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Abstract 

Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host- 
associated micr obiomes hav e commensalic, beneficial/symbiotic, or pathogenic phenotypes. Mor e than 100 years a go, Lor enz Hiltner, 
pioneer of soil micr obiology, intr oduced the term ‘Rhizosphere’ to c har acterize the observation that a high density of saprophytic, 
beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the 
health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes 
of cooperati v e and competiti v e functions ar e in action. Small diffusib le molecules like (phyto)hormones, v olatiles and quorum sensing 
signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by dif- 
fer ent autoinducib le meta bolites in a density-de pendent manner. In this perspecti v e pub lication, the r ole of QS-r elated acti vities for 
the health of hosts will be discussed focussing mostly on N -acyl-homoserine lactones (AHL). It is also considered that in some cases 
v er y close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome 
and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health 

impr ov ement of eukaryotic hosts. 

Ke yw ords: control of pathogens; host beneficial microbes; N -acyl-homoserine lactones; One Health concept; opportunistic human 

pathogens; quorum sensing molecules; systemic induction of tolerance to abiotic stress 
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Introduction 

As result of the evolution of life on Earth, all higher organisms 
are living as holobiots characterized by tight interaction with a 
div ersity of micr obes . T he hologenome concept considers holo- 
bionts as units of coevolution and selection of well-adapted pro- 
and eukaryotic organisms leading to constructive co-operations 
(Stencel et al. 2018 ). In the evolution of land plants, soil microbes 
found roots as most attractive interaction area. More than 100 
years ago, the term ‘Rhizosphere’ was defined by Professor Lorenz 
Hiltner as the plant root-dominated habitat where soil microbes 
live on the expense of low and high molecular weight root exu- 
dates (Hiltner 1904 , Hartmann et al. 2008 ). Symbiotic and plant- 
beneficial inter actions e volv ed in specific bacteria and fungi con- 
tributing to major needs of the plant, such as the supply with es- 
sential nutrients like nitrogen from the air and macro- and mi- 
cr onutrients fr om the soil. Nitr ogen-fixing bacteria or mycorrhizal 
fungi ar e pr ominent examples for plant-symbiotic micr obes. As 
Recei v ed 23 J an uar y 2024; revised 28 Mar c h 2024; accepted 13 May 2024 
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess on behalf of FEMS. This
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lr eady Lor enz Hiltner r ecognized, not onl y sa pr ophytic and bene-
cial but also pathogenic microbes are attracted by root exudates,
ausing chances and challenges for plant health (Mendes et al.
013 , Abedini et al. 2021 ). Most r ecentl y, rhizospher e pha ge com-
 unities wer e identified to suppr ess bacterial plant disease (Yang

t al. 2023 ). Mec hanisms hav e been identified by which plants
an form the rhizosphere microbiome in a kind of ‘rhizosphere
chool’ to support healthy plant development (Berendsen et al.
012 ). Biofilms are the natural habitats for microbes, and there-
or e cooper ativ e and competitiv e inter actions within complex sur-
ace microbial biofilms are of k e y importance during root colo-
ization (Nadell et al. 2016 ). These interactions decide about suc-
ess or failure of beneficial microbes to support plant health or of
athogens to de v elop diseases. In the densely populated biofilms
f the rhizosphere, bacteria optimize the expression of their ge- 
etic potential using diffusible signal molecules to sense the den-
ity of their own and neighbouring population (Fuqua et al. 1994 ).
 is an Open Access article distributed under the terms of the Cr eati v e 
h permits unrestricted reuse, distribution, and reproduction in any 

ne 2024
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Figure 1. Structures of QS autoinducers: AI-1 (AHLs), AI-2 (furanosyl borate diester), and AI-P (autoinducer peptide): In AI-1/AHLs, the C3-carbon of the 
carbonyl fatty acid chain can alternatively carry a hydroxy-residue; the fatty acid chain may also carry a C–C double bond. AI-2 can exist as the boron 
containing S-THMF-borate (2S, 4S)-2-meth yl-2,3,3,4-tetrah ydroxytetrah ydrofuran (QS-active form) or the nonboron form R-THMF (2R, 
4S)-2-meth yl-2,3,3,4-tetrah ydroxytetrah ydrofuran. The AI-P1, AI-P2, AI-P3, and AI-P4 structur es wer e identified in S. aureus (Sc haefer et al. 2008 ). 
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uorum sensing (QS) is of central importance for successful adap-
ation to changing environmental conditions and colonization of
nd e v entual establishment within an eucaryotic host (Mukherjee
nd Bassler 2019 ). The rhizosphere also provides a stage for mul-
iple avenues of natural genetic engineering, involving horizon-
al gene transfer (Van Elsas et al. 2003 ), transduction of genetic
lements with plasmids (Shintani et al. 2020 ), enhanced muta-
ion rates, and phenotypic variations (Achouak et al. 2004 , van de
roek et al. 2005 , Li et al. 2012 , Lalaouna et al 2011 ). For exam-
le, man y bacteria acquir ed m ultiple luxI- and/or luxR- QS gene ho-
ologues from independent sources via horizontal gene transfer

Ler at and Mor an 2004 ). QS activities ar e pr e v alent in commen-
alic , beneficial/symbiotic , and pathogenic plant-associated bac-
eria (von Bodman et al. 2003 ). 

The first evidence for the involvement of QS-signals and their
er ceptions b y plant hosts w er e r e v ealed by Mathesius et al. ( 2003 )
nal ysing the r esponse to AHL-QS-signals by Medicago truncatula
nd by Schuhegger et al. ( 2006 ) studying induction of pathogen
 esistance after AHL-a pplication to r oots of tomato plants. Fur-
hermor e, QS-r elated genes were identified in the endosphere bac-
erial metagenome of rice by Sessitsch et al. ( 2012 ) and in the
acterial microbiome of Populus deltoides (Schaefer et al. 2013 ). In
ddition, bacteria harbouring QS-genes wer e fr equentl y isolated
r om the rhizospher e and endospher e of plants . T he ability to
ommunicate with each other and to trigger essential functions
n a timely and optimized manner is an important feature for
ingle cell organisms to efficiently use their genetic potential as
n or ganized comm unity (Hense et al. 2007 ). Among the QS sys-
ems, N- acyl-homoserine lactone (AHL, AI-1) circuits are present
n man y Gr am-negativ e bacteria (Fuqua et al. 1994 ). AHLs are
mall diffusable molecules having differ ent structur es consisting
f a fatty acid moiety with differ ent c hain length (4–20), and l -
omoserine lactone (Fig. 1 ). The fatty acid chain can be modified
t the C3-position with a hydroxy- or oxogroup or replaced by a
 -coumar oyl- or cinnamon-r esidue (Sc haefer et al. 2008 , Ahlgr ee
t al. 2011 ). AHL-biosynthesis and perception occurs through a
wo-component LuxI/LuxR system. The LuxI-enzyme catalyses
he binding of acylcarrier protein-bound S -adenosylmethionine
o the acyl chains resulting in AHLs . T he LuxR-receptor binds
HLs and the LuxR-AHL-complex finally activates diverse pro-
otors, including the LuxI- promotor. The special feature of QS-

ignalling is that small and diffusible molecules are constitutively
r oduced in v ery low amounts. When AHL-concentr ations rise

n more dense populations above a critical concentration, called
uorum, its biosynthesis is autoinduced. At high signal concen-
rations, a set of genes (the QS-activated transcriptomes) is in-
uced by the LuxR–AHL complex. This opens up new areas of
unctions essential, e.g. for efficient colonization of a new host.
S-controlled genes often code for the construction of biofilms,
ydr ol ysis and degr adation of nutritional carbon pol ymers and
ubstances, the induction of virulence, and the synthesis of di-
 erse sider ophor es and antibiotics (Hense and Schuster 2015 ). The
o-called autoinducer-2 (AI-2), furanosyl borate diester, are pro-
uced by some Gr am-negativ e and Gr am-positiv e bacteria (P a-
enfort and Bassler 2016 ) (Fig. 1 ). AI-2 is synthesized by the LuxS-
rotein, and specific AI-2 receptors (e.g. LuxPQ-receptor protein
f Vibrio harveyi ). The lack of genomic evidence of AI-2 receptors
n some bacteria may suggest a non-QS role for LuxS in these
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bacteria (Rezzonico and Duffy 2008 ). In Gr am-positiv e bacteria,
like Streptococcus pneumoniae or Staphylococcus aureus , different au- 
toinducing peptides (AI-P) are produced (Fig. 1 ), which activate 
e.g. virulence and toxin production during growth in biofilms in a 
density-dependent manner (Parsek and Gr eenber g 2005 ). Further 
QS-signal molecules are mentioned by Hartmann et al. ( 2021 ). Be- 
sides QS-signals, root-associated microbes produce a high diver- 
sity of signalling compounds, like volatiles (Schultz-Bohm et al.
2017 , de Boer et al. 2019 ), and diverse plant hormones, which in- 
fluence plant hosts in multiple ways (Gamalero et al. 2023 ). 

