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Abstract

Background: Although the associations between genetic variations and lung cancer
risk have been explored, the epigenetic consequences of DNA methylation in lung
cancer development are largely unknown. Here, the genetically predicted DNA
methylation markers associated with non-small cell lung cancer (NSCLC) risk by a
two-stage case-control design were investigated.

Methods: The genetic prediction models for methylation levels based on genetic and
methylation data of 1595 subjects from the Framingham Heart Study were estab-
lished. The prediction models were applied to a fixed-effect meta-analysis of
screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the
methylation markers, which were then replicated in independent data sets with

7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics
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PREDICTED METHYLATION AND LUNG CANCER
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functional annotation for the identified CpGs by integrating genomics, epigenomics,
and transcriptomics and investigation of the potential regulation pathways.
Results: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated
with NSCLC risk (Bonferroni-corrected p < 1.67 x 107°) were originally identified.
Of these, 16 CpGs remained significant in the validation stage (Bonferroni-corrected
p < 1.28 x 1073, including four novel CpGs. Multi-omics functional annotation
showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk.
Thirty-five genes within a 1-Mb window of 12 CpGs that might be involved in
regulatory pathways of NSCLC risk were identified.

Conclusions: Sixteen promising DNA methylation markers associated with NSCLC

were identified. Changes of the methylation level at these CpGs might influence the

KEYWORDS

cancer risk

INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer and the
top cause of cancer death worldwide.® It is estimated that nearly 2.21
million new lung cancer cases and 1.80 million new lung cancer
deaths occurred in 2020, accounting for 11.4% and 18.0% of total
cancer, respectively.? In China, lung cancer is the leading type of
cancer, with the highest morbidity and mortality.2 Non-small cell
lung cancer (NSCLC) accounts for approximately 85% of total lung
cancer cases and mainly includes adenocarcinoma (LUAD) and
squamous cell carcinoma as subtypes.® The development of lung
cancer involves the interplay between environmental and genetic risk
factors. Over the past decade, more than 45 genetic loci were
identified for lung cancer risk by genome-wide association studies
(GWASs).*¢ Epigenetics including DNA methylation has also been
found to play a critical role in lung cancer pathogenesis.

Based on candidate strategy, early studies have identified some
methylation markers potentially associated with lung cancer risk,
such as hypermethylation at promoters of RASSF1, CDKN2A, MGMT,
APC, and DAPK.” Recent emerging epigenome-wide association
studies also revealed several new methylation markers (e.g.,

development of NSCLC by regulating the expression of genes nearby.

Plain Language Summary

¢ The epigenetic consequences of DNA methylation in lung cancer development are
still largely unknown.

e This study used summary data of large-scale genome-wide association studies to
investigate the associations between genetically predicted levels of methylation
biomarkers and non-small cell lung cancer risk at the first time.

e This study looked at how well larotrectinib worked in adult patients with sar-
comas caused by TRK fusion proteins.

e These findings will provide a unique insight into the epigenetic susceptibility
mechanisms of lung cancer.

association study, DNA methylation, gene expression, genetic prediction, non-small cell lung

cg05575921-AHRR, cg03636183-F2RL3); however, more new find-
ings were hindered by the limited sample size.21° Furthermore,
because of selection bias, potential confounding, and reverse causa-
tion, the causal association of DNA methylation may be inconsistent
with results from observational studies.!?

DNA methylation is impacted by both environmental factors and
genetic factors. Previous studies have identified multiple DNA
methylation quantitative trait loci (meQTL),*?1® suggesting DNA
methylation at some CpGs could be predicted by genetic variants.
This strategy is based on the random assortment of alleles during
gamete formation and thus could avoid the effects of biases and
reverse causation commonly encountered in conventional epidemi-
ological studies. Yang et al developed new statistical models to pre-
dict DNA methylation via multiple genetic variants in a reference
data set and applied them to the summary data of GWASs to
investigate the association between genetically predicted DNA
methylation and disease risk.24"”

Here, we will adopt the prediction method to identify new lung
cancer-associated methylation markers based on 34,964 cases and
448,579 controls. The findings will contribute to reveal the epige-

netic susceptibility mechanisms of NSCLC.
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MATERIALS AND METHODS
Study design and participants

The overall design is exhibited in Figure 1. First, we trained the DNA
methylation prediction models by using data from 1595 Framingham
Heart Study (FHS) participants and then refined in 883 subjects of
Women’s Health Initiative (WHI). After that, we selected the predic-
tion models with qualified performance to assess the association be-
tween genetically predicted methylation markers and NSCLC risk,
based on summary data of GWASs including 27,120 NSCLC cases and
27,355 controls (13,327 cases and 13,328 controls of Chinese descent
aswell as 13,793 cases and 14,027 controls of European descent).® For
those identified methylation markers, we validated in external data
sets with 7844 lung cancer cases and 421,224 controls from the UK
Biobank (https://pan.ukbb.broadinstitute.org) and Female Lung Can-
cer Consortium in Asia (FLCCA).'® Basic information and clinical fea-
tures of participants for these data sets are shown in Table S1. The
Biobank Japan summary data (4050 lung cancer cases and 208,403
controls) was used as an independent replication. Besides, we con-
ducted a multi-omics functional annotation for the identified CpG sites
by integrative analyses of epigenomics, genomics, and transcriptomics
data obtained from a previous study® or The Cancer Genome Atlas,

and finally investigated the potential regulatory pathways.

