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Jump-starting life: balancing transposable element
co-option and genome integrity in the developing
mammalian embryo
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Abstract

Remnants of transposable elements (TEs) are widely expressed
throughout mammalian embryo development. Originally infesting
our genomes as selfish elements and acting as a source of genome
instability, several of these elements have been co-opted as part of
a complex system of genome regulation. Many TEs have lost
transposition ability and their transcriptional potential has been
tampered as a result of interactions with the host throughout
evolutionary time. It has been proposed that TEs have been ulti-
mately repurposed to function as gene regulatory hubs scattered
throughout our genomes. In the early embryo in particular, TEs
find a perfect environment of naïve chromatin to escape tran-
scriptional repression by the host. As a consequence, it is thought
that hosts found ways to co-opt TE sequences to regulate large-
scale changes in chromatin and transcription state of their gen-
omes. In this review, we discuss several examples of TEs expres-
sed during embryo development, their potential for co-option in
genome regulation and the evolutionary pressures on TEs and on
our genomes.
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Introduction

Initially discovered in the 1940s by Barbara McClintock in maize,
we now know that transposable elements (TEs) are present in large
numbers throughout the great diversity of eukaryotic genomes
(McClintock, 1950; Osmanski et al, 2023). At the start of the
genomics era, these highly repetitive elements were often regarded
as “junk DNA”, genomic elements with no apparent function
(Lander et al, 2001). While TEs are, by definition, selfish elements
that colonize our genomes, there are now several examples which
demonstrate that our genomes were able to domesticate TE

sequences for the benefit of the host species, a process also known
as co-option (Sundaram and Wysocka, 2020; Fueyo et al, 2022).

Expression of many TE insertions and families is a hallmark of
early embryonic development but has also been associated with
specific cell types at later stages of mammalian development, such
as both the male and female germline and the placenta, as well as
cultured embryonic stem cell lines (Zamudio and Bourc’his, 2010;
Hackett et al, 2017; Chuong, 2013; Peaston et al, 2004). Perhaps
unsurprisingly, these tissues and cells are known to have more
naïve (open) chromatin than somatic differentiated cell types, and
are typically characterized by bivalent histone marks at develop-
mental genes and incomplete establishment of cannonical hetero-
chromatin marks (Gaspar-Maia et al, 2011; Meshorer and Plath,
2020; Hemberger and Dean, 2023; Fu et al, 2020; Saitou and
Yamaji, 2012; Burton and Torres-Padilla, 2014; Vastenhouw and
Schier, 2012). The fact that TEs become also highly expressed in
some cancer cells has contributed to our perception that their
expression is harmful for the organism, adding to the increased
genome instability and gene misregulation (Burns, 2017). In a
developmental context, TE expression is not simply a consequence
of the genome-wide reorganization of chromatin. Their expression
is widespread across all insertions and TE families, and the
expression of a handful of individual TE families has been
demonstrated to be essential for proper progression of embryonic
development in various mammalian species (Sakashita et al, 2023;
Modzelewski et al, 2021; Jachowicz et al, 2017). Despite observa-
tions of both beneficial as well as harmful consequences of TE
expression, it must be noted that the majority of TE insertions in
our genome are neutral, either because they are silenced by the host
genome or neutralized by decay of sequence integrity over
evolutionary time.

The exponential growth of available high-throughput sequen-
cing data and the ongoing efforts to assemble and annotate the
genomes of a large number of species, allow us to learn more about
these two-faced elements (Storer et al, 2021; Osmanski et al, 2023).
Both the transcriptional regulation of TEs by their host genomes as
well as how TEs themselves influence gene regulation of the host
genomes are the research focus of many scientists. In this review we
aim to highlight the variety of TEs, showcase several examples of
TEs that are expressed during mammalian development and
discuss the different evolutionary pressures on TEs as well as their
co-option by the host genome.
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TEs and their remnants in our genomes

TEs are typically classified in two major classes: class I, which
includes retrotransposons, and class II, which includes DNA
transposons (Finnegan, 1992, 1989; Wells and Feschotte, 2020;
Storer et al, 2021), with retrotransposons representing the vast
majority of TE insertions in mammalian genomes (Rodriguez-
Terrones and Torres-Padilla, 2018; Osmanski et al, 2023; Lander
et al, 2001). While most DNA transposons excise themselves in
order to reintegrate at another position in the genome (cut and
paste), retrotransposons use an RNA intermediate for transposition
events (copy and paste), which allowed them to quickly multiply
throughout the genome (Finnegan, 1989). Retrotransposons can be
further grouped into 3 main subclasses; Long-Terminal Repeat
(LTR) containing elements (which comprise mainly, but not
exclusively, ERVs (endogenous retroviral elements)), LINEs (long
interspersed nuclear elements) and SINEs (short interspersed
nuclear elements), based on their origin, their transposition
strategy and sequence structures (Fig. 1A) (Wells and Feschotte,
2020). Beyond the subclasses, TEs can be further classified in
superfamilies, with examples such as the group of LINE elements
LINE1, LTRs ERVL-MaLR and SINE elements Alu. Lastly, TEs are
annotated as families, comprised of sets of TE insertions (individual
genomic locations) with high sequence similarity that are assumed
to originate from the same ancestral transposing element, such as
the primate-specific ERVL LTR element MLT2A1 and mouse-
specific MT2_Mm, which are discussed in greater detail below.
Recent studies have further characterized families of TEs in
subfamilies based on phylogenetic analyses of their sequence
divergence, of which the human ERV family LTR7 is an example
(Carter et al, 2022).

