CD4 T cell
imeQTL with a positive direction of effect overlaps with a cell-type ieQTL with a negative direction of effect.
(F) Example of a cell-type iQTL (rs774358) affecting both the expression levels of a gene (C9orf72) and a nearby CpG site (cg01126010).
The p value of the interaction effect from the linear model fitted with TensorQTL is shown.
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correlation between estimated cell-type proportions

(Figure 2D), suggesting that cell-type iQTLs with specific

genetic effects in one (or more) cell types often manifest

in other (anti)correlated cell types.We also discovered indi-

cations of the same cell-type iQTL affecting both expres-

sion levels of a gene and DNA methylation levels of a

nearby CpG site (Figure S11; Table S1). For example,

CD4þ T cell imeQTLs with a positive direction of effect

overlapped significantly more often with T cell ieQTLs

with a positive direction of effect (Figure 2E, p ¼ 0.0013

as compared to T cell ieQTLs with a negative direction of

effect). Across 500 unique gene-CpG site pairs associated

with the same iQTL (or lead iQTLs in strong LD,

r2 > 0.5), where both the ieQTL and imeQTL effect were

positive, we observed a discordant genotype main effect

for the majority of the pairs (64.4%), indicative of a mostly

negative correlation between gene expression and DNAm,

as described before for methylation-expression associa-

tions (eQTMs).52

An example of a shared cell-type iQTL is rs774358, a

variant associated with the expression of C9orf72 and

with DNAm of the nearby CpG site cg01126010; the

molQTL effect increases with monocyte and neutrophil

abundance, respectively (Figure 2F). rs774358 is also an

NK cell imeQTLwith a negative direction of effect, possibly

as a result of a negative correlation between the proportion

of neutrophils and that of NK cells in blood. Expansion of a

GGGGCC hexanucleotide repeat in C9orf72 (MIM:

105550) is one of the genetic hallmarks of amyotrophic

lateral sclerosis (ALS). The expression of C9orf72 is highest

in myeloid cells,53,54 indicative of myeloid-cell-specific

molQTLs captured by our iQTL approach.

Cell-type specificity of cell-type iQTLs

To analyze specificity of cell-type ieQTLs by comparing

their effects in purified cell types, we leveraged data from

the eQTL Catalogue.30 This resource includes 45 eQTL da-

tasets from various blood cell types with and without stim-

ulation from the lymphocyte and myeloid lineage. We

observed, in general, high replication rates for the cell-

type ieQTLs with a positive direction of effect in eQTL

data from the corresponding cell (sub)type (max p1 > 0.8

except for B cell ieQTLs, Figure S12); these high replication

rates further manifested as higher median effect size and

concordant allelic direction (Figure 3A; Table S2). For

instance, monocyte ieQTLs with a positive direction of ef-

fect replicated well in eQTL data from steady-state mono-

cytes as compared to stimulated monocytes, reflecting

the need to map response QTLs to discover novel genes

with molQTL specific to a cell state. We observed the high-

est replication rates for T cell ieQTLs with a positive direc-

tion of effect in different CD4 memory T cell subsets, most

likely reflecting the shift from naive tomemory Tcells with

age55 in the elderly study subjects from MESA. Impor-

tantly, the broad replication patterns matched the corre-

sponding cell type for ieQTLs with a positive but not a

negative direction, and replication in other cell types
The Americ
mirrored the sharing of ieQTLs and (anti)correlation be-

tween cell-type proportions (Figure S12).

Cis-eQTLs and cis-meQTLs have been shown to be en-

riched in functional elements of the genome.1,52 We

analyzed the candidate cis-regulatory elements (cCREs)

from various blood cell types produced by the ENCODE

project.31 After accounting for local genomic structure

with GoShifter,32 we observed highly cell-type-specific en-

richments of cell-type iQTLs with a positive direction of ef-

fect in distal enhancer-like signatures (cCRE-dELS) and

enhancer-associated H3K27ac marks (Figures 3B and S13;

Table S3), consistent with the tissue-specific nature of en-

hancers.56,57 As an example, monocyte ieQTLs were char-

acterized by high H3K27ac in monocytes and neutrophils

(the cells of the myeloid phagocyte system58), and T cell

ieQTLs and CD4þ T cell imeQTLs were enriched in T cell

subtypes. When focusing on promoter-like signatures

(cCRE-PLS), we observed evidence for enrichment of the

best powered cell-type iQTLs, monocyte ieQTLs and

neutrophil imeQTLs with a positive direction of effect, in

all the five assayed cell types (Figure S13). cCRE-PLS was

also a highly shared feature, in contrast to cCRE-dELS;

64.6% of cCRE-PLSs were present in all blood cell types,

whereas 60.9% of cCRE-dELSs were found only in one of

the assayed blood cell types.