DNA methylation prediction models training and
refining

Here, 1595 unrelated European subjects with matched genetic and
DNA methylation data in the FHS were used to construct DNA
methylation prediction models (dbGaP: phsO00342 and phs000724).
The detailed information about data sets and data process have been

described elsewhere*~1”

and are shown in Supporting Informa-
tion S1. For each CpG site, we used genetic variants flanking a 2-Mb
window to build a statistical model by the elastic net method (a = 0.5)
in the “glmnet” package of R?° to predict DNA methylation residuals.
An internal validation for each model was performed using 10-fold
cross-validation. The Rgys? values, the square of correlation coeffi-
cient between measured and predicted methylation levels, were
calculated to estimate the prediction performance of models.

Using the data from 883 genetically unrelated female participants
of European descent derived from the WHI (dbGaP: phs001335,
phs000675, and phs000315), we performed an external validation for
the built methylation predictive models. The pipeline of data process
was the same as that for the FHS data. The Ryy? values were calcu-
lated by Spearman’s correlation test. Furthermore, we selected the
models with satisfactory prediction performance according to these
criteria: (1) with a Res? > 0.01 (>10% correlation between predicted
and measured methylation levels) in FHS; (2) with a Ry > 0.01 in
WHI; and (3) probes with no single-nucleotide polymorphism (SNPs)
overlapped, considering that SNPs on the probes might have a po-

tential impact on the methylation level estimation.?*

Association analyses between predicted methylation
and NSCLC risk

We used S-PrediXcan?? to evaluate the associations between
genetically predicted methylation levels and NSCLC risk. In brief, the
association indicator Z-score was estimated by this formula:

seModel,, Om se (BS)

In the formula, w, is the weight of SNP; in the prediction of the
CpG .. 6, and §,, are the estimated variances of SNP, and CpGp,. BS
and se(Bs) are the GWAS regression coefficients and standard error
of B,. We used summary data from 2 GWASs that had been gener-
ated from 27,820 European individuals and 26,655 Chinese in-
dividuals® to estimate the associations between genetically predicted
methylation levels with NSCLC risk. Considering the population
heterogeneity, we conducted a fixed-effect meta-analysis of two
populations using META v1.7 to identify the shared methylation
markers; p < .05 for Cochran’s Q statistic indicated a high degree of
heterogeneity. We further filtered out those CpGs with heteroge-
neity or inconsistent directions of effect size in two populations.
Finally, we used a Bonferroni-corrected test to screen the statisti-
cally significant CpG sites (p < 1.67 x 107% 0.05/29,894). At the
validation stage, we replicated the 39 CpGs by summary data of Pan-
UK Biobank and FLCCA. The same strategy of meta-analysis was
performed, and the Bonferroni-corrected test was again used to
determine the passing CpG sites (p < 1.28 x 10°%; 0.05/39).

For replicated CpG sites, we assessed whether the observed
associations were independent of lung cancer susceptibility variants
identified in previous GWASs.**¢ Briefly, we used genome-wide
complex trait analysis-conditional and joint analysis?® to reevaluate
the betas and standard errors of lung cancer by adjusting the closest
GWAS-identified risk variants, and then reran the S-PrediXcan ana-
lyses. Additionally, we conducted the subgroup analyses by histo-
logical type (squamous cell carcinoma and adenocarcinoma), smoking
status (smoker and nonsmoker), and gender to explore the difference
between subgroups. Heterogeneity across subgroups was estimated
by Cochran’s Q test and p < .05 was statistical threshold. Finally,
given the potential ethnicity heterogeneity of model application, an
external replication was conducted for those shared CpGs of com-
bined populations and Asian-specific CpGs by GWAS summary data
from the Biobank Japan.?*

Systematic multi-omics functional annotation

We performed multi-omics functional annotations based on epi-
genomics, genomics, and transcriptomics data for the CpGs passing
the validation. The types and sources of related annotation infor-
mation are described in Table S2. For the epigenomics level, we used
ANNOVAR to annotate the closest genes and regions of the identi-
fied CpGs; an extended annotation obtained from the Illumina 450K
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Part 1: DNA Methylation Predication Models Construction
Prediction Model Training | ) ]1)’;9: lf;r L‘cip‘,'“t? ;ﬁ Fr f"m‘;{'ghaml\? e;"; S.t“‘lys(()F; S?icn
A st = TRVA. memais ethylation: umina Human ethylation eadChip
DNA Genotype: Affymetrix S00K Array
4 883 participants in Women’s Health Initiative (WHI)
Prediction Model Refining | » DNA Methylation: Illumina HumanMethylation450 BeadChip
DNA methylation ~ DNA genotype DNA Genotype: HumanOmnil-Quad v1-0 B Array and
HumanOmniExpress Array
Part 2: Identification and Validation for NSCLC DNA Methylation Markers
Stage 1: Screening Stage Individuals of European Descent
27,120 NSCLC cases vs. 27,355 controls == # TRICL-ILCCO OncoArray Project
! i (13,793 cases and 14,027 controls)
| S i Individuals of Chinese Descent
39 CpGs achieved Bonferroni-corrected i__» NIMU GSA Project (10,248 cases and 9,298 controls)
threshold (P < 1.67x10°, 0.05/29,894) NIMU GWAS (2,126 cases and 3,077 controls)
NIMU OncoArray GWAS (953 cases and 953 controls)
A 4
Stage 2: Validation Stage Individuals of European Descent
7,844 lung cancer cases vs. 421,224 controls | ,--p{ Pan-UK Biobank: Malignant neoplasm of bronchus and lung
i i (3,048 cases and 417,483 controls)
A 4 “““““““i . . .
- : Individuals of Asian Descent
16 of3 9.Cp.Gs derived from stzzge 1 passed '-=-»{ Female Lung Cancer Consortium in Asia (FLCCA)
the validation (P < 1.28 x 107, 0.05/39) (4,796 cases and 3,741 controls)
" e . .
Stage 3: Independent Replication In.d1v1duals G SFTLLEREE:
10 of 16 CoG ined P less than 0.05 | > Biobank Japan: Lung cancer
° phs remaine ess than U (4,050 cases and 208,403 controls)
Part 3: Multi-Omics Functional Annotation and Integrative Analyses
Genomics: MeQTL data from 4,170 participants in FHS
Multi-Omics Functional Annotation Epigenomics: DNA Methylation data from 907 lung cancer
9 of 16 CpGs showing the higher [~~~ »{ cases in TCGA
functional importance Transcriptomics: Gene expression data from 1,119 lung
cancer cases in TCGA
" . . . .
Multi-Omics Tt tive Anal CpG-NSCLC: Association analyses by prediction models
l2uC l-G mlfﬂsl ;; egra lvfl n.a y:::s ______ CpG-Gene: Correlation analyses in TCGA
pt S:Vi lgfnes s t(l)lwmg N Gene-NSCLC: Differential analyses of 108 lung tumor-
potential regu’atory patways adjacent tissue pairs in TCGA
FIGURE 1 Flowchart for the study design.

