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Abstract
Motivation: In recent years, many algorithms for inferring gene regulatory networks from single-cell transcriptomic data have been published. 
Several studies have evaluated their accuracy in estimating the presence of an interaction between pairs of genes. However, these benchmark
ing analyses do not quantify the algorithms’ ability to capture structural properties of networks, which are fundamental, e.g., for studying the ro
bustness of a gene network to external perturbations. Here, we devise a three-step benchmarking pipeline called STREAMLINE that quantifies 
the ability of algorithms to capture topological properties of networks and identify hubs.
Results: To this aim, we use data simulated from different types of networks as well as experimental data from three different organisms. We 
apply our benchmarking pipeline to four inference algorithms and provide guidance on which algorithm should be used depending on the global 
network property of interest.
Availability and implementation: STREAMLINE is available at https://github.com/ScialdoneLab/STREAMLINE. The data generated in this 
study are available at https://doi.org/10.5281/zenodo.10710444.

1 Introduction
Single-cell transcriptomics techniques allow probing patterns 
of gene expression on an increasingly larger scale, with recent 
studies including millions of cells and thousands of genes 
(Svensson et al. 2020). Such rapid progress in expanding the 
scale of available data makes single-cell datasets more appeal
ing for tasks like the inference of gene regulatory networks 
(GRNs), with the goal of achieving a mechanistic understand
ing of the systems at hand and going beyond purely descrip
tive characterizations (Akers and Murali 2021, Stumpf 2021, 
Saint-Antoine and Singh 2020). However, GRN inference 
from single-cell data entails many computational challenges, 
such as high levels of technical noise in the data (Brennecke 
et al. 2013), the extreme sparsity of the ground truth network 
to be inferred (Banf and Rhee 2017) and the increasing scale 
of gene expression data (Hillerton et al. 2022). For this rea
son, many algorithms for GRN inference from single-cell 
data have been published in the last few years. The increas
ingly large number of such algorithms demands 
benchmarking studies that can guide the user in the choice of 

the best-performing methods under various conditions (Chen 
and Mar 2018, Pratapa et al. 2020, Kang et al. 2021).

While the benchmarking studies that have been published 
offer some guidance for users, they are affected by important 
limitations. First, the quantification of the performance is 
obtained for a limited number and types of networks. 
Furthermore, the available benchmarking studies mostly fo
cus on the ability of the GRN algorithms to predict local fea
tures of networks, like the interactions between pairs of 
genes, using, e.g., area under the curve metrics, or the pres
ence of specific sub-graphs (network motifs). These metrics 
do not assess the algorithms’ ability to infer the structural 
properties of the GRN, which can quantify important fea
tures like the robustness to perturbations (Guo and Amir 
2021) and the presence of network hubs representing master 
regulators. Robustness is one of the main characteristics of 
GRNs (Noman et al. 2015), and for this reason, their topol
ogy is also studied to improve the robustness of general net
work structures in other fields, such as wireless sensor 
networks (Kamapantula et al. 2014, Roy et al. 2018).
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Moreover, the inclusion of network topology in GRN 
inference methods has also been shown to improve their 
performance, e.g., using microarray and bulk RNA-seq 
data (Villaverde et al. 2014, Zhang et al. 2015). Recently, 
an algorithm based on a global network centrality measure 
and local network motifs has been introduced (Liu et al. 
2022), showing an improvement in inference performance 
due to the reduction of network redundancy. This class of 
inference methods is still lacking for single-cell RNA- 
seq data.

The structural properties of networks can be quantified by 
topological measurements (Koutrouli et al. 2020), including, 
for instance, the network efficiency and the assortativity. So 
far, the performance of GRN inference algorithms on the esti
mation of topological properties has only been assessed with 
bulk RNA-seq data (Kiani et al. 2016, Escorcia-Rodr�ıguez 
et al. 2023), and by employing a limited number of synthetic 
networks (Kiani et al. 2016), which makes it hard to reach 
robust conclusions for single-cell data.

In this work, we developed STREAMLINE, a three-step 
benchmarking framework to score the performance of GRN 
inference algorithms in estimating structural properties of 
networks from single-cell RNA-seq (scRNA-seq) datasets. 
The structural properties we considered quantify the infor
mation exchange efficiency, which is related to the network’s 
robustness to perturbations, and the presence and identifica
tion of hubs. We used data simulated from hundreds of net
works belonging to four classes with different structural 
properties (Watts and Strogatz 1998, Ouma et al. 2018), as 
well as from a set of curated (Cur) networks extracted from 
real GRNs (Pratapa et al. 2020). In addition to simulated 
data, we also used real datasets from yeast, mouse, and hu
man (McCalla et al. 2023).

We applied STREAMLINE to four GRN inference algo
rithms chosen among the top-performing ones in predicting 
gene-gene interactions (Pratapa et al. 2020). Our benchmark
ing analysis provides guidance in the choice of the algorithm 
for the prediction of network robustness and the identifica
tion of hubs. Moreover, our results point to systematic biases 
in some algorithms, which could indicate ways of improv
ing them.

To facilitate the use of our benchmarking framework, we 
made it compatible with an existing pipeline (BEELINE (Pratapa 
et al. 2020)), and we made all the code available in a GitHub re
pository (https://github.com/ScialdoneLab/STREAMLINE).

2 Methods
2.1 Ground truth networks
2.1.1 Synthetic networks
We use parameter-controlled networks from four different 
classes as well as the Cur GRNs that have been used in 
BEELINE (Pratapa et al. 2020). The output of the network 
samplers is a graph G with n nodes and m edges.

2.1.1.1 Random networks
Random networks were created with the Erd€os–Renyi G(n, 
p) model, which outputs a graph with n nodes where each 
pair is connected with probability p (Erd}os and R�enyi 
1959). We set p so that the expected number of edges 
equals m.

2.1.1.2 Scale-Free networks
Networks with a degree distribution that follows a power 
law are classified as Scale-Free (Cho et al. 2009). Given the 
parameter α, the expected degree distribution follows: 

PðdÞ � d−α: (1) 

For directed networks, the in-degree distribution and the 
out-degree distribution can feature different parameters αin 

and αout. We applied combinations of different in- and out- 
degrees. The exact values can be found in Supplementary 
Table S1.

2.1.1.3 Semi-Scale-Free networks
Following the analysis of the degree distributions in known 
GRNs (Ouma et al. 2018), we sampled Semi-Scale-Free net
works which feature an out-degree distribution that follows a 
power law but a uniform in-degree distribution. 
Additionally, only 50% of the nodes have outgoing edges.

2.1.1.4 Small-World networks
We used the Watts–Strogatz model to sample networks that 
feature Small-World topology (Watts and Strogatz 1998). 
The algorithm starts with n nodes with degree k in a regular 
lattice and then rewires edges with probability p.