As exemplified by the results, cell-type iQTLs can capture

cell-type-specific effects rather than overall cell-type

dependence with good resolution. The interpretation of

cell-type iQTLs, however, requires consideration of the di-

rection of effect, correlation between cell types, and the

quality of the deconvolution. Together, these results sup-

port mapping cell-type iQTLs as proxies for cell-type-spe-

cific QTL effects, particularly for the most abundant cell

type in the tissue.

Environmental modifiers of the molQTL effect

Next, we leveraged the variation in age, sex, and three smok-

ing phenotypes to quantify the impact of the selected

higher-order phenotypes as modifiers of cis-QTL effects,

i.e., to discover trait iQTLs, where the regulatory variant

has a context-specific effect. Comparedwith cell-type iQTLs,

trait iQTLs were less abundant. Using a relaxed FDR < 0.25,

we identified277geneswithage, smoking, or sex interaction

eQTLs and identified 2,397 CpG sites with age, smoking, or

sex interactionmeQTLs (Figure4A). Reproducibility rates be-

tween exams added confidence to the robustness of these

trait iQTLs (Figure S14), given that independent replication

data are scarce. As an example, we discovered an AHRR

eQTL that was significant only in current smokers

(Figure 4B). Hypomethylation of AHRR is one of the most

replicated biomarkers for active smoking,59 and coordinated

changes in both DNAm and gene expression across several

tissues have been reported.48

As observed for cell-type iQTLs, a significant G 3 E term

from the interaction model is not specific to the environ-

ment tested and might capture effects related to factors

correlated with the environment. Across different traits
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Figure 3. Replication and functional enrichment analysis of cell-type iQTLs
(A) Replication of ieQTLs with a positive direction of effect in eQTL datasets from purified cell types from the eQTL Catalogue was based
on effect size in eQTL data and allelic concordance. Highlighted are up to five datasets with absolute median effect size (beta) > 0.15 in
the eQTL dataset and the proportion of QTLs with the same allelic direction >0.75 for B cell ieQTLs or >0.8 for other cell-type ieQTLs.
Numerical results for all reference cell types are reported in Table S2.
(B) Functional enrichment analysis performed with GoShifter shows the delta overlap, which is the difference between the observed
proportion of loci overlapping a cCRE and the null for cell-type ieQTLs (upper panel) overlapping cCRE with high H3K27ac and for
cell-type imeQTLs (lower panel) overlapping cCRE-dELSs. Negative delta overlap denotes that a smaller proportion of iQTL variants over-
lap with a cCRE than in the null distribution. Error bars denote the lower and upper quartile of the delta overlap. ***Significant associ-
ation (adjusted p < 0.05) after correction for the number of target cell types with cCRE data, the number of cell types tested for interac-
tion effect, and the number of groups of direction of effect. Numerical results for all reference cell types are reported in Table S3.
available inMESA, age, sex and smoking are the main non-

genetic factors associated with cell-type composition

(Figures 1D and S15), similar to previous findings.60

Indeed, we observed a strong enrichment of age iQTLs

with a positive or negative direction of effect as cell-type

iQTLs when compared to age iQTLs with an uncertain di-

rection of effect as a background (l ¼ 19.89 vs. 1.56 and

17.0 vs. 1.83 for the G3monocyte and G3 neutrophil ef-
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fect in exam 5, respectively, Figures 4C, S16A, and S16F),