platform (GEO: GPL18809) was as a supplement. Moreover, the
chromatin interactions, topologically associated domains, transcrip-
tion factor binding sites, and histone mark were further annotated.

For the genomics level, we assessed whether the corresponding cis-

meQTL was overlapped with the expression quantitative trait loci
(eQTL) in the Genotype-Tissue Expression. Six bioinformatic-
predictive algorithms (Supporting Information S1) were used for

evaluation of detrimental missense variants among these cis-
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meQTL.?° For transcriptomics level, we identified the methylation-
related protein-encoding genes within a 1-Mb range of each CpG
site by Spearman correlation coefficients (false-discovery-rate [FDR]
corrected p < .05). We assessed these methylation-related genes
were of lung cancer-driver genes,?® lung cancer-associated genes, or
consistent with findings from transcriptome-wide association studies
in lung cancer.?6%”

To estimate the functional importance of these identified CpGs
with NSCLC risk, a functional score system was constructed. One score
was given if CpG met the corresponding criterion of each indicator
(Table S3, Supporting Information S1). Altogether, functional score
ranged from O to 10 in the epigenomics level (1 omics score given if
score > 5),from0to 3inthe genomics level (1 omics score given if score
> 2),and from O to 7 in the transcriptomics level (1 omics score given if
score > 4). We classified the CpGs into three levels based on the omics
scores: level A (3 scores), level B (2 scores), and level C (0 or 1 score),

indicating the functional importance from high to low.

Integrative analysis for potential regulatory pathways

Based on gene expression of 108 tumor-adjacent tissues pairs from
lung cancer in The Cancer Genome Atlas, we conducted the differ-
ential expression analyses for those methylation-related genes. The
number and percentage of upregulation pairs were calculated by
log2-transformed data of tumor and adjacent tissues. A Wilcoxon
rank-sum test was used and FDR-corrected threshold of p < .05 was
statistically significant. Finally, we integrated the association be-
tween genetically predicted methylation and NSCLC risk, the corre-
lation between DNA methylation and gene expression, and the
relationship of differential expression between lung cancer tissues
and adjacent normal tissues to elucidate the putative pathways
through which DNA methylation affects the development of NSCLC.

This study was approved by the institutional review board of
Nanjing Medical University. All data in this study were derived from
previous studies, which were approved by the local internal review
board or ethics committee.

RESULTS
DNA methylation prediction models

Based on individual-level genotyping and DNA methylation data from
the FHS cohort, DNA methylation prediction models for 223,959
CpG were established, of which 81,352 models with a predictive
performance (Rpys?) of at least 0.01 were retained. Among these,
70,330 models (86.45%) with good repeatability were observed in
the WHI cohort (Ry? > 0.01), suggesting a high correlation between
two cohorts (Pearson’s correlation r = 0.95, p < .0001; Figure S1).
Besides, methylation probes of 7284 had SNPs within the binding
site, which were excluded. Totally, there were 63,046 CpGs

remaining for the downstream analyses.

Association of genetically predicted methylation with
NSCLC risk

At the screening stage, we did a fixed-effects meta-analysis for
predicted associations of 62,981 CpGs available in 27,120 NSCLC
cases and 27,355 controls. After removing the CpGs with hetero-
geneity p < .05 (n = 7626) and those without consistent effect di-
rections (nh = 25,371), a total of 29,894 CpGs remained. We observed
that 39 CpGs located in 10 loci were significantly associated with
NSCLC risk (Bonferroni correction p < 1.67 x 107, 0.05/29,894)
(Figure 2 and Table S4).