Following the structural characterization of subclasses, full-
length ERVs typically consist of 3 open reading frames (ORFs): gag,
pol, env, which encode the viral proteins required for transposition
and viral particle formation, flanked by LTRs on both sides, which
drive their transcription (Wells and Feschotte, 2020) (Fig. 1A).
Most ERVs have lost the envelope protein env, which is essential
for reinfection and integration of new cells, while still maintaining
the ability to retrotranspose within the same cell (Magiorkinis et al,
2012). Full-length LINEs contain two ORFs and possess either a
monomer-based regulatory 5’ region, for example in the case of
mice, or a 5’UTR region, for example in primates. ERVs and LINEs
are classified as autonomous retrotransposons as their full-length
sequences posses all information essential for transposition (Wells
and Feschotte, 2020; Jachowicz and Torres-Padilla, 2016; Belancio
et al, 2009). SINEs, however, rely on the transposon machinery of
other retrotransposons, most often LINEs, and are therefore

referred to as non-autonomous retrotransposons (Wells and
Feschotte, 2020; Storer et al, 2021; Smit et al, 1995; Kramerov
and Vassetzky, 2011; Khan et al, 2006; Dewannieux et al, 2003). As
a result, SINEs are a much more diverse subclass of retro-
transposons compared with LINEs and LTRs, and contain several
unique sequence structural and regulatory elements. Interestingly,
the diverse origins of SINEs are also reflected in their transcription:
a subgroup of SINEs can be transcribed by RNA polymerase III,
reflecting the tRNA origin of certain SINEs, while all other
retrotransposons instead use RNA polymerase II, which transcribes
mostly mRNAs (Carnevali and Dieci, 2017).

As mentioned above, transposition of DNA transposons does
not require an RNA intermediate. However, it does require the
transcription and translation of a functional transposase from its
coding region (Pace and Feschotte, 2007; Tan et al, 2021). The
transposase allows the DNA transposon sequence to excise from
the original location in the genome and reinsert itself in a second
location. The coding region of the transposase gene is generally
flanked by two regulatory inverted terminal repeats (ITRs)
(Fig. 1A). Despite most commonly following a cut-and-paste
strategy, DNA transposons have successfully invaded and multi-
plied throughout several mammalian genomes. One interesting
model explaining such an efficient increase in their genomic copy
number is based on the concordance of transposition events with S-
phase, which could lead to the relocation of a DNA transposon
from a replicated region into an non-replicated region, effectively
resulting in a duplication upon completion of DNA replication
(Wells and Feschotte, 2020; Ros and Kunze, 2001; Muñoz-López
and García-Pérez, 2010; Tan et al, 2021).

Although the original sequence features and mode of transposi-
tion of TEs is an interesting field of study, the majority of TEs in
mammalian genomes are no longer able to transpose, as they have
lost many of the sequence features which allowed them to do so
(Fueyo et al, 2022; Wells and Feschotte, 2020). What remains in our
genomes are the remnants of their sequences (Fig. 1A). It is
important to note that although many TEs have lost their ability to
transpose, they have not lost their ability to be transcribed (see
Box 1). This leaves traces of regulatory sequences with potential
transcriptional activity scattered throughout the genome. For
example, ERVs seem to have often lost their internal protein
coding sequences (gag, pol, and env), leaving either both 5’ and 3’
LTRs or simply an individual solo LTR as most prevalent remnants
in the genome (Fig. 1A). Intriguingly, these TE remnants are not
rare or unique loci, but instead are very frequent occurrences
throughout mammalian genomes (Rodriguez-Terrones and Torres-
Padilla, 2018). As exemplified in Fig. 1B–D, TEs of all classes are
located proximal and distal to genes but also within gene introns

Glossary

CTCF CCCTC-binding factor
ECLC Early embryonic-like cells
EGA Embryonic genome activation
ERV Endogenous retrovirus
ESC Embryonic stem cell
ITR Inverted terminal region
LINE Long interspersed nuclear element
LTR Long terminal repeat
ncRNA non-coding RNA

ORF Open reading frame
piRNA piwi interacting RNA
RNAi RNA interference
SINE Short interspersed nuclear element
TAD Topological associated domain
TE Transposable element
TF Transcription factor
TSS Transcription start site
UTR Untranslated region
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(Fueyo et al, 2022). In addition, although all TE classes and
subclasses are present throughout the mammalian kingdom, the
frequency and ratio of the TE insertions present in the genomes can
vary widely (Rodriguez-Terrones and Torres-Padilla, 2018;
Osmanski et al, 2023). Similarly, while many TE families and their

remnants harbored in mammalian genomes are specific to a certain
species or genus, there are ancient TEs that are shared across orders
and even mammalian clades, and are therefore of much older
evolutionary age (Storer et al, 2021; Osmanski et al, 2023;
Matsushima et al, 2024).
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Figure 1. TE characteristics in host genomes at time of insertion and their remnants.