Since microbes interact with all eukaryotes in holobiotic-type 
life forms, comparable signalling mechanisms and principles of 
cooperation and/or competition are present in all holobionts, 
which will be discussed in this perspective publication. Likewise,
differ ent or gans of mammalian hosts, including human, like skin,
oral cavity, lung, or gut ar e colonized with QS-activ e bacteria 
of various types, which have beneficial or pathogenic features 
(Whiteley et al. 2017 ). It also needs to be considered that in some 
cases very close phylogenetic relationships exist between plant 
beneficial and opportunistic human pathogenic bacteria (Berg et 
al. 2005 , 2014 , Abreo and Altier 2019 , Faoro et al. 2019 ). In the 
tr anslation of potentiall y ther a peutic or supportiv e a ppr oac hes 
for sustainable a gricultur e or human health, the application of 
metabolites or pr obiotic micr obes with health-supporting sig- 
nalling capabilities could be of central importance to better con- 
trol pathogens and support health and well-being of eukaryotic 
hosts based on natural socio-microbiological mechanisms. 

QS-AHL signalling: different AHL functions in 

plants, LuxR solo receptors, QQ activities, AHL 

uptake, and signal perception 

Man y Gr am-negativ e pathogenic bacteria or ganize their virulence 
using the AHL-circuit to attack plants (Pollumaa et al. 2012 ),
while symbiotic nitrogen-fixing rhizobia initiate and coordinate 
root colonization and nodule formation with a diversity of AHL- 
autoinducers (González and Marketon 2003 ). The importance and 

wide distribution of QS-signals in bacteria–plant interaction pro- 
vide the coevolutionary rational for the sensitive recognition and 

perception of AHLs by plants leading to an effective stimulation 

of the innate immune defence system also by beneficial rhizo- 
sphere bacteria initiating specific pathogen defence measures or 
impr oving abiotic str ess toler ance (Sc hik or a et al. 2016 ). The AHL- 
based priming of defence is an cost-efficient strategy to fight back 
pathogens (Shrestha et al. 2020 ). 

LuxR-solo receptors 

In addition to the cognate LuxI/LuxR-signal circuit, many Gram- 
negative bacteria harbour one or several so-called LuxR solos,
whic h ar e not pair ed with a classical LuxI-type synthetase, and 

are thus unable to produce AHLs themselves (González and Ven- 
turi 2013 ). These luxR-solos play a pivotal role in intra- and in- 
terspecies, as well as interkingdom, comm unication. Differ ent 
classes of LuxR-solo systems can be distinguished, which perceive 
endogenous and exogenuos AHLs as well as non-AHLs signals 
(Bez et al. 2023 ). LuxR regulators are widely distributed bacterial 
helix-turn-helix transcription factors involved in QS-type mech- 
anisms . T hey are also found in 50% of the genomes of Gram- 
positive Actinobacteria for traits at environmental and medi- 
cal le v els in connection with QS and virulence strategies (San- 
tos et al. 2012 , Sarveswari and Solomon 2019 ). As example for 
non-AHL exogenous signals, host-specific signals of kiwifruit are 
per ceived b y PsaR2 LuxR solo in Pseudomonas syringae pv. actini- 
iae , aimed to induce virulence factors like biofilm formation,
otility and endophytic colonization (Cellini et al. 2022 ). This

ubclass of LuxR solos is fr equentl y found in plant-associated
acteria, both beneficial/symbiotic or pathogenic bacteria re- 
ponding to different plant signals (Patel et al. 2013 ). In some
ases the signals are similar to AHLs; e.g. Br aR fr om the stem-
odulating legume symbiont Bradyrhizobium japonicum responds 
o cinnamoyl-homoserine-HSL, derived from the plant metabo- 
ite cinnamon (Ahlgreen et al. 2011 ). RpaR from Rhodopseudomonas
alustris binds to p -coumar oyl-HSL deriv ed fr om the exogenous p -
oumar ate (Sc haefer et al. 2008 ). The LuxR-solo QscB receptor and
he QscR regulon in the pathogen P. aeruginosa is different from
he also present canonical LuxI/LuxR tandem and stimulates vir- 
lence activities through increased biosynthesis of the antibiotic 
henazine (Fuqua et al. 1994 ). 

Q activities by AHL hydr olysis, o xidoreductase, 
nd other quenching mechanisms 

n the light of the centr al r ole of QS for virulence acquisition,
he inhibition of QS, including quorum quenching (QQ) by cleav-
ng and inactivating the QS-moieties or by inhibiting the QS-
utoinducer action is attracting high attention. Inhibitory mech- 
nisms include blocking the QS-signal synthesis, inhibition of the 
utoinducer reception, and signal transport (summarized by Hart- 
ann et al. 2021 ). A large number of especiall y Gr am-positiv e bac-

eria and e v en fungi, but also plant and mammalian hosts, har-
our different types of AHL-quenching activities (Grandclément 
t al. 2016 ). AHL-signals can undergo different modes of degrada-
ion and inactivation in the rhizosphere. Chemical hydrolysis of 
HLs occurs at neutral and alkalic pH-values but AHLs are stable
t acid pH-values. Efficient enzymatic degradation occurs through 

HL-lactonases and AHL-acylases/amidases. In addition, AHL- 
xido-r eductases wer e described (Chowdhary et al. 2007 ). Growth
nd QQ-activity of Rhodococcus erythropolis R138 was efficiently 
timulated by the organic amendment of gammaheptalactone 
eading to efficient biocontrol of potato (Cirou et al. 2012 ). Also,
 strong inhibition of the QS-regulated pathogen Pectobacterium 

trosepticum w as sho wn b y gamma-lactone stimulated R. erythro-
olis resulting in efficient in planta biocontrol (Barbey et al. 2013 ).
urthermore , a no vel type of AHL-acylase of Ochrobactrum sp. A44
as demonstrated to quench the AHL-dependent virulence of P.

arotovorum in planta (Czajkowski et al. 2011 ). In the context of
or al r eef disease—a case of high global importance—the a pplica-
ion of QS-antagonists to white band disease-infected Acropora cer- 
icornis inhibited disease-causing bacteria and stopped coral reef 
isease de v elopment (Certner and Vollmer 2018 ). Most r ecentl y,
 novel type IVA secretion system (T4ASS) effector was discov-
red in Lysobacter enzymogenes OH11 (Liao et al. 2023 ). This T4ASS
s able to deliver a protein (Le1288) into P. fluorescens SPL4, which
cts there as a AHL-synthase inhibitor. It was shown that this
4ASS-mechanism is working also to inhibit the human pathogen 

. aeruginosa and the plant pathogen Ralstonia solanacearum (Liao et
l. 2023 ). QS-r elated interv entiv e actions within host-associated
icr obiomes ar e of high gener al r ele v ance also for the balance

f beneficial and pathogenic bacteria in mammalian and human 

ealth (see below). In Arabidopsis thaliana and some other dicotyle-
onous plants, especially legumes, fatty acid amid hydrolases 
leave AHLs by liberating the fatty acid tail and l -homoserine
HS; Palmer et al. 2014 ). Interestingly, l -HS is not only able to
tim ulate r oot gr owth but also impr ov e water and nutrient up-
ake into the plant (Palmer et al. 2014 ). It was e v en found that
HL-producing rhizobacteria, like Pseudomonas putida IsoF, itself 
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Figure 2. AHL interactions with plants (example: Arabidopsis , barley): the perception of AHLs by plants can be divided into interactions with short- and 
long-carbonyl side chain AHLs. Water-soluble AHLs (like C6- to C10-HSLs) are transported in an active transport process through the central cylinder 
(Sieper et al. 2014 ) to the shoot, if AHLs are not degraded by plant lactonases. In the roots, hyperpolarization and K 