At the validation stage, we replicated the 39 CpGs using sum-
mary data of 7844 lung cancer cases and 421,224 controls. As shown
in Table S5, 25 CpGs with the same effect direction were at p < .05,
16 of which met the Bonferroni correction (p < 1.28 x 1073, 0.05/
39). Four of the replicated 16 CpGs (cg22795331, cg05012158,
cg06752398, and cg19720302) were the first reported methylated
loci associated with NSCLC risk and 12 were located in susceptibility
regions reported previously (Figure 2 and Table 1). A positive asso-
ciation of 3 CpGs with NSCLC risk was detected (cg07493874,
cg27028750, and cg06752398), whereas the other 13 CpGs were
negatively associated with NSCLC (Table 1). However, we did not
observe any of the 16 valid CpGs remaining significant
(p < 1.67 x 1079) after adjusting GWAS-identified lung cancer sus-
ceptibility variants (Table S6). Additionally, the respective results of
methylation markers derived from two populations were also
exhibited (Tables S7 and S8). Briefly, methylation markers of Euro-
pean descent were mainly located in the 5p15.33, 6p22.1, 6p21.33,
and 15¢25.1 regions. Of these, 5p15.33 was shared with the Chinese
population, whereas the other markers in 2p23.1, 6p21.32, 11923.3,
17924.2, and 20q11.23 showed a racial difference. Finally, we
observed 19 of 39 shared CpGs of combined populations (including
10 of 16 valid CpGs mentioned previously) and 12 of 15 Asian-
specific CpGs consistent with the Z score direction of the upstream
analyses (p < .05), especially in the 5p15.33 locus (Tables S9 and
$10).

In subgroup analyses by histological type, smoking status, and
gender (Table S11), we found that three of 16 valid CpGs
(cg07507801, cg22795331, and cg18468235) showed the stronger
associations in lung adenocarcinoma (p-het: 308 x 107%
1.42 x 10~* and 6.73 x 1073). Interestingly, we found the obvious
associations of cg08285415 (p = 741 x 1073, cg05012158
(p = 2.40 x 1071%), and cg06752398 (p = 1.90 x 1072°) in smokers,
whereas this was nonsignificant in nonsmokers. Moreover,
cg06752398 had a stronger association in male participants (p-
het = 2.26 x 107°).

Systematically multi-omics functional annotation for
lung cancer-associated CpG sites

We integrated the evidence of epigenomics, genomics, and tran-

scriptomics and adopted a scoring strategy to systematically assess
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FIGURE 2 Manhattan plot for 39 DNA methylation markers from meta-analysis associated with NSCLC risk. The green dotted line
represents p = 1.67 x 10~ (Bonferroni correction of 29,894 tests, 0.05/29,894). Each dot represents the genetically predicted DNA
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chromosome of the CpG site. The red represents the combined effect of 16 CpG sites passed the independent validation, and the diamond
represents the novel CpG sites in regions not yet reported in previous lung cancer epigenome-wide association studies. NSCLC indicates non-

small cell lung cancer.

the functional importance of the 16 CpGs. As the heatmap shows, 5
CpGs were at “level A,” including cg11624060, cg26209169, and
cg10441424 in 5p15.33, cg18468235 in 11g23.3. and cg19720302
in 17924.2; four at “level B”; and seven at “level C” (Figure 3). In
detail, the physical locations of the cg11624060, cg26209169, and
cg10441424 were very close and located ~1.8 kb downstream of
CLPTM1L and ~20.9 kb upstream of TERT. We observed the predicted
enhancer signals of TERT and promotor/enhancer-related histone
markers (Table $12). The meQTL of CpGs in 5p15.33 also overlapped
with eQTL of CLPTM1L or NDUFS6 (Tables S13 and S14). Besides,
two meQTLs of cg18468235 (rs2298831-C and rs17121881-T) were
predicted as the detrimental mutations for JAML (Table S15). Most of
the CpGs in 5p15.33 were correlated with the expression of
CLPTM1L and TERT, of which TERT is a known driver gene for cancer
(Table S16). Finally, three methylation-related genes of cg18468235,
cg08285415, and cg05012158 (JAML, IREB2, and PSMA4) were
shown the consistent associations directions across CpG, gene

expression, and lung cancer (Table S17).

Integrative analyses of multi-omics for CpG gene-
NSCLC regulatory pathways

To estimate the effect direction of methylation-related genes, we
performed a differential expression analysis for 75 unduplicated
genes. The expression levels of 55 genes were significantly differ-
ential between lung tumor and adjacent normal tissues (FDR-

corrected p <.05) (Table S18). Then, we integrated all associations to
estimate whether the DNA methylation at CpGs could affect the
development of NSCLC through regulating the gene expression.
There were 12 CpGs and 34 genes having the potential CpG gene-
NSCLC regulatory pathways (Table S19). For example, cg11624060

(5p15.33) with a decreased NSCLC risk (Z score = -12.20,
p = 3.01 x 10734 was negatively associated with expression of TERT
(Rho = -0.34, p = 105 x 10723, TRIP13 (Rho = -0.34,

p = 424 x 1072%), and MRPL36 (Rho = —0.36, p = 3.89 x 107%¢).
Meanwhile, these genes were respectively upregulated in 93.52%
(p = 847 x 107%Y), 9352% (p = 4.83 x 107%7), and 90.74%
(p = 2.71 x 1072%) tumor-adjacent tissues pairs, constructing a po-
tential closed loop of regulatory pathway. The results of cg26209169
and cg10441424 were similar. Additionally, CpG sites and the genes
nearby, such as cg18468235 with JAML and IL10RA, cg05012158
with CHRNA5 and PSMA4, and cg19720302 with KPNA2 and AMZ2,
were also showing the CpG gene-NSCLC regulatory pathways
(Table 2).