suggesting that some of the age iQTLs might be mediated

by cell-type iQTLs. Although some sex and smoking iQTLs

were very strong cell-type iQTLs, the evidence for global

inflation was weaker (with median l ¼ 2.64 and 1.52 for

G 3 monocyte and G 3 neutrophil interactions in exam

5, respectively, Figure S16). This is in line with the finding

that the effects of age in DNAm were largely mediated by
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Figure 4. Trait iQTLs and mediated moderation
(A) Number of significant trait ieQTLs and imeQTLs in exam 1 and exam 5 (FDR < 0.25) by direction of the iQTL effect. For numeric
traits, direction of the iQTL effect is defined as (1) positive—genotype effect size increases depending on the trait or (2) negative—geno-
type effect size decreases depending on the trait. For binary traits, the direction of the effect is defined as (1) no effect in one—nominally
non-significant genotype effect in one of the groups, (2) magnitude difference—nominally significant genotype effect in both groups
with the same sign of the estimate, or (3) opposite effect—nominally significant genotype effect in both groups with the opposite
sign of the estimate.
(B) Example of smoking-current ieQTL for AHRR (upper plot) and age imeQTL for cg06953865 (lower plot); the p value of the interaction
effect from the linear model fitted with TensorQTL is shown.
(C) Inflation of G3monocyte effect among age ieQTLs and G3 neutrophil effect among age imeQTLs in exam 5 data by direction of age
iQTL effect. l is the inflation factor.
(D) Schema of the mediated-moderation approach, where the moderation effect of age on the genotype to DNAm association is medi-
ated by changes in neutrophil proportions. The mediated-moderation effect is described by the G 3 age / G 3 neutrophil / DNAm
path. p value histogram of the average causal mediation effect (ACME) of the G 3 neutrophil effect mediating the G 3 age effect on
DNAm for 32 age imeQTLs with a positive or negative direction of effect.
changes in immune cell proportions, whereas the effects of

sex were typically independent of cellular composition.61

However, because our cell-type iQTL mapping is domi-

nated by the most abundant cell type, we might be under-

powered to detect global inflation of interaction with rarer

immune cell types in blood.

To formally test for the effect of age iQTLsmediated by cell-

type iQTLs, we adapted the concept of mediated modera-
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tion,42where theeffectof amoderator (age)on theassociation

between genotype and molecular phenotype is transmitted

through a mediator (cell-type proportion) (Figures S17A and

S17B).We evaluated this hypothesis by using neutrophil pro-

portion as the mediator for age imeQTLs in exam 5 because

the observed inflation of the G 3 neutrophil effect was the

strongest. As a basis formediatedmoderation,neutrophil pro-

portionwaspositively correlatedwithage (r¼ 0.14, p¼ 4.813
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10�5, FigureS17C), in linewithareportedcontinuous increase

of the percentage of neutrophils with age.62 As a result, we

observed support for thenotion that theG3neutrophil effect

mediated theG3ageeffectonDNAmfor43.8%(14/32)ofage

imeQTLswithapositiveornegativedirectionof effect (pvalue

of average causal mediation effect (ACME)< 0.05, Figure 4D,

Table S4); on average, 15.5% of the total effect was explained

by the mediator (Figure S17D). Of note, the mediation signal

was drivenprimarily by age imeQTLswith apositive direction

of effect, where 50% (13/26) showed nominal support for

mediation. Interestingly, 71.4% (5 out of 7 CpG sites also pre-

sent on the 450K array) of the imeSiteswith support formedi-

ation have been identified as CpG sites associated with blood

cell composition44 (Figure S18). As an example, rs7258891 is

an age imeQTL for cg06953865 (Figure 4B), where we

observed strong evidence for mediation (ACME p < 0.001).

This variant has mainly been associated with various cell-

count phenotypes, including neutrophil percentage,63 and

theCpGsite exhibits different averageDNAmacross cell types

(p ¼ 1.33 3 10�7), suggesting that the effect of age on the

meQTL is most likely mediated by changes in cell-type

composition.

Together, these results suggest that cell-type composition

changes might confound trait iQTLs by mediating the

moderation effect of a trait on genotype and molecular

phenotype association, as previously observed for differen-

tial expression and differential methylation analysis.64,65

Thus, an apparent age iQTL effect may arise when a certain

cell-type proportion varies with age and the regulatory

variant has a cell-type-specific effect on a molecular pheno-

type. This warrants caution in interpreting G3 E effects on

a molecular level.

Cell-type iQTLs contribute to immune-mediated

inflammatory diseases

Genetic regulatory effects can aid in elucidating the tissue

specificity of heritable traits and diseases.66 Given the

observed cell-type-specific nature of cell-type iQTLs with a

positive direction of effect, we analyzed whether cell-type

iQTLs provide insights into cell-type-specific mechanisms

of diseases. We performed colocalization analysis with co-

loc40 of cell-type iQTLs (FDR <0.25 for ieQTLs and FDR

<0.05 for imeQTLs) and a selection of immune diseases

andcardiometabolic traits (Figure S19; Table S5). To account

for widespread enrichment of QTLs among trait-associated

variants,38 we compared the results of colocalization anal-

ysis to the number of cell-type iQTLs colocalizing with

height, Our data confirmed several previously observed

cell-type-specific enrichments for traits and diseases

(Figure 5A): monocytes with lipid traits,18 B cells with sys-

temic lupus erythematosus,67 and many different immune

cell types, includingNKcells, Tcells, andBcellswith inflam-

matory bowel disease.68 Given the varying number of cell-

type iQTLswith a positive direction of effect, wehad greater

statistical power to detect significant associations involving

cell-type imeQTLs, particularly neutrophil imeQTLs.

