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Abstract

Background: Although the associations between genetic variations and lung cancer

risk have been explored, the epigenetic consequences of DNA methylation in lung

cancer development are largely unknown. Here, the genetically predicted DNA

methylation markers associated with non–small cell lung cancer (NSCLC) risk by a

two‐stage case‐control design were investigated.

Methods: The genetic prediction models for methylation levels based on genetic and

methylation data of 1595 subjects from the Framingham Heart Study were estab-

lished. The prediction models were applied to a fixed‐effect meta‐analysis of

screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the

methylation markers, which were then replicated in independent data sets with

7844 lung cancer cases and 421,224 controls. Also performed was a multi‐omics
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functional annotation for the identified CpGs by integrating genomics, epigenomics,

and transcriptomics and investigation of the potential regulation pathways.

Results: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated

with NSCLC risk (Bonferroni‐corrected p ≤ 1.67 � 10−6) were originally identified.

Of these, 16 CpGs remained significant in the validation stage (Bonferroni‐corrected
p ≤ 1.28 � 10−3), including four novel CpGs. Multi‐omics functional annotation

showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk.

Thirty‐five genes within a 1‐Mb window of 12 CpGs that might be involved in

regulatory pathways of NSCLC risk were identified.

Conclusions: Sixteen promising DNA methylation markers associated with NSCLC

were identified. Changes of the methylation level at these CpGs might influence the

development of NSCLC by regulating the expression of genes nearby.

Plain Language Summary

� The epigenetic consequences of DNA methylation in lung cancer development are

still largely unknown.

� This study used summary data of large‐scale genome‐wide association studies to

investigate the associations between genetically predicted levels of methylation

biomarkers and non–small cell lung cancer risk at the first time.

� This study looked at how well larotrectinib worked in adult patients with sar-

comas caused by TRK fusion proteins.

� These findings will provide a unique insight into the epigenetic susceptibility

mechanisms of lung cancer.

K E YWORD S

association study, DNA methylation, gene expression, genetic prediction, non–small cell lung
cancer risk

INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer and the

top cause of cancer death worldwide.1 It is estimated that nearly 2.21

million new lung cancer cases and 1.80 million new lung cancer

deaths occurred in 2020, accounting for 11.4% and 18.0% of total

cancer, respectively.1 In China, lung cancer is the leading type of

cancer, with the highest morbidity and mortality.2 Non–small cell

lung cancer (NSCLC) accounts for approximately 85% of total lung

cancer cases and mainly includes adenocarcinoma (LUAD) and

squamous cell carcinoma as subtypes.3 The development of lung

cancer involves the interplay between environmental and genetic risk

factors. Over the past decade, more than 45 genetic loci were

identified for lung cancer risk by genome‐wide association studies

(GWASs).4–6 Epigenetics including DNA methylation has also been

found to play a critical role in lung cancer pathogenesis.

Based on candidate strategy, early studies have identified some

methylation markers potentially associated with lung cancer risk,

such as hypermethylation at promoters of RASSF1, CDKN2A, MGMT,

APC, and DAPK.7 Recent emerging epigenome‐wide association

studies also revealed several new methylation markers (e.g.,

cg05575921‐AHRR, cg03636183‐F2RL3); however, more new find-

ings were hindered by the limited sample size.8–10 Furthermore,

because of selection bias, potential confounding, and reverse causa-

tion, the causal association of DNA methylation may be inconsistent

with results from observational studies.11

DNA methylation is impacted by both environmental factors and

genetic factors. Previous studies have identified multiple DNA

methylation quantitative trait loci (meQTL),12,13 suggesting DNA

methylation at some CpGs could be predicted by genetic variants.

This strategy is based on the random assortment of alleles during

gamete formation and thus could avoid the effects of biases and

reverse causation commonly encountered in conventional epidemi-

ological studies. Yang et al developed new statistical models to pre-

dict DNA methylation via multiple genetic variants in a reference

data set and applied them to the summary data of GWASs to

investigate the association between genetically predicted DNA

methylation and disease risk.14–17

Here, we will adopt the prediction method to identify new lung

cancer–associated methylation markers based on 34,964 cases and

448,579 controls. The findings will contribute to reveal the epige-

netic susceptibility mechanisms of NSCLC.
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MATERIALS AND METHODS

Study design and participants

The overall design is exhibited in Figure 1. First, we trained the DNA

methylation prediction models by using data from 1595 Framingham

Heart Study (FHS) participants and then refined in 883 subjects of

Women’s Health Initiative (WHI). After that, we selected the predic-

tion models with qualified performance to assess the association be-

tween genetically predicted methylation markers and NSCLC risk,

based on summary data of GWASs including 27,120 NSCLC cases and

27,355 controls (13,327 cases and 13,328 controls of Chinese descent

aswell as 13,793 cases and 14,027 controls of European descent).6 For

those identified methylation markers, we validated in external data

sets with 7844 lung cancer cases and 421,224 controls from the UK

Biobank (https://pan.ukbb.broadinstitute.org) and Female Lung Can-

cer Consortium in Asia (FLCCA).18 Basic information and clinical fea-

tures of participants for these data sets are shown in Table S1. The

Biobank Japan summary data (4050 lung cancer cases and 208,403

controls) was used as an independent replication. Besides, we con-

ducted amulti‐omics functional annotation for the identifiedCpG sites

by integrative analyses of epigenomics, genomics, and transcriptomics

data obtained from a previous study19 or The Cancer Genome Atlas,

and finally investigated the potential regulatory pathways.