(A) TE sequences can be classified as retrotransposons (Class I; ERVs, LINEs, and SINEs) and DNA transposons (Class II) based on their transposition mechanism and
sequence features. Although at time of insertion the different TE subclasses had very distinct characteristics, the sequences that can be found more commonly in most
mammalian genomes are much shorter, with only certain identifying features remaining. (B–D) TE sequences and their remnants are present in high copy numbers
throughout mammalian genomes, as shown here in example regions of the mouse (B), rabbit (C), and pig genomes (D).
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Transcriptional activation of TEs
during development

During preimplantation development, the embryo activates its own
genome after a period of transcriptional silencing in the male and
female germline. Together with the degradation of maternally
inherited transcripts, embryonic genome activation (EGA) is the
main molecular process constituting the maternal-to-zygotic
transition (MZT). In mammals, this coincides with a dramatic
remodeling of chromatin. Furthermore, this key event in early
mammalian development occurs prior to the establishment of
mature heterochromatin (Burton et al, 2020), resulting in a
transcriptionally permissive environment. TEs representing all
subclasses become expressed at this developmental time. While it
was initially thought that the wave of expression of TEs was an
opportunistic, non-specific event linked to global heterochromatin
remodeling in the early embryo, the notion that expression of TEs
is simply a result of this naïve, permissive chromatin state has
started to change. Instead, the patterns of TE expression are class
and stage-specific, indicating a precise regulation. Moreover, not all
TE families become expressed equally, but instead a specific subset
of TEs are known to become transcribed. In particular, the
transcriptional activity of ERVL, MaLR, and LINE1 elements are a
key characteristic of mammalian preimplantation development
(Fig. 2) (Hendrickson et al, 2017; Halstead et al, 2020; Peaston et al,
2004; Svoboda et al, 2004), and in some cases have been found
essential for the progression of embryonic development (Sakashita
et al, 2023; Jachowicz et al, 2017).

Transcriptional activation of retrotransposons in the
mammalian preimplantation embryo

The mammalian preimplantation embryo presents ideal conditions
for TEs to become reactivated. Although for some TE families, it
has been observed that only a small proportion of all the insertions
in the genome are expressed (Modzelewski et al, 2021), for many
others it has been suggested that many insertions become
expressed simultaneously (Peaston et al, 2004). Most notably, a
large fraction of elements from the mouse-specific mERVL and the
human equivalent hERVL families are expressed at similar EGA
timing in the two species and are regulated by the transcription

factor DUX and its orthologue DUX4, respectively (Sakashita et al,
2023; Hendrickson et al, 2017; De Iaco et al, 2017; Peaston et al,
2004). Similar associations of TE expression during EGA mediated
by specific transcription factors have been found for the
transcription factors OBOX and Stella (Ji et al, 2023; Huang
et al, 2017). This suggests a degree of conservation between the
expression of these ERVL elements and their regulatory proteins
across mammalian species. It is important to stress that hERVL
and mERVL are species-specific elements, which do not belong to
the same TE family, suggesting that the conserved transcriptional
regulation of these elements is the result of convergent evolution.
Several additional ERVs such as hERVH, hERVK and the hERVL
LTRs MLT2A1 and MLT1A2 in human and other primates
(Hashimoto et al, 2021; Carter et al, 2022), as well as ERVL
elements from the MaLR family ORR1A0 in mouse (Franke et al,
2017) and MLT1A0 in bovine embryos (Halstead et al, 2020) are
highly expressed at and around the time of EGA in early embryos.
However, the precise TFs that modulate the expression
patterns of these TEs are still largely unkown (Hermant and
Torres-Padilla, 2021).

Although most studies have focused on activation of ERVs
during EGA, several LINEs and SINEs are also expressed in the
preimplantation embryo. For example, LINE1 elements, particu-
larly those belonging to the Gf, Tf and A families, are expressed in
the early mouse embryo. Interestingly, manipulating expression of
such LINE1s results in changes of global genome accessibility,
which we will describe in more detail below (Fadloun et al, 2013;
Jachowicz et al, 2017). Although SINE elements tend to belong to
evolutionary younger TE families and therefore show a more
species-specific behavior, their expression can be found across
mammalian species. Among others, SINEs B1 and B2 are expressed
in mouse preimplantation embryos (Peaston et al, 2004; Fadloun
et al, 2013), as well as Alu elements in early primate embryos (Jordà
et al, 2017). Taken together, although TE families that have been
reported to be expressed in early embryos are often specific for a
given species or clade, activation of all main retrotransposons can
be found in all mammalian species investigated. This suggests that
the transcriptional activation of transposable elements is a
conserved developmental hallmark of mammalian preimplantation
development.

Box 1. Transposition potential versus transcription potential

The transposition potential of a TE and their transcription potential refer
to two fundamentally different TE features. While many TEs have
maintained transcription potential, only few TEs are known to have
maintained their ability to (retro-)transpose, most notably LINE1 ele-
ments and Alu elements, a SINE subgroup (Dewannieux et al, 2003;
Kazazian et al, 1988; Richardson et al, 2017). The maintained, or in
some instances regained, transposition potential often leads to reduced
genome integrity or loss and misregulation of genes, and is therefore
typically associated with disease. Whether the actual disease state is
caused by individual novel TE insertions inside or in close proximity of a
gene, or is the result of a general genome-wide response to reduced
genome stability, remains to be seen. In this review, we focus on the co-
option of transcriptionally active TEs and refer the reader to other
reviews on the topic of transposition activity of TEs in disease (Levin
and Moran, 2011; Belancio et al, 2009; Kazazian and Moran, 2017;
Burns, 2017; O’Donnell and Burns, 2010; Solyom and Kazazian, 2012).

EGA

Stem cells
and ECLCsPlacentaGerm cellsPreimplantation

development
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Figure 2. Examples of retrotransposon expression throughout
developmental time.

Examples of TEs from the different retrotransposon subclasses (ERVs, LINEs,
and SINEs) expressed in the preimplantation embryo, germ cells, placenta, and
in ESCs of mammalian systems.