2.1.1.5 Curated networks
Curated networks are four known GRNs that were used in 
BEELINE to evaluate the statistical performance of the GRN 
inference algorithms (Pratapa et al. 2020). These networks 
are simple models for mammalian cortical area development 
(mCAD), ventral spinal cord development (VSC), hematopoi
etic stem cell differentiation (HSC), and gonadal sex determi
nation (GSD).

2.1.1.6 Network sampling
We use the Julia package LightGraphs.jl https://github.com/ 
JuliaGraphs/Graphs.jl/ to sample the networks explained 
above. The parameters were chosen such that a large variety 
of structurally different networks is covered.

2.1.1.7 Simulation of single-cell RNA-sequencing data
We simulate single-cell RNA-sequencing data for the syn
thetic networks using BoolODE (Pratapa et al. 2020), a re
cently developed method that first converts a Boolean model 
into a set of ordinary differential equations (ODEs), and 
then, after adding a noise term, performs stochastic simula
tions of genes’ expression levels. The method was shown to 
outperform previously developed algorithms to simulate gene 
expression from ground truth GRNs like GeneNetWeaver 
(Schaffter et al. 2011). In our simulations, we used the same 
BoolODE parameters and settings that were extensively 
tested in Pratapa et al. (2020). Specifically, we converted 
each generated synthetic network into a text file containing a 
set of Boolean rules, which is given as input to the BoolODE 
Python script (“path data” parameter). For every parameter 
set of the synthetic networks, we generated data from 100 
cells (“num-cells” parameter) with a simulation time of five 
steps (“max-steps” parameter) for multiple networks using 
BoolODE. We used the parameter “sample-cells” to sample 
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one cell per simulation. The number of networks and associ
ated parameters can be found in Supplementary Table S1.

2.1.2 Experimental networks
For the benchmarking of GRN inference on experimental 
single-cell RNA-sequencing data we selected four datasets 
from human (Han et al. 2018), mouse (Shalek et al. 2014, 
Tran et al. 2019), and yeast (Gasch et al. 2017) and com
pared the output networks to different types of silver stan
dard networks that were collected by McCalla et al. (2023). 
The properties of the networks and the number of corre
sponding silver standards can be found in Supplementary 
Table S2. The silver standard networks were obtained from 
public databases and the literature. They were derived from 
ChIP-chip, ChIP-seq, or gene perturbations followed by bulk 
sequencing, which yielded multiple networks for each organ
ism (McCalla et al. 2023). The ESC silver standard network 
was obtained from manual curation of GRNs found in the lit
erature, as explained in full detail in McCalla et al. (2023).

2.2 Inference algorithms
We selected the four top-performing algorithms from 
BEELINE (Pratapa et al. 2020) and examined the results us
ing our three-step benchmarking pipeline. Below, we added a 
brief description of each algorithm.

GRNBoost2: GRNBoost2 (Moerman et al. 2019) infers a 
GRN independently for each gene, by identifying the most 
important regulators using a regression model. It is an alter
native to GENIE3, which uses a similar inference scheme but 
does not scale to larger datasets due to its runtime. The out
put of GRNBoost2 is a directed network.

SINCERITIES: SINCERITIES (Papili Gao et al. 2018) is a 
causality-based method that computes temporal changes in 
the expression of each gene. The GRN is inferred by solving a 
specifically formulated ridge regression problem. 
SINCERITIES outputs a directed network.

PIDC: The PIDC inference scheme (Chan et al. 2017) is based 
on partial information decomposition, which is a multivariate 
information-theoretic measure for triplets of random variables. 
Since it is symmetric, the resulting network is undirected.

PPCOR: PPCOR (Kim 2015) calculates the partial and 
semi-partial correlation coefficients for every possible pair of 
genes. Edges are ranked according to these values and they are 
undirected. By using the correlation as a sign, it is possible to 
obtain activatory and inhibitory interactions. However, we did 
not use this information in our benchmarking framework.

2.3 Evaluation of inferred networks
2.3.1 Processing of GRNs
2.3.1.1 Processing of ground truth networks
In all the ground truth networks, self-loops and duplicate 
edges are removed. For the experimental datasets, genes in 
the silver standard networks were subset to the genes that ap
pear in the related gene expression dataset.

In directed networks, the largest weakly connected sub
graph of the ground truth was used in the analysis. To per
form the analysis on undirected networks, the directed 
ground truth networks were converted to undirected graphs 
by ignoring the direction of the edges and then the largest 
connected subgraph was extracted.

2.3.1.2 Processing of inferred networks
For analysis on undirected networks, the inferred directed 
networks of GRNBoost2 and SINCERITIES are first 

converted to undirected networks by ignoring the informa
tion about the directionality of the edges.

In both the undirected and directed evaluations, duplicate 
edges and self-loops in the inferred network are removed. 
Afterwards, the top k edges with the highest absolute pre
dicted weight are used to construct the graph for evaluation. 
The parameter k is chosen to be the same as the number of 
edges in each associated processed ground truth or silver 
standard network.

If the resulting graph is not weakly connected in the di
rected evaluation, the largest weakly connected subgraph is 
extracted. When evaluating undirected networks, the largest 
connected subgraph is extracted, if the resulting graph is 
not connected.

2.3.2 Binary edge detection
To statistically benchmark the edge prediction we followed 
BEELINE in evaluating the EPr, defined as the fraction of 
true positives among the top k edges, ranked according to the 
weight returned by the inference algorithm, where k is the 
number of interactions in the corresponding ground truth or 
silver standard network. The EPr is better suited to classifica
tion accuracy on large datasets where the reference networks 
do not represent the entire ground truth. For the synthetic 
networks, we additionally report the AUPRC and the 
AUROC, as also commonly done in previous benchmarking 
(Pratapa et al. 2020, Chen and Mar 2018).

2.3.3 Graph properties related to information 
exchange efficiency
For evaluation of the information exchange efficiency in the 
graphs, we chose three topological properties. The properties 
are only computed in the evaluation of undirected networks, 
thus we assume an undirected graph G with a set fNg of n 
nodes and m edges for the following definitions.

2.3.3.1 Average shortest path length
The average shortest path length �lspðGÞ measures by how 
many links two random nodes are connected on average:  

�lspðGÞ ¼
X

v;w2fNg

dðv;wÞ
n � ðn−1Þ

; (2) 

where d(v, w) denotes the distance between two nodes v 
and w.