Emerging evidence also suggests the contribution of neu-
144 The American Journal of Human Genetics 111, 133–149, January
trophils in the pathogenesis of autoimmune and inflamma-

tory diseases.69,70

In addition to being useful for studying disease-specific

enrichment, cell-type iQTLs can help researchers to under-

stand the cell-type-specific mechanism of a disease-associ-

ated variant. For instance, the A allele of rs909685 (T/A),

located in the intron of the synaptogyrin-1 (SYNGR1)

gene, has been shown to increase the susceptibility to rheu-

matoid arthritis (RA) for individuals of European, Asian, and

African ancestries.36,71,72 In our data, rs909685 was associ-

ated with SYNGR1 expression; the effect size increased (pos-

itive direction of effect) with NK cell and T cell proportions

and decreased (negative direction of effect) with monocyte

proportion (Figures 5C and S20B). rs909685 was also associ-

ated with the methylation levels of cg19713460, located in

the promoter region of SYNGR1 (400 bp from the TSS); the

effect size increased with NK cell proportion (Figure 5C). Of

note, the A allele of rs909685 was associated with higher

expression levels of SYNGR1 and lower methylation levels

of cg19713460 (Figures 5C and S20B). For the cell-type

iQTLs, we observed very strong evidence for colocalization

with the RA GWAS signal (PP4 > 0.99) (Figures 5B and

S20A). Interestingly, rs909685 falls into the cCRE that is

characterized by high DNase and H3K27ac in NK cells,

CD8þ T cells, and B cells (Figure S20C). Furthermore, the

SYNGR1 knockdown lowered the release of pro-inflamma-

tory cytokines or chemokines (e.g., IFN-g, TNF, and

RANTES) by activated NK cells, suggesting a functional

role of SYNGR1 in NK cells.73 Together, these data suggest

that rs909685 influences susceptibility to RA via NK-cell-

specific action, as captured by our cell-type iQTLs integrated

with functional annotation data. As a likely mechanism, a

causal chain in which methylation of the promoter of

SYNGR1 leads to an effect on mRNA expression and then

a subsequent effect on RA risk has been proposed.74 This

example highlights the usefulness of incorporating cell-

type iQTLs and functional data into investigations of cell

type-specific mechanisms of disease-associated variants.
Discussion

We performed interaction QTL mapping with cell-type

abundance, age, sex, and smoking as the environmental

factors to identify regulatory variants with plasticity in ef-

fect size rather than constant molecular effects. Although a

sample size of �900 individuals of multi-ethnic back-

ground at two time points was sufficient for mapping

cell-type iQTLs for a large number of genes and CpG sites,

discovery of molQTLs interacting with higher-order phys-

iological traits was limited. Given the unique aspects of our

study design, we were able to assess the reproducibility of

the iQTLs between time points to demonstrate the robust-

ness of the results and highlight the sharing between cell-

type ieQTLs and imeQTLs; this sharing was characterized

mostly by a negative correlation between gene expression

and DNAm and a discordant genotype main effect.
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Figure 5. Cell-type interaction QTLs and relevance for diseases
(A) Relevance of cell-type ieQTLs (FDR < 0.25) and cell-type imeQTLs (FDR < 0.05) for selected cardiometabolic and immune diseases
compared to height. For each of the cell-type iQTLs, we calculated the odds ratio (OR) as the ratio of the odds that an iQTL would coloc-
alize with a cardiometabolic or immune disease to the odds that an iQTL would colocalize with height. For testing the significance of the
OR, at least 10 loci had to be tested for colocalization; otherwise, the significance is noted as NA (not available). Bonferroni correction
was applied separately for cell-type ieQTLs and cell-type imeQTLs. NS: not significant.
(B) Colocalization between GWAS for RA by Okada et al.,36 NK-cell ieQTLs for SYNGR1, and imeQTLs for a nearby CpG site cg19713460,
shown as regional association plots. The highlighted region is depicted at the top and shows the location of rs909685, the lead GWAS
variant for RA, and the CpG site relative to SYNGR1.
(C) Association plot for the NK cell ieQTL for SYNGR1 and the NK-cell imeQTL for cg19713460. The p value of the interaction effect from
the linear model fitted with TensorQTL is shown. Dots are colored on the basis of the genotype of rs909685. Data in (B) and (C) are from
exam 1, where we observed the lowest interaction p values.
Importantly, the interpretation of cell-type iQTLs depends

on several factors—direction of effect, correlation between

cell types within the tissue, and resolution of the cell-type

deconvolution. Our results suggest that the biologically

most informative results are obtained for molQTLs when

the iQTL effect size is increasing (positive direction) with

the most abundant cell type in the tissue.