EMBO reports Marlies E Oomen & Maria-Elena Torres-Padilla

1724 EMBO reports Volume 25 | April 2024 | 1721 – 1733 © The Author(s)



Retrotransposon activation in the germline

In addition to the preimplantation embryo, TEs are also expressed
in germ cells and their precursors, the primordial germ cells
(Peaston et al, 2004; Gagnier et al, 2019; Ishiuchi and Torres-
Padilla, 2014; Garcia-Perez et al, 2016; Zamudio and Bourc’his,
2010). During mammalian meiosis, certain TEs are transcription-
ally active (van der Heijden and Bortvin, 2009). Interestingly, de
novo germline mutations in the mouse have been traced back to
transcription and transposition activity of specific TEs leading to
novel TE insertions (Gagnier et al, 2019). The germline has evolved
a unique defense mechanism to repress the expression of TE
elements that is largely based on RNA entities, including small
interfering RNAs (siRNA) and PIWI-associated RNAs (piRNA)
(see Box 2) (Wang and Lin, 2021; Ozata et al, 2019). Nonetheless,
some TEs escape these silencing mechanisms. These include TEs
exclusively expressed in the germline, such as LTR MT2-C and IAP
elements in rodents, as well as some TE superfamilies broadly
expressed in the early developing embryo, such as LINE1, murine
SINEs B1 and B2 and the primate SINE Alu (Zamudio and
Bourc’his, 2010). The germline in particular is highly sensitive to
the consequences of TE activity, and thus an intriguing tissue to
study how cells balance both the beneficial and detrimental effects
of transciptional and transpositional activation of TEs, as these will
be passed on directly to the next generation.

Retrotransposon activation in the placenta

In mammals, the first cell fate decision occurs during preimplanta-
tion development, leading to the segregation of the first two
embryonic lineages. The inner cell mass gives rise to all of the
embryonic lineages and to extra-embryonic components such as
the yolk sac. The second lineage, the trophectoderm, comprises the
precursor cells of the embryonic placenta. Thus, the cells of the
trophectoderm will not contribute to the germline and therefore

potential genetic changes occurring in the trophectoderm or the
placenta will not be inherited by the next generation. This makes
the placenta an atypical tissue for the activation of selfish elements,
such as TEs, as new transposition events cannot be passed onto the
progeny. However, several TEs, mostly LTRs/ERVs, are transcrip-
tionally active in the placenta and its precursor trophoblast cells
(Chuong, 2018). It has been suggested that the co-option of both
TE transcripts as well as the proteins originating from TE encoded
genes enabled the rapid evolution of the placenta as well as the large
diversity in the mechanisms underlying the development of the
placenta across eutherian mammals (see also Box 3) (Chuong,
2013). Specifically, LTR insertions of ERV element RLTR13D5
function as enhancer sequences of genes expressed in the placenta
during mouse placental development in a species-specific manner
(Chuong et al, 2013). Along these lines, in human trophoblast cells,
the primate ERVL LTR element LTR10A and several other ERV
elements are marked by H3K27ac, a histone modification typically
found at enhancers (Frost et al, 2023). In addition, genes closely
located to LTR10A sequences are typically upregulated when the
neighboring TE is transcriptionally active, hinting towards gene
regulation modulated by these TEs or, alternatively, to parallel
activation of both the TE and the neighboring host gene (Frost et al,
2023). Lastly, the placenta-specific gene syncytin originates from
the ERV env coding gene of the human ERV element HERV-W (Mi
et al, 2000) (see also Box 3), showing that not only do ERVs become
expressed, but can also be translated. In this particular example,
SYNCYTIN7-1 has a role during placental morphogenesis, where it
is essential for establishing the interface between the embryo and
uterus (Mi et al, 2000). Indeed, reduced SYNCYTIN-1 expression
has been correlated with preeclampsia in humans (Ruebner et al,
2013).

In contrast to these reports of reactivation of ERV elements, not
much is known about the transcriptional activation of LINEs and
SINEs in placental cells. However, SINE retrotransposition events
have been implicated in the rapid multiplication and diversification

Box 2. Silencing TEs and their transcripts

The timely silencing of TEs is also an essential process in embryo
development (Trono, 2017; Yang et al, 2017; Burton et al, 2020). One
way this is established and maintained is through DNA methylation and
the acquisition of heterochromatic histone methylation marks such as
H3K9me3, typically guided by KRAB zinc finger proteins (Burton and
Torres-Padilla, 2014; Wang et al, 2018; Almeida et al, 2022; Trono,
2017; Friedli and Trono, 2015; Rowe and Trono, 2011). Noteworthy, the
germline has a unique alternative defense mechanism to modulate the
levels of TE transcripts using PIWI-interacting RNAs (piRNAs). piRNAs
have been observed both in mammalian systems as well as other non-
vertebrate model organisms such as Drosophila and C. elegans, sug-
gesting strong conservation of the PIWI pathway for TE regulation
(Huang et al, 2013; Brennecke et al, 2007; Das et al, 2008; Chang et al,
2019; Girard et al, 2006; Aravin et al, 2006). The presence of piRNAs is
typically followed by the accumulation of repressive chromatin mod-
ifications such as H3K9me3 and DNA methylation at those piRNA
producing loci, which in turn leads to transcriptional repression of TEs
(Le Thomas et al, 2013; Aravin et al, 2008). Moreover, it has been
shown across model systems that mutants in the piRNA pathway are
either fully sterile or subfertile. While the phenotype varies depending
on the species and whether it is the male or the female germline, overall
these findings suggest that proper silencing of TEs is essential for fer-
tility (Wu et al, 2020; Aravin et al, 2006; Girard et al, 2006; Lau et al,
2006; Grivna et al, 2006).