DISCUSSION

In this study, we initially observed 39 statistically significant CpGs
and 16 of them, which were mainly located in six lung cancer sus-
ceptibility loci from previous GWASs*® except for cg08285415
(15924.3), passed the downstream validation. Given that predictive
associations were calculated from GWAS summary data, it is rational
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TABLE 1 Thirty-nine DNA methylation markers from meta-analysis associated with NSCLC risk.
Screening stage  Validation stage Combined stage 2
CpG CytoBand® Position® Classification  Closest gene  Z score p°© Z score p°© Z score p (%) p Het!
cg07507801°¢ 5p15.33 1291235 Intronic TERT -7.96 170E-15 -4.32 1.56E-05 -9.06 1.35E-19 0.0 8.42E-01
cg07380026° 5p15.33 1296007 Upstream TERT -7.69 143E-14 -424 226E-05 -878 1.61E-18 0.0 8.56E-01
€g26603275° 5p15.33 1298965 Intergenic TERT; -9.29 149E-20 -4.31  1.65E-05 -10.17 2.81E-24 36.9 2.08E-01
MIR4457
cg11624060° 5p15.33 1316038 Intergenic MIR4457; -10.99 4.30E-28 -548  4.18E-08 -12.20 3.01E-34 48.1 1.65E-01
CLPTM1L
€g26209169° 5p15.33 1316265 Intergenic MIR4457; -10.04 9.72E-24 -537  7.71E-08 -11.35 7.23E-30 0.0 3.44E-01
CLPTM1L
cg10441424° 5p15.33 1316637 Intergenic MIR4457; -8.95 3.54E-19 -559  2.29E-08 -10.55 5.09E-26 0.0 8.40E-01
CLPTM1L
cg07493874° 5p15.33 1342172 Intronic CLPTM1L 11.62 3.14E-31 543 5.55E-08 1271 4.89E-37 66.0 8.62E-02
cg19915256¢ 5p15.33 1345677 Upstream CLPTM1L -9.73 2.18E-22 -5.90 3.63E-09 -11.38 5.37E-30 0.0 7.76E-01
cg27028750° 5p15.33 1349422 Intergenic CLPTM1L; 10.54 5.64E-26 596  2.54E-09 1210 1.09E-33 0.0 6.15E-01
LINCO1511
€g23266546 6p22.1 28190811 Intergenic TOB2P1; 537 7.71E-08 107 284E-01 506 4.11E-07 77.2 3.63E-02
ZSCAN9
cg15671450 6p22.1 29895116 Upstream HCG4B 584 523E-09 066 5.11E-01 5.18 2.19E-07 87.0 5.60E-03
cg06710082 6p22.1 29943408 ncRNA_intronic HCG?9 -523 1.67E-07 -1.75 7.97E-02 -5.39 7.02E-08 28.3 2.37E-01
cgl6368146 6p22.1 29943426 ncRNA intronic HCG? -4.99 6.17E-07 -1.10  2.71E-01 -4.72 2.37E-06 73.7 5.13E-02
cg24694606 6p22.1 29977957 ncRNA_intronic ZNRD1ASP -5.83 5.53E-09 -2.17 3.03E-02 -6.06 1.37E-09 49.2 1.61E-01
cg01044849 6p22.1 30002723 ncRNA _exonic  ZNRD1ASP 573 9.91E-09 3.04 234E-03 649 8.59E-11 0.0 9.52E-01
€g27493649 6p22.1 30042987 Intronic RNF39 498 6.23E-07 150 1.35E-01 5.17 232E-07 0.0 5.63E-01
cgl4461571° 6p21.33 30458099 Exonic HLA-E -5.00 5.64E-07 -3.26 1.11E-03 -5.97 2.33E-09 0.0 9.66E-01
cg19110902 6p21.33 30698937 Intronic FLOT1 498 6.35E-07 137 170E-01 4.82 146E-06 71.3 6.21E-02
cg06480496 6p21.33 31430676 Upstream HCP5 -490 9.47E-07 -129 1.97E-01 -4.78 1.73E-06 64.7 9.25E-02
cg00848392 6p21.33 31734401 Exonic VWA7 -509 3.60E-07 -1.27 2.05E-01 -5.00 5.79E-07 60.4 1.12E-01
cg21042276 6p21.33 32038542 Intronic TNXB -5.11 3.14E-07 -0.97 3.34E-01 -4.72 2.30E-06 79.0 2.89E-02
cg06871764 6p21.32 32376096 Downstream TSBP1-AS1 499 6.12E-07 0.99 3.20E-01 4.79 1.68E-06 65.9 8.66E-02
€g22795331° 6q22.1 117785611 Intergenic ROS1; DCBLD1 -5.49 4.08E-08 -4.03  5.69E-05 -6.79 1.09E-11 0.0 6.90E-01
cg27642470 6q22.1 117802711 Intergenic ROS1; DCBLD1 483 1.33E-06 271 6.64E-03 5.54 3.02E-08 0.0 8.22E-01
cg23172480 6q22.1 117802787 Upstream DCBLD1 485 1.23E-06 292 347E-03 5.66 150E-08 0.0 889E-01
cg17808183 7ql11.21 63491010 Upstream LINCO1005 482 143E-06 183 6.77E-02 5.08 3.84E-07 0.0 3.71E-01
cg10870165 8p1l2 32345448 Intronic NRG1 494 7.93E-07 1.97 4.88E-02 526 146E-07 0.0 4.30E-01
cg18468235° 11g23.3 118066105 Intronic JAML -548 4.16E-08 -3.71  2.10E-04 -6.62 3.64E-11 0.0 9.03E-01
cg15794034 11g23.3 118095776 Upstream JAML -5.08 3.80E-07 -2.81 4.92E-03 -5.79 6.86E-09 0.0 7.22E-01
cg18051914 11g23.3 118134912 UTR5 MPZL2 596 259E-09 272 6.54E-03 6.54 6.18E-11 0.0 7.49E-01
cg26426447 11q23.3 118134959 UTR5 MPZL2 597 243E-09 257 1.02E-02 646 1.06E-10 0.0 4.84E-01
cg09033131 11g23.3 118135094 UTRS5 MPZL2 592 3.12E-09 136 1.74E-01 420 271E-05 94.8 1.09E-05
cg15376097 11q23.3 118135271 Upstream MPZL2 598 225E-09 299 282E-03 6.68 234E-11 0.0 9.67E-01
cg08285415° 15q24.3 78283681 Intergenic COMMDA4P1; -7.58 3.44E-14 -425 2.17E-05 -8.67 4.23E-18 0.0 5.92E-01
LOC91450
cg08701566 15¢g25.1 78911099 Intronic CHRNA3 -4.96 7.01E-07 -1.47 142E-01 -5.02 5.09E-07 35.0 2.15E-01
(Continues)
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TABLE 1 (Continued)

