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Abstract

Artificial intelligence (AI) is likely to revolutionize the way medical 
images are analysed and has the potential to improve the identification 
and analysis of vulnerable or high-risk atherosclerotic plaques in coronary 
arteries, leading to advances in the treatment of coronary artery disease. 
However, coronary plaque analysis is challenging owing to cardiac and 
respiratory motion, as well as the small size of cardiovascular structures. 
Moreover, the analysis of coronary imaging data is time-consuming, 
can be performed only by clinicians with dedicated cardiovascular 
imaging training, and is subject to considerable interreader and 
intrareader variability. AI has the potential to improve the assessment 
of images of vulnerable plaque in coronary arteries, but requires robust 
development, testing and validation. Combining human expertise 
with AI might facilitate the reliable and valid interpretation of images 
obtained using CT, MRI, PET, intravascular ultrasonography and optical 
coherence tomography. In this Roadmap, we review existing evidence 
on the application of AI to the imaging of vulnerable plaque in coronary 
arteries and provide consensus recommendations developed by an 
interdisciplinary group of experts on AI and non-invasive and invasive 
coronary imaging. We also outline future requirements of AI technology 
to address bias, uncertainty, explainability and generalizability, which  
are all essential for the acceptance of AI and its clinical utility in handling 
the anticipated growing volume of coronary imaging procedures.
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on the most advanced imaging modalities in this field (CCTA, IVUS 
and OCT13). In addition, we discuss the current and future approaches 
to addressing bias, explainability, uncertainty and generalizability of 
AI-guided imaging of coronary plaque. Consensus was reached using 
a Delphi methodology similar to that used to reach a consensus on 
myocardial ischaemia imaging at the first Quantitative Cardiovascular 
Imaging (QCI) meeting17. Detailed clinical consensus recommendations 
on the preferred use of each imaging technique for coronary plaque 
and stenosis imaging in specific patient populations are provided in a 
Consensus Statement derived from the second QCI meeting13.

Methodology for consensus recommendations
The application of AI to cardiovascular imaging has received increasing 
interest over the past 10 years18. However, many technical and clinical 
aspects of its application to the imaging of vulnerable plaques in coro-
nary arteries require additional attention to ensure reliability and to 
improve the prognostic and diagnostic value of different cardiovascular 
imaging modalities before widespread clinical use. During the second 
QCI meeting on coronary artery stenosis and atherosclerosis imaging in 
September 2022, a questionnaire regarding the clinical appropriateness 
of different imaging modalities was conducted using a three-round Del-
phi method. This Roadmap describes the findings that have emerged 
using this multidisciplinary approach and encompasses the views of cli-
nicians (cardiologists, radiologists and a cardiac surgeon), biomedical 
engineers and computer scientists using a similar method to that used 
for the first QCI meeting17. The questionnaire included eight questions 
on AI for coronary imaging, and no consensus was noted after the third  
and final round of questions (Supplementary Table 1), which led to  
a second Delphi process with two additional rounds needed to reach a 
consensus19,20. The questions were sent to 14 scientists and physicians 
directly involved in the research and development of AI tools for car-
diovascular imaging. A total of 15 questions (Supplementary Table 2) 
were answered using a Likert scale from 1 to 9, categorical replies or 
free text. The reasoning for each answer was provided as text. Before 
beginning the second round, the overall results from the first round  
were sent to the participants. The questions answered using a Likert 
scale were presented as a median and interquartile range, the categori-
cal replies were presented as percentages, and the relevant or conflict-
ing replies in the text were highlighted. The final results of the Delphi 
voting are summarized in Table 1, with a level of consensus between 
experts indicated as no consensus, partial consensus or consensus. 
The level of consensus for answers in the form of the Likert scale or 
ordinal scale was defined using previously proposed parameters  
(<0.6 indicated no consensus, 0.6–0.8 indicated partial consensus and 
≥0.8 indicated consensus)21. For answers on ordinal scales and related 
to multiple modalities, the measure of agreement was averaged across 
all modalities. For answers on a nominal scale, consensus was measured 
using normalized entropy with the same thresholds.

The concept of vulnerable plaque imaging
In most patients, acute coronary syndrome is triggered by the rupture 
or erosion of coronary atherosclerotic plaques22. These plaques have 
specific features, such as a large necrotic core and a thin fibrous cap, 
known as a thin-cap fibroatheroma (TCFA). The identification of these 
features, which can be visualized using imaging modalities, led to the 
concept of the vulnerable plaque that is prone to rupture (Fig. 2). Many 
clinical studies using invasive and non-invasive techniques have found 
an association between vulnerable plaques and adverse outcomes 
in patients13,23. However, findings from both pathology and clinical  

Key points

•• Artificial intelligence (AI) might have the potential to transform 
the assessment of vulnerable or high-risk plaque in coronary arteries 
by improving the detection, quantification and prognostication of 
vulnerable plaque and integration with other imaging and clinical 
parameters.

•• The advantages of AI for the assessment of vulnerable plaque images 
include reducing observer variability, improving accuracy, enabling 
standardization, improving speed and facilitating the synthesis of 
diverse information.

•• The challenges for the development and implementation of AI 
include the presence of anatomical variations and imaging artefacts; 
the lack of reproducibility, generalizability and robustness across 
diverse imaging platforms; and the potential for the technology to 
introduce or worsen biases.

•• Clinical research has already been performed on AI tools for plaque 
assessment, but validated commercial solutions for clinical use are 
not yet available.

•• For AI to achieve its true potential for vulnerable plaque assessment 
in clinical practice, large and diverse studies are required, and AI tools 
must be trustworthy, explainable and interpretable.

Introduction
Initially perceived with scepticism, artificial intelligence (AI; Fig. 1) is 
now a part of our everyday lives. A case in point is AI-based, automated 
speech and facial recognition, which was believed not to be possible in 
the 1960s, but is now available on many smartphones1. In the past dec-
ade, AI-based methods have been increasingly used in cardiovascular 
medicine, especially in cardiovascular imaging2–5. The majority of these 
AI methods have been developed for the diagnosis, risk stratification 
and prognostic assessment of patients with coronary artery disease, 
heart failure or rhythm disorders6. The evidence on the prognostic 
implications of a vulnerable atherosclerotic plaque in coronary arteries, 
which is considered to precede acute coronary events through plaque 
rupture and subsequent thrombosis7, has become more robust in the 
past 10 years8–10. Accurate non-invasive or invasive imaging approaches 
that can identify patients at high risk of adverse events might help to 
guide focal strategies or intensified medical treatment. However, visual 
and especially quantitative coronary plaque detection and characteri-
zation are time-consuming, require a high level of expertise, and have 
substantial intraobserver and interobserver variability11,12.

Among non-invasive imaging modalities, coronary CT angio
graphy (CCTA) is the best for visualizing coronary arteries and athero-
sclerotic plaques13. AI technologies have also been implemented in the 
analysis of images derived from invasive intravascular ultrasonography 
(IVUS) or optical coherence tomography (OCT)13. Research that ini-
tially focused on (semi-)automated lumen detection for stenosis 
grading14 has now moved on to the promising field of automated plaque 
characterization15,16.

In this Roadmap, we review the existing evidence on and provide 
interdisciplinary consensus recommendations for the application of AI 
to the imaging of atherosclerotic plaque in coronary arteries, focusing 
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imaging studies have also consistently shown that the rupture of 
these vulnerable plaques often occurs without clinical syndromes, 
representing an integral part of plaque progression24.  Furthermore, 
although stenting of lesions with vulnerable plaque features is safe25, 
there is currently a paucity of data supporting focal treatment of 
vulnerable plaques. Therefore, the concept of the vulnerable plaque 
remains controversial13,23. The clinical implications of quantitative 
non-invasive and invasive imaging of vulnerable plaques in coronary 
arteries have also been described in a consensus statement derived 
from findings from the second QCI meeting on clinical quantitative 
coronary artery stenosis and coronary atherosclerosis imaging13. Fur-
ther characterization of coronary atherosclerosis using AI might result 
in the identification of additional features associated with rapid plaque 
progression and increased risk of adverse events.

Imaging modalities
Coronary atherosclerotic plaque can be assessed by a range of inva-
sive and non-invasive imaging modalities13. CT and MRI facilitate 
non-invasive structural imaging of coronary plaque, whereas X-ray 
coronary angiography, IVUS, OCT and NIRS are invasive imaging 
techniques that can be used to assess coronary artery morphology. 
Although OCT and IVUS are superior to CT in terms of resolution, these 
invasive modalities are not widely available13. Beyond anatomical imag-
ing, coronary plaque biology can be assessed non-invasively through 
the use of appropriately targeted radiotracers. Only PET, which again is 
not widely available, allows the assessment of coronary atherosclerotic 
plaque biology via radiotracer uptake26.

Non-invasive plaque imaging. CCTA is a non-invasive imaging 
modality that facilitates the identification of qualitative high-risk 
plaque features, such as the napkin-ring sign, and the quantification 
of total plaque burden using CCTA27 correlates well with assessment by 
IVUS28,29. Moreover, the CCTA-derived measure of plaque attenuation 
can be used to determine plaque composition, including total, calci-
fied, non-calcified or low attenuation plaque (Fig. 2). Low attenuation 
plaque is of particular interest because it correlates with the lipid-rich 
necrotic core of atheromatous plaques and has been associated with 
adverse outcomes8. Importantly, CT quantification of coronary athero-
sclerotic burden can be used to predict the risk of fatal or non-fatal myo-
cardial infarction in patients with stable or unstable coronary artery 
disease8,27,30,31. Of note, however, CCTA is associated with exposure to 
a modest level of radiation, and image quality can be compromised by 
cardiac motion or coronary calcification.

Invasive plaque imaging. Coronary X-ray angiography is the most 
frequently used invasive modality for imaging the coronary arteries 
because it allows excellent visualization of the coronary lumen, but 
not of coronary plaque. Therefore, invasive assessment of coronary 
plaque requires intravascular imaging techniques such as IVUS, OCT 
and NIRS9,32. Specifically, plaque imaging using IVUS or OCT is instru-
mental for studying vulnerable plaque features33, and has been used to 
guide percutaneous coronary interventions33,34 and to monitor vascular 
tissue response35,36. OCT is currently the only imaging modality with 
sufficient spatial resolution to identify the thin cap (<0.065 mm) that 
defines true TCFA. Of note, these non-invasive techniques cannot be 
used to assess severe stenotic disease, small-calibre vessels or deeper 
plaque structures. Of note, intracoronary imaging is expensive, can 
cause serious complications because of its invasive nature and is, 
therefore, impractical for population-wide application.