2.3.3.2 Global efficiency
The global efficiency EglobðGÞ estimates how efficiently infor
mation is exchanged in the network on a global scale. This is 
related to the concept of the vulnerability of networks to the 
decrease in networks efficiency in case some of the compo
nents malfunction (Latora and Marchiori 2001, Boccaletti 
et al. 2006). It is given by: 

EglobðGÞ ¼
1

n � ðn−1Þ

X

v 6¼ w
v;w 2 fNg

1
dðv;wÞ

: (3) 

Since gene regulation can be interpreted as information ex
change between nodes in GRN, Eglob is a meaningful quantity 
to estimate. A more detailed explanation of the relationship 
between global efficiency and network vulnerability can be 
found in Latora and Marchiori (2007).
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2.3.3.3 Local efficiency
The local efficiency ElocðGÞ describes the resistance of the 
network to perturbation on a small scale (Latora and 
Marchiori 2001). Similarly to global efficiency, it is linked to 
the behavior of the network when some of its constituents 
fail. A more detailed derivation can be found in Latora and 
Marchiori (2007). The quantity is defined as: 

ElocðGÞ ¼
1
n

X

v2fNg

EglobðGvÞ; (4) 

where Gv is the subgraph of G that only consists of the direct 
neighbors of v. In practice, perturbations are more likely to 
be caused by changes in neighboring genes, thus the local effi
ciency can provide valuable information.

2.3.3.4 Evaluation score for graph properties
Since we wanted to preserve the information on whether cer
tain topological features are over- or underestimated, we 
employed the MSE as an evaluation metric. For a property Px 

which is being analyzed on ground truth networks 
G1;G2; . . . ;Gk and predicted networks G1;inferred;

G2;inferred; . . . ;Gk;inferred, MSE is computed by: 

MSEðPxÞ ¼
1
n

Xk

i¼1

PxðGi;inferredÞ−PxðGiÞ: (5) 

Therefore, a positive value of the MSE refers to an overesti
mation of the property compared to the ground truth and a 
negative MSE to an underestimation of the ground 
truth property.

2.3.4 Topological properties related to the hub analysis
For our hub analysis, we selected different graph and node 
properties that allow for a meaningful structural characteri
zation of hubs in a network. The graph properties defined be
low are evaluated with the MSE, as introduced before for the 
information exchange quantities. The node properties are 
evaluated with the Jaccard coefficient of the detected hubs, as 
explained below.

2.3.4.1 Graph properties related to hub topology
2.3.4.1.1 Degree assortativity
The preference for a network’s node to attach to others that 
have a similar degree is captured by the degree assortativity 
(Newman 2003). It is quantified by the assortativity coeffi
cient rdegðGÞ:  

rdegðGÞ ¼
P

i eii−
P

i aibi

1−
P

i aibi
; (6) 

with ai ¼
P

j eij; bj ¼
P

i eij and eij is the fraction of edges 
from a node with degree i to a node with degree j from all 
edges m of the graph. For undirected networks, i and j are to
tal degrees of nodes, whereas for directed networks we report 
the Assortativity based on the in-degrees i and j of the nodes. 
Networks with a negative assortativity coefficient are called 
disassortative, and networks with a positive rdegðGÞ are called 
assortative. Disassortative networks have a higher tendency 
to possess hubs, which is an important feature of GRNs that 
we examine in Section 2.3.

2.3.4.1.2 Degree centralization
The goal of the degree centralization H(G) is to provide an 
estimate of how centralized a graph is around the node v�

which has the highest degree in the graph (Freeman 1978). It 
is defined as: 

HðGÞ ¼
1

Hmax
�
X

v2fNg

ðdegðv�Þ−degðvÞÞ; (7) 

with 

Hmax;undirected ¼ ðn−1Þðn−2Þ; (8) 

Hmax;directed ¼ ðn−1Þðn−1Þ; (9) 

for undirected and directed networks, where deg(v) refers to 
the total degree of a node v for undirected networks and to 
the in-degree for directed networks, where the in centraliza
tion is reported. A highly centralized network is focused 
around a small number of nodes, which could be identified as 
biologically important.

2.3.4.1.3 Clustering coefficient
The clustering coefficient measures the extent to which nodes 
in a graph tend to cluster together. It is quantified by the local 
clustering coefficient CClocðvÞ, which measures the fraction 
of triangles that exist over all possible triangles in the neigh
borhood of a node v: 

CClocðvÞ ¼
2 � Lv

kv � ðkv−1Þ
; (10) 

and the global clustering coefficient CCglobðGÞ (Watts and 
Strogatz 1998): 

CCglobðGÞ ¼
1
n

X

v2fNg

CClocðvÞ; (11) 

which is the average of the local clustering coefficient over 
the whole network. Lv represents the number of links be
tween the kv neighbors of node v. For directed graphs, kv 

includes both parents of the node with edges going from the 
parent to the node of interest, and children of the node, with 
edges going from the node of interest to the child node. For 
our analysis, we focus on the global clustering coefficient, 
since it captures clustering on a global scale. A network with 
a larger global clustering coefficient is more interconnected, 
which can result in more complex gene regulations.

2.3.4.2 Node properties related to hub identification
2.3.4.2.1 Degree centrality
The degree centrality CDðvÞ evaluates the degree d of a node 
v in a network, scaled by the maximum possible degree: 

CDðvÞ ¼
degðvÞ
n−1

: (12) 

For undirected graphs, the total degree centrality is 
reported, where deg(v) represents the total degree of node v. 
For directed graphs, the out centrality is reported, where deg 
(v) refers to the out-degree of node v.
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2.3.4.2.2 Betweenness centrality
The betweenness centrality CBðvÞ describes the extent to 
which nodes are on the shortest path between other nodes. We 
use a normalized version of the definition by Freeman (1977): 

CBðvÞ ¼
1
pv

X

u6¼v6¼w

ηvðu;wÞ
ηðu;wÞ

; (13) 

where ηðu;wÞ is the number of shortest paths from u to w 
and ηvðu;wÞ is the number of shortest paths from u to w pass
ing through v. It is normalized by dividing by the number of 
pairs of vertices not including v, which is different for undi
rected and directed graphs: 

pv;undirected ¼ ðn−1Þðn−2Þ=2; (14) 

pv;directed ¼ ðn−1Þðn−2Þ: (15) 

2.3.4.2.3 PageRank centrality
The PageRank centrality is the output of the PageRank algo
rithm which is focused on link analysis. The output is a distri
bution that models the likelihood of reaching any particular 
node when randomly moving along edges. Details of the algo
rithm can be found in Page et al. (1999).