DNA methylation prediction models training and
refining

Here, 1595 unrelated European subjects with matched genetic and

DNA methylation data in the FHS were used to construct DNA

methylation prediction models (dbGaP: phs000342 and phs000724).

The detailed information about data sets and data process have been

described elsewhere14–17 and are shown in Supporting Informa-

tion S1. For each CpG site, we used genetic variants flanking a 2‐Mb

window to build a statistical model by the elastic net method (α = 0.5)

in the “glmnet” package of R20 to predict DNA methylation residuals.

An internal validation for each model was performed using 10‐fold
cross‐validation. The RFHS2 values, the square of correlation coeffi-

cient between measured and predicted methylation levels, were

calculated to estimate the prediction performance of models.

Using the data from 883 genetically unrelated female participants

of European descent derived from the WHI (dbGaP: phs001335,

phs000675, and phs000315), we performed an external validation for

the built methylation predictive models. The pipeline of data process

was the same as that for the FHS data. The RWHI
2 values were calcu-

lated by Spearman’s correlation test. Furthermore, we selected the

models with satisfactory prediction performance according to these

criteria: (1) with a RFHS
2 ≥ 0.01 (≥10% correlation between predicted

and measured methylation levels) in FHS; (2) with a RWHI
2 ≥ 0.01 in

WHI; and (3) probes with no single‐nucleotide polymorphism (SNPs)

overlapped, considering that SNPs on the probes might have a po-

tential impact on the methylation level estimation.21

Association analyses between predicted methylation
and NSCLC risk

We used S‐PrediXcan22 to evaluate the associations between

genetically predicted methylation levels and NSCLC risk. In brief, the

association indicator Z‐score was estimated by this formula:

Zm ≈
X

s∈Modelm

wsm
σ̂s
σ̂m

β̂s
se
�
β̂s
�

In the formula, wsm is the weight of SNPs in the prediction of the

CpG m. σ̂s and σ̂m are the estimated variances of SNPs and CpGm. β̂s
and se

�
β̂s
�
are the GWAS regression coefficients and standard error

of β̂s. We used summary data from 2 GWASs that had been gener-

ated from 27,820 European individuals and 26,655 Chinese in-

dividuals6 to estimate the associations between genetically predicted

methylation levels with NSCLC risk. Considering the population

heterogeneity, we conducted a fixed‐effect meta‐analysis of two

populations using META v1.7 to identify the shared methylation

markers; p ≤ .05 for Cochran’s Q statistic indicated a high degree of

heterogeneity. We further filtered out those CpGs with heteroge-

neity or inconsistent directions of effect size in two populations.

Finally, we used a Bonferroni‐corrected test to screen the statisti-

cally significant CpG sites (p ≤ 1.67 � 10–6; 0.05/29,894). At the

validation stage, we replicated the 39 CpGs by summary data of Pan‐
UK Biobank and FLCCA. The same strategy of meta‐analysis was

performed, and the Bonferroni‐corrected test was again used to

determine the passing CpG sites (p ≤ 1.28 � 10–3; 0.05/39).

For replicated CpG sites, we assessed whether the observed

associations were independent of lung cancer susceptibility variants

identified in previous GWASs.4–6 Briefly, we used genome‐wide
complex trait analysis‐conditional and joint analysis23 to reevaluate

the betas and standard errors of lung cancer by adjusting the closest

GWAS‐identified risk variants, and then reran the S‐PrediXcan ana-

lyses. Additionally, we conducted the subgroup analyses by histo-

logical type (squamous cell carcinoma and adenocarcinoma), smoking

status (smoker and nonsmoker), and gender to explore the difference

between subgroups. Heterogeneity across subgroups was estimated

by Cochran’s Q test and p ≤ .05 was statistical threshold. Finally,

given the potential ethnicity heterogeneity of model application, an

external replication was conducted for those shared CpGs of com-

bined populations and Asian‐specific CpGs by GWAS summary data

from the Biobank Japan.24

Systematic multi‐omics functional annotation

We performed multi‐omics functional annotations based on epi-

genomics, genomics, and transcriptomics data for the CpGs passing

the validation. The types and sources of related annotation infor-

mation are described in Table S2. For the epigenomics level, we used

ANNOVAR to annotate the closest genes and regions of the identi-

fied CpGs; an extended annotation obtained from the Illumina 450K

ZHAO ET AL. - 915
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platform (GEO: GPL18809) was as a supplement. Moreover, the

chromatin interactions, topologically associated domains, transcrip-

tion factor binding sites, and histone mark were further annotated.