Prognostic value of identifying vulnerable plaques
The prognostic importance of coronary plaque assessment has been 
established using various non-invasive and invasive imaging modalities. 
TCFA, identified using IVUS or OCT, has been associated with worse 
outcomes in several prospective studies9,37–39. Vulnerable plaques that 
can be visually identified on CCTA have been linked to an increased 
risk of subsequent adverse cardiac events in registry studies40 and in 
randomized controlled trials (RCTs)8,31,41. In the PROMISE trial31, vulner-
able plaques were present in 15% of patients presenting with suspected 
coronary artery disease and were associated with an almost twofold 
increase in major adverse cardiovascular events, after adjusting for 
cardiovascular risk factors. However, this study did not adjust for the 
overall disease burden. In addition, findings from studies that quan-
titatively assessed vulnerable plaques suggest that increased plaque 
volume and imaging markers of TCFA are associated with a higher risk 
of subsequent adverse cardiac events. In the PROSPECT study9, a plaque 
burden of ≥70% and a minimal lumen area of ≤4.0 mm2, as measured 
on IVUS, were independently associated with disease progression and 
recurrent chest pain at follow-up in patients presenting with acute 
coronary syndrome. In the SCOT-HEART trial27, a low attenuation plaque 
burden on CCTA was a strong predictor of myocardial infarction, over 
and above the cardiovascular risk score, calcium score and presence 
of stenosis. Patients with a low attenuation plaque burden of >4% were 
nearly five times more likely to have a subsequent myocardial infarc-
tion event than patients who had a low attenuation plaque burden of 
≤4%. Conversely, preliminary results from the ISCHEMIA trial42 did not 
find low attenuation plaque to be predictive of death or myocardial 
infarction when adjusted for total plaque burden. Importantly, the posi-
tive predictive value of vulnerable plaque features is low, and it is not 
possible at present to predict which patients will have plaque progres-
sion that would ultimately cause major adverse cardiovascular events. 
Larger studies and the incorporation of AI technology will hopefully 
improve the assessment of vulnerable plaque in the future43,44. Aside 
from traditional high-risk plaque features, AI technology can support 
the automatic identification of additional high-risk plaque features that 
are not visible to the human eye to improve diagnosis and prognosis.

Deep learning

Machine learning

Artificial intelligence

Learning from imaging and clinical data
• Supervised learning (linear regression, 

support vector machines, extreme 
gradient boosting)

• Unsupervised learning (k-means 
clustering, principal component 
analysis)

Technique to mimic human cognition
• Automated plaque characterization
• Diagnosis and prognostic assessment 

of coronary artery disease
• Automated generation of medical 

reports

Multilayered artificial neural networks
• Convolutional neural networks 
• Recurrent neural networks 
• Generative adversarial networks

Fig. 1 | Basics of artificial intelligence, machine learning and deep learning. 
Artificial intelligence in medicine mimics the intelligence of a human in 
performing various medical tasks. Machine learning is a subfield of artificial 
intelligence with a focus on how computers learn from examples. Deep learning 
is a specific form of machine learning involving an algorithm that learns directly 
from data48.
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Table 1 | Consensus recommendations on AI applied to imaging of vulnerable plaques in coronary arteries

Question Level of consensusa Consensus recommendations

Current state of AI for analysis of plaques in coronary arteries

Q1: reference standard for plaque imaging Consensus Histology would be preferable but clinically impractical; IVUS and OCT are superior to 
CT with regard to resolution but availability is limited; OCT is more precise than IVUS 
and can detect high-risk plaque features associated with plaque progression

Q2a: importance of multiple observers Partial consensus Multiple observers are essential to compensate for interobserver variability, provide 
generalizability and help with uncertainty estimation

Q2b: required level of expertise for annotation of 
plaques

Partial consensus The number of analysed scans and years of experience should both be considered; the 
number of expected analysed scans varied from 100 to >1,000; the number of years 
of experience ranged from 24 weeks to 5 years; and certifications of cardiovascular 
CT experience (such as SCCT level III) might be sufficient

Q3: availability of AI tools for automated plaque 
analysis in academic research

Partial consensus AI tools exist for all modalities, with more tools available for CT; however, access to 
research tools is limited

Q4: availability of FDA-approved or CE-approved 
AI tools for automated plaque analysis in clinical 
practice

No consensus Large discrepancies in the definition of AI tools led to discordance between experts; 
the technologies used (such as simple thresholding or deep learning) are mostly 
hidden from the user, making it difficult to define AI tools

Current challenges with AI in automated plaque analysis and prognosis

Q5: quality level of current automated vessel wall 
and lumen segmentation for coronary plaque 
analysis

Consensus No standardization on how to quantify plaque burden is available at present; most 
of the available tools are challenged by the presence of artefacts and severe 
calcifications; CT is limited in the case of heavy calcification; data interpretation is 
subjective with a paucity of quantification, and segmentations are sparse and noisy; 
and OCT is more advanced than IVUS in AI segmentation, especially in the case of 
insufficient image quality (such as blood artefacts)

Q6: susceptibility of AI tools for plaque analysis to 
image artefacts

Partial consensus Current AI tools are highly susceptible to image artefacts and most AI tools do not 
account for them

Q7: technology suited for classification of coronary 
plaques into stable and vulnerable plaques

Partial consensus A combination of radiomics and deep learning provides incremental utility compared 
with either method alone; deep learning might be superior to radiomics, but requires 
more data, which are not currently available

Trustworthy AI

Q8: mandatory visual confirmation of automated 
segmentation of plaques

Consensus Visual confirmation is required until full confidence is achieved; physicians need to be 
able to modify or correct coronary segmentations

Q9: requirement for randomized controlled trials No consensus Randomized controlled trials are required to verify clinical effectiveness and test 
advantages over standard care, whereas retrospective studies are sufficient if AI tools 
only facilitate simple human tasks (such as image segmentation)

Q10: confidence measure to explain uncertainty Partial consensus Well-calibrated and reliable quantitative measures are required (such as with 95% 
confidence interval); visual methods (such as heatmaps) are required to ensure clarity 
in interpretation; and low confidence should alert physicians that further testing 
might be required

Q11: bias mitigation Partial consensus AI tools should be developed and tested on large and diverse populations to ensure 
their generalizability; the limitations of AI tools with respect to non-representative 
populations should be clearly demonstrated; biases should be evaluated and 
quantified; and bias in datasets should be mitigated by adding or upweighting 
minority samples when possible

Outlook and future directions

Q12: reading time of an imaging test in clinical 
practice

Consensus Images are quickly screened in clinical practice (5–10 min) without measuring plaque 
features, whereas detailed plaque analysis can take >1 h; reading time highly depends 
on the complexity of the case

Q13: AI-supported time savings Consensus Quantitative plaque assessment is not performed regularly in current clinical 
practice; AI tools could provide full quantification without changing reading time; 
and higher accuracy and reproducibility are important advantages in addition to time 
savings

Q14: on-site or cloud-based plaque analysis Consensus Issues of data protection and data privacy preservation must be addressed before 
cloud-based solutions can be used; OCT and IVUS require immediate assessment 
(real-time systems) to guide decision-making

Q15: automated generation of structured medical 
reports

Consensus Structured reports should provide treatment recommendations together with 
explanations and should include a breakdown of findings (plaque burden and 
subtypes) and quantitative measurements with a summary; the ability to add 
user-defined free text is also required

AI, artificial intelligence; IVUS, intravascular ultrasonography; OCT, optical coherence tomography; SCCT, Society of Cardiovascular Computed Tomography. aThe level of consensus between 
experts is graded as no consensus, partial consensus or consensus. The full questionnaire with individual responses is shown in Supplementary Table 2. 
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AI for vulnerable plaque assessment
AI is a branch of computer science that aims to mimic human cognition 
in performing tasks such as object or pattern recognition and has been 
applied to the field of medical imaging45. Machine learning, a subfield 
of AI, enables computer algorithms to automatically learn and improve 
from experience using supervised or unsupervised learning. Deep learn-
ing is a specific form of machine learning that uses multilayered artificial 
neural networks to make predictions directly from input (Fig. 1). Unlike 
traditional machine learning techniques, deep learning has emerged 
in the field of cardiovascular imaging only in the past 7 years46, but has 
already accelerated research on the assessment of vulnerable plaques 
and on prerequisite tasks such as lumen and plaque segmentation46,47. 
The most commonly used deep learning networks for image analysis 
are convolutional neural networks (CNNs). CNNs contain many layers, 
including one or more convolutional layers that create a feature map 
summarizing the presence of detected features in the input. The most 
common implementation of CNNs allows image segmentation or image 
classification. Although the success of deep learning depends on the 
availability of large datasets, standard models, such as U-Net and con-
volutional Long Short-Term Memory networks, as well as specialized 
networks have been applied to vulnerable plaque segmentation47. In 
addition, radiomics is a technique involving the extraction of a large 

number of quantitative features (such as shape, texture and grey-level 
statistics) that are often not visible to the human eye to describe texture 
and spatial complexity. Machine learning methods are used to perform 
precision phenotyping and can build predictive models on the basis of 
radiomic patterns. Radiomics can be used to identify high-risk plaque fea-
tures, characterize plaque vulnerability48,49 and find associations that are 
predictive of an increased risk of major adverse cardiovascular events50.

AI technology allows the quantitative assessment of coronary 
plaque and the identification of adverse plaque characteristics in the 
coronary arteries. Automatically quantified biomarkers (Fig. 3) can 
improve diagnosis and facilitate patient-specific cardiovascular risk 
stratification27,51. Relevant studies that have assessed the prognostic 
value of vulnerable plaque and their level of automation using AI are 
listed in Supplementary Table 3.

Non-invasive assessment
CCTA is a first-line non-invasive test for assessing patients with suspected 
coronary artery disease52. Visual or semi-automatic analysis of CCTA 
focuses on grading stenosis severity and assessing basic plaque fea-
tures. AI-based methods can automate not only these time-consuming 
and cumbersome quantification tasks, but also the characterization of 
coronary artery plaque and stenosis grading46 (Fig. 3).

Lumen Fibrotic tissue

Thrombus

Microchannel

Fibrous cap

Plaque burden

Low attenuation

Positive remodelling

Spotty calcification

Napkin-ring sign

Cholesterol crystals

Macrophages

OCT–NIRS: lipid pool necrotic core

Thrombus

Microchannels

Plaque rupture

TCFACalcification

IVUS–NIRS: lipid pool necrotic core

Microchannels

NC

Macrophage
Intraplaque

haemorrhage
Necrotic core

Lipid core

IVUS

CCTA OCT

Fig. 2 | The concept of vulnerable plaques and high-risk plaque features in 
CCTA, IVUS and OCT images. The figure provides an overview of vulnerable 
plaque components (lipid core, necrotic core and thin fibrous cap) and associated 
high-risk plaque features in coronary CT angiography (CCTA; the arrows point to 
low attenuation, spotty calcification and napkin-ring sign, whereas the dashed 

lines indicate positive remodelling), intravascular ultrasonography (IVUS; plaque 
burden, calcification and microchannels) and optical coherence tomography 
(OCT; the large arrows point to cholesterol crystals and thin-cap fibroatheroma 
(TCFA), whereas the small arrows indicate macrophages and microchannels).  
NC, necrotic core; NIRS, near-infrared spectroscopy.

http://www.nature.com/nrcardio


Nature Reviews Cardiology | Volume 21 | January 2024 | 51–64 56

Roadmap

Automated coronary artery calcium scoring. Automated quantifica-
tion of coronary artery calcification in non-contrast CT53 and low-dose 
chest CT54 shows excellent agreement with non-automated human 
quantification in terms of risk stratification. Automated quantification 
of coronary artery calcification identified on CCTA has good accu-
racy compared with non-automated quantification of the traditional 
Agatston scores derived from non-contrast CT55,56.