2.3.4.2.4 Radiality centrality
The radiality centrality CRðvÞ (Valente and Foreman 1998) 
considers the global structure of the networks and indicates 
how connected an individual is in the entire network struc
ture. It is defined as: 

CRðvÞ ¼ max
x;y2fNg

dðx; yÞþ1−
1

n−1

X

w 2 fNg
w 6¼ v

dðv;wÞ: (16) 

2.3.4.2.5 Evaluation score for hub identification
First, we ranked the common nodes between the inferred net
works and the associated ground truth network according to 
the centrality metrics defined above. We then labeled the 
10% nodes with the highest values of the metrics as hubs. 
Then, we analyzed the set similarity between the hubs in the 
ground truth or silver standard Ωtrue and the inferred net
works Ωinf. To this aim, we computed the Jaccard coefficient 
J (Jaccard 1912) for every network, which is given by: 

JðΩtrue;Ωinf Þ ¼
jΩtrue \Ωinf j

jΩtrue [Ωinf j
: (17) 

To compare the performance between different types of 
networks, we used as an evaluation score the ratio between 
the Jaccard coefficient J computed on the inferred networks 
and the expected coefficient Jrand for a random predictor. 
Jrand can be calculated explicitly from the probability P of 
obtaining a given number of hubs, x, among randomly se
lected nodes Ωrand (i.e. x ¼ jΩtrue \Ωrandj): 

PðxÞ ¼

n0
x

� �
n−n0
n0−x

� �

n
n0

� � ; (18) 

where n is the total number of nodes and n0 ¼ jΩtruej ¼

jΩrandj is the number of nodes selected as hubs from the 
ground truth network or from the random predictor. Using 
the above expression of P(x), the expected value of Jrand 

obtained with a random predictor can be computed as: 

Jrand ¼
X

x
JðxÞPðxÞ; (19) 

where the sum runs over all the possible values of x 2 ½0;n0�, 
and J(x) is the value of the Jaccard coefficient when the size 
of the intersection is x, namely JðxÞ ¼ x

2n0−x (as it can be easily 
obtained from the definition of the Jaccard coefficient, Eq. 
(17)). With large values of n and n0 � n, it can be shown 
that the following approximation holds true (Chung et al. 
2019): Jrand �

n0=n
2−n0=n

.

2.3.5 Aggregated ranking of the algorithms
To provide an overall ranking of the algorithms, we first 
computed a max-scaled score for each metric, over different 
network realizations for each network type, and then we ag
gregated the scores into overall scores for the information ex
change efficiency, the hub topology, and the hub 
identification. We also computed a final overall topology 
score. Below, we describe in detail how the scores 
are computed.

For the hub topology and the information exchange effi
ciency, the average of the MSE of each metric Px is computed 
for each network type t and algorithm a, where jtj refers to 
the numbers of networks G that are part of t: 

S1ðPx; a; tÞ ¼
1
jtj

X

G2t

MSEGðPx; aÞ: (20) 

Then, for each network type, the absolute values of these 
averages for all algorithms A are max-scaled by dividing the 
values by the score of the best-performing algorithm on this 
network type: 

S2ðPx; a; tÞ ¼
S1ðPx; a; tÞ

max
i2A

S1ðPx; i; tÞ
: (21) 

These scores are then again averaged for each algorithm 
over the jTj different network types T, subtracted from 1 to 
produce a score that increases with the performance. Finally, 
the scores are max-scaled again between all algorithms by di
viding by the highest score of the algorithms to produce the 
final scores FðPx; aÞ for each metric: 

S3ðPx; aÞ ¼ 1−
1
jTj

X

t2T

S2ðPx; a; tÞ; (22) 

FðPx; aÞ ¼
S3ðPx; aÞ

max
i2A

S3ðPx; iÞ
: (23) 

For the hub identification measures Py, the Jaccard ratios 
to a random predictor J=Jrand are also averaged for every net
work type and algorithm. From the average, we subtract 1, to 
produce a score that sets the performance of a random pre
dictor to 0. Afterwards, the scores are also max-scaled by 
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dividing by the best-performing algorithm per network type, 
summed over the different network types. The remaining neg
ative values are replaced with 0. These scores are then again 
max-scaled to produce the final scores FðPx; aÞ for the indi
vidual hub identification measures: 

J1ðPy; a; tÞ ¼
1
jtj

X

G2t

JðPy; aÞ
JrandðPyÞ

−1; (24) 

J2ðPy; a; tÞ ¼
J1ðPy; a; tÞ

max
i2A

J1ðPy; i; tÞ
: (25) 

J3ðPy; aÞ ¼ max 0;
1
jtj

X

t2T

J2ðPy; a; tÞ

 !

; (26) 

FðPy; aÞ ¼
J3ðPy; aÞ

max
i2A

J3ðPy; iÞ
: (27) 

With the final scores for each metric, the overall informa
tion exchange, overall hub topology, and overall hub identifi
cation scores T2 are calculated by summing up the final 
scores for the associated metrics P for each algorithm a and 
max-scaling by the best algorithm 

T1ðP; aÞ ¼
X

p2P

Fðp; aÞ: (28) 

T2ðP; aÞ ¼
T1ðP; aÞ

max
i2A

T1ðP; iÞ
: (29) 

The overall topology score is calculated similarly by calculat
ing T2 with P as all metrics together.

2.3.6 Correlation analysis of the different metrics
To analyze the relationship between the performance in the 
evaluations of the different metrics, we computed Spearman’s 
correlation coefficient ρ between the performance scores 
computed as detailed below.

We pooled all results from the synthetic data or the experi
mental data. Then, for the information exchange and hub to
pology metrics, we used the negative absolute mean signed 
error (−jMSEj), to have a score that increases with the perfor
mance. For the hub identification metrics, we used as a score 
the Jaccard coefficient ratio to a random predictor (J=Jrand). 
Finally, we defined as performance scores relative to edge 
prediction the values of EPr, AUROC, AUPRC. In the heat
maps of Supplementary Fig. S1B and C, we crossed out the 
correlation values corresponding to a P value above .01.

3 Results
3.1 Overview of STREAMLINE
The steps involved in STREAMLINE are schematically repre
sented in Fig. 1. We consider three types of datasets: simu
lated, Cur, and experimental datasets.

With the simulated datasets, we generated scRNA-seq data 
in silico from four classes of networks with well-defined and 

different structural properties, to be able to test the algo
rithms in different scenarios. The classes of networks we con
sider are Random, Small-World (SW), Scale-Free (SF), and 
Semi-Scale-Free (SSF) Networks. Random or Erd€os–Renyi 
(ER) networks include a set of nodes in which each node pair 
has the same probability of being connected by an edge 
(Erd}os and R�enyi 1959). We include this class of networks as 
a control. In SF networks, the edges are drawn such that the 
degree distribution follows a power law (Barab�asi et al. 
2000). SF networks have been considered ubiquitous in cell 
biology (Albert 2005), but their presence, at least on a global 
network level, is still debated (Broido and Clauset 2019). For 
this reason, we also employ SSF networks, in which only the 
out-degree distribution follows a power law, while the in- 
degree distribution is uniform. Such networks were intro
duced by Ouma et al. (2018) to model real GRNs. SW net
works have the property that the neighbors of any given node 
are likely to be neighbors of each other (Watts and Strogatz 
1998). The SW property has been observed, for instance, in 
yeast (Van Noort et al. 2004) and human lung cancer (Sun 
et al. 2006) GRNs. In addition to these, we included four Cur 
networks that consist of sub-networks of known GRNs 
(Pratapa et al. 2020).

Networks from each class are defined by a set of parame
ters. To make our results independent of specific instances of 
networks, we sampled multiple networks from each class 
with different combinations of parameters and two sizes: a 
smaller (15 nodes and 50 edges) and a larger (25 nodes and 
100 edges) size. All the results shown below are averaged 
over all the instances of networks generated for a given class. 
Details about the network classes and the parameters used 
for network sampling are provided in the Methods section, 
Supplementary Section S1 and Supplementary Table S1. 
From each of these networks, we simulated scRNA-seq data
sets using BoolODE, a recently developed software based on 
ordinary differential equations (Pratapa et al. 2020) (see 
Methods section).