+ -uptake occurs and growth and 
later al r oot formation is incr eased (von Rad et al. 2008 , Liu et al. 2012 , Rankl et al. 2016 ). In addition, abiotic and defence gene ar e activ ated in the 
shoots (Götz-Rösch et al. 2015 ). Lipophilic AHLs like C12- and C14-HSLs are perceived by a membrane protein (ALI1) (Shrestha et al. 2022 ). In the roots, 
NO is produced and a systemic signalling cascade to the shoots is activated including salicylic acid and oxylipin (cis-OPA/12-oxo-phytodienolic acid) 
leading to increased expression of MAP-kinases (MAKs) and defence-related transcription factors WRKY22 and 29 (Shrestha et al. 2019 , 2020 ). 
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arbour AHL-degrading activities, leading to reduced intra- and
xtr acellular AHL-concentr ations (F ekete et al. 2010 ). T he biosyn-
hesis of C10-HSL in batch as well as contiuous cultures of P. putida
soF and the simultaneous appearance of the cleavage product
 -HS were quantified using high resolving UPLC-measurements
nd ELISA-technique (Chen et al. 2010 , Buddrus-Schiemann et al.
014 ). The ecological meaning of this activity could be to limit the
HL-production to a specific culture phase. Alternatively, it could
rovide plants in another growth phase with the stimulatory l -HS

Palmer et al. 2014 ). 

HL-uptake 

ome plants, like wheat and barley, a ppar entl y lac k AHL-
egrading enzymes and take up unhydrolyzed AHLs. Water sol-
ble C6–C10 AHLs w ere sho wn to be taken up into the shoot via
ctiv e tr ansport (Götz et al. 2007 , Sieper et al. 2014 ). The transport
nside the roots occurs in the central cylinder as w as sho wn b y
utor adiogr a phy using 3 H-labelled C8- and C10-HSL; the trans-
ort was inhibited by ortho vanadate , demonstrating that ABC-
r ansporters ar e involv ed. The identity of the transported AHLs
n the shoots was pr ov en and quantified by AHL-specific mon-
clonal antibodies, de v eloped by Chen et al. ( 2010 ), and AHL-
ensor strains (Sieper et al. 2014 ). In contrast to Hordeum vul-
are (cv Barke), the legume Pachyrhizum erosus (L.) did not take
p AHL efficiently, as was shown by ultra-performance liquid
 hr omatogr a phy (UPLC) and Fourier transform ion cyclotron res-
nance (FTICR)-mass spectrometry (Götz et al. 2007 ), due to AHL-
egradation in the roots. Further detailed analysis via FTICR-
S and UPLC r e v ealed a metabolism to w ar ds C3-hydroxy- and
3-oxo-HSLs in the root compartment especially for C8- and
10-HSL, which may contribute to reduce the transport into

he shoot (Götz-Rösch et al. 2015 ). In addition, a c hir al sep-
ration of d / l -forms by GC–MS demonstrated that barley se-
ects the l -forms during activ e tr ansport (Götz et al. 2007 , Sieper
t al. 2014 ). 
HL perception as plant growth stimulans and 

riming agent for pathogen and abiotic stress 

olerance 

n barley, initial reactions occurs in root cells after treatment with
0 μM C6-, C8-, and C12-HSL (Rankl et al. 2016 ). Nitric oxide (NO)
ccumulates in the calyptra and root elongation zone and also
he later al r oot formation is c hanged. In addition, incr eased K 

+ -
ptake occurs in root cells, and membrane hyperpolarization is
romoted in epidermal root cells especially by C8-HSL (Rankl et
l. 2016 ). Upon application of C6-, C8-, and C10-HSL to the roots,
he antio xidati ve and deto xifying ca pacities ar e incr eased in the
hoots of barley (Fig. 2 ). As compared to control plants, the ac-
ivity of dehydroascorbate reductase in barley shoots after C10-
SL treatment is greatly increased, whereas superoxide dismu-

ase activity is slightly decreased after application of C6-HSL to
he root system (Götz-Rösch et al. 2015 ). In contrast, the response
f antio xidati v e enzymes in leav es of y am beans w as lo w prob-
bly due to reduced uptake of AHLs. In addition, the response
f cytosolic glutathion-S-tr ansfer ase (GST) isoforms in r oots and
eaves to AHLs were increased or decreased dependent on the iso-
orm tested in root or shoot compartments in comparison with
am bean (Götz-Rösch et al. 2015 ). In the light of the observed
esponses of antioxidant and detoxifying plant activities to w ar ds
HLs , these QS-signals ma y be r egarded as str engthening a gents
r plant antistress boosters. 

The molecular structure of AHL-autoinducers determines the
ode of action to w ar ds plant gro wth stimulation or priming of

athogen resistance (Fig. 2 ). For example in barley and wheat,
hic h ar e de void of AHL-lactonases and -hydr olases, water-

oluble AHLs are taken up into the shoots by an energy-dependent
ransport leading to enzymatic changes in leaves (Sieper et al.
014 , Götz-Rösch et al. 2015 ). Water-soluble C4-, C6-, and C8
SLs were also shown to change the phytohormone balance of A.

haliana seedlings, modifying root/shoot growth and metabolism
von Rad et al. 2008 ). When these AHLs were added to roots (at
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10 μM concentration) a multitude of genes, mostly connected 

with phytohormone r egulation, wer e ne wl y induced in r oots and 

shoots, while others were repressed (von Rad et al. 2008 ). A spe- 
cial role in this stimulation with C6- and C8-AHLs was identified 

for the GCR1/GPA1 genes in A. thaliana (Liu et al. 2012 ). While 
r oot gr owth of GCR1-m utants failed to be stim ulated by C6- and 

C8-HSL, ov er expr essing m utants sho w ed incr eased gr owth r e- 
sponses. In ad dition, calmodulin rece ptors w ere inv olved in pri- 
mary root elongation, caused by 3-oxo-C6 HSL (Zhao et al. 2015 ).
Furthermore , AtMYB44 was in volved in enhanced elongation of 
the primary root by increasing cell divisions in the root meristem 

and enhanced cell elongation in the elongation zone (Zhao et al.
2016 ); this was accompanied by altering the cytokinin and auxin 

metabolism in roots. In Arabidopsis and wheat, 3-oxo-C6 HSL was 
able to enhance salt tolerant growth (Zhao et al. 2020 ). In 3-oxo- 
C6-tr eated salt-str essed plants, the content of c hlor ophyll as well 
as the osmolyte proline was increased and the content of mal- 
onedialdehyde and the Na + /K 

+ -r atio wer e decr eased (Zhao et al.
2020 ). 

AHLs with long aliphatic chains (C12- and C14-HSL), which 

cannot be transported into the shoot, are also able to mod- 
ify plants by conferring systemic resistance towards biotrophic 
and hemibiotrophic pathogens via altered activation of AtMPK6 
(Sc hik or a et al. 2011a ). In barley, this response was only present in 

certain cultivars and therefore has to be regarded as a genetically 
determined pr operty (Shesthr a et al. 2019 ). In Arabidopsis , as early 
response specific receptors could be involved to perceive the AHL- 
signal and to activate a signalling cascade including salicylic acid 

(SA) and oxylipin 12-oxo-phytodienolic acid (cis-OPDA) (Schenk 
and Sc hik or a 2015 ; Shr estha et al. 2020 ) (Fig. 2 ). In the pres- 
ence of fla gellin-deriv ed peptide flg22 and C12-HSL, MAP-kinases 
MPK3, and MPK6 are increasingly stimulated and expressed for 
a prolonged time along with the upregulation of defence-related 

transcription factors WRKY22 and WRKY29 (Shrestha et al. 2019 ) 
(Fig. 2 ). Also, glutathione-S-tr ansfer ase GST6 -gene and the heat 
shoc k pr otein Hsp60 ar e induced. In Arabidosis exposed to mix- 
tures of 3-o xo-C6-, 3-o xo-C8-, 3-o xo-C12-, and 3-o xo-C14-HSLs 
the response differ as compared to plants treated with single 
AHLs and jasmonates play an important role (Duan et al. 2023 ).
The fast and stable decreased concentration of COOH-JA-Ile after 
challenge with flg22 as well as the JA- and SA-affected Arabidop- 
sis m utants str engthened the conclusion that JA-homoeostasis is 
involved in AHL-priming (Duan et al. 2023 ). Ho w e v er, a deeper 
understanding of specific plant factors mediating the response 
to water-insoluble AHLs, like 3-oxo-C14-HSL, was missing. Most 
r ecentl y, the comparison of wild-type A. thaliana Col-0 and the 
o xo-C14-HSL insensiti v e m utant ali1 allo w ed deeper insights. In 