For the genomics level, we assessed whether the corresponding cis‐

meQTL was overlapped with the expression quantitative trait loci

(eQTL) in the Genotype‐Tissue Expression. Six bioinformatic‐
predictive algorithms (Supporting Information S1) were used for

evaluation of detrimental missense variants among these cis‐

F I GUR E 1 Flowchart for the study design.
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meQTL.25 For transcriptomics level, we identified the methylation‐
related protein‐encoding genes within a 1‐Mb range of each CpG

site by Spearman correlation coefficients (false‐discovery‐rate [FDR]
corrected p ≤ .05). We assessed these methylation‐related genes

were of lung cancer–driver genes,25 lung cancer–associated genes, or

consistent with findings from transcriptome‐wide association studies

in lung cancer.26,27

To estimate the functional importance of these identified CpGs

withNSCLC risk, a functional score systemwas constructed.One score

was given if CpG met the corresponding criterion of each indicator

(Table S3, Supporting Information S1). Altogether, functional score

ranged from 0 to 10 in the epigenomics level (1 omics score given if

score≥5), from0 to3 in the genomics level (1 omics score given if score

≥ 2), and from 0 to 7 in the transcriptomics level (1 omics score given if

score≥ 4). We classified the CpGs into three levels based on the omics

scores: level A (3 scores), level B (2 scores), and level C (0 or 1 score),

indicating the functional importance from high to low.

Integrative analysis for potential regulatory pathways

Based on gene expression of 108 tumor‐adjacent tissues pairs from
lung cancer in The Cancer Genome Atlas, we conducted the differ-

ential expression analyses for those methylation‐related genes. The

number and percentage of upregulation pairs were calculated by

log2‐transformed data of tumor and adjacent tissues. A Wilcoxon

rank‐sum test was used and FDR‐corrected threshold of p ≤ .05 was

statistically significant. Finally, we integrated the association be-

tween genetically predicted methylation and NSCLC risk, the corre-

lation between DNA methylation and gene expression, and the

relationship of differential expression between lung cancer tissues

and adjacent normal tissues to elucidate the putative pathways

through which DNA methylation affects the development of NSCLC.

This study was approved by the institutional review board of

Nanjing Medical University. All data in this study were derived from

previous studies, which were approved by the local internal review

board or ethics committee.

RESULTS

DNA methylation prediction models

Based on individual‐level genotyping and DNA methylation data from

the FHS cohort, DNA methylation prediction models for 223,959

CpG were established, of which 81,352 models with a predictive

performance (RFHS
2) of at least 0.01 were retained. Among these,

70,330 models (86.45%) with good repeatability were observed in

the WHI cohort (RWHI
2 ≥ 0.01), suggesting a high correlation between

two cohorts (Pearson’s correlation r = 0.95, p ≤ .0001; Figure S1).

Besides, methylation probes of 7284 had SNPs within the binding

site, which were excluded. Totally, there were 63,046 CpGs

remaining for the downstream analyses.

Association of genetically predicted methylation with
NSCLC risk

At the screening stage, we did a fixed‐effects meta‐analysis for

predicted associations of 62,981 CpGs available in 27,120 NSCLC

cases and 27,355 controls. After removing the CpGs with hetero-

geneity p ≤ .05 (n = 7626) and those without consistent effect di-

rections (n = 25,371), a total of 29,894 CpGs remained. We observed

that 39 CpGs located in 10 loci were significantly associated with

NSCLC risk (Bonferroni correction p ≤ 1.67 � 10−6, 0.05/29,894)

(Figure 2 and Table S4).

At the validation stage, we replicated the 39 CpGs using sum-

mary data of 7844 lung cancer cases and 421,224 controls. As shown

in Table S5, 25 CpGs with the same effect direction were at p < .05,

16 of which met the Bonferroni correction (p ≤ 1.28 � 10−3, 0.05/

39). Four of the replicated 16 CpGs (cg22795331, cg05012158,

cg06752398, and cg19720302) were the first reported methylated

loci associated with NSCLC risk and 12 were located in susceptibility

regions reported previously (Figure 2 and Table 1). A positive asso-

ciation of 3 CpGs with NSCLC risk was detected (cg07493874,

cg27028750, and cg06752398), whereas the other 13 CpGs were

negatively associated with NSCLC (Table 1). However, we did not

observe any of the 16 valid CpGs remaining significant

(p ≤ 1.67 � 10−6) after adjusting GWAS‐identified lung cancer sus-

ceptibility variants (Table S6). Additionally, the respective results of

methylation markers derived from two populations were also

exhibited (Tables S7 and S8). Briefly, methylation markers of Euro-

pean descent were mainly located in the 5p15.33, 6p22.1, 6p21.33,

and 15q25.1 regions. Of these, 5p15.33 was shared with the Chinese

population, whereas the other markers in 2p23.1, 6p21.32, 11q23.3,

17q24.2, and 20q11.23 showed a racial difference. Finally, we

observed 19 of 39 shared CpGs of combined populations (including

10 of 16 valid CpGs mentioned previously) and 12 of 15 Asian‐
specific CpGs consistent with the Z score direction of the upstream

analyses (p ≤ .05), especially in the 5p15.33 locus (Tables S9 and

S10).

In subgroup analyses by histological type, smoking status, and

gender (Table S11), we found that three of 16 valid CpGs

(cg07507801, cg22795331, and cg18468235) showed the stronger

associations in lung adenocarcinoma (p‐het: 3.08 � 10−2;

1.42 � 10−4; and 6.73 � 10−3). Interestingly, we found the obvious

associations of cg08285415 (p = 7.41 � 10−13), cg05012158

(p = 2.40 � 10−13), and cg06752398 (p = 1.90 � 10−20) in smokers,

whereas this was nonsignificant in nonsmokers. Moreover,

cg06752398 had a stronger association in male participants (p‐
het = 2.26 � 10−9).