Screening stage  Validation stage Combined stage 12

CpG CytoBand® Position®  Classification  Closest gene  Z score p° Z score p° Z score p (%) p Het!

cg05012158° 15g25.1 79051864 Exonic ADAMTS7 -743 1.12E-13 -4.31 1.65E-05 -8.58 9.56E-18 0.0 7.50E-01
cg06752398¢ 15g25.1 79053858 Intronic ADAMTS7 9.16 5.15E-20 4.54 5.62E-06 10.12 4.40E-24 51.7 1.50E-01
cg15822222 15qg25.1 79164807 Upstream MORFA4L1 -5.46 4.83E-08 -1.50 1.33E-01 -5.24 1.64E-07 784 3.14E-02
cg19720302°¢ 17q24.2 65990670 Upstream C170rf58 -5.65 1.65E-08 -3.86 1.13E-04 -6.84 8.16E-12 0.0 8.08E-01

2Cytogenic band where the variant is positioned.

bChromosomal position, hg19/GRCh37 build.

Bonferroni correction threshold for p value is 1.67 x 10~ (0.05/29,894) in the screening stage and 1.28 x 10~ (0.05/39) in the validation stage.
dCochran’s Q test is used to test for heterogeneity in effect sizes of CpGs across two stages (1% heterogeneity p value), and p < .05 is statistically
significant.

¢CpG sites pass the independent validation.
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TABLE 2 Integrative analyses for potential regulatory pathways across DNA methylation, gene expression, and NSCLC risk.?
CpG vs. NSCLC risk CpG vs. gene expression Gene expression vs. NSCLC risk
p value. Up p value.

Chr Position CpG Gene Z score® pvalue® Direction Rho® FDR® Direction regulation® FDRY Direction
5 1316038 cg11624060 TERT -1220 3.01E-34 Negative -0.34 1.05E-22 Negative 93.52% 8.47E-31 Positive

5 1316038 cg11624060 TRIP13 -1220 3.01E-34 Negative -0.34 4.24E-23 Negative 93.52% 4.83E-27 Positive

5 1316038 cg11624060 MRPL36  -12.20 3.01E-34 Negative -0.36 3.89E-26 Negative 90.74% 2.71E-23 Positive

5 1316038 cg11624060 NDUFS6  -12.20 3.01E-34 Negative -0.34 1.04E-22 Negative 85.19% 4.66E-23 Positive

5 1316038 cg11624060 LPCAT1 -12.20 3.01E-34 Negative 0.22 5.84E-10 Positive  16.67% 3.46E-16 Negative
5 1316264 cg26209169 TERT -11.35 7.23E-30 Negative -0.30 7.39E-18 Negative 93.52% 8.47E-31 Positive

5 1316264 ¢g26209169 TRIP13 -11.35 7.23E-30 Negative -0.29 1.99E-17 Negative 93.52% 4.83E-27 Positive

5 1316264 cg26209169 MRPL36 -11.35 7.23E-30 Negative —-0.34 6.98E-23 Negative 90.74% 2.71E-23 Positive

5 1316264 ¢g26209169 NDUFS6  -11.35 7.23E-30 Negative -0.31 4.81E-20 Negative 85.19% 4.66E-23 Positive

5 1316264 cg26209169 LPCAT1 -11.35 7.23E-30 Negative 0.19 6.27E-08 Positive  16.67% 3.46E-16 Negative
5 1316636 cg10441424 TERT -10.55 5.09E-26 Negative -0.28 3.90E-16 Negative 93.52% 8.47E-31 Positive

5 1316636 cg10441424 TRIP13 -10.55 5.09E-26 Negative -0.46 3.47E-44 Negative 93.52% 4.83E-27 Positive

5 1316636 cg10441424 MRPL36  -10.55 5.09E-26 Negative -0.43 5.32E-38 Negative 90.74% 2.71E-23 Positive

5 1316636 cg10441424 NDUFS6  -10.55 5.09E-26 Negative -0.34 7.45E-24 Negative 85.19% 4.66E-23 Positive