Box 3. TE proteins and their co-option

In some cases, TE transcripts are translated into functional proteins.
Generally, this leads to the ability to (retro-)transpose the activated TE
family, as well as potential disease phenotypes (Kazazian and Moran,
2017; Levin and Moran, 2011; Belancio et al, 2009; Wood and Helfand,
2013; Burns, 2017). For many proteins encoded by TE transcripts, their
role and how they continue to escape transcriptional and translational
silencing remain unclear. Recently, it was shown that certain reacti-
vated and translated ERVs maintain the ability to form viral particles in
mouse early embryos and in stem cells derived from bats (Déjosez et al,
2023; Ribet et al, 2008). In rare cases, however, the proteins translated
from TE sequences have been shown to be adapted by the host and to
contribute to the function of a healthy cell. Notably, a recent publication
has shown that the ERV-derived retroviral protein SUPYN is expressed
in the human preimplantation embryo and developing placenta, where it
has anti-viral properties (Frank et al, 2022). Similarly, the env coding
gene of ERV elements (ERV env) contributes to the syncytin genes,
which are essential genes exclusively expressed in placental and their
precursor trophoblast cells and are conserved throughout eutherian and
marsupial species (Chuong, 2013, 2018; Cornelis et al, 2015; Keighley
et al, 2023; Emera and Wagner, 2012; Mi et al, 2000). Interestingly, this
TE co-option for placental development is highly species-specific,
resulting from convergent evolution (Chuong, 2013). This further
emphasizes the rich variety of regulatory elements that TE sequences
contribute to genome evolution.
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of neighboring genes (Jurka et al, 2005). One key example is the
duplication of placenta growth hormones, which were retro-
transposed along with SINE elements of the Alu superfamily in
primates (Barsh et al, 1983; Haig, 2008; Emera and Wagner, 2012).
Taken together, placental development shows several examples of
(often species-specific) co-option of TE sequences and translated
TE proteins, reaffirming that TE sequences can be a resource to the
host, allowing for rapid evolutionary innovation.

Transcriptional activation of retrotransposons in
embryonic stem cells and 2-cell-like cells (2CLCs)

Embryonic stem cell (ESCs) lines derived from the inner cell mass
of the mouse blastocyst have been widely used to study TE
expression. Similarly, the relationship between TE expression and
the regulation of TE-flanking genes is often tested in such
pluripotent cells in culture, as they are easier to handle and
perturb than early embryos. Although ESCs are not identical to the
cells of the inner cell mass (Genet and Torres-Padilla, 2020; Nichols
and Smith, 2012), ESCs are characterized by a more open and
dynamic chromatin state compared with differentiated cell lines
(Meshorer and Misteli, 2006; Gaspar-Maia et al, 2011). In addition,
ESCs express a characteristic repertoire of TEs, some of which are
also expressed in either the inner cell mass of the blastocyst or
morula stage embryo (Grow et al, 2015; He et al, 2019; Kunarso
et al, 2010). For example, the ERV element LTR7/HERV-H is
considered a pluripotency marker of ‘stemness’ in human ESCs
(hESCs) (Carter et al, 2022). Similarly, primate-specific HERVK
elements such as LTR5HS, are transcriptionally active in hESCs as
well (Grow et al, 2015). Interestingly, perturbation of LTR5HS
affects host gene expression, specifically of genes related to stem cell
and differentiation, over long genome distances (Fuentes et al,
2018), suggesting once more the involvement of a TE family within
a larger gene regulatory network. In fact, there are many reports of
LTR expression in ESCs but also of LINEs and SINEs. For example,
mouse ESCs express a similar repertoire of LINE-1 elements to
those expressed in mouse embryos, and both SINE B1 and B2
elements are also expressed in ESCs (Marks et al, 2012; Fort et al,
2014). Likewise, LINE1 elements are expressed in human ESCs as

are Alu SINE elements (Klawitter et al, 2016; Macia et al, 2011;
Garcia-Perez et al, 2007; Pal et al, 2023).

Stem cell cultures are heterogeneous and often contain a rare
subpopulation of early embryonic-like cells (ECLCs), which display
a similar transcriptional profile compared to preimplantation
embryos at the timing of genome activation (Rodriguez-Terrones
et al, 2018; Macfarlan et al, 2012; Genet and Torres-Padilla, 2020;
Taubenschmid-Stowers et al, 2022). In mice, these cells are referred
to as 2-cell-like cells (2CLCs), while in humans, they are called
8CLCs, as EGA occurs at the 8-cell stage in human embryos
(Braude et al, 1988; Asami et al, 2022). Perhaps unsurprisingly, the
LTR mERVL (MT2_mm), which is highly expressed in the 2-cell
stage mouse embryo, also becomes highly expressed in 2CLCs
(Macfarlan et al, 2012). This is particularly interesting, as in the
general population of ESCs, the expression of mERVL is not
detectable, and it can therefore be used as a marker of 2CLCs
(Rodriguez-Terrones et al, 2018; Macfarlan et al, 2012). Following
this finding in mouse ECLCs, human 8CLCs show high expression
of LTR elements MLT2A1 and MLT2A2 (Taubenschmid-Stowers
et al, 2022). We note that the specific culture conditions of ESCs
can dramatically affect the expression levels of TEs and the
frequency of ECLCs in the stem cell population (Marks et al, 2012).