Systematically multi‐omics functional annotation for
lung cancer–associated CpG sites

We integrated the evidence of epigenomics, genomics, and tran-

scriptomics and adopted a scoring strategy to systematically assess

ZHAO ET AL. - 917
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the functional importance of the 16 CpGs. As the heatmap shows, 5

CpGs were at “level A,” including cg11624060, cg26209169, and

cg10441424 in 5p15.33, cg18468235 in 11q23.3. and cg19720302

in 17q24.2; four at “level B”; and seven at “level C” (Figure 3). In

detail, the physical locations of the cg11624060, cg26209169, and

cg10441424 were very close and located ~1.8 kb downstream of

CLPTM1L and ~20.9 kb upstream of TERT. We observed the predicted

enhancer signals of TERT and promotor/enhancer‐related histone

markers (Table S12). The meQTL of CpGs in 5p15.33 also overlapped

with eQTL of CLPTM1L or NDUFS6 (Tables S13 and S14). Besides,

two meQTLs of cg18468235 (rs2298831‐C and rs17121881‐T) were
predicted as the detrimental mutations for JAML (Table S15). Most of

the CpGs in 5p15.33 were correlated with the expression of

CLPTM1L and TERT, of which TERT is a known driver gene for cancer

(Table S16). Finally, three methylation‐related genes of cg18468235,

cg08285415, and cg05012158 (JAML, IREB2, and PSMA4) were

shown the consistent associations directions across CpG, gene

expression, and lung cancer (Table S17).

Integrative analyses of multi‐omics for CpG gene–
NSCLC regulatory pathways

To estimate the effect direction of methylation‐related genes, we

performed a differential expression analysis for 75 unduplicated

genes. The expression levels of 55 genes were significantly differ-

ential between lung tumor and adjacent normal tissues (FDR‐

corrected p ≤ .05) (Table S18). Then, we integrated all associations to

estimate whether the DNA methylation at CpGs could affect the

development of NSCLC through regulating the gene expression.

There were 12 CpGs and 34 genes having the potential CpG gene–

NSCLC regulatory pathways (Table S19). For example, cg11624060

(5p15.33) with a decreased NSCLC risk (Z score = −12.20,
p = 3.01 � 10−34) was negatively associated with expression of TERT

(Rho = −0.34, p = 1.05 � 10−22), TRIP13 (Rho = −0.34,
p = 4.24 � 10−23), and MRPL36 (Rho = −0.36, p = 3.89 � 10−26).

Meanwhile, these genes were respectively upregulated in 93.52%

(p = 8.47 � 10−31), 93.52% (p = 4.83 � 10−27), and 90.74%

(p = 2.71 � 10−23) tumor‐adjacent tissues pairs, constructing a po-

tential closed loop of regulatory pathway. The results of cg26209169

and cg10441424 were similar. Additionally, CpG sites and the genes

nearby, such as cg18468235 with JAML and IL10RA, cg05012158

with CHRNA5 and PSMA4, and cg19720302 with KPNA2 and AMZ2,

were also showing the CpG gene–NSCLC regulatory pathways

(Table 2).

DISCUSSION

In this study, we initially observed 39 statistically significant CpGs

and 16 of them, which were mainly located in six lung cancer sus-

ceptibility loci from previous GWASs4,6 except for cg08285415

(15q24.3), passed the downstream validation. Given that predictive

associations were calculated from GWAS summary data, it is rational

F I GUR E 2 Manhattan plot for 39 DNA methylation markers from meta‐analysis associated with NSCLC risk. The green dotted line

represents p = 1.67 � 10−6 (Bonferroni correction of 29,894 tests, 0.05/29,894). Each dot represents the genetically predicted DNA
methylation of one specific CpG site. The x axis represents the negative logarithm of the association p value, and the y axis represents the
chromosome of the CpG site. The red represents the combined effect of 16 CpG sites passed the independent validation, and the diamond
represents the novel CpG sites in regions not yet reported in previous lung cancer epigenome‐wide association studies. NSCLC indicates non–

small cell lung cancer.
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TAB L E 1 Thirty‐nine DNA methylation markers from meta‐analysis associated with NSCLC risk.

CpG CytoBanda Positionb Classification Closest gene

Screening stage Validation stage Combined stage
I2

(%) p HetdZ score pc Z score pc Z score p

cg07507801e 5p15.33 1291235 Intronic TERT –7.96 1.70E‐15 –4.32 1.56E‐05 –9.06 1.35E‐19 0.0 8.42E‐01

cg07380026e 5p15.33 1296007 Upstream TERT –7.69 1.43E‐14 –4.24 2.26E‐05 –8.78 1.61E‐18 0.0 8.56E‐01

cg26603275e 5p15.33 1298965 Intergenic TERT;
MIR4457

–9.29 1.49E‐20 –4.31 1.65E‐05 –10.17 2.81E‐24 36.9 2.08E‐01

cg11624060e 5p15.33 1316038 Intergenic MIR4457;
CLPTM1L

–10.99 4.30E‐28 –5.48 4.18E‐08 –12.20 3.01E‐34 48.1 1.65E‐01

cg26209169e 5p15.33 1316265 Intergenic MIR4457;
CLPTM1L

–10.04 9.72E‐24 –5.37 7.71E‐08 –11.35 7.23E‐30 0.0 3.44E‐01

cg10441424e 5p15.33 1316637 Intergenic MIR4457;
CLPTM1L

–8.95 3.54E‐19 –5.59 2.29E‐08 –10.55 5.09E‐26 0.0 8.40E‐01

cg07493874e 5p15.33 1342172 Intronic CLPTM1L 11.62 3.14E‐31 5.43 5.55E‐08 12.71 4.89E‐37 66.0 8.62E‐02