Centreline extraction. Methods that detect both calcified and 
non-calcified plaque and stenosis usually require the generation 
of a coronary artery centreline to facilitate analysis of the artery 
and its immediate vicinity46. Therefore, a number of automatic or 
semi-automatic methods have been developed for coronary artery 
tree extraction, plaque segmentation and stenosis grading using 
conventional machine learning or deep learning techniques46,48,57.

Identification of vulnerable plaque characteristics. Aside from quan-
tifying plaque burden, AI-based methods have also been used to identify 
vulnerable plaque characteristics, such as positive remodelling, low 
attenuation plaque, spotty calcification and the napkin-ring sign48,58.

Radiomics can extract a large number of quantitative features, 
most of which are invisible to the human eye, from medical images 
(Fig. 3). These features capture the complex spatial relationships 
between voxels by describing textural patterns or geometric proper-
ties within a given imaging region of interest, such as a segmented 
coronary plaque. CCTA-based radiomics have been used to improve 
the identification of the napkin-ring sign58 and other vulnerable plaque 
characteristics59. In this context, machine learning techniques have 
resulted in the identification of imaging biomarkers associated with 
culprit lesions in acute coronary syndrome60.

Multimodal plaque assessment. In cardiovascular imaging, AI algo-
rithms can be used both to quantify new imaging biomarkers and 
to integrate data from many different sources for comprehensive, 
patient-tailored risk prediction (Fig. 3). For example, in a machine 
learning analysis of findings from a multicentre prospective registry, 
the combination of patient, clinical and plaque characteristics using 
an iterative LogitBoost algorithm was found to predict 5-year all-cause 
mortality more accurately than using existing clinical or CCTA metrics 
alone53. Another study combined qualitative and quantitative plaque 

Radiomics

Automated prediction of
myocardial infarction

Automated plaque
segmentation in OCT

Plaque detection and
component segmentation

Automated grading
of stenosis severity

Coronary calcium scoring Automated CAD-
RADS categorization

PET or CT plaque 
assessment

Automated plaque
segmentation in IVUS

A-line classificationClinical or patient dataDeep learning-based
coronary tree extraction

Invasive
plaque
quantification

Multimodal
learning

Precision
phenotyping

Longitudinal
representation

OCT

IVUS
PET
or CT

CT

Calcified plaque assessment
in non-contrast CT

Non-invasive
plaque
quantification

Invasive plaque quantificationRisk
stratification

Fig. 3 | The interaction between tasks supported by AI tools for the 
assessment of vulnerable plaques in coronary arteries. The figure summarizes 
the tools for the assessment of vulnerable plaques supported by artificial 
intelligence (AI) in CT, intravascular ultrasonography (IVUS) and optical 
coherence tomography (OCT). AI-supported tasks include segmentation 

(coronary tree extraction, calcium scoring and plaque segmentation), feature 
extraction (radiomics, PET or CT plaque assessment and stenosis grading), 
classification tasks (Coronary Artery Disease Reporting and Data System 
(CAD-RADS) categorization120 and multimodal learning), risk stratification and 
prediction of major adverse cardiovascular events.
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features in XGBoost models to identify precursors of culprit lesions in 
patients with acute coronary syndrome; this boosted ensemble algo-
rithm outperformed the use of traditional metrics of diameter stenosis, 
CCTA-related high-risk plaque features and lesion-level characteristics 
in the detection of culprit lesions61. Furthermore, several studies have 
used machine learning to combine plaque characteristics, includ-
ing size, geometry and density, to identify myocardial ischaemia62–65. 
Investigators in a multicentre trial involving 254 patients combined 
clinical data with quantitative and qualitative plaque characteris-
tics using a LogitBoost algorithm to detect lesion-specific ischaemia 
that was defined by invasive fractional flow reserve66. This approach 
predicted the presence of lesion-specific ischaemia (area under the 
receiver operating characteristic curve (AUC) 0.84) more accurately 
than parameters such as quantitative stenosis (AUC 0.76), total plaque 
volume (AUC 0.74) and pre-test likelihood of coronary artery disease 
(AUC 0.63), highlighting the usefulness of analysing detailed plaque 
characteristics.

AI has been used to improve cardiovascular risk prediction by 
integrating complex clinical data with multimodality coronary plaque 
data67. One study showed that machine learning by extreme gradi-
ent boosting using clinical data, quantitative CCTA plaque analysis 
and measures of coronary plaque activity from 18F-sodium fluoride 
(18F-NaF) PET could predict adverse clinical outcomes in patients with 
established coronary artery disease68. The investigators demonstrated 
that the AI model that best predicted myocardial infarction (AUC 0.85) 
combined clinical data with both quantitative measures of anatomi-
cal coronary plaque from CCTA and coronary disease activity from 
18F-NaF PET68.

Investigators in an international multicentre study involving  
921 patients undergoing CCTA developed and validated a deep learn-
ing system for CCTA-derived measures of plaque volume and stenosis 
severity47. The deep learning convolutional network was trained to 
segment plaques in all patients and then validated in a test set involv-
ing >200 patients, including 50 patients undergoing coronary IVUS 
within 1 month of CCTA. The deep learning system completed plaque 
analysis in less time than expert readers (5.7 s versus 25.7 min), with 
good or excellent agreement between the two sets of measurements47.  
There was also excellent agreement between the deep learning-derived 
measurements and the expert-derived measurements with regard to 
IVUS for total plaque volume and minimal luminal area, as well as in 
the assignment of patients to categories of stenosis severity69. The 
investigators further validated the capacity of deep learning-based 
plaque quantification to predict cardiovascular outcomes in another 
external cohort of 1,611 patients from the SCOT-HEART trial47. A deep 
learning-based total plaque volume of ≥238 mm³ was associated with 
a fivefold higher risk of myocardial infarction, adding prognostic value 
to the presence of obstructive stenosis and the clinical risk score.

Invasive assessment
Manual expert quantification of plaque burden and vulnerable plaque 
characteristics (Fig. 2), such as measuring lipid arcs and minimal 
fibrous cap thickness in images derived from OCT and IVUS, is very 
time-consuming and requires real-time decision-making (Table 1). 
The use of AI technology can improve the efficiency and accuracy of 
these processes.

Automatic segmentation in OCT. To date, automation of the quan-
tification and characterization of atherosclerotic plaque is mostly 
restricted to automatic segmentation. Deep learning approaches 

allow accurate and very fast segmentation in a matter of milliseconds15. 
These technologies relieve human experts of repetitive tasks and allow 
real-time analysis, which is crucial in intravascular imaging. Moreover, 
experts have an opportunity to understand what segmentation the 
AI model has performed, which improves trust and user acceptance 
(Table 1).

A-line-based classification. For A-line-based classification70–72, the 
cross-sectional view is rearranged longitudinally and plaques are sub-
sequently classified circumferentially on each A-line. These algorithms 
use the natural direction of light emitted by the OCT catheter and 
are independent of the indeterminable external elastic membrane 
resulting from complete light attenuation in lipid plaques (Fig. 2). This 
technique also allows fibrous cap detection and quantification after 
manual adjustment in 5.5% of frames73.

Pixel-based deep learning. Conversely, pixel-based deep learning 
algorithms allow the segmentation of individual plaque components on 
cross-sectional views and can incorporate 3D spatial information, which 
is fundamental for intravascular image analysis. Investigators have 
developed a U-shaped neural network that automatically segments a 
single OCT frame in 0.07 ± 0.01 s with a mean Dice similarity coefficient 
of 0.764, which had lower accuracy for high-risk plaque components 
(such as macrophage accumulation) than for plaque segmentation15.  
In this study, the overall diagnostic accuracy for region segmenta-
tion and characterization of the external validation cohort was 
86.6%15. A pixel-based approach using CNNs developed by another  
group of investigators resulted in sensitivities and specificities of >85% 
for the identification of lipid and calcified plaques74. Classification 
can also be performed in a binary per-frame fashion (for example, 
for TCFA identification)75,76. In a study that assessed the utility of a 
DenseNet model to classify frames with OCT-derived TCFA, the deep 
learning algorithm accurately detected an OCT-derived TCFA with high 
reproducibility in their internal validation set of almost 10,000 frames 
(AUC 0.96)75. However, the percentage of false-positive classifications 
was 6% at the frame level and 31% at the vessel level. The time required 
to analyse a pullback was only 2.1 ± 0.3 s compared with 289 ± 270 s 
for manual assessment. Interestingly, the results of histology-based 
training in addition to OCT-based training were found to be superior 
to OCT-based training only77.

Automated segmentation in IVUS. Image-based approaches in IVUS 
are limited by low spatial resolution. Consequently, most algorithms 
use binary per-frame or circumferential plaque segmentation16,78. 
Deep learning-based plaque analysis with feature extraction has led 
to promising results for the identification of TCFA (AUC 0.84–0.91), 
with OCT as the gold standard78. Furthermore, in another study, the 
Dice similarity coefficients for the identification of calcified plaque 
and attenuation were 0.79 and 0.74 at the angle-level, respectively, 
after degree-wise learning16.

Availability of AI tools
Although numerous AI methods for the assessment of coronary artery 
plaques have been developed and used in research, they are not widely 
available for clinical use (Table 2). Published scientific papers often 
do not provided access to the source code, data or trained models in 
public repositories, which prevents reproducibility analysis. The QCI 
expert group reached a partial consensus on the current state of the 
availability of AI tools for plaque assessment in academic research. 
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However, the underlying technologies in a commercial product might 
not be accessible to the user, leading to the discordance about their 
availability in clinical practice. Furthermore, most applications have not 
overcome the technical and regulatory challenges of full automation, 
and require human intervention79,80.