Arabidopsis , the gene AtGlcAk2 for glucuronokinase 2 is identical 
with ali1 (Shrestha et al. 2022 ) (Fig. 2 ). Zhao et al. ( 2013 ) had de- 
scribed this gene already as a putative kinase from the GHMP ki- 
nase family being involved in root and flo w er development, ab- 
scisic acid signalling, and str ess r esponse influencing the expres- 
sion of various ABA-related genes as well as salt stress. MAP- 
kinase activity measurements, gene expression, and transcrip- 
tome analyses as well as pathogenicity assays confirmed a loss of 
AHL-priming in AtGlcAK2/Ali1 mutants (Shrestha et al. 2022 ). Fur- 
thermor e, when fluor escentl y ta gged ALI1-pr otein was expr essed 

in tobacco lea ves , ALI1 colocalized with the plasma membrane,
tonoplast, and endoplasmic reticulum in the cell periphery. T hus ,
the ALI1-protein may be regarded as surface receptor for 3-oxo- 
C14-HSL and other water-insoluble AHLs . T his no vel insights ma y 
further impr ov e the de v elopment of str ess r esistance of plants,
useful for sustainable crop management (Shrestha et al. 2022 ). 
Tr ansgenicall y modified plants with introduced QS- 
utoinducer synthesis genes are able to communicate with 

acteria in the rhizosphere by altering their QS-controlled activi- 
ies (Fray et al. 1999 ). For example, tomato plants harbouring the
HL-biosynthesis genes yenI and lasI from Burkholderia graminis 
tr ains alter ed the activity of these str ains in the rhizospher e,
eading either to increased or decreased plant growth stimulation 

r resistance to w ar ds salt stress (Barriuso et al. 2008 ). 

S-/AHL-systems in plant growth promoting and 

athogenic bacteria 

t has become a ppar ent that within bacterial gener a, whic h ar e
nown for efficient rhizosphere and endophytic root coloniza- 
ion, plant beneficial, symbiotic, and e v en opportunistic human
athogenic bacteria are closely related. Several examples are pre- 
ented below, which demonstrate that plant beneficial bacteria 
ith probiotic potential exist in the same species with opportunis-

ic pathogens . T her efor e, the need for car eful e v aluation of possi-
le health risks for applications of these bacteria in agricultural or
or biotechnological purposes is necessary, if the separation from 

athogens are not approved by clear phylogenetic criteria. 
A high diversity of AHL-producing, plant beneficial Gram- 

egativ e bacteria ar e no w kno wn since se v er al decades to
upport growth of many crop plants under challenging abiotic 
nd biotic conditions. Gluconacetobacter diazotrophicus PAL5 is an 

ndophytic diazotrophic Gram-negative bacterium, first isolated 

n 1988 from inside sugar cane stems (Cavalcante and Döbereiner
988 ). It can colonize numerous other plant species and confers
e v er al beneficial effects including abiotic and biotic stress tol-
rance and improved plant growth. In addition to the biological
itrogen-fixation activity and the production of se v er al plant
ormones, it was shown to harbour an active AHL-QS regulatory 
ystem (Bertini et al. 2014 ) producing eight different QS-signals
ased on C6-, C8-, C10-, C12-, and C14-HSL (Nieto-Penalver et
l. 2012 ). When G. diazotrophicus PAL5 was inoculated to red rice
lants growing under water stress conditions, the expression of 
he LuxI -gene was str ongl y stim ulated at incr easing water deficit
onditions . T he transcription of the PR1- and PR10-genes along
ith se v er al antistr ess defence genes incr eased, like catalase and

uper oxide dism utase as well as ascorbate per oxidase (Filgueir as
t al. 2020 ). The induced systemic tolerance to water deficit was
ccompanied by the accumulation of osmoprotectant solutes 
nd the expression of defence genes against water deficit in plant
hoots . Furthermore , mutations in the LuxI/R system of PAL5
esulted in strong reduction in endophytic root colonization of 
ugar cane seedlings (Hartmann et al. 2019 ). 

Almost 50 years a go, diazotr ophic bacteria species of the genus
zospirillum ( A. lipoferum and A. brasilense ) were isolated and char-
cterized by the group of Johanna Döbereiner in Brazil (Döbere- 
ner and Day 1976 ). No w adays, at least 15 different species, mostly
f root-associated plant growth-promoting bacteria are officially 
escribed within this genus, demonstrating the ric h div ersity of
his efficient rhizosphere bacterium. Phytohormone interactions,
ased on indole acetic acid (IAA) production and other phyto-
ormones by these bacteria, are prevalent for successful inter- 
ction with di verse plants, lik e wheat, maize, sorghum, causing
ultiple plant growth-stimulating effects. Although, LuxI -genes 

nd the productions of AHLs were only found in some strains of
. lipoferum (Vial et al. 2006 ), the addition of C6- and C8-AHLs
ould stimulate biofilm formation, EPS-production and mobility 
n strain A. brasilense Ab-V5, a successfully applied A. brasilense
noculant strain (Fukami et al. 2018 ). It turned out that many
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zospirillum spp. strains harbour multiple copies of luxR , so-called
uxR-solo or orphans (Gualpa et al. 2019 ). This had been docu-
ented for other rhizosphere bacteria too (Patel et al. 2013 ). The
ost r ecentl y c har acterized diazotr ophic plant gr owth pr omot-

ng Azospirillum bacterium, A. argentinense type strain Az39 (for-
erly A. brasilense ), was isolated from roots of wheat plants in
rgentina (Dos Santos Ferreira et al. 2022 ). It is a plant growth-
r omoting rhizobacterium, pr oducing IAA besides other phyto-
ormones and harbours se v er al other plant growth-supporting
r operties including nitr ogen fixation (Cassán and Diaz-Zorita
016 ). Sur prisingl y it hydr ol yses AHLs, liber ating l -HS (Gualpa et
l. 2019 ). Together with the phytohormone-based interaction, the
HL-degradation activity of Az39 may contribute to its strong
lant gr owth-pr omotion activity, since l -HS has a plant stim u-

ating ability itslef (Palmer et al. 2014 ). Interestingly, A. argenti-
ense Az39 like other strains from the A. brasilense cluster (in-
luding A. baldaniorum Sp245) harbours up to 25 LuxR-proteins
harbouring LuxR -solo-sequences) providing receptors for AHLs
r related QS-signals from other bacteria or even possibly AHL-
nr elated signals fr om the plant for y et unkno wn interactions. It

s a very efficient bioinoculant for gramineae crops in Argentina
Cassán and Diaz-Zorita 2016 ). The former species Azospirillum
mazonense Y1, renamed to Nitrospirillum amazonense , carries a
anonical LuxI/R –QS system and has ther efor e m ultiple ways of
eneficial interactions with plant hosts based on AHL-signalling.
itrospirillum amazonense strain Y1 is currently used as successful
ommercial inoculant in sugar cane plantations. Pr esumabl y op-
ortunistic human pathogenic bacterial isolates, Roseomonas fau-
iae and Roseomonas genomospecies 6, were reported (Cohen et
l. 2004 ), whic h ar e phylogeneticall y v ery closel y r elated to A.
rasilense Sp7 T . Ho w e v er, DN A–DN A hybridization values of 61.2%
nd 54.2% place these Roseomonas isolates into a possibly new
pecies within Azospirillum (Hartmann et al. 2019 ). 