cg19915256e 5p15.33 1345677 Upstream CLPTM1L –9.73 2.18E‐22 –5.90 3.63E‐09 –11.38 5.37E‐30 0.0 7.76E‐01

cg27028750e 5p15.33 1349422 Intergenic CLPTM1L;
LINC01511

10.54 5.64E‐26 5.96 2.54E‐09 12.10 1.09E‐33 0.0 6.15E‐01

cg23266546 6p22.1 28190811 Intergenic TOB2P1;
ZSCAN9

5.37 7.71E‐08 1.07 2.84E‐01 5.06 4.11E‐07 77.2 3.63E‐02

cg15671450 6p22.1 29895116 Upstream HCG4B 5.84 5.23E‐09 0.66 5.11E‐01 5.18 2.19E‐07 87.0 5.60E‐03

cg06710082 6p22.1 29943408 ncRNA_intronic HCG9 –5.23 1.67E‐07 –1.75 7.97E‐02 –5.39 7.02E‐08 28.3 2.37E‐01

cg16368146 6p22.1 29943426 ncRNA_intronic HCG9 –4.99 6.17E‐07 –1.10 2.71E‐01 –4.72 2.37E‐06 73.7 5.13E‐02

cg24694606 6p22.1 29977957 ncRNA_intronic ZNRD1ASP –5.83 5.53E‐09 –2.17 3.03E‐02 –6.06 1.37E‐09 49.2 1.61E‐01

cg01044849 6p22.1 30002723 ncRNA_exonic ZNRD1ASP 5.73 9.91E‐09 3.04 2.34E‐03 6.49 8.59E‐11 0.0 9.52E‐01

cg27493649 6p22.1 30042987 Intronic RNF39 4.98 6.23E‐07 1.50 1.35E‐01 5.17 2.32E‐07 0.0 5.63E‐01

cg14461571e 6p21.33 30458099 Exonic HLA‐E –5.00 5.64E‐07 –3.26 1.11E‐03 –5.97 2.33E‐09 0.0 9.66E‐01

cg19110902 6p21.33 30698937 Intronic FLOT1 4.98 6.35E‐07 1.37 1.70E‐01 4.82 1.46E‐06 71.3 6.21E‐02

cg06480496 6p21.33 31430676 Upstream HCP5 –4.90 9.47E‐07 –1.29 1.97E‐01 –4.78 1.73E‐06 64.7 9.25E‐02

cg00848392 6p21.33 31734401 Exonic VWA7 –5.09 3.60E‐07 –1.27 2.05E‐01 –5.00 5.79E‐07 60.4 1.12E‐01

cg21042276 6p21.33 32038542 Intronic TNXB –5.11 3.14E‐07 –0.97 3.34E‐01 –4.72 2.30E‐06 79.0 2.89E‐02

cg06871764 6p21.32 32376096 Downstream TSBP1‐AS1 4.99 6.12E‐07 0.99 3.20E‐01 4.79 1.68E‐06 65.9 8.66E‐02

cg22795331e 6q22.1 117785611 Intergenic ROS1; DCBLD1 –5.49 4.08E‐08 –4.03 5.69E‐05 –6.79 1.09E‐11 0.0 6.90E‐01

cg27642470 6q22.1 117802711 Intergenic ROS1; DCBLD1 4.83 1.33E‐06 2.71 6.64E‐03 5.54 3.02E‐08 0.0 8.22E‐01

cg23172480 6q22.1 117802787 Upstream DCBLD1 4.85 1.23E‐06 2.92 3.47E‐03 5.66 1.50E‐08 0.0 8.89E‐01

cg17808183 7q11.21 63491010 Upstream LINC01005 4.82 1.43E‐06 1.83 6.77E‐02 5.08 3.84E‐07 0.0 3.71E‐01

cg10870165 8p12 32345448 Intronic NRG1 4.94 7.93E‐07 1.97 4.88E‐02 5.26 1.46E‐07 0.0 4.30E‐01

cg18468235e 11q23.3 118066105 Intronic JAML –5.48 4.16E‐08 –3.71 2.10E‐04 –6.62 3.64E‐11 0.0 9.03E‐01

cg15794034 11q23.3 118095776 Upstream JAML –5.08 3.80E‐07 –2.81 4.92E‐03 –5.79 6.86E‐09 0.0 7.22E‐01

cg18051914 11q23.3 118134912 UTR5 MPZL2 5.96 2.59E‐09 2.72 6.54E‐03 6.54 6.18E‐11 0.0 7.49E‐01

cg26426447 11q23.3 118134959 UTR5 MPZL2 5.97 2.43E‐09 2.57 1.02E‐02 6.46 1.06E‐10 0.0 4.84E‐01

cg09033131 11q23.3 118135094 UTR5 MPZL2 5.92 3.12E‐09 1.36 1.74E‐01 4.20 2.71E‐05 94.8 1.09E‐05

cg15376097 11q23.3 118135271 Upstream MPZL2 5.98 2.25E‐09 2.99 2.82E‐03 6.68 2.34E‐11 0.0 9.67E‐01

cg08285415e 15q24.3 78283681 Intergenic COMMD4P1;
LOC91450

–7.58 3.44E‐14 –4.25 2.17E‐05 –8.67 4.23E‐18 0.0 5.92E‐01

cg08701566 15q25.1 78911099 Intronic CHRNA3 –4.96 7.01E‐07 –1.47 1.42E‐01 –5.02 5.09E‐07 35.0 2.15E‐01