To identify relevant research tools and the CE-certified and 
FDA-certified products for coronary plaque assessment, we analysed 

AI-enabled and machine learning-enabled medical device databases81–86 
(Table 2). Automated calcium scoring analysis in electrocardiogram 
(ECG)-synchronized or non-ECG-synchronized CT has been estab-
lished in numerous cardiovascular imaging software products. Several 
products focus on plaque assessment in CCTA and numerous research 
tools that have been evaluated in clinical studies44,87 are gradually 
being implemented in clinical practice. Most of the available software 

Table 2 | Relevant AI tools for plaque imaging in research and clinical practice

Modality Device or software Manufacturer Approval 
pathway

Approval 
number

AI support Intended use Refs.

CT vascuCAP Elucid 
Bioimaging

FDA 510(k) 2017; 
CE mark October 
2017

K183012 Fully 3D segmentations of 
lumen, wall and each tissue 
type on CCTA

Not intended to provide a 
diagnosis, but intended to assist 
trained physicians with patients 
who have been identified as 
having atherosclerosis

103–105

cvi42 Auto 
Imaging Software 
Application

Circle 
Cardiovascular 
Imaging

FDA 510(k) July 
2022; CE mark 
February 2019

K213998 Calcium scoring and 
centreline placement in 
coronary vessels

To assist physicians in perform
ing calcium scoring and in semi- 
automatic placement of the 
centreline in coronary vessels

82,106

Syngo.CT 
CaScoring 
(SOMARIS/8 VB50)

Siemens 
Medical 
Solutions USA

FDA 510(k) May 
2020; CE mark 
May 2019

K201034 Automated coronary calcium 
scoring on ECG-gated 
non-contrast CT

To support the physician in 
evaluating and documenting 
calcified lesions in coronary 
arteries

82,107

iNtuition- 
Structural Heart 
Module

TeraRecon FDA 510(k) 
July 2019

K191585 Automatic centreline 
extraction and automated 
coronary calcium scoring

To assist in the assessment of 
calcium in the coronary arteries 
for calcium scoring

108

AI-Rad Companion 
(Cardiovascular)

Siemens 
Medical 
Solutions USA

FDA 510(k) 
September 2019; 
CE mark August 
2019

K183268 Deep learning-based 
automated coronary calcium 
scoring on non-gated CT

To support radiologists in the 
quantification of total calcium 
volume in the coronary arteries

82,109

AVIEW Coreline Soft FDA 510(k) 
September 2020

K200714 Automatic deep 
learning-based calcium 
scoring; segments and 
provides overlay of four main 
arteries and myocardium

To support the segmentation 
of coronary arteries and 
quantification of coronary artery 
calcium scores

110,111

Cleerly Labs v2.0 Cleerly FDA 510(k) 
October 2020

K202280 Deep learning tool to identify 
high-quality images, segment 
and label coronary arteries, and  
segment lumen and vessel 
walls on CCTA

Not to replace a qualified medical 
practitioner, but to provide a 
more robust semi-automatic 
segmentation software

112,113

Cardiac Solution 
(HealthCCSng)

Nanox.AI 
(Zebra Medical 
Vision)

FDA 510(k) 
September 2021

K210085 AI algorithm for coronary 
calcium scoring from 
non-cardiac gated, 
non-contrast CT

Not intended to be used 
alone, but intended to provide 
radiologists with an estimated 
coronary artery calcium detection 
category (low, medium or high)

114,115

HeartFlow Analysis HeartFlow FDA 510(k) 
October 2022

K213857 Automatic machine 
learning-based detection and 
characterization of coronary 
artery plaques

Intended to support risk 
assessment for coronary artery 
disease

116,117

Autoplaque Cedars–Sinai 
Medical Center

FDA 510(k) May 
2023

K212758 Automatic deep 
learning-based vessel, plaque 
and lumen segmentation

Intended to be used as an 
interactive tool for viewing and 
analysing cardiac CT data for 
determining the presence and 
extent of coronary plaques

87

OCT Ultreon 1.0 Abbott FDA 510(k); CE 
mark April 2021

K210458 Automatic detection of 
lumen, stent, external elastic 
membrane and calcium

The physician might use the 
acquired parameters along with 
other information to determine 
if therapeutic intervention is 
indicated

118,119

AI, artificial intelligence; CCTA, coronary CT angiography; ECG, electrocardiogram.
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packages contain tools for the automatic segmentation of tissue types 
and anatomical structures, such as the vessel wall and the lumen. How-
ever, depending on image quality and the presence of anatomical vari-
ants, manual correction, such as centreline correction or vessel wall 
adjustment and lumen or plaque segmentation, is often still required 
for quality assurance, calling into question the time savings and cost 
efficiency of AI-based tools.

Similarly, commercially available CE-certified and FDA-certified 
products for plaque analysis in intravascular modalities are emerging. 
The latest OCT software packages incorporate lumen, stent, exter-
nal elastic membrane and calcium detection, and some even include 
AI-based plaque assessment15. However, AI-based plaque assessment 
is currently available only for research purposes.

Challenges with AI tools in clinical practice
AI is an emerging technology in cardiovascular imaging, and the future 
benefits of AI in vulnerable plaque imaging are difficult to predict80. 
Importantly, high expectations should not obscure the challenges that 
still have to be overcome before AI becomes a standard tool in clinical 
practice. A major challenge for the development of clinical AI tools is 
the availability of large, diverse, anonymized and annotated datasets 
with available outcome data for testing, training and validation. The 
collection, curation and annotation of large sets of images required for 
AI development are very time-consuming (Table 1). The quality of the 
annotations is also an important concern, and the expertise required 
for annotation will depend on the task in question. In addition, AI tools 
must be tested on external validation datasets with clinical outcomes 
to ensure their generalizability to wider populations. Poor image qual-
ity can also cause difficulties for AI development and use. Many AI 
tools are trained on curated and annotated datasets with high image 
quality and, therefore, under-perform in real-world clinical practice. 
In addition, image artefacts and variation in image acquisition might 
preclude the use of AI tools or result in inaccurate or unreliable output 
(Table 1). Standardization of image acquisition would aid AI develop-
ment, including consistent naming, conformity in the reconstruction 
of algorithms and structured reporting.

For clinical use, an AI-based tool must provide results in a way 
that clinicians will understand and trust. Machine learning models 
might generate a probability of a result, but this outcome is not usu-
ally communicated by the AI tools. Methods to improve interpretabil-
ity — so-called explainable AI — include dedicated models, post hoc 
assessments, feature importance and graphical visualization. Code, 
data and model sharing can also help other researchers to reproduce 
research results and to facilitate clinical uptake, but might be chal-
lenging in terms of data privacy and research use of data. Large-scale 
prospective RCTs of the clinical utility of cardiovascular imaging AI 
tools have not been conducted88. For the assessment of certain tasks, 
such as segmentation, such trials might not be required. However, 
for many tasks that can affect subsequent patient management,  
it is imperative that AI tools meet the same clinical standards as other 
medical treatments, and that both efficacy and cost-effectiveness are 
assessed. A 2022 systematic review found only 41 RCTs of medical AI 
tools, with none adhering to standardized reporting guidelines, and 
the overall risk of bias was high in seven of these trials89. The selection 
of appropriate metrics to assess the capabilities of AI tools is essential, 
as is the use of standardized reporting guidelines for AI research. Given 
that AI tools must be integrated into the usual clinical workflow, an 
important research task is to investigate how to facilitate human–AI 
interactions in clinical practice.

Trustworthy AI
Although there is a huge potential for AI to improve clinical coronary 
plaque imaging, the lack of trustworthy AI approaches remains a serious 
concern. According to the EU’s ethics guidelines90, trustworthy AI must 
be lawful, ethical and robust from both a technical and a social perspec-
tive (Box 1). In the context of clinical AI solutions, these tools should 
support decision-making rather than make autonomous decisions, be 
robust and safe, and provide transparent and unbiased recommenda-
tions. In fulfilling these criteria, AI solutions could maximize the benefit 
for clinicians and patients alike while minimizing the risk to patients.

During clinical deployment, the robustness and safety of AI solu-
tions should be determined in terms of accuracy, reliability and repro-
ducibility. The trustworthiness of AI solutions depends not only on 
technical aspects, but also on human factors that affect their perfor-
mance in real-world settings. This requirement necessitates compre-
hensive and transparent evaluation of AI solutions in accordance with 
established reporting guidelines. For example, diagnostic accuracy 
before clinical deployment should be evaluated using the STARD-AI 

Box 1

Requirements for trustworthy AI
The following characteristics are required for an artificial 
intelligence (AI) tool to be trustworthy when applied to the imaging 
of vulnerable plaques in coronary arteries.

Robust AI
•• Technical and clinical robustness (image noise and artefacts, 
anatomical abnormalities, and evidence from randomized 
controlled trials)

•• Reliability
•• Safety
•• Real-time decision-making (guided by optical coherence 
tomography or intravascular ultrasonography)

•• Generalizability (patient population and scanner type)
•• Technical developments (photon counting CT and 
reconstruction algorithm)

•• Confidence communication of AI (95% CI, heatmap)

Ethical and fair AI
•• Safety (recommendation of interventions, such as percutaneous 
coronary intervention or coronary artery bypass graft surgery)

•• Privacy and security (anonymization of patient data)
•• Transparency (accessibility of data to the patient)
•• Fairness and inclusivity
•• Unbiased AI models (for example, no bias against age, sex or 
ethnicity)

•• Explanation and interpretation of automated diagnosis and 
prognosis for physicians and patients

Lawful AI
•• Certification of devices and software (CE-approved or 
FDA-approved)

•• General data protection regulation
•• Medical device regulation
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guidelines91, whereas the DECIDE-AI guidelines92 contain recommen-
dations for evaluating the diagnostic accuracy of the tool in the early 
phases of clinical deployment. Finally, the CONSORT-AI guidelines93 for 
the evaluation of AI solutions should be used in the context of RCTs. The 
question of when RCTs are needed to verify clinical effectiveness and to 
test advantages over standard care and when retrospective studies are 
sufficient for the evaluation of simple human tasks (such as segmenta-
tion tasks) is controversial among experts (Table 1). In the context of 
clinical deployment, AI solutions should increase the confidence in 
the recommendations in a suitable manner, ideally in a quantitative 
fashion, so that clinicians can easily interpret their output (Table 1).

Explainability, interpretability and generalizability
AI explainability and interpretability are often used interchangeably, 
but differ slightly in meaning. AI explainability refers to inspecting the 
AI model interior to confirm its output, whereas AI interpretability 
more formally puts cause and effect into relation, so that the model 
output can always be linked back to the model input. These standards 
are included in the EU ethics guidelines for trustworthy AI92 and in the 
WHO guidance on ethics and governance of AI for health94, as part of 
a move to ensure transparency and fairness in AI development and 
deployment (Fig. 4). In the context of atherosclerotic plaque imaging, 
editable contours for segmentation models or visualization of output 
probability distributions might be used to provide information on 
decision-making.