The genus Pseudomonas harbours a high number of species
any of which are associated with diverse plants , ha ving dif-

erent plant growth-promoting and protecting properties. For ex-
mple, P. segetis P6 isolated from Salicornia europaea rhizosphere
as c har acterized to harbour plant gr owth-pr omoting activity
nd QQ-mediated biocontrol (Rodriguez et al. 2020 ). Seed bio-
riming of tomato plants with strain P6 resulted in an increase

n plant height and weight. Its QQ activity was c har acterized as
n acylase . T hus , str ain P6 r educed soft r ot symptoms caused
y the QS-bacteria Dickeya solani , Pectobacterium atropsepticum , and
. carotovorum on potato and carrot. The QQ-activities of P6 also
rotected tomato plants against P. syringae pv. tomato, which
rganizes its virulence through AHL-sensing. T hus , P. segetis P6
a y ha v e biotec hnological a pplications. Pseudomonas putida IsoF,

solated from the rhizosphere of tomato, produces two AHLs,
-o xo-C10, and 3-o xo-C12 fr om ppuI/ppuR circuit. Inter estingl y,
he Ppu-system controls the expression of a large nonribosomal
eptide synthetase, whic h dir ects the biosynthesis of tw o c yclic

ipopeptide biosurfactants, putisolvin I and II. Putisolvins inhibit
he biofilm formation and also break down existing P. aeruginosa
iofilms (Cár camo-Oy ar ce et al. 2015 ). A br oad r ange of AHLs
nd other QS-active compounds are produced by Pseudomonas
tr ains , whic h ma y ha v e plant gr owth-pr omoting but also op-
ortunistic human pathogenic potentials (Venturi 2006 ). For ex-
mple, a dominant diazotrophic endophytic P. aerugionasa strain
M389 fr om P ennisetum glaucum (L.) was c har acterized by Gupta
t al. ( 2013 ). This diazotrophic bacterium even moves upw ar ds to
hoots, and r e v ealed v arious plant gr owth-pr omoting pr operties
ncluding mineral phosphate solubilization, siderophore produc-
ion, and antagonistic biocontrol properties. Pseudomonas aerugi-
osa harbours two complete QS-circuits involving AHL signals and
 third system using quinolones, which coordinate virulence ac-
uisition and other behaviours (Miranda et al. 2022 ). The major
HL 3-oxo-C12-HSL regulates virulence gene expression and also

nduces mammalian cell responses, including apoptosis and im-
une modulation (see also below). 
Rhizobium radiobacter F4 (syn. Agrobacterium tumefaciens ) was

 har acterized as an endofungal bacterium of Piriformospora indica
no w kno wn as Serendipita indica ). Piriformospora indica is known as
 plant gr owth-pr omoting, m ycorrhiza-lik e fungus, able to stimu-
ate growth and performance of many plants especially under bi-
tic and abiotic stress conditions (Varma et al. 2012 ). Like P. indica ,
he free-living bacterium increases plant biomass and enhances
 esistance a gainst bacterial leaf pathogens and salt stress (Glaeser
t al. 2016 ). Most inter estingl y, R. radiobacter F4 (RrF4) shows a high
egree of similarity to the plant pathogenic R. radiobacter C58, for-
erl y named A. tumef aciens C58. Ho w e v er, it has important differ-

nces in the tumour-inducing plasmid (pTi) lacking the T-region
including the ipt -gene) and in the accessory plasmid, because the
irH1 -gene is truncated (Glaeser et al. 2016 ). This documents, how
 plant beneficial bacterium may hav e de v eloped fr om a plant
athogenic one. It could be shown that RrF4 produces a spectrum
f QS-mediating AHLs with acyl-chains of C8, C10, and C12 as
ell as hydroxyl- or oxo-sustitutients at the C3-atom (Alabid et al.
020 ), which is quite typical for Rhizobia. In R. radiobacter F4NM13,
 lactonase-ov er expr essing tr ansconjugant of RfF4, the AHLs were
issing and also the plant biomass stimulation as well as the

ystemic resistance was partially compromised in Arabidopsis and
heat. Furthermor e, the AHL-deficient tr ansconjugant was lac k-

ng cellulose-like fibre scaffolds for efficient root surface attach-
ent. It could not penetrate into the intercellular spaces of the

ortex, which is in contrast to the strongly root colonizing endo-
ungal wildtype RrF4 (Alabid et al. 2020 ). T hus , AHLs contribute to
he plant growth stimulation of Rrf4, which may play an impor-
ant role in the P. indica symbiosis with a high diversity of crop and

edicinal plants (Varma et al. 2012 ). 
Acidovor ax r adicis N35 is an endoph ytic bacterium with plant

r owth-pr omoting activity in barley and wheat (Li et al. 2011 ); it
as c har acterized to pr oduce onl y the QS-autoinducer C10-HSL.
n araI mutant devoid of C10-HSL production lost the property

o efficiently colonize roots of barley. Comparable transcriptome
nalysis of axenic uninoculated barley seedlings with N35 wild
ype strain or araI -mutant inoculated plants revealed that the

utant-inoculated barley plants accumulated several flavonoids
Han et al. 2016 ), which can efficiently inhibit root colonization. It

ay be concluded from this observation that AHL production of
he A. radicis N35 wild type protect it from plant defence responses
f fla vonoids . 

ela tionship betw een plant beneficial and 

uman pathogenic bacteria 

n the genus Burkholderia , harbouring saprophytic, beneficial, sym-
iotic , human pathogenic , or opportunistic pathogenic species,
he assessment of the pathogenic potential of each species was
or a long time the reason that regulatory authorities banned all
nvir onmental r elease pr oposals for an y Bur kholderia str ain. The
pplication of whole genome-based comparative software tools
ogether with the assessment of the human pathogenic poten-
ial made a clarification possible (Angus et al. 2014 ). Based on the
omplete genome sequence data, conserved sequence indels (CSI)
er e successfull y used as molecular marker for the precise iden-

ification of thr ee differ ent gener a within the Bur kholderia clus-
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ter: Burkholderia (sensu strictu) , with pathogenic and opportunis- 
tic pathogenic species, Paraburkholderia , comprising the plant- 
associated and -beneficial species (Sawana et al. 2014 ), and Ca- 
balleronia , with a group of 12 environmental species (Dobritsa and 

Samadpour 2016 ). Se v er al canonical QS-sensing systems mostly 
based on AHLs and/or also LuxR-solo genes are prevalent in al- 
most all species in the Burkholderia cluster, which are the backbone 
to efficientl y or ganize either virulence or plant health supporting 
functions. 

It is a matter of fact, that plant pathogens can cross the king- 
dom border and cause human diseases (as r e vie w ed b y Kim et 
al. 2020 ). In the other direction, some human pathogens, like 
Salmonella enterica typhim urium, ar e known to hav e affinity to col- 
onize roots of diverse plants like barley, tomato, or Arabidopsis , be- 
ing e v en able to colonize the plant hosts endophytically (Kutter et 
al. 2006 , Sc hik or a et al. 2011b , Zarkani et al. 2019 ). T hus , ther e ar e
common principles shared by a diversity of bacteria to colonize 
and enter plant roots as well as mammalian tissues. For exam- 
ple the genus Herbaspirillum harbours w ell-kno wn efficient plant 
gr owth-pr omoting nitr ogen-fixing rhizobacteria, but also clinical 
isolates in Herbaspirillum species 3 (Baldani et al. 1996 ). Strains be- 
longing to H. seropedicae and H. frisingense (Kirchhof et al. 2001 ,
Straub et al. 2013 ) were characterized as plant growth-promoting 
rhizobacteria, but they are also isolated from human skin wounds,
sputum samples of cystis fibrosis patients, or other diseased hu- 
man or gans (Faor o et al. 2019 , Oliv eir a et al. 2021 ). Herbaspirillum 

frisingense Mb11, isolated from roots of the energy plant Pennise- 
tum purpureum in Brasil produced AHLs, while the GSF30 T , de- 
riv ed fr om Miscanthus spp. in Fr eising, German y, did not synthe- 
size AHLs; both groups of strains efficiently colonized seedlings 
of Miscanthus and barley endophytically (Rothballer et al. 2008 ).
Within H. hiltneri , isolated from surface disinfected wheat roots,
which is phylogenetically apart from the H . seropedica / H . frisingense 
cluster (Rothballer et al. 2006 ), nosocomial strains were not yet 
found. A detailed genomic and proteomic study of clinical and en- 
vironmental isolates of H. seropedicae revealed that clinical strains 
have lost the gene sets for biological nitrogen fixation ( nif ) and 

the type 3 secretion system (T3SS), which has been described to 
be essential for the interaction with plants. A different set of ac- 
cessory genes and genomic islands could be found in the clinical 
strains, like genes related to lipopolysaccharide (LPS) biosynthe- 
sis and neuABC genes, responsible for the biosynthesis of sialic 
acid. The neuABC- linked LPS was able to increase the bacterial 
resilience in the mammalian host aiding in the esca pe fr om the 
imm une system (Faor a et al. 2019 ). In clinical and envir onmen- 
tal isolates of H. frisingense , the genes in the core and accessory 
genomes wer e compar ed and numer ous unique clusters could be 
identified in clinical and rhizosphere strains. Some genomic is- 
lands wer e onl y found in clinical str ains, while others in all str ains.
T hus , a pr eada ptation to differ ent hosts was concluded (Oliv eir a 
et al. 2021 ). 