Even though cell-type iQTLs cannot be considered cell-

type-specific per se, cell-type iQTLs with a positive direction

of effect replicate well in eQTL datasets from purified cell

types and show enrichment in cCREs from the interacting

(or similar) cell type.Wedemonstrated this concept inwhole

blood,whichhad thenecessary cell-type-specific eQTL repli-

cationdata.Our results showpromise for interactionQTLap-

proaches for identificationof cell-type-specificQTLs inother

tissues where single-cell or cell-type-specific data are not

available or easily acquired. Moreover, cell-type iQTLs com-
The Americ
bined with functional annotations of the genome can help

prioritize cell types for functional follow-up studies.

Importantly, iQTLs present molQTLs, where the molQTL

effect is dependent on the environmental variable. More

specifically, for estimation of iQTLs, the transformed gene

expression levels are modeled as a function of a genetic

variant, environmental variable, and an interaction be-

tween the two variables. This approach is not suitable for de-

tecting molQTLs that are present only in one cell type. For

example, negative binomial regression that allows

modeling the dependence of RNA-seq transcripts on cell-

type proportions and the genotype of a genetic variant

would be an alternative approach that might overcome

this. In addition to using molQTL data from purified cell

types, the forthcoming population-scale single-cell QTL

studies, such as that undertaken by the single-cell eQTLGen

consortium,75 would allow additional validation of iQTLs.
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molQTLs with G 3 E interactions at the molecular level

hold promise for guiding the discovery of G3 E interactions

in complex diseases.76–81 These loci might mark the genetic

component of inter-individual variation in response to

different environments or physiological states, including

disease, thus contributing to phenotypic variation in hu-

mans. Our results with age imeQTLs, however, suggest

that cell-type composition changes could partly mediate

the moderation effect of age. Similar observations have pre-

viously been made for sex-biased cis-eQTLs,82 yet the con-

founding effect that cell-type composition has on molQTL

effect-size variation has not been appreciated to the same

extent as in differential expression andmethylation studies,

particularly in epigenome-wide association studies.44,65

On the basis of our results, we propose that mediation by

cell-type composition is the primary starting hypothesis for

molQTLs with G 3 E effects, and this should be explicitly

ruled out before other molecular moderation mechanisms

are postulated. We further hypothesize that in cases where

trait iQTL and GWAS signal colocalize, only molQTLs

with G 3 E not mediated by cell types would have a G 3

E interaction at the GWAS level—whereas molQTLs with

support for mediation most likely are subject to confound-

ing. Future studies with larger sample sizes will be needed

for the proper evaluation of this hypothesis.

Overall, the integration of genomic data with functional

multi-omic data in large and diverse longitudinal cohorts of-

fers anopportunity tomapgenetic effects onmolecular traits

and to study its complex interplaywithother environmental

factors. Our study shows the value of mapping interaction

QTLs as a feasible computational approach that can provide

insights into the context specificity of regulatory effects.

Data and code availability

MESAWGSdata are part of theNHLBI Trans-Omics for Preci-

sion Medicine (TOPMed) Whole-Genome Sequencing Pro-

gram and are available through dbGaP (dbGaP:

phs001416.v1.p1). MESA molecular data are also part of

this program (dbGaP: phs001416.v3.p1). Comprehensive

phenotypic data for MESA study participants are available

through dbGaP as well (dbGaP: phs000209.v13.p3). The

full summary statistics of cell-type interaction molQTLs are

available on request to the corresponding authors without

restrictions (�11 GB per cell-type ieQTL and �200 GB per

cell-type imeQTL, including summary statistics for both

exams). The significant cell-type and trait interaction

molQTLs are available at Figshare (https://figshare.com/

projects/Interaction_molecular_QTL_mapping_discovers_

cellular_and_environmental_modifiers_of_genetic_

regulatory_effects/184462). Code for mapping iQTLs

with TensorQTL is available at Github (https://github.

com/broadinstitute/tensorqtl).
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