AI models for plaque analysis require careful creation and curation 
of training datasets to ensure their generalizability. Changes in input 
data quality could have undesired effects on predictions, such as when 

models are trained on quality-controlled research data and then applied 
to clinical data acquired across a variety of clinical situations or with a 
different imaging technique, or when AI software for atherosclerotic 
plaque analysis trained on datasets acquired with energy-integrated 
detectors might fail when applied to photon-counting CT datasets. 
Solutions for dealing with these domain shifts include: transfer learn-
ing, in which the model is retrained on a small subset of the new data; 
data augmentation, by simulating the new domain properties; use  
of training data from a large variety of domains; and a combination of  
these techniques95. Finally, differences in plaque annotations by 
different radiologists with varying levels of experience and expertise 
can also lead to differences in model performance. In these cases, 
model output uncertainty should be reported to inform a clinician to 
revisit their own findings, or to include annotation uncertainty in the 
model training for more robust output. The QCI experts of this Road-
map reached a consensus that multiple observers in training datasets 
are required to compensate for interobserver variability and provide 
generalizability and can support the uncertainty estimation process.

Fairness and bias mitigation in plaque imaging
Data-driven AI solutions are susceptible to biases that can amplify 
health-care disparities96–98, which is an important area of concern. 
In the context of imaging of vulnerable plaques in coronary arter-
ies, bias can arise from systematic errors such as disproportionate 
over-representation or under-representation of certain patient sub-
groups, over-representation of patients at high risk of disease, or 
applying AI solutions to subgroups who were not included in the initial 
training (for example, using an AI model in patients with stable chest 

High-risk plaque features
CCTA:
• Low attenuation
• Positive remodelling
• Spotty calcification
• Napkin-ring sign
OCT or IVUS:
• Cholesterol crystals
• Thrombus
• Plaque rupture
• Macrophages
• TCFA
• Microchannels
• OCT–NIRS
• IVUS–NIRS

Revolution of AI
• Automated speech and facial recognition
• AI-based language translation
• Self-driving cars

Technical challenges of AI for 
plaque assessment
• Large, diverse, annotated 

datasets of plaques required 
for robust model 
development

• Reproducibility on external 
datasets (domain shift 
between centres, scanners 
or scan protocols)

• Robustness with respect to 
noise, imaging artefacts or 
anatomical abnormalities 

• Estimation and visualization 
of model confidence

Need for evidence-based and 
trustworthy AI tools
• RCTs of the clinical utility of 

cardiovascular imaging with AI
• Lawful, ethical and robust systems 

(technical and social)
• Transparent and fair decision-making
• Evidence about e�icacy and 

cost-e�ectiveness
• Explainable and interpretable 

models instead of black box models
• Sharing code and data while 

maintaining privacy
• Standardized reporting guidelines 

for AI

AI tools for plaque assessment in research
• Automated coronary tree extraction
• Deep learning-based assistance in plaque segmentation 

and quantification
• Radiomics-based plaque characterization
• Machine learning-based identification of functionally 

significant plaque
• Ensemble methods for risk and mortality prediction

Pr
og
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ss

Time

Fig. 4 | Roadmap for AI in the imaging of 
vulnerable plaques. The figure shows the advances 
and regressions that have occurred during the 
integration of artificial intelligence (AI)-based 
tools into clinical practice, starting from clinical 
evidence for high-risk plaque features through 
the revolution of AI, technical challenges for AI for 
plaque assessment, available AI tools for plaque 
assessment in research, and the need for evidence-
based and trustworthy AI tools. CCTA, coronary CT 
angiography; IVUS, intravascular ultrasonography; 
NIRS, near-infrared spectroscopy; OCT, optical 
coherence tomography; RCT, randomized 
controlled trials; TCFA, thin-cap fibroatheroma.
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pain when it was trained in patients with acute chest pain). Unequal 
representation in training datasets can particularly affect ethnic and 
other minority groups, in which AI solutions might perform poorly if 
these groups were not included in the training datasets99.

Two main sources of bias exist: first, in the data used to train AI algo-
rithms and, second, in the implementation and deployment of these AI 
algorithms100. Representation biases can be addressed during the col-
lection or preprocessing of training data via reweighting or resampling 
of minority groups in the training data or via data augmentation100,101. 
Ideally, clinical data used to train AI algorithms should be based on data 
from large-scale clinical trials with a pragmatic trial design and minimal 
exclusion criteria to ensure high external validity.

In addition, features used in training can be adjusted not to corre-
late with sensitive attributes or to use adversarial learning approaches 
to de-bias AI solutions. When an AI solution has been developed, it is 
possible to reduce any biases in its performance by using techniques 
such as calibrated equalized odds (Table 1).

Conclusions
Coronary plaque burden and type are important prognostic markers 
and can guide patient management. A variety of non-invasive and 
invasive imaging modalities can be used to assess plaque and identify 
vulnerable plaques. The revolution and the hype surrounding AI have 
inspired clinicians and scientists to develop tools to automate the 
assessment of vulnerable plaques. AI has the potential to transform 
plaque assessment by improving speed and accuracy, but before fully 
automated AI tools can be integrated into clinical practice, numerous 
technical challenges must be addressed (Fig. 4), including reproduc-
ibility, robustness, generalizability and reliability, and AI tools must 
be evaluated using large and diverse datasets. AI tools in research 
have achieved near-human performance in various plaque assess-
ment tasks, but have mainly been validated in small, preselected and 
biased study populations. Evidence from RCTs of the clinical utility 
and cost-effectiveness of approved commercial software solutions 
is still lacking. Concepts for developing and evaluating trustworthy 
AI systems that are safe, transparent, fair, interpretable and explain-
able are still limited and need to be adapted for vulnerable plaque 
assessment.

This Roadmap for the adoption of AI tools applied to the imaging 
of vulnerable plaque in coronary arteries includes the development of 
novel AI tools for the identification of vulnerable plaques in coronary 
arteries while addressing the many challenges of AI that have been 
described. Optimizing the integration of AI tools into the clinical work-
flow will provide coronary plaque metrics together with other clinical 
and imaging markers of coronary artery disease, including physiology, 
flow and pericoronary structures. If this Roadmap is adopted, the use 
of AI systems in close collaboration with physicians102 to facilitate the 
imaging of vulnerable plaque in coronary arteries has the potential to 
revolutionize the diagnosis, prognostic assessment and management 
of patients with coronary artery disease.

Published online: 18 July 2023

References
1.	 Roberts, J. Thinking machines: the search for artificial intelligence. Science History 

Institute https://www.sciencehistory.org/distillations/thinking-machines-the-search- 
for-artificial-intelligence (2016).

2.	 Quer, G., Arnaout, R., Henne, M. & Arnaout, R. Machine learning and the future of 
cardiovascular care: JACC state-of-the-art review. J. Am. Coll. Cardiol. 77, 300–313 (2021).

3.	 Al’Aref, S. J. et al. Clinical applications of machine learning in cardiovascular disease and 
its relevance to cardiac imaging. Eur. Heart J. 40, 1975–1986 (2019).

4.	 Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T. & Sengupta, P. P.  
Machine learning in cardiovascular medicine: are we there yet. Heart 104, 1156–1164 
(2018).

5.	 Litjens, G. et al. State-of-the-art deep learning in cardiovascular image analysis. 
JACC Cardiovasc. Imaging 12, 1549–1565 (2019).

6.	 Friedrich, S. et al. Applications of artificial intelligence/machine learning approaches 
in cardiovascular medicine: a systematic review with recommendations. Eur. Heart 
J. Digit. Health 2, 424–436 (2021).

7.	 Muller, J. E., Tofler, G. H. & Stone, P. H. Circadian variation and triggers of onset of acute 
cardiovascular disease. Circulation 79, 733–743 (1989).

8.	 Williams, M. C. et al. Coronary artery plaque characteristics associated with adverse 
outcomes in the SCOT-heart study. J. Am. Coll. Cardiol. 73, 291–301 (2019).

9.	 Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. 
N. Engl. J. Med. 364, 226–235 (2011).

10.	 Kedhi, E. et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with 
normal fractional flow reserve: the COMBINE OCT-FFR trial. Eur. Heart J. 42, 4671–4679 
(2021).

11.	 Jonas, R. A. et al. Interobserver variability among expert readers quantifying plaque 
volume and plaque characteristics on coronary CT angiography: a CLARIFY trial 
sub-study. Clin. Imaging 91, 19–25 (2022).

12.	 Gruslova, A. et al. TCT-312 international OCT core labs can identify stable but not 
unstable coronary plaque. J. Am. Coll. Cardiol. 80, B125 (2022).

13.	 Vázquez Mézquita, A. J. et al. Clinical quantitative coronary artery stenosis and coronary 
atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular 
Imaging Study Group. Nat Rev Cardiol. https://doi.org/10.1038/s41569-023-00880-4 
(2023).

14.	 Sihan, K. et al. Fully automatic three-dimensional quantitative analysis of intracoronary 
optical coherence tomography: method and validation. Catheter. Cardiovasc. Interv. 74, 
1058–1065 (2009).

15.	 Chu, M. et al. Artificial intelligence and optical coherence tomography for the 
automatic characterisation of human atherosclerotic plaques. EuroIntervention 17, 
41–50 (2021).

16.	 Cho, H. et al. Intravascular ultrasound-based deep learning for plaque characterization 
in coronary artery disease. Atherosclerosis 324, 69–75 (2021).

17.	 Dewey, M. et al. Clinical quantitative cardiac imaging for the assessment of myocardial 
ischaemia. Nat. Rev. Cardiol. 17, 427–450 (2020).

18.	 Sermesant, M., Delingette, H., Cochet, H., Jais, P. & Ayache, N. Applications of artificial 
intelligence in cardiovascular imaging. Nat. Rev. Cardiol. 18, 600–609 (2021).

19.	 de Villiers, M. R., de Villiers, P. J. & Kent, A. P. The Delphi technique in health sciences 
education research. Med. Teach. 27, 639–643 (2005).

20.	 Nasa, P., Jain, R. & Juneja, D. Delphi methodology in healthcare research: how to decide 
its appropriateness. World J. Methodol. 11, 116–129 (2021).

21.	 Tastle, W. J. & Wierman, M. J. An information theoretic measure for the evaluation 
of ordinal scale data. Behav. Res. Methods 38, 487–494 (2006).

22.	 Finn, A. V., Nakano, M., Narula, J., Kolodgie, F. D. & Virmani, R. Concept of vulnerable/
unstable plaque. Arterioscler. Thromb. Vasc. Biol. 30, 1282–1292 (2010).

23.	 Gaba, P., Gersh, B. J., Muller, J., Narula, J. & Stone, G. W. Evolving concepts of the 
vulnerable atherosclerotic plaque and the vulnerable patient: implications for patient 
care and future research. Nat. Rev. Cardiol. 20, 181–196 (2023).