The finding that TEs characteristic for EGA are transcriptionally
reactivated in ECLCs, further highlights that TEs are a hallmark of
the transcriptional program of early embryos. However, whether
and if which TEs are drivers of the transcriptional networks in the
preimplantation embryo and ECLCs remains to be established.

Evolutionary pressures on TEs and their
host genomes

The presence of TEs in eutherian genomes is the result of
evolutionary pressure through many millions of generations on
both the TE sequences themselves as well as their host genomes
(Osmanski et al, 2023). Thus, understanding the product of these
evolutionary pressures must be done in the light of a two-faced
balance (Fig. 3).

First, there is the TE-driven evolutionary pressure. When the
TEs maintain transposition activity, the TE sequences that are most
successful in reintegrating in the host genome are able to multiply
quickly (Wells and Feschotte, 2020). Although this high transposi-
tion rate would be productive for the selfish TE family, it also can
result in reduced genome integrity (Belancio et al, 2009; Burns,
2017). Genome instability could in turn lower host survival rate,
which would ultimately lead to the disappearance of these highly
active TEs from the host population. However, a completely
silenced TE would not be able to propagate in its host genome and
would therefore only be present at very low numbers in the current
host genome. As both retrotransposons and DNA transposons
require transcriptional activity for their transposition (Wells and
Feschotte, 2020), the evolutionary pressure for the maintenance of
transcription and transposition activity go hand in hand.

Second, the maintenance of TE sequences in our genomes is also
subject to evolutionary pressure driven by the host genome. Most
prominently, the host genome will be more protected against
genome instability when the transposition machinery of the TE
sequence is impaired as described above. This leads to a higher
pressure to lose the sequence integrity of the internal – protein

Transposon driven TE evolution

Evolutionary time

Host genome driven

Transposition activity

Evolutionary pressure in
early embryo and germ line

Genome instability

Expression modulation

Gene regulatory platforms

Evolutionary pressure on all
fitness improving tissues

Genome diversification

Regulatory co-option

Figure 3. Balancing evolutionary pressures of transposon co-option and
genome integrity.

Upon insertion in the host genome, TE sequences are exposed to different
evolutionary pressures, to both maintain sequence features such as TF binding
motifs and TSSs as well as to limit their transposition and transcription
potential.

EMBO reports Marlies E Oomen & Maria-Elena Torres-Padilla

1726 EMBO reports Volume 25 | April 2024 | 1721 – 1733 © The Author(s)



coding – sequences of ERVs, LINEs, and DNA transposons,
compared with the terminal sequences such as LTRs, UTRs, and
ITRs (Wells and Feschotte, 2020). Interestingly, however, there are
several observations in which these TE sequences are used by their
host genomes on both a local as well as global level, in particular by
co-option of these terminal sequences (Fueyo et al, 2022), as we
discuss in more detail below.

Evolutionary pressure can also affect the developmental timing
during which TE sequences become active (Sundaram and
Wysocka, 2020). In the case of TE-driven evolutionary pressure,
in order for the TEs to successfully become inherited by the next
generation, transposition has to occur in cells that contribute to the
germline; either in the germline itself or early during embryonic
development in cells which will give rise to the germline. TEs that
propagate after segregation of the germline are not passed on to the
next generation. It is therefore not surprising that most tran-
scriptionally active TE sequences are found in the germline and
throughout early embryo development (as described above). It has
also been hypothesized that regulatory TE co-option could improve
the overall fitness of the host, leading to a positive evolutionary
pressure in favor of maintaining TE activity beyond the point of
germline differentiation. The improved host fitness could in turn
lead to a more successful transmission of the genome, including its
harbored TE sequences, to the next generation. This could
potentially explain why there are TEs expressed and associated

with transcriptional regulation of genes in cell types that are not
directly inherited by the next generation, such as during later stages
of embryo development, the placenta and the immune system
(Chuong, 2013; Chuong et al, 2013; Friedli and Trono, 2015; Pontis
et al, 2022; Koonin and Krupovic, 2015). Interestingly, these tissues
have been associated with rapid evolutionary changes and species
diversity, and it has been hypothesized that TEs have contributed to
this evolutionary process (Sundaram and Wysocka, 2020).

The co-option of TE sequences by the host genome is a major
source of genome innovation and genome diversification through-
out evolution (Fig. 4) (Modzelewski et al, 2022; Fueyo et al, 2022).
This is also reflected in the phylogenetic age of different TE families
that have been associated with TE co-option. Younger TEs are often
associated with species-specific expression and diversification of
their regulatory functions and neighboring genes (Sundaram and
Wysocka, 2020). One example is the co-option of the young mouse-
specific TE, MT2B2, as an alternative promoter that drives
transcription of a truncated transcript isoform of the conserved
gene Cdk2ap1 (Modzelewski et al, 2021; discussed in greater detail
below). Interestingly, although both gene and transcript isoforms
are conserved, different eutherian species seem to co-opt different
TEs as alternative promoters for the same gene. Where mouse
utilizes the ERVL LTR MT2B2, primates typically co-opt LINE
sequences as promoter for the truncated Cdk2ap1 transcript
(Modzelewski et al, 2021). Similarly, the transcription of an

TEgene

mRNA

Alternative promoter / transcript isoform

e.g. MT2B2 on Cdk2ap1
(Modzelewski, Shao et al., 2021)

e.g. hERVL/mERVL with Dux
(Hendrickson et al. 2017)

TF binding platform

Enhancer

e.g. LTRs enriched in enhancers sequences
(Barakat, Halbritter et al. 2018)

A

C

TF

e.g. CTCF binding sites at SINE B2
(Bourque et al. 2008)

e.g. spreading of H3K9Me3 at ERV elements
(Rebollo et al. 2011)

Chromatin insulator

e.g. LINE-1 transcripts increase genome accessibility
(Jachowicz et al 2017)

TE transcripts acting in trans / ncRNA

CTCF

Chromatin silencing
E

B

D

F

Figure 4. Host genome co-option mechanisms of TE sequences.