(Continues)
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T A B L E 1 (Continued)

CpG CytoBanda Positionb Classification Closest gene

Screening stage Validation stage Combined stage
I2

(%) p HetdZ score pc Z score pc Z score p

cg05012158e 15q25.1 79051864 Exonic ADAMTS7 –7.43 1.12E‐13 –4.31 1.65E‐05 –8.58 9.56E‐18 0.0 7.50E‐01

cg06752398e 15q25.1 79053858 Intronic ADAMTS7 9.16 5.15E‐20 4.54 5.62E‐06 10.12 4.40E‐24 51.7 1.50E‐01

cg15822222 15q25.1 79164807 Upstream MORF4L1 –5.46 4.83E‐08 –1.50 1.33E‐01 –5.24 1.64E‐07 78.4 3.14E‐02

cg19720302e 17q24.2 65990670 Upstream C17orf58 –5.65 1.65E‐08 –3.86 1.13E‐04 –6.84 8.16E‐12 0.0 8.08E‐01

aCytogenic band where the variant is positioned.
bChromosomal position, hg19/GRCh37 build.
cBonferroni correction threshold for p value is 1.67 � 10−6 (0.05/29,894) in the screening stage and 1.28 � 10−3 (0.05/39) in the validation stage.
dCochran’s Q test is used to test for heterogeneity in effect sizes of CpGs across two stages (I2; heterogeneity p value), and p ≤ .05 is statistically

significant.
eCpG sites pass the independent validation.

F I GUR E 3 Heatmap of multi‐omics functional annotation for the identified CpG sites. Here, we performed the functional annotation for

16 CpGs passed the validation based on evidence of epigenomics, genomics, and transcriptomics level. DHS indicates DNase I hypersensitivity
sites; LC, lung cancer; TAD, topologically associated domains; TF, transcription factor; TSS1500, transcription start site upstream 1500 bp;
TWAS, transcriptome‐wide association study.
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TAB L E 2 Integrative analyses for potential regulatory pathways across DNA methylation, gene expression, and NSCLC risk.a

Chr Position CpG Gene

CpG vs. NSCLC risk CpG vs. gene expression Gene expression vs. NSCLC risk

Z scoreb p valueb Direction Rhoc
p value.
FDRc Direction

Up
regulationd

p value.
FDRd Direction

5 1316038 cg11624060 TERT –12.20 3.01E‐34 Negative –0.34 1.05E‐22 Negative 93.52% 8.47E‐31 Positive

5 1316038 cg11624060 TRIP13 –12.20 3.01E‐34 Negative –0.34 4.24E‐23 Negative 93.52% 4.83E‐27 Positive

5 1316038 cg11624060 MRPL36 –12.20 3.01E‐34 Negative –0.36 3.89E‐26 Negative 90.74% 2.71E‐23 Positive

5 1316038 cg11624060 NDUFS6 –12.20 3.01E‐34 Negative –0.34 1.04E‐22 Negative 85.19% 4.66E‐23 Positive

5 1316038 cg11624060 LPCAT1 –12.20 3.01E‐34 Negative 0.22 5.84E‐10 Positive 16.67% 3.46E‐16 Negative

5 1316264 cg26209169 TERT –11.35 7.23E‐30 Negative –0.30 7.39E‐18 Negative 93.52% 8.47E‐31 Positive

5 1316264 cg26209169 TRIP13 –11.35 7.23E‐30 Negative –0.29 1.99E‐17 Negative 93.52% 4.83E‐27 Positive

5 1316264 cg26209169 MRPL36 –11.35 7.23E‐30 Negative −0.34 6.98E‐23 Negative 90.74% 2.71E‐23 Positive

5 1316264 cg26209169 NDUFS6 –11.35 7.23E‐30 Negative –0.31 4.81E‐20 Negative 85.19% 4.66E‐23 Positive

5 1316264 cg26209169 LPCAT1 –11.35 7.23E‐30 Negative 0.19 6.27E‐08 Positive 16.67% 3.46E‐16 Negative

5 1316636 cg10441424 TERT –10.55 5.09E‐26 Negative –0.28 3.90E‐16 Negative 93.52% 8.47E‐31 Positive

5 1316636 cg10441424 TRIP13 –10.55 5.09E‐26 Negative –0.46 3.47E‐44 Negative 93.52% 4.83E‐27 Positive

5 1316636 cg10441424 MRPL36 –10.55 5.09E‐26 Negative –0.43 5.32E‐38 Negative 90.74% 2.71E‐23 Positive

5 1316636 cg10441424 NDUFS6 –10.55 5.09E‐26 Negative –0.34 7.45E‐24 Negative 85.19% 4.66E‐23 Positive

5 1316636 cg10441424 LPCAT1 –10.55 5.09E‐26 Negative 0.58 4.83E‐74 Positive 16.67% 3.46E‐16 Negative

5 1342172 cg07493874 TRIP13 12.71 4.89E‐37 Positive 0.23 1.74E‐11 Positive 93.52% 4.83E‐27 Positive