24.	 Arbab-Zadeh, A. & Fuster, V. The myth of the “vulnerable plaque”: transitioning from a 
focus on individual lesions to atherosclerotic disease burden for coronary artery disease 
risk assessment. J. Am. Coll. Cardiol. 65, 846–855 (2015).

25.	 Yamamoto, M. H. et al. 2-year outcomes after stenting of lipid-rich and nonrich coronary 
plaques. J. Am. Coll. Cardiol. 75, 1371–1382 (2020).

26.	 Joshi, N. V. et al. 18F-fluoride positron emission tomography for identification of ruptured 
and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383, 
705–713 (2014).

27.	 Williams, M. C. et al. Low-attenuation noncalcified plaque on coronary computed 
tomography angiography predicts myocardial infarction: results from the multicenter 
SCOT-HEART trial (Scottish Computed Tomography of the HEART). Circulation 141, 
1452–1462 (2020).

28.	 Matsumoto, H. et al. Standardized volumetric plaque quantification and characterization 
from coronary CT angiography: a head-to-head comparison with invasive intravascular 
ultrasound. Eur. Radiol. 29, 6129–6139 (2019).

29.	 Conte, E. et al. Plaque quantification by coronary computed tomography angiography 
using intravascular ultrasound as a reference standard: a comparison between standard 
and last generation computed tomography scanners. Eur. Heart J. Cardiovasc. Imaging 
21, 191–201 (2020).

30.	 Meah, M. N. et al. Plaque burden and 1-year outcomes in acute chest pain: results 
from the multicenter RAPID-CTCA trial. JACC Cardiovasc. Imaging 15, 1916–1925 
(2022).

31.	 Ferencik, M. et al. Use of high-risk coronary atherosclerotic plaque detection for risk 
stratification of patients with stable chest pain: a secondary analysis of the PROMISE 
randomized clinical trial. JAMA Cardiol. 3, 144–152 (2018).

32.	 Aguirre, A. D., Arbab-Zadeh, A., Soeda, T., Fuster, V. & Jang, I. K. Optical coherence 
tomography of plaque vulnerability and rupture: JACC focus seminar Part 1/3. J. Am. 
Coll. Cardiol. 78, 1257–1265 (2021).

33.	 Mintz, G. S. & Guagliumi, G. Intravascular imaging in coronary artery disease. Lancet 390, 
793–809 (2017).

http://www.nature.com/nrcardio
https://www.sciencehistory.org/distillations/thinking-machines-the-search-for-artificial-intelligence
https://www.sciencehistory.org/distillations/thinking-machines-the-search-for-artificial-intelligence
https://doi.org/10.1038/s41569-023-00880-4


Nature Reviews Cardiology | Volume 21 | January 2024 | 51–64 62

Roadmap

34.	 Maehara, A., Matsumura, M., Ali, Z. A., Mintz, G. S. & Stone, G. W. IVUS-guided versus 
OCT-guided coronary stent implantation: a critical appraisal. JACC Cardiovasc. Imaging 
10, 1487–1503 (2017).

35.	 Raber, L. et al. Changes in coronary plaque composition in patients with acute 
myocardial infarction treated with high-intensity statin therapy (IBIS-4): a serial optical 
coherence tomography study. JACC Cardiovasc. Imaging 12, 1518–1528 (2019).

36.	 Guagliumi, G. et al. Temporal course of vascular healing and neoatherosclerosis after 
implantation of durable- or biodegradable-polymer drug-eluting stents. Eur. Heart J. 39, 
2448–2456 (2018).

37.	 Cheng, J. M. et al. In vivo detection of high-risk coronary plaques by radiofrequency 
intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS 
study. Eur. Heart J. 35, 639–647 (2014).

38.	 Calvert, P. A. et al. Association between IVUS findings and adverse outcomes in patients 
with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) study. 
JACC Cardiovasc. Imaging 4, 894–901 (2011).

39.	 Prati, F. et al. Relationship between coronary plaque morphology of the left anterior 
descending artery and 12 months clinical outcome: the CLIMA study. Eur. Heart J. 41, 
383–391 (2020).

40.	 Motoyama, S. et al. Plaque characterization by coronary computed tomography 
angiography and the likelihood of acute coronary events in mid-term follow-up. 
J. Am. Coll. Cardiol. 66, 337–346 (2015).

41.	 Ferencik, M. et al. Computed tomography-based high-risk coronary plaque score to 
predict acute coronary syndrome among patients with acute chest pain–results from  
the ROMICAT II trial. J. Cardiovasc. Comput. Tomogr. 9, 538–545 (2015).

42.	 Min, J. K. et al. Whole-heart quantification and characterization of coronary 
atherosclerotic burden and risk of major adverse cardiovascular events: the ischemia 
trial [abstract 17195]. Circulation 144(25), e575–e576 (2021).

43.	 Arbab-Zadeh, A. & Fuster, V. From detecting the vulnerable plaque to managing the 
vulnerable patient: JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 1582–1593 
(2019).

44.	 Williams, M. C., Earls, J. P. & Hecht, H. Quantitative assessment of atherosclerotic plaque, 
recent progress and current limitations. J. Cardiovasc. Comput. Tomogr. 16, 124–137  
(2022).

45.	 Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. Artificial intelligence in 
radiology. Nat. Rev. Cancer 18, 500–510 (2018).

46.	 Hampe, N., Wolterink, J. M., van Velzen, S. G. M., Leiner, T. & Išgum, I. Machine learning for 
assessment of coronary artery disease in cardiac CT: a survey. Front. Cardiovasc. Med. 6, 
172 (2019).

47.	 Lin, A. et al. Deep learning-enabled coronary CT angiography for plaque and stenosis 
quantification and cardiac risk prediction: an international multicentre study. Lancet 
Digit. Health 4, e256–e265 (2022).

48.	 Lin, A. et al. Artificial intelligence in cardiovascular imaging for risk stratification 
in coronary artery disease. Radiol. Cardiothorac. Imaging 3, e200512 (2021).

49.	 Hampe, N. et al. Deep learning-based detection of functionally significant stenosis 
in coronary CT angiography. Front. Cardiovasc. Med. 9, 964355 (2022).

50.	 Chen, Q. et al. A coronary CT angiography radiomics model to identify vulnerable plaque 
and predict cardiovascular events. Radiology 307, 221693 (2023).

51.	 Chang, H. J. et al. Coronary atherosclerotic precursors of acute coronary syndromes. 
J. Am. Coll. Cardiol. 71, 2511–2522 (2018).

52.	 Group, D. T. et al. CT or invasive coronary angiography in stable chest pain. N. Engl. 
J. Med. 386, 1591–1602 (2022).

53.	 Motwani, M. et al. Machine learning for prediction of all-cause mortality in patients with 
suspected coronary artery disease: a 5-year multicentre prospective registry analysis. 
Eur. Heart J. 38, 500–507 (2017).

54.	 van Velzen, S. G. M. et al. Deep learning for automatic calcium scoring in CT: 
validation using multiple cardiac CT and chest CT protocols. Radiology 295, 66–79 
(2020).

55.	 Wolterink, J. M. et al. Automatic coronary artery calcium scoring in cardiac CT 
angiography using paired convolutional neural networks. Med. Image Anal. 34, 123–136 
(2016).

56.	 Follmer, B. et al. Active multitask learning with uncertainty-weighted loss for coronary 
calcium scoring. Med. Phys. 49, 7262–7277 (2022).

57.	 Jia, D. & Zhuang, X. Learning-based algorithms for vessel tracking: a review. 
Comput. Med. Imaging Graph. 89, 101840 (2021).

58.	 Kolossváry, M. et al. Radiomic features are superior to conventional quantitative 
computed tomographic metrics to identify coronary plaques with napkin-ring sign. 
Circ. Cardiovasc. Imaging 10, e006843 (2017).

59.	 Murgia, A. et al. Cardiac computed tomography radiomics: an emerging tool for the 
non-invasive assessment of coronary atherosclerosis. Cardiovasc. Diagn. Ther. 10, 
2005–2017 (2020).

60.	 Lin, A. et al. Radiomics-based precision phenotyping identifies unstable coronary 
plaques from computed tomography angiography. JACC Cardiovasc. Imaging 15, 
859–871 (2022).

61.	 Al’Aref, S. J. et al. A boosted ensemble algorithm for determination of plaque stability 
in high-risk patients on coronary CTA. JACC Cardiovasc. Imaging 13, 2162–2173  
(2020).

62.	 Diaz-Zamudio, M. et al. Automated quantitative plaque burden from coronary CT 
angiography noninvasively predicts hemodynamic significance by using fractional flow 
reserve in intermediate coronary lesions. Radiology 276, 408–415 (2015).

63.	 Yang, S. et al. CT angiographic and plaque predictors of functionally significant coronary 
disease and outcome using machine learning. JACC Cardiovasc. Imaging 14, 629–641 
(2021).

64.	 von Knebel Doeberitz, P. L. et al. Coronary CT angiography-derived plaque quantification 
with artificial intelligence CT fractional flow reserve for the identification of lesion-specific 
ischemia. Eur. Radiol. 29, 2378–2387 (2019).

65.	 Coenen, A. et al. Diagnostic accuracy of a machine-learning approach to coronary 
computed tomographic angiography-based fractional flow reserve: result from the 
MACHINE consortium. Circ. Cardiovasc. Imaging 11, e007217 (2018).

66.	 Dey, D. et al. Integrated prediction of lesion-specific ischaemia from quantitative 
coronary CT angiography using machine learning: a multicentre study. Eur. Radiol. 28, 
2655–2664 (2018).

67.	 Dey, D. et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art 
review. J. Am. Coll. Cardiol. 73, 1317–1335 (2019).

68.	 Kwiecinski, J. et al. Machine learning with 18F-sodium fluoride PET and quantitative plaque 
analysis on CT angiography for the future risk of myocardial infarction. J. Nucl. Med. 63, 
158–165 (2022).

69.	 Canan, A. et al. CAD-RADS: pushing the limits. Radiographics 40, 629–652 (2020).
70.	 Lee, J. et al. Fully automated plaque characterization in intravascular OCT images using 

hybrid convolutional and lumen morphology features. Sci. Rep. 10, 2596 (2020).
71.	 Lee, J. et al. Automatic A-line coronary plaque classification using combined deep 

learning and textural features in intravascular OCT images. Proc. SPIE Int. Soc. Opt. Eng. 
11315, 1131513 (2020).

72.	 Cheimariotis, G.-A. et al. Automatic classification of A-lines in intravascular OCT 
images using deep learning and estimation of attenuation coefficients. Appl. Sci. 11, 7412 
(2021).

73.	 Lee, J. et al. Automated analysis of fibrous cap in intravascular optical coherence 
tomography images of coronary arteries. Sci. Rep. 12, 21454 (2022).