TE sequences can be co-opted by their host genomes in several different ways, such as using them as alternative promoters for host genes (A), as enhancers (B), as TF
binding platforms (C), by TE-derived ncRNA-mediated regulation of genes in trans (D), by providing insulator sites (E) and by spreading of silencing chromatin marks to
neighboring regions (F).
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isoform of DICER, an essential protein of the RNA interference
(RNAi) machinery in mammals, has been shown to be driven by a
rodent-specific LTR MT-C in mouse oocyte (Flemr et al, 2013). On
the other hand, older TEs are often much more difficult to trace.
Over time the TE sequence features dilute and TE families become
harder to identify (Storer et al, 2021; Matsushima et al, 2024).
However, there are several examples of ancient (evolutionary old)
retrotransposons and DNA transposons, which show conserved co-
option by host genes and are still active in mammalian genomes
(Osmanski et al, 2023; Cosby et al, 2021; Wang and Han, 2020).
Notably, a recent study annotated additional ancient TEs using a
reconstructed ancestral genome and showed that these ancient TEs
contribute to cis-regulatory elements and TE-derived promoters in
mammalian genomes, despite being transpositionally dormant
(Matsushima et al, 2024). Along these lines, the age of the TE
family can also affect when and how individual TE insertions are
expressed. Older TEs typically show more variation at an insertion-
specific level after being subjected to many generations of
evolutionary pressure and accumulation of many site-specific
mutations in their sequences (Lanciano and Cristofari, 2020).
Younger TEs on the other hand, are typically more similar in
sequence within the same family and therefore show more similar
expression levels and at similar developmental timing of expression
across individual insertions (Lanciano and Cristofari, 2020). In
addition to variation that accumulates after insertion on a locus-
specific level, TE families can include subgroups with different
sequence characteristics, which is independent of the age of the TE
family. For example, phylogenetic analysis of individual TE families
can further classify them into subfamilies that resulted from waves
of transposition activity and are characterized by different
transcriptional activity (Franke et al, 2017; Carter et al, 2022).
This further highlights that it is essential to understand the
evolutionary path of TEs within a host genome when studying the
co-option of TEs as regulatory sequences.

Mechanisms of TE co-option for host
genome regulation

As introduced above, both retrotransposon and DNA transposons
require transcription in order to jump to new locations in our
genome (Wells and Feschotte, 2020). Consequently, TEs have
binding sites for the eukaryotic host transcription machinery to
bind and initiate transcription. As many repeated occurences of
similar TE sequences are distributed throughout the genome, they
provide a prime opportunity for the host genome to adapt these
sequences as regulatory platforms (Sundaram and Wysocka, 2020).
Along these lines, TEs have been implicated in genomic imprinting
in the oocyte and early embryo, as well as the placenta, leading to
mono-allelic expression (Bogutz et al, 2019; Hanna et al, 2019).
There are more examples of host genomes adopting the sequences
of TE insertions to regulate transcription on both a local and global
genome-wide level (Fueyo et al, 2022), which follow 6 main
patterns of genome regulation (Fig. 4).

A classic example of TE co-option on a local level occurs when
TE insertions are employed as alternative promoters for host genes,
leading to the expression of an alternative transcript isoform during
specific times of development or in specific cell lineages (Fueyo
et al, 2022; Modzelewski et al, 2021). As introduced above, a recent

study by Modzelewski et al, describes an example of this
phenomenon, in which an MT2B2 insertion functions as an
alternative promoter for the cell cycle gene Cdk2ap1 specifically
during mouse preimplantation development (Modzelewski et al,
2021) (Fig. 4A). This transcript isoform leads to the expression of a
truncated CDK2AP1 protein, which the authors show to be
essential for preimplantation development in half of the embryos,
whereas the other half lacking the truncated protein was born and
fertile. During later stages of development after implantation,
Cdk2ap1 switches back to its canonical promoter and a full-length
CDK2AP1 isoform is produced (Modzelewski et al, 2021).
Similarly, specific insertions of the LTR sequences of MLT2A1
and MLT2A2, which become globally activated in the preimplanta-
tion embryo in primates, serve as promoters for a set of protein-
coding genes in the pineal gland (Hashimoto et al, 2021).
Considering that many TE sequences are located close to, or even
within genes in different species (see example in Fig. 1B–D), it is
likely that there are more examples for the adoption of TE
promoters by genes and transcript isoform switching mediated by
TEs yet to be discovered.