5 1342172 cg07493874 MRPL36 12.71 4.89E‐37 Positive 0.29 1.17E‐16 Positive 90.74% 2.71E‐23 Positive

5 1342172 cg07493874 NDUFS6 12.71 4.89E‐37 Positive 0.28 3.06E‐16 Positive 85.19% 4.66E‐23 Positive

5 1342172 cg07493874 CLPTM1L 12.71 4.89E‐37 Positive 0.13 4.95E‐04 Positive 80.56% 1.08E‐11 Positive

5 1342172 cg07493874 BRD9 12.71 4.89E‐37 Positive 0.25 1.16E‐12 Positive 74.07% 1.74E‐07 Positive

11 118066105 cg18468235 AMICA1 –6.62 3.64E‐11 Negative 0.18 6.41E‐07 Positive 1.85% 7.02E‐32 Negative

11 118066105 cg18468235 IL10RA –6.62 3.64E‐11 Negative 0.32 2.31E‐21 Positive 17.59% 1.17E‐13 Negative

11 118066105 cg18468235 TMPRSS13 –6.62 3.64E‐11 Negative –0.20 2.41E‐08 Negative 76.85% 1.07E‐11 Positive

11 118066105 cg18468235 ARCN1 –6.62 3.64E‐11 Negative –0.19 1.00E‐07 Negative 69.44% 1.14E‐07 Positive

11 118066105 cg18468235 CD3E –6.62 3.64E‐11 Negative 0.43 1.03E‐38 Positive 31.48% 3.40E‐04 Negative

15 78283681 cg08285415 SH2D7 –8.67 4.23E‐18 Negative 0.14 1.66E‐04 Positive 33.33% 6.10E‐03 Negative

15 79051863 cg05012158 RASGRF1 –8.58 9.56E‐18 Negative 0.16 1.02E‐05 Positive 4.63% 8.76E‐30 Negative

15 79051863 cg05012158 CHRNA5 –8.58 9.56E‐18 Negative –0.08 3.29E‐02 Negative 92.59% 1.23E‐27 Positive

15 79051863 cg05012158 CTSH –8.58 9.56E‐18 Negative 0.18 1.84E‐07 Positive 6.48% 5.60E‐27 Negative

15 79051863 cg05012158 PSMA4 –8.58 9.56E‐18 Negative –0.12 7.94E‐04 Negative 75% 2.24E‐11 Positive

17 65990670 cg19720302 KPNA2 –6.84 8.16E‐12 Negative –0.19 9.40E‐08 Negative 95.37% 3.21E‐28 Positive

17 65990670 cg19720302 NOL11 –6.84 8.16E‐12 Negative –0.33 3.58E‐21 Negative 91.67% 6.67E‐24 Positive

17 65990670 cg19720302 AMZ2 –6.84 8.16E‐12 Negative –0.33 8.54E‐22 Negative 87.96% 8.36E‐20 Positive

17 65990670 cg19720302 C17orf58 –6.84 8.16E‐12 Negative –0.30 1.29E‐18 Negative 86.11% 4.43E‐18 Positive

17 65990670 cg19720302 SLC16A6 –6.84 8.16E‐12 Negative 0.19 1.84E‐07 Positive 12.96% 3.88E‐17 Negative

Note: FDR‐corrected p value was calculated by Benjamini‐Hochberg method and p ≤ 0.05 was statistically significant. All statistical tests are two‐sided.
Abbreviations: Chr, chromsome; FDR, false discovery rate; NSCLC, non–small cell lung cancer.
aFor CpGs with the high functional level in multi‐omics annotation, the integrative results of top five differential genes were selected. The complete list
is shown in Table S17.
bZ score and p value were derived from the combined stage.
cRho and p value were calculated by the Spearman rank correlation test.
dThe percentage of upregulation pair was calculated by relative expression levels of genes (indicated by log2‐transformed tumor/adjacent tissues), and p
value was calculated by Wilcoxon rank‐sum test.
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that the methylation loci we identified are highly overlapped with loci

reported by genetics studies. The ethnic characteristics of the dis-

tribution of methylation markers in two populations were consistent

with the differences in genetics as well. Moreover, the results of two

populations hinted the CpGs in 5p15.33 might be shared markers

between European and Asian populations. We then retrieved 16

replicated CpGs in lung cancer risk–related publications from the

EWAS Atlas,28 and found cg22795331 in 6q22.1, cg05012158 and

cg06752398 in 15q25.1, and cg19720302 in 17q24.2 are located in

novel methylation regions not reported by previous methylation

studies. Besides, hypomethylation at cg22795331 and cg18468235

was observed in colorectal cancer29 and papillary thyroid carci-

noma,30 indicating a potential methylation phenomenon of multi-

cancer risk.