In addition to simulated datasets, we also considered four 
real scRNA-seq datasets generated from different organisms 
and cell types: yeast (Gasch et al. 2017), mouse dendritic cells 
(mDC) (Shalek et al. 2014), mouse embryonic stem cells 
(mESC) (Tran et al. 2019), and human embryonic stem 
cells (hESC) (Han et al. 2018). These datasets were used in a 
previous benchmarking study (McCalla et al. 2023), where 
the authors also provide estimations of silver standard net
works. We report the details about the experimental datasets 
in Supplementary Table S2.

The second step of our pipeline involves running the algo
rithms to infer GRNs from each of the datasets. We chose the 
four top-performing algorithms according to a recent study 
where the accuracy in predicting gene–gene interactions was 
evaluated (Pratapa et al. 2020): PIDC (Chan et al. 2017), 
PPCOR (Kim 2015), SINCERITIES (Papili Gao et al. 2018), 
and GRNBoost2 (Moerman et al. 2019). Two of these meth
ods (PIDC and PPCOR) give output as undirected networks, 
while SINCERITIES and GRNBoost2 provide directed net
works. A brief description of each algorithm is included in 
the Methods section. To make the results comparable be
tween the different algorithms, we considered the undirected 
version of the networks inferred by SINCERITIES and 
GRNBoost2. We show the effect of taking the edge direction 
into account in the Supplementary Material.
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In our analysis, we first scored each method’s ability to 
predict the presence of edges. Specifically, we calculated the 
early precision (EPr) on the experimental and synthetic data. 
For the synthetic data, we computed also the area under the 
receiver operator curve (AUROC) and the area under the 
precision-recall curve (AUPRC) (Pratapa et al. 2020). The 
results are then grouped for each network class or organism, 
and we found results in line with previous studies (see 
(Pratapa et al. 2020, Chen and Mar 2018), Supplementary 
Section S2 and Supplementary Fig. S1).

Then, we analyzed the ability of each method to predict 
global properties of networks, which are defined at a graph 
level. In particular, we computed topological properties that 
quantify how efficiently the information is exchanged in the 
network and the tendency of networks to include hubs.

The efficiency of information exchange measures how the 
behavior of a network can change following variations in its 
topology due to, e.g., the failure of some of its constituents 
(Latora and Marchiori 2001). In this context, it can be used 
to assess the stability of a GRN, as it is subject to random 
errors due to mutations and extreme conditions that can hin
der regulatory interactions (Boccaletti et al. 2006). The fol
lowing topological measures can quantify the efficiency of 
information exchange: the Global Efficiency, the Local 
Efficiency, and the Average Shortest Path Length (see 
Methods section). The Global and Local Efficiency measures 
quantify the fault tolerance of a system (Latora and 
Marchiori 2007) and they have already been used to study 
the relationship between evolutionary and topological prop
erties of human GRNs (Szedlak et al. 2016). The Average 
Shortest Path Length has been widely adopted as a measure 
of biological network navigability (defined as the ability to ef
ficiently move from a source to a target node through short 
communication paths), which is crucial for information dis
tribution (Barabasi and Oltvai 2004, Bogu~n�a et al. 2009). 
Another biologically important property of networks is the 
presence of hubs, i.e., nodes that have a degree much larger 
than the average. In GRNs, hubs are genes that regulate the 
expression levels of many other genes and can represent mas
ter regulators of a biological process. Through structural net
work analysis, it has been shown that the presence of hubs is 

highly sensitive to perturbations in network topology 
(Ghoshal and Barabasi 2011), and it is linked to global topo
logical quantities like the Centralization, the Assortativity, 
and the Clustering Coefficient (Sporns et al. 2007, Pechenick 
et al. 2012), which we compute in STREAMLINE.

In addition to quantifying the tendency of networks to pos
sess hubs, it is important to identify them correctly. Hence, 
we tested the GRN inference algorithms for their ability to 
predict which nodes constitute hubs. To do so, we computed 
four local metrics used to detect hubs (Kosch€utzki and 
Schreiber 2008)—Page Rank Centrality, Betweenness 
Centrality, Centrality, and Radiality (see Methods section)— 
and we compared the values obtained from the ground truth 
networks versus those calculated from the inferred networks.

Below, we describe the detailed results of each of these 
benchmarking analyses.

3.2 Estimation of information exchange efficiency
To quantify the efficiency of information exchange, we evalu
ated the Average Shortest Path Length, the Global Efficiency, 
and the Local Efficiency (Fig. 2A) of the inferred and ground 
truth networks. Then, we quantified the accuracy of the esti
mations obtained from the inferred networks by calculating 
the mean signed error (MSE) between these quantities com
puted on the ground truth networks and the networks in
ferred from each of the algorithms (see Methods section).

First, we considered the simulated datasets generated from 
different classes of networks. The different structural proper
ties of each class of networks are reflected by different values 
of these topological measures, as shown in Supplementary 
Fig. S2A. For example, the SW networks are characterized by 
a larger Clustering Coefficient and higher Global and Local 
Efficiency compared to ER networks, as expected based on 
their properties (Watts and Strogatz 1998).

In Fig. 2B, we report the MSE for all the topological meas
ures computed on the simulated datasets. With Global 
Efficiency, we observed relatively accurate estimations for all 
the synthetic networks with all the algorithms (the absolute 
value of the average MSE per network type is � 3% of the 
ground truth values; see Supplementary Fig. S2A). However, 
we observed that GRNBoost2 and PPCOR tend to 

Figure 1. Schematic overview of STREAMLINE. STREAMLINE consists of three steps: first, synthetic scRNA-seq data are generated from different 
classes of networks (Step 1). Then, GRN inference methods are applied to synthetic as well as real data (Step 2). Finally, the methods’ performance on 
the predictions of edges and of structural network properties (quantifying the network robustness and hub presence) is evaluated (Step 3).
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underestimate it in ER, SF, and SSF networks, while 
SINCERITIES always overestimates it. The dependence on 
the type of network is particularly evident for some algo
rithms, like PIDC: while it provides the most accurate estima
tion of Global Efficiency in SW networks (MSE � 0), it 
shows the worst performance with ER networks (where the 
associated MSE is the largest).

We saw similar variability in the estimations of Local 
Efficiency. All the tested algorithms tend to overestimate it 
(MSE > 0), except for SINCERITIES and PPCOR, which un
derestimate it in SSF, SW, and Cur networks (Supplementary 
Fig. S3 and Supplementary Table S3). The best predictions 
(corresponding to MSE� 0) are obtained on SW and 
SSF networks.