74.	 Lee, J. et al. Automated plaque characterization using deep learning on coronary 
intravascular optical coherence tomographic images. Biomed. Opt. Express 10, 
6497–6515 (2019).

75.	 Min, H. S. et al. Detection of optical coherence tomography-defined thin-cap 
fibroatheroma in the coronary artery using deep learning. EuroIntervention 16, 404–412 
(2020).

76.	 Niioka, H. et al. Automated diagnosis of optical coherence tomography imaging on 
plaque vulnerability and its relation to clinical outcomes in coronary artery disease. 
Sci. Rep. 12, 14067 (2022).

77.	 Holmberg, O. et al. Histopathology-based deep-learning predicts atherosclerotic lesions 
in intravascular imaging. Front. Cardiovasc. Med. 8, 779807 (2021).

78.	 Jun, T. J. et al. Automated detection of vulnerable plaque in intravascular ultrasound 
images. Med. Biol. Eng. Comput. 57, 863–876 (2019).

79.	 Nicol, E. D. Machine learning assessment of CAD: a giant leap or a small step for coronary 
CTA? JACC Cardiovasc. Imaging 16, 206–208 (2023).

80.	 Nicol, E. D., Weir-McCall, J. R., Shaw, L. J. & Williamson, E. Great debates in cardiac 
computed tomography: OPINION: “artificial intelligence and the future of cardiovascular 
CT – Managing expectation and challenging hype”. J. Cardiovasc. Comput. Tomogr. 
https://doi.org/10.1016/j.jcct.2022.07.005 (2022).

81.	 US Food and Drug Administration. Artificial intelligence and machine learning 
(AI/ML)-enabled medical devices. FDA https://www.fda.gov/medical-devices/
software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml- 
enabled-medical-devices (2022).

82.	 Muehlematter, U. J., Daniore, P. & Vokinger, K. N. Approval of artificial intelligence 
and machine learning-based medical devices in the USA and Europe (2015-20): 
a comparative analysis. Lancet Digit. Health 3, e195–e203 (2021).

83.	 Wu, E. et al. How medical AI devices are evaluated: limitations and recommendations 
from an analysis of FDA approvals. Nat. Med. 27, 582–584 (2021).

84.	 The Medical Futurist. FDA-approved A.I.-based algorithms. TMF https://medicalfuturist.
com/fda-approved-ai-based-algorithms/ (2023).

85.	 ACR Data Science Institute. Radiology SaMD dashboard. AI Central https://aicentral.
acrdsi.org/ (2023).

86.	 Radboud University Medical Center. Products. AI for Radiology https://grand-challenge.
org/aiforradiology/ (2023).

87.	 US Food and Drug Administration. Autoplaque: 510(k) premarket notification. FDA 
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K212758 
(2023).

88.	 Zhou, Q., Chen, Z. H., Cao, Y. H. & Peng, S. Clinical impact and quality of randomized 
controlled trials involving interventions evaluating artificial intelligence prediction tools: 
a systematic review. NPJ Digit. Med. 4, 154 (2021).

89.	 Plana, D. et al. Randomized clinical trials of machine learning interventions in health 
care: a systematic review. JAMA Netw. Open. 5, e2233946 (2022).

90.	 European Commission. Ethics guidelines for trustworthy AI. European Commission 
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (2019).

91.	 Sounderajah, V. et al. Developing a reporting guideline for artificial intelligence-centred 
diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open. 11, e047709 (2021).

92.	 Vasey, B. et al. Reporting guideline for the early-stage clinical evaluation of decision 
support systems driven by artificial intelligence: DECIDE-AI. Nat. Med. 28, 924–933 
(2022).

93.	 Liu, X. et al. Reporting guidelines for clinical trial reports for interventions involving 
artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).

http://www.nature.com/nrcardio
https://doi.org/10.1016/j.jcct.2022.07.005
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://medicalfuturist.com/fda-approved-ai-based-algorithms/
https://medicalfuturist.com/fda-approved-ai-based-algorithms/
https://aicentral.acrdsi.org/
https://aicentral.acrdsi.org/
https://grand-challenge.org/aiforradiology/
https://grand-challenge.org/aiforradiology/
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K212758
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai


Nature Reviews Cardiology | Volume 21 | January 2024 | 51–64 63

Roadmap

94.	 World Health Organization. Ethics and Governance of Artificial Intelligence for Health: 
WHO Guidance (WHO, 2021).

95.	 Ugurlu, D. et al. in Statistical Atlases and Computational Models of the Heart. 
Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac 
MRI Challenge (eds Antón, E. P. et al.) 57–65 (Springer, 2022).

96.	 Adamson, A. S. & Smith, A. Machine learning and health care disparities in dermatology. 
JAMA Dermatol. 154, 1247–1248 (2018).

97.	 Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an 
algorithm used to manage the health of populations. Science 366, 447–453 (2019).

98.	 Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y. & Ghassemi, M. 
Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs 
in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).

99.	 Bavli, I. & Jones, D. S. Race correction and the X-ray machine – the controversy over 
increased radiation doses for black Americans in 1968. N. Engl. J. Med. 387, 947–952 
(2022).

100.	 Bernhardt, M., Jones, C. & Glocker, B. Potential sources of dataset bias complicate 
investigation of underdiagnosis by machine learning algorithms. Nat. Med. 28, 1157–1158 
(2022).

101.	 Suresh, H. & Guttag, J. A framework for understanding sources of harm throughout  
the machine learning life cycle. ACM Digital Library https://dl.acm.org/doi/pdf/ 
10.1145/3465416.3483305 (2021).

102.	 Dewey, M. & Wilkens, U. The Bionic Radiologist: avoiding blurry pictures and providing 
greater insights. NPJ Digit. Med. 2, 65 (2019).

103.	 US Food and Drug Administration. vascuCAP: 510(k) premarket notification. 
FDA https://www.accessdata.fda.gov/cdrh_docs/pdf18/K183012.pdf (2018).

104.	 Buckler, A. J. et al. Virtual transcriptomics: noninvasive phenotyping of atherosclerosis 
by decoding plaque biology from computed tomography angiography imaging. 
Arterioscler. Thromb. Vasc. Biol. 41, 1738–1750 (2021).

105.	 Endovascular Today. CRISP consortium study evaluates Elucid Bio’s vascuCAP 
AI software to predict stroke. Endovascular Today https://evtoday.com/news/
crisp-consortium-study-evaluates-elucid-bios-vascucap-ai-software-to-predict-stroke 
(2020).

106.	 US Food and Drug Administration. cvi42: 510(k) premarket notification. FDA https://www.
accessdata.fda.gov/cdrh_docs/pdf14/K141480.pdf (2014).

107.	 US Food and Drug Administration. Syngo.CT CaScoring: 510(k) premarket notification. 
FDA https://www.accessdata.fda.gov/cdrh_docs/pdf20/K201034.pdf (2020).

108.	 US Food and Drug Administration. iNtuition-Structural Heart Module: 510(k) premarket 
notification. FDA https://www.accessdata.fda.gov/cdrh_docs/pdf19/K191585.pdf (2019).

109.	 US Food and Drug Administration. AI-Rad Companion (Cardiovascular): 510(k) 
premarket notification. FDA https://www.accessdata.fda.gov/cdrh_docs/pdf18/
K183268.pdf (2019).

110.	 US Food and Drug Administration. AVIEW: 510(k) premarket notification. FDA 
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K200714.pdf (2020).

111.	 Radboud University Medical Center. AVIEW CAC: Coreline Soft. AI for Radiology 
https://grand-challenge.org/aiforradiology/product/coreline-soft-aview-cac/ (2022).

112.	 US Food and Drug Administration. Cleerly Labs v2.0: 510(k) premarket notification. 
FDA https://www.accessdata.fda.gov/cdrh_docs/pdf20/K202280.pdf (2020).

113.	 US Food and Drug Administration. Cleerly Labs: 510(k) premarket notification. 
FDA https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190868.pdf (2019).

114.	 US Food and Drug Administration. HealthCCSng: 510(k) premarket notification. 
FDA https://www.accessdata.fda.gov/cdrh_docs/pdf21/K210085.pdf (2021).

115.	 Business Wire. Nanox announces issuance of American Medical Association New 
Category III CPT® code for its coronary artery calcium population health solution. 
businesswire https://www.businesswire.com/news/home/20220111005789/en/
Nanox-Announces-Issuance-of-American-Medical-Association-New-Category-III-
CPT%C2%AE-Code-for-Its-Coronary-Artery-Calcium-Population-Health-Solution  
(2022).

116.	 US Food and Drug Administration. HeartFlow Analysis: 510(k) premarket notification. FDA 
https://www.accessdata.fda.gov/cdrh_docs/pdf21/K213857.pdf (2022).

117.	 Radboud University Medical Center. HeartFlow FFRCT Analysis: HeartFlow. AI for 
Radiology https://grand-challenge.org/aiforradiology/product/heartflow-ffrct-analysis/ 
(2022).

118.	 US Food and Drug Administration. OPTIS™ Mobile Next Imaging System, OPTIS™ 
Integrated Next Imaging System with Ultreon™ Software 1.0: 510(k) premarket 
notification. FDA https://www.accessdata.fda.gov/cdrh_docs/pdf21/K210458.pdf  
(2021).

119.	 Abbott. Abbott receives FDA clearance for its imaging technology using artificial 
intelligence for vessels in the heart. Abbott https://abbott.mediaroom.com/2021-08-
03-Abbott-Receives-FDA-Clearance-for-its-Imaging-Technology-Using-Artificial- 
Intelligence-for-Vessels-in-the-Heart (2021).

120.	 Cury, R. C. et al. CAD-RADS 2.0 - 2022 Coronary Artery Disease-Reporting and Data 
System: an expert consensus document of the Society of Cardiovascular Computed 
Tomography (SCCT), the American College of Cardiology (ACC), the American College 
of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). 
J. Cardiovasc. Comput. Tomogr. 16, 536–557 (2022).