By integrating the multi‐omics results across DNA methylation,

gene expression, and NSCLC, we revealed some pathways with

consistent directions of association, which might be useful to

expound the potential regulation mechanism. In 5p15.33 locus, TERT,

one of the components of human telomerase, plays an important role

in maintaining telomere length and activity. Nearly 90% of types of

cancer have been found an upregulation of telomerase, contributing

to cancer initiation.31 The TRIP13 gene promotes proliferation and

invasion of lung cancer cells through AKT/mTORC1/c‐Myc

signaling,32 Wnt signaling, and epithelial‐mesenchymal transition

pathways.33 Some researchers observed silencing NDUFS6 signifi-

cantly decreased reactive oxygen species levels in breast cancer,

inhibiting the cancer‐associated inflammation response.34 Further-

more, mitochondrial ribosomal protein L36 (MRPL36) is essential for

maintaining mitochondrial functions and significantly increases in

lung squamous cell carcinoma compared with normal lung tissue,35

playing a crucial role in energy metabolism for human cancer.36

For genes in 11q23.3, JAML (junction adhesion molecule like,

alias AMICA1) expression was positively associated with infiltrating

levels of diverse immune cells in LUAD.37 As a crucial component of

epithelial gammadelta T‐cell biology, JAML also has broader impli-

cations in tissue homeostasis and repair.38 Protein encoding by

IL10RA is a receptor for interleukin‐10 and has been shown to

mediate the immunosuppressive signal of interleukin‐10, and inhibits
the synthesis of proinflammatory cytokines, which may restrain lung

adenocarcinoma aggressiveness.39 In 17q24.2, overexpression of

KPNA2 flanking cg19720302 was observed in various cancers,

including lung cancer.40 It has been shown to participate in cell dif-

ferentiation, proliferation, apoptosis, and immune response, and thus

promote tumor formation and progression.40 Although most of the

evidence from previous functional experimental studies supported

the regulation pathways we identified, there still were some in-

consistencies without results. For example, LPCAT1 (5p15.33) was

reported upregulated in LUAD tissues and cell lines and promoted

brain metastasis.41

In subgroup analyses by smoking status, we observed a signifi-

cant association heterogeneity between smokers and nonsmokers at

cg08285415, cg05012158, and cg06752398. Interestingly, the

nicotinic receptor subunit gene CHRNA5 and tobacco addiction–

related gene PSMA4 were located nearby and showed a putative

regulatory pathway in our study. Previous studies detected an

upregulation of the CHRNA5 gene in NSCLC tumor tissue42,43 and

low levels of CHRNA5 mRNA were associated with lower risk for

nicotine dependence and lung cancer,44 in agreement with our find-

ings. However, some researchers found that lower expression of

CHRNA5 was causally linked to increased lung cancer risk using ge-

netic instruments.26,45 PSMA4 is an important component of the 20S

core proteasome complex and related to tobacco addiction (recorded

in GeneCards: https://www.genecards.org/). To our knowledge,

chemicals in tobacco smoke, such as Benzo[a]pyrene and N‐
nitrosamines, lead to DNA damage, oxidative stress, and inflamma-

tion, and increase the likelihood of lung cancer.46,47 Therefore, it is

reasonable to hypothesize that these genes may affect nicotine

dependence and propensity to smoke and thus promote the initiation

and growth of lung tumors indirectly.48 In addition, PSMA4 has been

also considered as a strong candidate mediator of lung cancer cell

growth and directly affects lung cancer susceptibility through its

modulation of cell proliferation and apoptosis.48

Considering that DNA methylation changes usually occur in the

early stages of the disease and precedes pathological or imaging

detection, methylation markers, as a noninvasive diagnostic tool,

have a promising potential in clinical translation of lung cancer. For

example, previous study observed an 8% improvement in discrimi-

nation of lung cancer by adding 6 CpGs into conventional risk pre-

diction models.9 Similarly, methylation changes at candidate genes

could initially identify the highest risk smokers for computed to-

mography screening for early detection of lung cancer,49 as well as

help the detection of lung cancer and differentiation of nonmalignant

diseases.50 These evidence hint that by integrating traditional risk

factors, genetic variation, methylation changes, and other biomarkers

of multi‐omics, prediction models with high performance will be

developed to identify potential high‐risk populations and for early

detection. Additionally, the methylation‐related genes that we iden-

tified are also worthy of further investigation to search the poten-

tially druggable targets and develop a novel targeted therapy.

This is the first study to identify the genetically predicted DNA

methylation markers associated with NSCLC risk. To some degree,

predicted models constructed by genetic instruments can control the

selection bias, potential confounding, and reverse causation in

traditional observational studies. Moreover, this approach has

proved that the results were improved, compared with the single‐
meQTL SNP approach.14 However, some limitations must be

acknowledged. Through meta‐analysis, we identified the shared CpGs
in the two populations, but the ethnic heterogeneity of model

application could not be completely ignored in this study. Although

we adopted a strategy of upstream filter plus downstream multi-

validation to control the effect of racial bias, we still should carefully

draw that conclusion, and a further ethnicity‐specific study is

necessary to validate our findings. Second, the subjects used in the

validation stage from FLCCA were only nonsmoker females, lacking

the necessary samples of smokers and males. Furthermore, although

most of the potential regulatory pathways can be supported by
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experimental or biological evidence, the findings are only data‐driven
evidence and still be affected by unknown confounding factors and

reverse causality. Therefore, further mechanism studies are war-

ranted to test the authenticity behind it.

In conclusion, we systematically assessed the associations of

genetically predicted DNA methylation CpGs with NSCLC risk, and

a total of 16 CpG sites were identified, including four novel CpGs.

Our findings indicated that these CpGs are likely to affect the

NSCLC risk via regulating the flanking genes related to cancer

formation and development. The findings of this study may

contribute to the understanding of the epigenetic susceptibility

mechanisms of NSCLC risk, especially for the interplay of genetics

and epigenetics.
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