For the Average Shortest Path Length (Fig. 2B) 
SINCERITIES and PPCOR provide the best estimations, es
pecially in the ER, SF, and SSF networks, while PIDC and 

GRNBoost2 perform better for SW networks. In the Cur net
works, for which the Average Shortest Path Length is greater 
than for SSF graphs (Supplementary Fig. S2A and 
Supplementary Table S3), the algorithms tend to underesti
mate this property.

We performed the same analysis on four real scRNA-seq 
datasets from three species (Fig. 2C). The corresponding sil
ver standard networks have lower Global Efficiency, similar 
Local Efficiency, and larger Average Shortest Path Length 
compared to the synthetic networks we considered, except 
for the yeast dataset that stands out for its lower values of the 
Local and Global Efficiency (Supplementary Fig. S2B).

The corresponding values of MSE are reported in Fig. 2C. 
Interestingly, we found an overall tendency of all algorithms 
to underestimate both the Local and Global Efficiency, ex
cept for the yeast dataset. SINCERITIES provides the most 
accurate predictions of the Global Efficiency in the hESC, 

Figure 2. Results of the topological benchmarking of GRN inference algorithms with respect to information exchange both on synthetic and experimental 
scRNA-seq datasets. (A) Schematic representations of the three topological measures we computed (see Methods section). Global Efficiency quantifies 
how well the information can be distributed in the entire network. Local Efficiency measures how robust the network is to perturbation on a small scale. 
The Average Shortest Path Length specifies how many links are necessary to go from one node to another on average. (B) Barplots showing the mean 
signed error (MSE) for the estimations of the topological properties written at the top in different types of synthetic networks (indicated on the x-axis) and 
for different algorithms (marked by colors). (C) Same as B, for networks estimated from real scRNA-seq datasets (indicated on the x-axis). The heights 
and the error bars display the mean of the MSE values and the standard error of the mean, respectively, computed across datasets and networks in panel 
B and across networks in panel C.
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mDC, and mESC networks, while PIDC outperforms the 
other algorithms for the yeast dataset. PIDC is also the top- 
performing algorithm for Local Efficiency (Fig. 2C).

As for the Average Shortest Path Length, the MSE is mostly 
positive, indicating an overestimation, and it is smallest for 
SINCERITIES, which is the best-performing algorithm for all 
networks except for the yeast dataset, where it is outper
formed by PPCOR.

Overall, the analysis above shows that the accuracy of the 
estimations of the topological properties measuring the infor
mation exchange depends both on the type of network and 
the algorithm. Moreover, at least with synthetic networks, 
properties like Global Efficiency are estimated with a small 
relative error (� 3%), while the relative errors on the other 
properties and with experimental networks can be much 
larger (Fig. 2B and C and Supplementary Fig. S2A).

Next, we checked whether the performance of the algo
rithms in predicting these topological properties correlated 
with their ability to predict edges in the network. 
Interestingly, we found that the correlation between the per
formance measured in these two tasks is either statistically 
non-significant or very small (Supplementary Fig. S1B 
and C).

3.3 Hub analysis
One important downstream analysis on GRNs is the identifi
cation of genes with a number of links much larger than the 
average. These are known as network hubs, which can play 
key roles in differentiation and reprogramming (Kim et al. 
2021) and have been identified as potential disease regulators 
or drug targets (Åkesson et al. 2021). The presence of hubs 
depends on several topological properties that change with 
the type of network. For example, we expect the hubs in SF 
and SSF networks to be more easily identifiable due to their 
node-degree distribution. Such a feature of SF and SSF net
works is reflected by their higher Centralization values com
pared to other classes of networks (Supplementary Fig. S2A).

Here, we analyzed how accurately the algorithms can pre
dict the values of two groups of topological properties: the 
first group of graph properties quantifies the tendency of net
works to include hubs (Assortativity, Clustering Coefficient, 
and Centralization), and the second group of node properties 
is used to identify hubs (Betweenness, Centrality, Radiality, 
and PageRank). For hub identification, we use random net
works for baseline predictions.

3.3.1 Hub-related topological quantities
The topological measures we chose to quantify the presence 
of hubs are Assortativity, Clustering Coefficient, and 
Centralization (Fig. 3A). In networks with negative and 
larger absolute values of Assortativity, nodes with lower 
degrees tend to be linked to nodes that feature a higher de
gree; hence, in these networks, hubs tend to be present and 
clearly identifiable. Networks with a large Clustering 
Coefficient feature groups of nodes with high interconnectiv
ity that, thus, have similar node degrees. In this situation, 
hubs are less dispersed. The Centralization quantifies how 
centralized a graph is around a small number of nodes, which 
will have a large number of links, and will therefore tend to 
be strong and clearly identifiable hubs.

The synthetic networks we simulated data from are charac
terized by different values of the above topological measures 
due to their properties (see (Ouma et al. 2018), 

Supplementary Fig. S2A for undirected networks and 
Supplementary Fig. S4A for directed networks). This allowed 
us to explore the performance of the algorithms under differ
ent conditions. The three network properties assessed during 
this step uncovered multiple algorithm-specific behaviors 
(Fig. 3B). The most evident involves the algorithm 
SINCERITIES, which yielded GRNs with lower Assortativity 
(Supplementary Fig. S2A), which leads to an underestimation 
of this property for almost all types of networks, including 
the Cur networks (Fig. 3B and Supplementary Table S3). The 
results for the Clustering Coefficient are similar to those 
obtained for the Local Efficiency, with an overestimation of 
this property in ER and SF networks, and better performance 
of the algorithms in the case of SSF and SW networks 
(Fig. 3B). This result is in line with a known general relation
ship between these two metrics (Strang et al. 2018). In the 
case of the Cur networks, we also observed a tendency to 
overestimate the Clustering Coefficient, although the behav
ior is more dataset-specific (Supplementary Table S3).

When using directed networks, we found that the estima
tions of the Clustering Coefficient by GRNBoost2 and 
SINCERITIES change only slightly, while for the 
Assortativity we observed marked differences for 
SINCERITIES, which overestimates this property in all net
works (Supplementary Fig. S4C).

As in the previous section, we repeated the analysis using 
real datasets (Fig. 3C). The corresponding silver standard net
works have Assortativity values that are lower than those of 
most synthetic networks and are in line with the SF hypothe
sis for GRNs (Ouma et al. 2018). On average, the Clustering 
Coefficients are similar to those of SF and SSF networks 
(Supplementary Fig. S2B), except for the yeast dataset that 
shows smaller values of this metric. Such values of the topo
logical properties indicate that these networks display a 
higher tendency to contain hubs that are more clustered to
gether when compared to random networks.

Similarly to what happens with the synthetic datasets, here, 
the Centralization is overestimated by SINCERITIES 
(Fig. 3C), except for the mDC networks that are more cen
tralized (Supplementary Fig. S2B). In contrast to the synthetic 
networks, the Assortativity is now overestimated by 
SINCERITIES rather than being underestimated.