In the case of Serratia marcescens , harbouring a wide range of 
str ains fr om soil, water, and plant surfaces, also opportunistic 
human pathogens in hospitals and plant gr owth-pr omoting bac- 
teria in crops are known. In a pangenome approach, based on 

available genomic data, whole genome multilocus sequence type 
sc hemes (MLSTs) wer e a pplied (Abr eo and Altier 2019 ). In most 
cases, genomes of nosocomial and environmental isolates could 

be assigned to proposed nosocomial or en vironmental MLSTs . A 

minority of nosocomial strains harboured environmental MLSTs, 
which suggest that these have been recently derived from the en- 
vir onment. One envir onmental clase had only low numbers of vir- 
ulence and antibiotic resistance determinants and may r epr esent 
 group of prospective PGPR strains (Abreo and Altier 2019 ). In gen-
ral, it is not entirely clear, whether so-called clinical or nosoco-
ial strains are opportunistic pathogenic bacteria, which cause 

econdary infections only in imm uno-compr omised patients and 

hus worsen conditions in patients. It is a matter of fact that based
n general phylogenetic terms, opportunistic pathogenic bacteria 
an be separated from commensalic and beneficial bacteria only 
ith difficulty. Extensive experimental and genomic assessments 
f the pathogenic potential of each strain have to be conducted,
o allow a case to case decision (Angus et al. 2014 ; Lee et al. 2014 ),
f the strain should be used as inoculum for plants. A temperature
ptimum below 37 ◦C is another important criterium for an appli-
ation in the field. An r eaddr essing of the biosafety le v el of some
lready used plant growth promoting rhizobacteria to biosafety 
e v el 2 pr ohibited the continuation of the application in agricul-
ur e (K eswani et al. 2019 ). 

ontrol of the ecological balance of health 

upporting and threatening bacteria in 

ammalian habitats 

n comparison to the health situation in the rhizospher e, whic h
s str ongl y influenced by the plant and the soil micr obiome (Hart-

ann et al. 2009 , Sc hr eiter et al. 2014 ), the microbiological and
etabolic quality of food has an important role for the establish-
ent of a balanced structure and function as well as a healthy

tatus of human microbiomes in habitats, such as the oral cavity
nd the gut. From the early life times as baby and infant, edible
lant and other food microbiomes together with a nutritionally 
alanced food with low fat content and a healthy life style are a
ood basis for a sustainable health state (Berg et al. 2015 , Wasser-
ann et al. 2019 , Soto-Giron et al. 2021 ). It was r ecentl y shown

hat a high diversity of potentially health supporting bacteria are
ssociated with fresh fruits and vegetables harbouring functions 
or an ov er all healthy and balanced gut microbiome (Wicaksono
t al. 2023 ). In general, a high diversity of human microbiomes
s crucial for persistent health. High fat diet causes a clear shift
n the gut micr obiome, r esulting in a decreased ratio of Bacil-
ota/Actinomycetota (formerl y named: Firmicutes/Bacter oidetes) 
Daniel et al. 2013 , Walker et al. 2014 ) favouring a disbalanced gut

icrobiome. Specific sulfonolipids as metabolite markers and re- 
ated bacterial Alistipes and Odoribacter species were found specific 
or this unhealthy situation in the gut of mice (Walker et al. 2017 ).

S-signal production and degr ada tion in the oral 
avity 

he equilibrium of microbes is maintained through competitive 
nd cooper ativ e inter actions. An imbalance of the r esident mi-
robiota could be caused by changes in host-dependent habitat 
onditions or external factors like the quality of food. The de-
elopment of major oral diseases is usually not dependent on a
ingle oral pathogen, but on the entire microbial community and
ts activity in the oral cavity (Muras et al. 2020 ). For example, a
eduction of bacterial coaggregation and biofilm formation dur- 
ng dental plaque formation is beneficial for oral and teeth health
Simón-Sor o and Mir a 2015 ). Ther efor e, QS activities, which pos-
tiv el y influence biofilm structur es, certainl y play a major role
n caries and peridontal diseases. AI-Ps fr om Gr am-positiv e bac-
eria have been identified in different oral streptococci, and AI-
 were frequently found in different Gram-positive and Gram- 
egativ e or al pathogens like Streptococcus mutants or P orph yromonas
ingivalis (Frias et al. 2001 ). Furthermore, different isolates of En-
erobacter sp ., Pseudomonas sp ., and Burkholderia sp . from human
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ongue surface and dental plaque samples wer e c har acterized as
HL-producers (Goh et al. 2014 ). AHLs could also be detected in
aliva and sputum samples indicating a possible role in the den-
al plaque formation (Goh et al 2014 ). In ad dition, QQ-acti vities
ere detected in many bacterial isolates from healthy and peri-
ontal patients (Muras et al. 2020 ). These findings were corrob-
rated by the demonstration that the addition of AHL-lactonase
ii20J had an inhibitory effect on the de v elopment of or al biofilms.
sing confocal laser scanning microscopy, Aii20J inhibited in vitro
ixed-species and also saliva biofilms (Muras et al. 2020 ). Appar-

ntl y, not onl y AI-2 inhibitors but also AHL-lactonases or AHL-
uenching bacteria are QQ-strategies for the control of oral dis-
ases. 

Q of bacterial virulence by food substances 

any dietary metabolites were demonstrated to interfere with
acterial virulence and inhibition of QS (Dingeo et al. 2020 , Fala et
l. 2022 ). For example, pyrogallol competes with bacterial QS sig-
als for receptor binding, polyphenols and lignans sequester bac-
erial QS molecules, and the flavanon naringenin reduces the pro-
uction of QS-controlled virulence in P. aeruginosa PAO1. Capsicum
rutescens is a spicy chilli pepper, which is rich in bioactive com-
ounds such as capsaicin and luteolin. Capsicum frutescens extract
nd pure luteolin-inhibited QS in the model bacterium Chromobac-
erium violaceum and biofilm formation in P. aeruginosa PAO1 (Riv er a
t al. 2019 ). Apigenein and luteolin are compounds of Gnapalium
 ypoleucum DC extracts sho wing also strong QS-inhibitory activity
Li et al. 2022 ). In the model bacterium C. violaceum ATCC 12472
ioB , vioC , and vioD genes were strongly downregulated by api-
enin and luteolin. The effective treatment of bacterial infections
 y G. h ypoleucum extracts could thus originate from QS inhibi-
ion by these natural compounds and provides a potential mech-
nism for alternative applications of medicinal plants (Li et al.
022 ). It was demonstrated that secondary metabolites of medic-
nal plants, such as terpenoids , fla vonoids , and phenolic acids are
ntibacterial agents. In ad dition, the y exhibit n umerous anti-QS
echanisms via the inhibition of autoinducer releases, seques-

ration of QS-mediated molecules, and deregulation of QS gene
xpression (Bouy ahy a et al. 2022 ). 

Microbes in fresh products such as salate or fruits can have
 considerable health impact on the gut. Indeed, reconstructed
etagenome—assembled genomes from 156 fruits and vegeta-

les r e v ealed that the microbiomes of fresh fruit and vegetables
r e r epr esented by members of Enter obacteriales, Burkholderi-
les, and Lactobacillales in the gut microbiome. In these bacterial
amilies diverse QS-signalling activities, but also QQ and quorum-
nhibiting microbes and metabolites are represented (Wicaksono
t al. 2023 ). 