A second mechanism by which TEs and their promoters are co-
opted is by functioning as enhancers for host genes in cis (Fig. 4B).
For example, it has been found that LTR sequences in particular are
enriched in enhancers in human ESCs (Barakat et al, 2018).
Similarly, many TE sequences still harbor transcription factor (TF)
binding motifs, which can result in a local enrichment of TFs at
both the TE as well as potentially neighboring genes (Fig. 4C)
(reviewed in (Hermant and Torres-Padilla, 2021)). This can
positively affect the transcription of these genes (Hendrickson
et al, 2017; De Iaco et al, 2017; Whiddon et al, 2017; Gassler et al,
2022; Peaston et al, 2004). A recent study by Pal et al, benchmarked
the use of TEs marked by H4K16 acetylation as enhancers in
human ESCs, identifying ERV elements as well as LINE1s with cis-
regulatory roles (Pal et al, 2023). Both these mechanisms of co-
option are particularly intriguing as one can imagine that the
simultaneous activation of many repeated insertions of a TE family
can regulate networks of genes in this way (Friedli and Trono, 2015;
Pontis et al, 2022; Kunarso et al, 2010).

Besides the effect of TEs on neighboring genes in cis, TEs and
their transcript products can also affect genes in trans, potentially
as non-coding RNA (ncRNA) (Fig. 4D). One example of this is the
role of LINE-1 transcripts in regulating global chromatin
accessibility in the preimplantation mouse embryo (Jachowicz
et al, 2017). The event of transcription and the transcript itself, but
not the protein translated from the LINE-1 transcript, affect
chromatin accessibility genome-wide. Persistent transcriptional
overactivation of the LINE-1 sequences increases global accessi-
bility in embryos at the 8-cell stage, whereas repressing LINE-1
transcription shows a decrease in chromatin accessibility at the
2-cell stage. Noteworthy, the study also shows that both the
overactivation and repression affect developmental rates, suggest-
ing that LINE-1s play a role in modulating the appropriate level of
chromatin accessibility during early embryonic development in
mouse (Jachowicz et al, 2017).

Lastly, TE sequences are not solely associated with positive
transcriptional regulation, but have also been suggested to be co-
opted as chromatin insulators and repressors of transcription
(Fig. 4E,F). In particular, SINE B2 is enriched in CCCTC-binding
factor (CTCF) motifs in the mouse genome (Bourque et al, 2008)
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and ERV sequences are enriched in CTCF binding sites in primate
genomes (Schmidt et al, 2012). CTCF is a well-known protein with
roles in chromatin architecture that when bound to its motif can
block the loop extruder cohesin, resulting in the formation of
insulated genomic regions known as topologically associating
domains (TADs) (Phillips and Corces, 2009). Interestingly, CTCF
motifs within SINE B2 insertions are targeted by SETDB1 in a cell-
type-specific manner, thereby modulating appropriate CTCF
binding of a given cellular identity (Tam et al, 2024). The finding
that certain TEs harbor CTCF sites suggests that the spreading of
these TE insertions during evolution also modulated the 3D
genome organization.

In addition, TEs can function as hubs of heterochromatin, which
can cause spreading of heterochromatic marks to flanking regions
(Fig. 4F). As TEs are targeted by the silencing machinery of their
host during different development times, they accumulate hetero-
chromatin marks such as H3K9me3 and DNA methylation leading
to full transcriptional silencing (Burton and Torres-Padilla, 2014;
Almeida et al, 2022; Chitrakar et al, 2022). In some instances, these
heterochromatic marks have been shown to spread beyond the TE
sequence, thereby affecting the chromatin state of neighboring
genes in both human and mouse (Rebollo et al, 2011; Xu et al, 2022;
Chitrakar et al, 2022; Yu et al, 2022). Similarly to what we described
above, when TE sequences are used directly as promoter and

enhancer sequences for host genes these associated genes will
become silenced as well at the time when TE expression is repressed
by the host during a given developmental time (Rowe et al, 2013;
Karimi et al, 2011). Combined, these distinct pathways of TE co-
option allow for a complex mode of regulation of the host genome
by TEs on both epigenomic and transcriptomic levels, ranging from
a small scale at neighboring genes to very large-scale levels of
regulation affecting higher-order chromosome organization.

Concluding remarks

The era of high throughput sequencing not only initiated the study
of “junk” DNA in the mouse and human genomes but is also
continuously revealing new information about TEs and their
remnants harbored in other genomes (see also Box 4). In recent
years, we have seen large-scale efforts to assemble the genomes of
many mammalian species (Christmas et al, 2023; Upham and
Landis, 2023), which allows us to uncover the extent of the
conservation and diversity of TEs in their host genomes (Osmanski
et al, 2023; Storer et al, 2021). One of the main caveats of TE studies
by genomics or transcriptomics is the technical limitations of
mapping sequencing data to highly repetitive elements (reviewed in
(Lanciano and Cristofari, 2020)). The rapid development of
analysis tools enables improved assignment of sequence reads to
the correct TE family and even to individual TE insertions (Yang
et al, 2019; O’Neill et al, 2020; Jin et al, 2015). Together with the
rise of novel genomics techniques that can capture TE transcripts
using improved long-read sequencing methods such as nanopore
and PacBio (Berrens et al, 2022), this allows for more in-depth
study and appreciation of TEs, their evolutionary history and their
transcriptional activity (Osmanski et al, 2023; Kirilenko et al, 2023;
O’Neill et al, 2020). Lastly, it will be very interesting to investigate
the conservation and diversification of the TE families and their co-
option in the host genomes of non-model organisms (Osmanski
et al, 2023; Storer et al, 2021; Sundaram and Wysocka, 2020).
Combined with the advancement of the T2T genomes (Nurk et al,
2022), the next years will see an increasing expansion on our
knowledge of TEs, providing the opportunity to reveal molecular
and mechanistic function of TEs in genome biology.
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