GRNBoost2, PIDC, and PPCOR show similar performan
ces. These three algorithms overestimate the Assortativity 
and underestimate the Centralization. Furthermore, the 
Clustering Coefficient is underestimated by all algorithms for 
the hESC, mDC, and mESC datasets, while the estimations 
are more accurate for the yeast dataset, whose silver standard 
networks have smaller values of this metric (Supplementary 
Fig. S2B).

Overall, we found differences in performance between the 
real and the synthetic data, which might be due to a number 
of factors. First, the silver standards provide only estimates 
for GRNs of the three organisms, while the synthetic data are 
simulated from fully specified networks. Furthermore, we 
found that the algorithms tend to output networks that fea
ture similar values for the topological properties, regardless 
of the type of network they are run on (Supplementary Fig. 
S2). This might explain, e.g., the opposite trends in the esti
mations of the Assortativity and the Clustering Coefficient 
with the synthetic versus the real datasets, as observed in par
ticular for the SINCERITIES algorithm.
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Finally, we checked whether the algorithms’ ability to esti
mate the hub-related topological quantities correlates with 
their performance in predicting network edges. Consistently 
with what we observed before when looking at information 
exchange (see previous section), we found little to no correla
tion (Supplementary Fig. S1B and C).

3.3.2 Hub identification
While hubs are loosely defined as nodes having degrees 
higher than average, there is no consensus on the best metric 
to identify them. For this reason, here we compute four cen
trality measures that have been previously adopted to find 
hubs in GRNs (Kosch€utzki and Schreiber 2008): the 
Betweenness (Freeman 1977), the Centrality (Freeman 1978), 
the Radiality (Valente and Foreman 1998), and the Page 
Rank (Page et al. 1999) (see Methods section). Among these, 
the Page Rank and the Centrality metrics are conserved along 
evolution and relevant in pluripotent cells (Wolf et al. 2021). 

Moreover, they were proposed as metrics to distinguish life- 
essential versus specialized subsystems (Wolf et al. 2021).

We verified how accurately the hub identification measures 
are estimated by the four inference algorithms introduced 
above. More specifically, we selected the set of top 10% 
nodes according to the centrality measure computed in the 
ground truth network, Ωtrue, and in the inferred network, 
Ωinf. Then, we quantified the similarity between the two sets 
of nodes with the Jaccard coefficient, J (Jaccard 1912) (see 
Methods section). Finally, we computed the ratio between J 
and Jrand, i.e., the Jaccard index between Ωtrue and a set of 
randomly selected nodes Ωrand (see Methods section). Hence, 
the ratio J=Jrand shown in Fig. 4 represents how well the hubs 
can be predicted from the inferred networks with respect to a 
random guess for synthetic (panel A) and experimental (panel 
B) networks.

In synthetic networks, we obtain similar values of the 
Jaccard coefficient on average (Supplementary Fig. S5A) but 
lower values of J=Jrand (Fig. 4A), compared to the 

Figure 3. Results for the topological benchmarking of GRN inference assessing the presence of hubs. (A) Schematic representation of the three 
topological measures considered here (see Methods section). The Assortativity quantifies the tendency of nodes in the networks to attach to others with 
similar degrees. The Clustering Coefficient reflects how much the nodes in a graph tend to cluster together. The Centralization indicates how strongly 
the network is arranged around a single center. (B) Barplots showing the mean signed error (MSE) for the estimations of the topological properties 
written at the top in different types of synthetic networks (indicated on the x-axis) and for different algorithms (marked by colors). (C) Same as B, for 
networks estimated from real scRNA-seq datasets (indicated on the x-axis). The heights and the error bars display the mean of the MSE values and the 
standard error of the mean, respectively, computed across datasets and networks in panel B and across networks in panel C.
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experimental networks (Fig. 4B). Better performances are 
obtained in SSF networks, which are the most centralized, 
and SW networks, while the performances are generally poor 
for the SF networks. These results are likely related to the un
derestimation for SF networks and overestimation for the SW 
networks of the values of the Centralization that we previ
ously observed (Fig. 3B and Supplementary Fig. S2A).

For the experimental networks, we find that higher values 
of J=Jrand are achieved by GRNBoost2 and PIDC in networks 
with stronger hubs (mDC, hESC, and mESC) (Fig. 4B), which 
features larger values of the Centralization and Clustering 
Coefficient compared to the yeast network (Supplementary 
Fig. S2B). However, the values of the Jaccard coefficients, J, 
are smaller than 0.2, indicating an overall poor performance 
of the algorithms (Supplementary Fig. S5B). PIDC and 
GRNBoost2 emerge as the top-performing algorithms, espe
cially in the hESC and mDC networks, depending on the hub 
identification metric.

When we ran the analysis on directed networks, we found 
similar performance on synthetic networks, while for the ex
perimental networks we observed a large increase of J=Jrand, 
especially for GRNBoost2 when using the Betweenness or the 
Out Centrality (Supplementary Fig. S6). This result is in line 
with recent results on hub identification from experimental 
scRNA-seq data (Kim et al. 2021, Fiorentino et al. 2024).

4 Discussion
Here, we performed benchmarking analyses to evaluate how 
well GRN inference algorithms can estimate the structural 
properties of the networks. More specifically, we quantify the 
ability of the algorithms to infer their robustness to 

perturbations as well as the presence and identification of 
network hubs. For this purpose, we computed six topological 
measures and tested four metrics for hub identification that 
are widely known and used in network theory. Moreover, we 
considered scRNA-seq data simulated from different types of 
networks as well as real data collected from differ
ent organisms.

In this extensive benchmarking, we focused on network 
properties (i.e. robustness and hubs) that are not taken into 
account in currently available benchmarking studies per
formed on scRNA-seq data, despite being considered impor
tant when studying GRNs and, more in general, biological 
networks (see, e.g. Noman et al. 2015, MacNeil and 
Walhout 2011, Winterbach et al. 2011). For example, the 
identification of putative master regulators via degree-based 
measures on GRNs is a commonly used practice (see, e.g. 
Kosch€utzki and Schreiber 2008, Cholley et al. 2018, Padi and 
Quackenbush 2015). We chose to focus on general topologi
cal properties of networks whose definition and interpreta
tion do not require assumptions on the biological process 
under study. However, more targeted approaches to investi
gate, e.g., network robustness, such as the in silico perturba
tion of specific genes (Theodoris et al. 2023) might be 
included in STREAMLINE in the future.

The benchmarking results are summarized in Fig. 5 (for un
directed networks) and Supplementary Fig. S7 (for di
rected networks).

Interestingly, we found that the algorithms’ performance in 
edge detection (Fig. 5 and Supplementary Fig. S1) has weak 
or no correlation with their performance in estimating the to
pological properties of networks, which indicates the need 
for a targeted benchmarking analysis like STREAMLINE. 