5 1316636 cg10441424 LPCAT1 -10.55 5.09E-26 Negative 0.58 4.83E-74 Positive  16.67% 3.46E-16 Negative
5 1342172 cg07493874 TRIP13 12.71  4.89E-37 Positive 0.23 1.74E-11 Positive  93.52% 4.83E-27 Positive

5 1342172 cg07493874 MRPL36 12.71  4.89E-37 Positive 0.29 1.17E-16 Positive  90.74% 2.71E-23 Positive

5 1342172 cg07493874 NDUFS6 12.71  4.89E-37 Positive 0.28 3.06E-16 Positive  85.19% 4.66E-23 Positive

5 1342172 cg07493874 CLPTMIL 1271 4.89E-37 Positive 0.13 4.95E-04 Positive  80.56% 1.08E-11 Positive

5 1342172 cg07493874 BRD9 12.71 4.89E-37 Positive 0.25 1.16E-12 Positive  74.07% 1.74E-07 Positive

11 118066105 cg18468235 AMICA1 -6.62 3.64E-11 Negative 0.18 6.41E-07 Positive  1.85% 7.02E-32 Negative
11 118066105 cg18468235 IL10RA -6.62 3.64E-11 Negative 0.32 2.31E-21 Positive  17.59% 1.17E-13 Negative
11 118066105 cg18468235 TMPRSS13 -6.62 3.64E-11 Negative -0.20 2.41E-08 Negative 76.85% 1.07E-11 Positive

11 118066105 ¢g18468235 ARCN1 -6.62 3.64E-11 Negative -0.19 1.00E-07 Negative 69.44% 1.14E-07 Positive

11 118066105 cg18468235 CD3E -6.62 3.64E-11 Negative 0.43 1.03E-38 Positive  31.48% 3.40E-04 Negative
15 78283681 cg08285415 SH2D7 -8.67 4.23E-18 Negative 0.14 1.66E-04 Positive  33.33% 6.10E-03 Negative
15 79051863 cg05012158 RASGRF1 -8.58 9.56E-18 Negative 0.16 1.02E-05 Positive  4.63% 8.76E-30 Negative
15 79051863 cg05012158 CHRNA5 -8.58 9.56E-18 Negative -0.08 3.29E-02 Negative 92.59% 1.23E-27 Positive

15 79051863 ¢g05012158 CTSH -8.58 9.56E-18 Negative 0.18 1.84E-07 Positive  6.48% 5.60E-27 Negative
15 79051863 cg05012158 PSMA4 -8.58 9.56E-18 Negative -0.12 7.94E-04 Negative 75% 2.24E-11 Positive

17 65990670 cg19720302 KPNA2 -6.84 8.16E-12 Negative -0.19 9.40E-08 Negative 95.37% 3.21E-28 Positive

17 65990670 ¢g19720302 NOL11 -6.84 8.16E-12 Negative -0.33 3.58E-21 Negative 91.67% 6.67E-24 Positive

17 65990670 cg19720302 AMZ2 -6.84 8.16E-12 Negative -0.33 8.54E-22 Negative 87.96% 8.36E-20 Positive

17 65990670 ¢g19720302 C170rf58 -6.84 8.16E-12 Negative -0.30 1.29E-18 Negative 86.11% 4.43E-18 Positive

17 65990670 cg19720302 SLC16A6 -6.84 8.16E-12 Negative 0.19 1.84E-07 Positive  12.96% 3.88E-17 Negative

Note: FDR-corrected p value was calculated by Benjamini-Hochberg method and p < 0.05 was statistically significant. All statistical tests are two-sided.

Abbreviations: Chr, chromsome; FDR, false discovery rate; NSCLC, non-small cell lung cancer.

2For CpGs with the high functional level in multi-omics annotation, the integrative results of top five differential genes were selected. The complete list
is shown in Table S17.

bZ score and p value were derived from the combined stage.

“Rho and p value were calculated by the Spearman rank correlation test.

9The percentage of upregulation pair was calculated by relative expression levels of genes (indicated by log2-transformed tumor/adjacent tissues), and p
value was calculated by Wilcoxon rank-sum test.
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that the methylation loci we identified are highly overlapped with loci
reported by genetics studies. The ethnic characteristics of the dis-
tribution of methylation markers in two populations were consistent
with the differences in genetics as well. Moreover, the results of two
populations hinted the CpGs in 5p15.33 might be shared markers
between European and Asian populations. We then retrieved 16
replicated CpGs in lung cancer risk-related publications from the
EWAS Atlas,?® and found cg22795331 in 6g22.1, cg05012158 and
cg06752398 in 15g25.1, and cg19720302 in 17924.2 are located in
novel methylation regions not reported by previous methylation
studies. Besides, hypomethylation at cg22795331 and cg18468235
was observed in colorectal cancer?’ and papillary thyroid carci-

noma,*°

indicating a potential methylation phenomenon of multi-
cancer risk.