S-related microbe–host interactions in the gut 
unctional QS-systems are found not only in pathogenic but
lso in commensalic gut residents or probiotic bacteria (Fujii et
l. 2008 ). In a healthy situation, gut microbiota mutually inter-
cts with coe volv ed gut epithelial and immune cells in a bene-
cial r ecipr ocal way (Coquant et al. 2020 ). QS-signalling of bac-
eria was shown to have important roles in beneficial bacte-
ia intestinal cross-talk and contribute substantially to establish
ross-kingdom symbiotic interactions (Wu and Luo 2021 ). In the
 ysbiosis state, lik e inflammatory bo w el disease (IBD), microbe–

ntestine interactions drive inflammatory responses . T he distri-
ution of AHL-compounds detected in the feces of healthy and
BD-subjects correlated with the disease state (Landman et al.
018 ). One of the AHL-compounds, 3-oxo-C12:2-HSL, was highly
ecreased in fecal samples of IBD patients as compared to remis-
ion and healthy persons . T hus , the absence of this particular AHL
orr elated with dysbiosis. Concomitantl y, a decr eased le v el of Fir-
icutes whic h ar e indicativ e for normobiosis indicated dysbiosis.

urthermore, Landman et al. ( 2018 ) sho w ed that 3-oxo-C12:2-HSL
xerts anti-inflammatory properties on intestinal model cell lines
aco-2/T17. Ther efor e, AHL-pr ofiles may be considered as nonin-
 asiv e biomarkers for gut normobiosis. AI-2, whic h ar e pr oduced
y opportunistic pathogenic bacteria, wer e successfull y demon-
trated in vivo to modulate the gut microbiome and cause inflam-
ation (Thompson et al. 2015 ). ON the other hand, it was demon-

trated that mammalian epithelial cells in the gut produce an AI-2
imicking molecule in response to secreted bacterial factors and

ight-junction disruption, whic h activ ate QS in bacteria. This was
etected by bacterial AI-2 receptors LuxP/LsrB, and by the activa-
ion of QS-controlled gene expression of S. typhimurium (Ismail et
l. 2016 ). T hus , members of the gut microbiome could be activated
o colonize damaged sites and to repair epithelial tight junctions.
n mammalian systems the QS-autoinducer 3-oxo-C12-HSL and
imilar long acylcarbon-chain AHLs produced by Pseudomonas and
ur kholderia spp. ar e important signalling compounds involved in
erious diseases, like COPD. QS-autoinducers are of central im-
ortance to coordinate , e .g. biofilm formation and virulence de-
elopment (Whiteley et al. 2017 ). While Gram-negative bacteria
re known for diverse AHL-production, Gram-positive bacteria,
ainly Bacillota and Antinomycetota, are strong players in anti-
HL-QS-quenc hing systems, possibl y acquir ed by horizontal gene

ransfer (Rajput and Kumar 2017 ). QQ-activities of probiotic bac-
eria w ere sho wn to influence the micr obial comm unity in the gut
s well as immune functions in pigs (Kim et al. 2018 ). Antago-
ists of QS-systems of se v er e pathogens ar e of gr eat importance,
ecause mec hanisms tar geting QS hav e onl y minor c hallenge on
acterial cell viability and thus the selection for antibiotic resis-
ant pathogens should be pr e v ented (Zhong and He 2021 ). In addi-
ion, nov el scr eening str ategies wer e de v eloped for QS-inhibitors
o combat bacterial infections (Lu et al. 2022 ). 

QS-signalling can organize competing strategies to neighbour-
ng microbes. For example Gram-positive Propionibacteria, like
ropionibacterium freudenreic hii , hav e pr omising pr obiotic pr oper-
ies (Rabah et al. 2017 , Savijoki et al. 2023 ). Pr ogr ess in defining
uch metabolic interactions by in situ screening test was made
ossible by using biofilm-forming C. violaceum as a QS-reporter
nd a microscale screening platform. In this way, anti-QS effects
f Lactobacillus acidophilus , Lacticaseinbacíllus rhamnosus , P. freuden-
eichii , and other cheese-associated strains could be identified as
otent competitors for virulent pathogens (Savijoki et al. 2023 ). 

echanisms of signal perception 

imilar to the plant innate immune system, pathogen-associated
olecular patterns are recognized by highly sensitive and spe-

ific r ecognition r eceptors suc h as the toll-lik e rece ptors in mam-
als. In addition, the ada ptiv e imm une system with differ entiat-

ng dendritic cells (DC) and a guild of T-cells and macr opha ges
r e activ e in a coor dinated w ay building up the most efficient
da ptiv e imm une r esponse of mammals. Furthermor e, specific r e-
eptors ar e involv ed for bacterial sensing and perception by the
ammalian/human system, including QS-associated molecules

nd activities (Holm and Vikstrom 2014 ). In this context, nu-
erous LuxR- solo type orphan genes in the human genome may

ode for receptors responding to bacterial products, including QS-
ompounds, but also for unrelated metabolites of the host or other
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members of complex holobiont in a still unkno wn w ay (Yong and 

Zhong 2013 , Uhlig and Hyland 2022 ). The production of short 
chain fatty acids (SCFA) produced by commensal bacteria and 

probiotics in the gastrointestinal tract (GT) contribute to a bal- 
anced situation by stimulating e.g. the bacteriocin production of 
pr obiotic Lactobacillus str ains, whic h contr ol the virulence status 
of pathogens (Meng et al. 2021 ). 

G pr otein-coupled r eceptors (GPCRs) ar e potential tar gets facil- 
itating bacteria–host interactions by microbial-derived molecules 
including QS-signals . T his w as sho wn for the stim ulation of r oot 
gro wth b y AHLs with C6- and C8-fatty acid chain lengths in A.
thaliana (von Rad et al. 2008 , Liu et al. 2012 ) (see above) In gen- 
er al, GPCRs ar e members of a fr equentl y found gene famil y in the 
plant and human genomes, some of whic h ar e involv ed in bac- 
terial sensing (Kr asulov a and Illes 2021 ). Other non-GPCR tar gets 
were also described in sensing bacterial QS signals. 

In mammalian systems, an uptake of 3-oxo-C12-HSL was 
shown in experimental human lung epithelial cells (Bryan et al.
2010 ). An micr oarr ay of tr anscriptional r esponses of lung epithe- 
lial cells after exposure to 3-oxo-C12-HSL revealed the expression 

of se v er al xenobiotic-sensing and drug tr ansport genes. Using r a- 
diolabelled autoinducer uptake assa ys , incr eased intr acellular 3- 
oxo-C12-HSL le v els wer e found after exposur e, whic h decr eased 

afterw ar ds to bac kgr ound le v els. Since this pr ocess was inhibited 

by the ABC transporter ABCA1, it was concluded that mammalian 

cells detect and take up 3-oxo-C12-HSL, but expel it later after ac- 
tivation of protective transport systems (Bryan et al. 2010 ). 

AHLs wer e r ecognized as activ ators of the cytosolic aryl- 
hydr ocarbon r eceptors (AhRs), whic h r espond to plant pr oducts,
xenobiotics , indole molecules , and SCFAs . AhR-activity is dif- 
fer entl y r egulated by distinct QS molecules (Sun et al. 2020 ),
which could constitute a crucial role of AhR in the regulation of 
host metabolism by pathogenic, commensal, and probiotic bac- 
teria (Karlsson et al. 2012 , Natividad et al. 2018 ). Inter estingl y, d - 
tryptophan ( d -Trp) was identified as excreted metabolite of sev- 
er al pr obiotic bacteria, including L. rhamnosus GG, whic h may in- 
teract with the AhR-receptor (Kepert et al. 2017 ). d -Trp was shown 

to have stimulatory functions on developing DC-cells, to exert an- 
tialler gic r esponses, and to modify the gut micr obiome of mice 
(Kepert et al. 2017 ). In addition to known receptor-type sensors,
the lipid composition of the cell membrane, and the expression of 
gl ycolipids and tr ansmembr ane pr oteins wer e r ecentl y suggested 

to modulate the perception of QS and other signals and their per- 
ception (Uhlig and Hyland 2022 ). 