Figure 4. Accuracy of hub detection. The accuracy is measured by the Jaccard coefficient ratio, J=Jrand, using a random predictor as a reference (see 
Methods section). (A) J=Jrand is plotted for various hub metrics (written on top) as a function of the type of synthetic network (indicated on the x-axis) for 
different algorithms. (B) Same as (A), plotted as a function of the networks inferred from real scRNA-seq datasets (indicated on the x-axis). The 
Betweenness estimates the influence that a node has on the information exchange in a graph based on path lengths. The Centrality is the normalized 
total degree of a node. The Radiality assigns high centrality values to nodes with a short distance to all vertices in their reachable neighborhood compared 
to the graph diameter. PageRank is a generalization of the degree centrality that considers the eigenvalues of a modified adjacency matrix. We provide a 
detailed definition of the hub metrics in the text and the Methods section. The points and the error bars display the mean of the Jaccard coefficient ratio 
and the standard error of the mean, respectively, computed across datasets and networks in panel A and across networks in panel B.
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Moreover, this result also implies that a GRN inference algo
rithm with poor performance in edge prediction can still pro
vide accurate estimates of global network properties.

For synthetic datasets, we found that PPCOR is the best- 
performing algorithm in the three tasks that we benchmarked 
for topological metrics: Information Exchange, Hub 
Topology, and Hub Identification. However, we highlight 
that other algorithms might be preferred for the estimation of 
specific topological metrics. Indeed, SINCERITIES emerges 
as the top-performing algorithm for estimating the Average 
Shortest Path Length and GRNBoost2 has the best perfor
mance in estimating the Assortativity and the Centralization 
in the Hub Topology task, and the PageRank metric in the 
Hub Identification task.

In the case of experimental networks, we found that the 
best-performing algorithm is more dependent on the specific 
topological metrics (Fig. 5). While GRNBoost2 provides the 
best estimates for all the metrics related to Hub 
Identification, SINCERITIES is the top-performing one for 
the metrics related to the Information Exchange and Hub 
Topology. The Local Efficiency and Clustering Coefficient, 
for which we observed that the estimates are closely related 
for all algorithms (Figs. 2 and 3), are an exception since they 
are estimated better by PIDC.

We also found that, with directed networks, GRNBoost2 
overall performs better than SINCERITIES (Supplementary 
Fig. S7) and the identification of hub genes is generally more 
accurate, as suggested by the higher values of J=Jrand (Fig. 4 
and Supplementary Fig. S6).

The benchmarking done with synthetic networks allowed 
us to check the performance of algorithms with networks 
having specific and tunable properties. In some cases, this has 
brought to light specific biases present in the networks esti
mated by each algorithm. In particular, for most of the algo
rithms the inferred average values of some metrics (e.g. 
Assortativity and Local Efficiency) for different types of syn
thetic networks are close and do not show any clear trend, 
unlike their ground truth values (Supplementary Fig. S2). In 
other cases, the trend can even be inverted, as in the case of 
the Clustering Coefficients estimated by SINCERITIES, 
which are highest on average for ER networks and decrease 
in SF and SSF networks, while the ground truth values show 
the opposite trend (Supplementary Fig. S2).

Some algorithms show specific features. For example, 
SINCERITIES produces more disassortative and centralized 
networks (i.e. networks with relatively low Assortativity and 
high Centralization), which causes an underestimation of 
Assortativity and overestimation of Centralization for all 
types of synthetic networks (Fig. 3A). Similar observations 
can be made, e.g., with GRNBoost2, which tends to generate 
networks with lower Global Efficiency (Fig. 2A). While the 
underlying reasons for these observations remain elusive, we 
speculate that they might be caused by differences in the spe
cific designs of the algorithms. For instance, SINCERITIES is 
a causality-based method that uses a linear regression model 
on temporal data, similar to Granger causality, which is 
known to have high false positive rates when its underlying 
assumptions are violated, as is the case in complex datasets 

Figure 5. Ranking of the GRN inference algorithms. We report the overall performance of the algorithms on each topological metric for synthetic (top 
rows) and experimental (bottom rows) datasets. The algorithms are ranked according to an overall topology score (see Methods section). We also show 
the ranking for each group of topological metrics (Information Exchange, Hub Topology, and Hub Identification) and we report the performance in binary 
edge detection in the last column. The legend at the bottom shows the association between the colors and the ranks for each group of metrics.
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with nonlinear dynamics (Yuan and Shou 2022). More spe
cifically, Granger causality fails when the system’s dynamics 
are deterministic (or have a low noise level) or when pairs of 
variables have a common unobserved cause (Yuan and Shou 
2022). The reason why SINCERITIES tends to output disas
sortative and centralized networks might come from the pref
erential attribution of false positive edges to specific genes, 
due to their specific dynamics.

Importantly, the knowledge of such biases can guide the ef
fort to improve current algorithms, e.g., by assisting in the 
design of objective functions that can lead to networks with 
global properties closer to real GRNs. This approach can be 
justified by the observation that GRNs share certain topolog
ical features, such as an SF (Lopes et al. 2014) or SSF (Ouma 
et al. 2018) node-degree distributions, which could be as
sumed as prior knowledge during the inference process.

In this study, we chose to focus on unsupervised GRN in
ference algorithms, which are currently widely used by the 
community and are well characterized in their performance 
with local metrics (Pratapa et al. 2020, Chen and Mar 2018). 
It will be interesting to include in future versions of 
STREAMLINE the benchmarking of (semi-)supervised meth
ods for GRN inference and the calculation of global metrics 
taking into account edge weights.

The precise definition of the ground truth has crucial im
portance in benchmarking studies. Current studies rely on ei
ther simulated data or experimental silver standard 
networks. While these methods represent the state-of-the-art, 
it is essential to acknowledge the limitations associated with 
both types of ground truths. Simulated data faces constraints 
related to the parametrization of ground truth networks into 
ODE or SDE models, as exemplified by BoolODE, which 
could affect network identifiability (Erbe et al. 2023). 
Nonetheless, innovative approaches are emerging, leveraging 
mechanistic models of gene regulation (Erbe et al. 2023), or 
deep-learning-based models (Zinati et al. 2023). These 
advancements aim to directly generate scRNA-seq datasets 
that encode direct causal regulatory relationships. 
Conversely, experimental silver standard networks are typi
cally derived from ChIP-seq experiments. These experiments, 
while valuable, come with known limitations, including se
quencing errors and GC bias (Park 2009). Such limitations 
may result in missing or inaccurate edges within the ground 
truth network. Furthermore, the incompleteness of these net
works can affect the estimation of topological properties. 
These limitations are shared across benchmarking studies. 
However, the development of robust, widely applicable com
putational pipelines, such as STREAMLINE, is essential for 
ongoing enhancements in ground truth network generation 
and paves the way for more accurate assessments in the 
evolving landscape of benchmarking studies.

Finally, the topological quantities we considered can also 
be used to optimize community-based inference schemes. 
Currently, consensus networks are derived from the outputs 
of different methods by taking into account only their perfor
mance in estimating edges. Instead, new strategies could be 
devised that also consider the estimation of the network’s to
pological properties.
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