By integrating the multi-omics results across DNA methylation,
gene expression, and NSCLC, we revealed some pathways with
consistent directions of association, which might be useful to
expound the potential regulation mechanism. In 5p15.33 locus, TERT,
one of the components of human telomerase, plays an important role
in maintaining telomere length and activity. Nearly 90% of types of
cancer have been found an upregulation of telomerase, contributing
to cancer initiation.3! The TRIP13 gene promotes proliferation and
invasion of lung cancer cells through AKT/mTORC1/c-Myc
signaling,>?> Wnt signaling, and epithelial-mesenchymal transition
pathways.>® Some researchers observed silencing NDUFS6 signifi-
cantly decreased reactive oxygen species levels in breast cancer,
inhibiting the cancer-associated inflammation response.®* Further-
more, mitochondrial ribosomal protein L36 (MRPL36) is essential for
maintaining mitochondrial functions and significantly increases in
lung squamous cell carcinoma compared with normal lung tissue,**
playing a crucial role in energy metabolism for human cancer.3¢

For genes in 11g23.3, JAML (junction adhesion molecule like,
alias AMICA1) expression was positively associated with infiltrating
levels of diverse immune cells in LUAD.®” As a crucial component of
epithelial gammadelta T-cell biology, JAML also has broader impli-
cations in tissue homeostasis and repair.®® Protein encoding by
ILI0RA is a receptor for interleukin-10 and has been shown to
mediate the immunosuppressive signal of interleukin-10, and inhibits
the synthesis of proinflammatory cytokines, which may restrain lung
adenocarcinoma aggressiveness.®? In 17q24.2, overexpression of
KPNA2 flanking cg19720302 was observed in various cancers,
including lung cancer.® It has been shown to participate in cell dif-
ferentiation, proliferation, apoptosis, and immune response, and thus
promote tumor formation and progression.*® Although most of the
evidence from previous functional experimental studies supported
the regulation pathways we identified, there still were some in-
consistencies without results. For example, LPCAT1 (5p15.33) was
reported upregulated in LUAD tissues and cell lines and promoted
brain metastasis.**

In subgroup analyses by smoking status, we observed a signifi-
cant association heterogeneity between smokers and nonsmokers at
cg08285415, cg05012158, and cg06752398. Interestingly, the

nicotinic receptor subunit gene CHRNA5 and tobacco addiction-

related gene PSMA4 were located nearby and showed a putative
regulatory pathway in our study. Previous studies detected an
upregulation of the CHRNA5 gene in NSCLC tumor tissue*?**3 and
low levels of CHRNA5 mRNA were associated with lower risk for
nicotine dependence and lung cancer,** in agreement with our find-
ings. However, some researchers found that lower expression of
CHRNAS5 was causally linked to increased lung cancer risk using ge-
netic instruments.?%4> PSMA4 is an important component of the 205
core proteasome complex and related to tobacco addiction (recorded
in GeneCards: https://www.genecards.org/). To our knowledge,
chemicals in tobacco smoke, such as Benzo[a]pyrene and N-
nitrosamines, lead to DNA damage, oxidative stress, and inflamma-
tion, and increase the likelihood of lung cancer.**%” Therefore, it is
reasonable to hypothesize that these genes may affect nicotine
dependence and propensity to smoke and thus promote the initiation
and growth of lung tumors indirectly.*® In addition, PSMA4 has been
also considered as a strong candidate mediator of lung cancer cell
growth and directly affects lung cancer susceptibility through its
modulation of cell proliferation and apoptosis.*®

Considering that DNA methylation changes usually occur in the
early stages of the disease and precedes pathological or imaging
detection, methylation markers, as a noninvasive diagnostic tool,
have a promising potential in clinical translation of lung cancer. For
example, previous study observed an 8% improvement in discrimi-
nation of lung cancer by adding 6 CpGs into conventional risk pre-
diction models.? Similarly, methylation changes at candidate genes
could initially identify the highest risk smokers for computed to-
mography screening for early detection of lung cancer,*’ as well as
help the detection of lung cancer and differentiation of nonmalignant
diseases.’® These evidence hint that by integrating traditional risk
factors, genetic variation, methylation changes, and other biomarkers
of multi-omics, prediction models with high performance will be
developed to identify potential high-risk populations and for early
detection. Additionally, the methylation-related genes that we iden-
tified are also worthy of further investigation to search the poten-
tially druggable targets and develop a novel targeted therapy.

This is the first study to identify the genetically predicted DNA
methylation markers associated with NSCLC risk. To some degree,
predicted models constructed by genetic instruments can control the
selection bias, potential confounding, and reverse causation in
traditional observational studies. Moreover, this approach has
proved that the results were improved, compared with the single-
meQTL SNP approach.}* However, some limitations must be
acknowledged. Through meta-analysis, we identified the shared CpGs
in the two populations, but the ethnic heterogeneity of model
application could not be completely ignored in this study. Although
we adopted a strategy of upstream filter plus downstream multi-
validation to control the effect of racial bias, we still should carefully
draw that conclusion, and a further ethnicity-specific study is
necessary to validate our findings. Second, the subjects used in the
validation stage from FLCCA were only nonsmoker females, lacking
the necessary samples of smokers and males. Furthermore, although

most of the potential regulatory pathways can be supported by
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experimental or biological evidence, the findings are only data-driven
evidence and still be affected by unknown confounding factors and
reverse causality. Therefore, further mechanism studies are war-
ranted to test the authenticity behind it.

In conclusion, we systematically assessed the associations of
genetically predicted DNA methylation CpGs with NSCLC risk, and
a total of 16 CpG sites were identified, including four novel CpGs.
Our findings indicated that these CpGs are likely to affect the
NSCLC risk via regulating the flanking genes related to cancer
formation and development. The findings of this study may
contribute to the understanding of the epigenetic susceptibility
mechanisms of NSCLC risk, especially for the interplay of genetics

and epigenetics.
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