Bacteria defective in QS signalling are less efficient in colo- 
nizing the GT, which was found in commensal, probiotic, and 

pathogenic strains (Whiteley et al. 2017 ). For example, Strepto- 
coccus gallolyticus subsp. gallolyticus can only colonize the murine 
intestine when the QS-regulated bacteriocine-like peptides blpA 

and blpB are produced, since Blp-deficient mutants could not sus- 
tain in the intestine. LuxS-signalling of L. rhamnosus GG and Bifi- 
dobacterium breve UCC2003 is r equir ed for the adhesion to intesti- 
nal cells (Jiang et al. 2021 ) and persistence in the gastro-intestinal 
(GI) tract (Christiaen et al. 2014 ). 

Interactions with the human immune system 

Concerning responses of gut microbiota to host metabolites, 
Gr am-negativ e bacteria Esc heric hia coli , Shigella sp., and Salmonella 
sp. express QseC, a membrane-bound histidine sensor kinase that 
allows them to react to host-stress signals such as e pine phrine 
and nore pine phrine. Qsec inhibitors wer e de v eloped as antivir- 
ulence a ppr oac h a gainst Gr am-negativ e diseases (Rask o and 
perandio 2010 , Curtis and Russell 2014 ). This interkingdom ac-
ivation is referred to the autoinducer-3 (AI-3) system leading to
he activation of QS gene expression. QseC sensor kinase is in-
olved in GI disease caused by E. coli pathogens in rabbits . T he
abitat for direct interference of gut microbiota and human host
re the inner mucus and the gut epithelial barrier. The structure
f the intestinal mucus and epithelial barrier functions are greatly
nfluenced by the host defence status and the QS-activity of the
ut microbiome. While probiotics enhance barrier functions in 
itro and in animal studies, QS-regulated virulence factors from 

athogenic Citrobacterium difficile , E. coli , and S. typhimurium de-
r ease tr ansepithelial r esistance by modulation tight barrier junc-
ions. In contrast, QS-associated acti vities, involving 3-o xo-C12 
SL, were found to negatively impact gut integrity through the
ctivation of inflammatory pathways that impair intestinal bar- 
ier function (Adiliaghdam et al. 2019 ). AHLs, mostly 3-oxo-C12-
SL fr om P. aeruginosa , stim ulate inflammatory r esponses thr ough

he inhibitory interaction with neutr ophils, macr opha ges, and DC,
nall y causing a poptosis of those imm une cells . In this wa y, 3-
xo-C12-HSL producing bacteria pathogens effectiv el y inhibits at- 
empts oft he immune system to eliminate the a ggr essor (Coquant
t al. 2020 ). When LPS-stim ulated human DC wer e exposed to 3-
xo-C12-HSL, in vitro flow cell cytometric anal yses r e v ealed that
mportant DC surface markers like CD80, CD40, CD184, and HLA-
R were diminished, while 3-oxo-C4-HSL had no effect (Binder T,
hD thesis LMU Munic h, 2010). Accordingl y, the inflammation in-
ibitory cytokine IL-10 was decreased and the inflammation stim- 
latory cytokine IL-8 was increased, leading to a severe damping
ffect on the immune response . Furthermore , the migration of DC-
ells after treatment with LPS and 3-oxo-C12-HSL was decreased 

s well as their phagocytotic activity. This causes se v er e health
roblems of cystic fibrosis patients infected with P. aeruginosa (Co-
en et al. 2015 ). Figure 3 shows a schematic drawing of activities
f the autoinducer 3-oxo-C12-HSL of P. aeruginosa to w ar ds the hu-
an innate and ada ptiv e imm une system. 

onclusions 

icrobial health in the rhizosphere is interconnected with ‘One 
ealth’, because the health of each of its components is de-

ermined by the omnipresence of microorganisms (Banerjee et 
l. 2023 ). Rhizospher e micr obiomes ar e tightl y linked to soil
nd plant microbiomes and their reservoirs for extr emel y di-
 erse micr obioms also influence animal and human health (Hart-
ann et al. 2009 , Sc hr eiter et al. 2014 ). In the rhizosphere, a

ic h suppl y of substr ates leaking out of roots guarantees excel-
ent conditions for microbial activities, which also provide the 
asis for efficient coevolution of environmental and plant mi- 
robes with each other in the context of the plant host as master.
his includes natural genetic engineering using horizontal gene 
r ansfer, plasmid tr ansduction, high m utation r ates, and pheno-
ypic switching. In the efficient ‘rhizosphere schools’ of evolu- 
ion the selection of adapted rhizosphere communities through 

hanging the exudation pattern constantly occurs (Berendsen et 
l. 2012 ). Under these selective conditions QS-signalling-based 

icr obe–host inter actions to w ar ds beneficial/cooper ativ e as well
s pathogenic/competitive relations have evolved. The knowledge 
bout responses of plant and mammalian/human hosts to bac- 
erial QS-signalling compounds and their pr oducers ar e consid-
r able adv anced. A lar ge body of data about the interaction of
athogenic, symbiotic/beneficial, and commensalic bacteria ac- 
um ulated, whic h ar e involv ed in plant or human health (LaSarre
nd Federle 2013 , Mendes et al. 2013 , Sc hik or a et al. 2016 ). In
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Figure 3. AHL-interactions with mammalian immune system (example: 3-oxo-C12-HSL of P. aeruginosa and lung) (Binder, PhD thesis, LMU Munich 
2010 ): DC are influenced by 3-oxo-C12-HSL during their ripening process stimulated by lipopolysacharide (LPS), leading to diminished phagocytosis 
and reduced expression of surface mark ers, lik e CXCR4, MHC, CD83, and CD80. The CXCR4-marker is involved in the regulation of migration of DC to 
lymph nodes, while the reduction of other surface markers lead to the induction of cyclooxygenase (Cox-2) having a modulatory role in inflammation 
pr ocesses; pr osta glandines ar e incr eased supporting the Th2-r esponse in the l ymph node, whic h support a r educed ripening of DC-cells, meaning 
reduced inflammation response (Skindersoe et al. 2009 ). Downregulation of cytokines, like IL-12 and the anti-inflammatory cytokine IL-10, causes a 
T h1/T h2-imbalance in the infected host (Ritchie et al. 2005 ). 
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his context, QS r esearc h pr ovides ne w perspectiv es to better un-
erstand the interaction between gut microbiota and the human
ost (Yang et al. 2022 ). This may provide an additional key to be
ble to a ppl y micr obiome science for plant and human health
Russ et al. 2023 ). No w ada ys , first experiences about the possi-
ility of translation into practice with recognized specific ‘ther-
 peutic’ micr obes and QS-r elated substances (Uhlig and Hyland
022 ), QS-signals (Moshynets et al. 2019 ), and synthetic micro-
ial communities (syn-coms) (Jiang et al. 2022 , Schmitz et al.
022 ) are a vailable . Apparently, an effective syn-com may har-
our QS-activ e bacteria, whic h pr ovide the applied synthetic com-
unity a dynamic character to modulate the rhizosphere mi-

robiome and stimulate the plant host to develop abiotic and
iotic resistance properties (Andres-Barrao et al. 2017 ). Further
r ogr ess in r e v ealing the involv ement of QS-r egulation in plant
s well as in human health is still dependent on further opti-
ization of the sensitivity and specificity of QS-signal analyti-

al a ppr oac hes (Mellini et al. 2024 ). Concerning the se v er e pr ob-
em of r a pid spr eading of c hr onic infections in humans because
f the immense danger ous thr eat by m ultir esistant pathogens,
he application of QS-affecting approaches, which target virulence
cquisition processes of pathogens promised to avoid the selec-
ion of antibiotic resistances, because growth of pathogens is not
ir ectl y tar geted. This could finall y lead to substantial human
ealth impr ov ements in the contr ol of m ultir esistant pathogens
hen combined with other strategies (Zhong and He 2021 , Naga

t al. 2023 ). Ho w e v er, since QS-systems ar e important for bacte-
ial fitness, QS-inhibition w ould unav oidingly affect the targeted
athogens and, may hence impose a selective pressure. Experi-
ental evidences for this problem was published by Maeda et al.

 2012 ) and Imperi et al. ( 2019 ). T hus , strategies based on system-
e v el ecologic principles of microbial social beha viour ma y con-
ribute to successful personalized treatments of patients. Appli-
ations of QS-targeted treatments could allow important pr ogr ess
o impr ov e sustainable a gricultur e and contribute to better con-
r ol de v astating diseases for plant and human health. 
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