Acknowledgements
We thank the German Research Foundation (grant number DE 1361/22-1) for funding the 
second Quantitative Cardiovascular Imaging meeting. M.C.W. is supported by the British 

Heart Foundation (FS/ICRF/20/26002). D.D. has received software royalties from Cedars–Sinai 
Medical Center and grant support from NIH/NHLBI. D.R. is supported by the ERC Advanced 
Grant Deep4MI, as well as by grants from the British Heart Foundation, Bundesministerium 
für Bildung und Forschung, Deutsche Forschungsgemeinschaft, EU Horizon 2020, 
Engineering and Physical Sciences Research Council and InnovateUK. He is a recipient of the 
Alexander Humboldt Professorship for AI. J.A.S. is supported by a Helmholtz Distinguished 
Professorship and a TUM Liesel Beckmann Professorship, as well as by grants from the British 
Heart Foundation, Bundesministerium für Gesundheit, Cancer Research UK, Engineering and 
Physical Sciences Research Council, InnovateUK, The Royal Society and The Wellcome Trust. 
D.E.N. has received research funding from the British Heart Foundation, Chest Heart Stroke 
Scotland, Chief Scientist Office, Medical Research Council and The Wellcome Trust. M.R.D. 
is supported by the British Heart Foundation (FS/SCRF/21/32010) and is the recipient of the 
Sir Jules Thorn Award for Biomedical Research 2015 (15/JTA). M.D. has received grant support 
from the FP7 Programme of the European Commission for the DISCHARGE trial (EC-GA 
603266 in HEALTH.2013.2.4.2-2), and has also received grant support from the German 
Research Foundation in the Heisenberg Programme (DE 1361/14-1, DFG project 213705389), 
the graduate programme on quantitative biomedical imaging (BIOQIC, GRK 2260/1,  
DFG project 289347353) and for fractal analysis of myocardial perfusion (DE 1361/18-1, DFG 
project 392304398), the DFG Priority Programme Radiomics (DFG project 402688427) for 
the investigation of coronary plaque and coronary flow (DE 1361/19-1 (DFG project 428222922) 
and DE 1361/20-1 (DFG project 428223139) in SPP 2177/1), the GUIDE-IT project on data 
sharing of medical imaging trials (DE 1361/24-1 (DFG project 495697118)), the Quantitative 
Cardiovascular Imaging meeting (DE 1361/22-1) and the Future of Medical Imaging meeting 
(DE 1361/28-1). He has also received funding from the Berlin University Alliance (GC_SC_PC 27) 
and from the Digital Health Accelerator of the Berlin Institute of Health.

Author contributions
B.F. and M.D. researched data for the article. B.F., M.C.W. and M.D. contributed to the 
discussion of content. B.F., M.C.W., D.D., A.A.-Z., P.M.-H., R.H.J.A.V., D.R. J.A.S., D.E.N., M.R.D., 
G.G., V.F., A.J.V.M., F.B., I.I. and M.D. wrote the manuscript. All authors contributed to reviewing 
and editing the manuscript before submission.

Competing interests
M.C.W. has given talks for Canon Medical Systems, Novartis and Siemens Healthineers. 
A.A.-Z. has received research support from Canon Medical Systems. P.M.-H. is a shareholder 
of Neumann Medical. D.R. has received consultancy fees from Heartflow and IXICO. D.E.N. 
receives grants, acts as a consultant and has clinical trial contracts with Abbott, Amgen, 
AstraZeneca, Autoplaque, BMS, Boehringer Ingelheim, Eli Lilly, GE HealthCare, GSK, Janssen, 
Life Molecular Imaging, MSD, Novartis, Pfizer, Philips, Roche, Sanofi, Siemens, Silence, 
SOFIE, Toshiba, UCB, Vifor, Wyeth and Zealand. He collaborates with the publications 
chair from the BMJ Group and Elsevier. He is the chief investigator of the SCOT-HEART and 
PRE18FFIR trials. M.R.D. has received speaker fees from Edwards, Novartis and Pfizer and 
consultancy fees from Beren, Jupiter Bioventures, Novartis and Silence Therapeutics. G.G. 
has a consultant agreement with Abbott Vascular, Gentuity, Infraredx and Panovision, and has 
received a research grant in the past 36 months from Abbott Vascular, Amgen and Infraredx. 
V.F. has received educational grants, fees for lectures and speeches, fees for professional 
consultation, as well as research and study funds from Abbott, Abiomed, Berlin Heart, 
Biotronik, Boston Scientific, Edwards Lifesciences, JOTEC/CryoLife, LivaNova, Medtronic, 
Novartis and Zurich Heart. I.I. has received institutional research grants by Esaote and Pie 
Medical Imaging and received an institutional research grant funded by Dutch Technology 
Foundation with the participation of Pie Medical Imaging and Philips Healthcare. She is also 
a co-inventor on several patents (US 10,176,575 B2; US 10,395,366 B2; US 11,004,198 B2; US 
10,699,407 B2) and patent applications (17317746, 16911323) on the detection of functionally 
significant coronary stenosis. M.D. is the publications chair of the European Society of 
Radiology (ESR; 2022–2025); the opinions expressed in this article are the author’s own and do 
not represent the view of the ESR. He is also the editor of Cardiac CT (published by Springer 
Nature) and has institutional master research agreements with Canon, General Electric, Philips 
and Siemens, the arrangements of which are managed by Charité – Universitätsmedizin 
Berlin. He also holds a joint approved patent on dynamic perfusion analysis using fractal 
analysis (EPO 2022 EP3350773A1 and USPTO 2021 10,991,109). The other authors declare 
no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at  
https://doi.org/10.1038/s41569-023-00900-3.

Peer review information Nature Reviews Cardiology thanks Carlo de Cecco; Joseph Schoepf, 
who co-reviewed with Daniel Pinos Sanchez; and Christian Tesche for their contribution to the 
peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims 
in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to  
this article under a publishing agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© Springer Nature Limited 2023

http://www.nature.com/nrcardio
https://dl.acm.org/doi/pdf/10.1145/3465416.3483305
https://dl.acm.org/doi/pdf/10.1145/3465416.3483305
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K183012.pdf
https://evtoday.com/news/crisp-consortium-study-evaluates-elucid-bios-vascucap-ai-software-to-predict-stroke
https://evtoday.com/news/crisp-consortium-study-evaluates-elucid-bios-vascucap-ai-software-to-predict-stroke
https://www.accessdata.fda.gov/cdrh_docs/pdf14/K141480.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf14/K141480.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K201034.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K191585.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K183268.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K183268.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K200714.pdf
https://grand-challenge.org/aiforradiology/product/coreline-soft-aview-cac/
https://www.accessdata.fda.gov/cdrh_docs/pdf20/K202280.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190868.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf21/K210085.pdf
https://www.businesswire.com/news/home/20220111005789/en/Nanox-Announces-Issuance-of-American-Medical-Association-New-Category-III-CPT%C2%AE-Code-for-Its-Coronary-Artery-Calcium-Population-Health-Solution
https://www.businesswire.com/news/home/20220111005789/en/Nanox-Announces-Issuance-of-American-Medical-Association-New-Category-III-CPT%C2%AE-Code-for-Its-Coronary-Artery-Calcium-Population-Health-Solution
https://www.businesswire.com/news/home/20220111005789/en/Nanox-Announces-Issuance-of-American-Medical-Association-New-Category-III-CPT%C2%AE-Code-for-Its-Coronary-Artery-Calcium-Population-Health-Solution
https://www.accessdata.fda.gov/cdrh_docs/pdf21/K213857.pdf
https://grand-challenge.org/aiforradiology/product/heartflow-ffrct-analysis/
https://www.accessdata.fda.gov/cdrh_docs/pdf21/K210458.pdf
https://abbott.mediaroom.com/2021-08-03-Abbott-Receives-FDA-Clearance-for-its-Imaging-Technology-Using-Artificial-Intelligence-for-Vessels-in-the-Heart
https://abbott.mediaroom.com/2021-08-03-Abbott-Receives-FDA-Clearance-for-its-Imaging-Technology-Using-Artificial-Intelligence-for-Vessels-in-the-Heart
https://abbott.mediaroom.com/2021-08-03-Abbott-Receives-FDA-Clearance-for-its-Imaging-Technology-Using-Artificial-Intelligence-for-Vessels-in-the-Heart
https://doi.org/10.1038/s41569-023-00900-3


Nature Reviews Cardiology | Volume 21 | January 2024 | 51–64 64

Roadmap

1Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany. 2Centre for Cardiovascular Science, University of Edinburgh, 
Edinburgh, UK. 3Biomedical Imaging Research Institute and Department of Imaging, Medicine and Biomedical Sciences, Cedars–Sinai Medical 
Center, Los Angeles, CA, USA. 4Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, 
MD, USA. 5Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary. 6Department of Cardiology, Radboud 
University Medical Center, Nijmegen, Netherlands. 7Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, 
Germany. 8Department of Computing, Imperial College London, London, UK. 9School of Biomedical Imaging and Imaging Sciences, King’s College 
London, London, UK. 10Institute of Machine Learning in Biomedical Imaging, Helmholtz Munich, Neuherberg, Germany. 11School of Computation, 
Information and Technology, Technical University of Munich, Munich, Germany. 12Division of Cardiology, IRCCS Galeazzi Sant’Ambrogio Hospital, 
Milan, Italy. 13Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Charité Universitätsmedizin, Berlin, Germany. 
14Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland. 15Berlin Institute of Health at Charité and DZHK (German Centre for 
Cardiovascular Research), Partner Site, Berlin, Germany. 16Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, 
University of Amsterdam, Amsterdam, Netherlands. 17Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 
Amsterdam, Netherlands. 18Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands. 19Berlin Institute of Health, 
Campus Charité Mitte, Berlin, Germany. 20DZHK (German Centre for Cardiovascular Research), Partner Site Berlin and Deutsches Herzzentrum der 
Charité (DHZC), Charité – Universitätsmedizin Berlin, Berlin, Germany. 21These authors contributed equally: Bernhard Föllmer, Michelle C. Williams. 
22These authors jointly supervised this work: Ivana Išgum, Marc Dewey.

http://www.nature.com/nrcardio

	Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries

	Introduction

	Methodology for consensus recommendations

	The concept of vulnerable plaque imaging

	Imaging modalities

	Non-invasive plaque imaging
	Invasive plaque imaging

	Prognostic value of identifying vulnerable plaques


	AI for vulnerable plaque assessment

	Non-invasive assessment

	Automated coronary artery calcium scoring
	Centreline extraction
	Identification of vulnerable plaque characteristics
	Multimodal plaque assessment

	Invasive assessment

	Automatic segmentation in OCT
	A-line-based classification
	Pixel-based deep learning
	Automated segmentation in IVUS

	Availability of AI tools

	Challenges with AI tools in clinical practice

	Trustworthy AI

	Requirements for trustworthy AI

	Explainability, interpretability and generalizability

	Fairness and bias mitigation in plaque imaging


	Conclusions

	Acknowledgements

	Fig. 1 Basics of artificial intelligence, machine learning and deep learning.
	Fig. 2 The concept of vulnerable plaques and high-risk plaque features in CCTA, IVUS and OCT images.
	Fig. 3 The interaction between tasks supported by AI tools for the assessment of vulnerable plaques in coronary arteries.
	Fig. 4 Roadmap for AI in the imaging of vulnerable plaques.
	Table 1 Consensus recommendations on AI applied to imaging of vulnerable plaques in coronary arteries.
	Table 2 Relevant AI tools for plaque imaging in research and clinical p­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­r­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­a­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­c­­




