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Abstract Sections
Artificial intelligence (Al) is likely to revolutionize the way medical Introduction
images are analysed and has the potential toimprove the identification Methodology for consensus

and analysis of vulnerable or high-risk atherosclerotic plaques in coronary | recommendations
arteries, leading to advancesin the treatment of coronary artery disease. | The concept of vulnerable
However, coronary plaque analysis is challenging owing to cardiacand | P2dueimaging
respiratory motion, as well as the small size of cardiovascular structures. | Alforvulnerable plaque
Moreover, the analysis of coronary imaging datais time-consuming, assessment

canbe performed only by clinicians with dedicated cardiovascular
imaging training, and is subject to considerable interreader and
intrareader variability. Al has the potential toimprove the assessment
ofimages of vulnerable plaque in coronary arteries, but requires robust
development, testing and validation. Combining human expertise

with Al might facilitate the reliable and valid interpretation of images
obtained using CT, MRI, PET, intravascular ultrasonography and optical
coherence tomography. In this Roadmap, we review existing evidence
ontheapplication of Al to the imaging of vulnerable plaque in coronary
arteries and provide consensus recommendations developed by an
interdisciplinary group of experts on Aland non-invasive and invasive
coronary imaging. We also outline future requirements of Al technology
to address bias, uncertainty, explainability and generalizability, which
are all essential for the acceptance of Al andits clinical utility in handling
the anticipated growing volume of coronary imaging procedures.

Conclusions
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Key points

o Artificial intelligence (Al) might have the potential to transform

the assessment of vulnerable or high-risk plaque in coronary arteries
by improving the detection, quantification and prognostication of
vulnerable plaque and integration with other imaging and clinical
parameters.

e The advantages of Al for the assessment of vulnerable plaque images
include reducing observer variability, improving accuracy, enabling
standardization, improving speed and facilitating the synthesis of
diverse information.

o The challenges for the development and implementation of Al
include the presence of anatomical variations and imaging artefacts;
the lack of reproducibility, generalizability and robustness across
diverse imaging platforms; and the potential for the technology to
introduce or worsen biases.

o Clinical research has already been performed on Al tools for plaque
assessment, but validated commercial solutions for clinical use are
not yet available.

o For Al to achieve its true potential for vulnerable plaque assessment
in clinical practice, large and diverse studies are required, and Al tools
must be trustworthy, explainable and interpretable.

Introduction

Initially perceived with scepticism, artificial intelligence (Al; Fig. 1) is
now apartof our everyday lives. A casein pointis Al-based, automated
speechand facial recognition, which was believed not to be possiblein
the1960s, butis now available on many smartphones'. Inthe past dec-
ade, Al-based methods have been increasingly used in cardiovascular
medicine, especially in cardiovascularimaging” . The majority of these
Al methods have been developed for the diagnosis, risk stratification
and prognostic assessment of patients with coronary artery disease,
heart failure or rhythm disorders®. The evidence on the prognostic
implications of avulnerable atherosclerotic plaquein coronary arteries,
whichis considered to precede acute coronary events through plaque
rupture and subsequent thrombosis’, has become more robust in the
past10 years®'°. Accurate non-invasive or invasive imaging approaches
that can identify patients at high risk of adverse events might help to
guidefocal strategies orintensified medical treatment. However, visual
and especially quantitative coronary plaque detection and characteri-
zation are time-consuming, require a high level of expertise, and have
substantial intraobserver and interobserver variability™ .

Among non-invasive imaging modalities, coronary CT angio-
graphy (CCTA) is the best for visualizing coronary arteries and athero-
sclerotic plaques®. Al technologies have also beenimplementedin the
analysis ofimages derived frominvasive intravascular ultrasonography
(IVUS) or optical coherence tomography (OCT)". Research that ini-
tially focused on (semi-)automated lumen detection for stenosis
grading has now moved onto the promising field of automated plaque
characterization™",

In this Roadmap, we review the existing evidence on and provide
interdisciplinary consensus recommendations for the application of Al
to theimaging of atherosclerotic plaquein coronary arteries, focusing

on the most advanced imaging modalities in this field (CCTA, IVUS
and OCT").Inaddition, we discuss the current and future approaches
to addressing bias, explainability, uncertainty and generalizability of
Al-guided imaging of coronary plaque. Consensus was reached using
a Delphi methodology similar to that used to reach a consensus on
myocardialischaemiaimaging at the first Quantitative Cardiovascular
Imaging (QCI) meeting”. Detailed clinical consensus recommendations
on the preferred use of each imaging technique for coronary plaque
and stenosisimaging in specific patient populations are providedina
Consensus Statement derived from the second QCl meeting".

Methodology for consensus recommendations

The application of Alto cardiovascularimaging hasreceived increasing
interest over the past 10 years'®. However, many technical and clinical
aspects ofitsapplication to theimaging of vulnerable plaquesin coro-
nary arteries require additional attention to ensure reliability and to
improve the prognostic and diagnostic value of different cardiovascular
imaging modalities before widespread clinical use. During the second
QClmeetingon coronary artery stenosis and atherosclerosis imagingin
September 2022, aquestionnaire regarding the clinical appropriateness
of differentimaging modalities was conducted using a three-round Del-
phimethod. This Roadmap describes the findings that have emerged
using this multidisciplinary approach and encompasses the views of cli-
nicians (cardiologists, radiologists and a cardiac surgeon), biomedical
engineers and computer scientists using a similar method to that used
for the first QCl meeting”. The questionnaire included eight questions
on Alfor coronary imaging, and no consensus was noted after the third
and final round of questions (Supplementary Table 1), which led to
asecond Delphiprocess with two additional rounds needed toreacha
consensus'®®, The questions were sent to 14 scientists and physicians
directly involved in the research and development of Al tools for car-
diovascular imaging. A total of 15 questions (Supplementary Table 2)
were answered using a Likert scale from 1to 9, categorical replies or
free text. The reasoning for each answer was provided as text. Before
beginning the second round, the overall results from the first round
were sent to the participants. The questions answered using a Likert
scale were presented as amedian and interquartile range, the categori-
calreplies were presented as percentages, and the relevant or conflict-
ing replies in the text were highlighted. The final results of the Delphi
voting are summarized in Table 1, with a level of consensus between
experts indicated as no consensus, partial consensus or consensus.
The level of consensus for answers in the form of the Likert scale or
ordinal scale was defined using previously proposed parameters
(<0.6indicated no consensus, 0.6-0.8 indicated partial consensus and
>0.8 indicated consensus)?. For answers on ordinal scales and related
to multiple modalities, the measure of agreement was averaged across
allmodalities. For answers on anominal scale, consensus was measured
using normalized entropy with the same thresholds.

The concept of vulnerable plaque imaging

In most patients, acute coronary syndromeis triggered by the rupture
or erosion of coronary atherosclerotic plaques®. These plaques have
specific features, such as a large necrotic core and a thin fibrous cap,
known as athin-cap fibroatheroma (TCFA). Theidentification of these
features, which can be visualized using imaging modalities, led to the
conceptofthe vulnerable plaque thatis proneto rupture (Fig. 2). Many
clinical studies using invasive and non-invasive techniques have found
an association between vulnerable plaques and adverse outcomes
in patients”*. However, findings from both pathology and clinical
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imaging studies have also consistently shown that the rupture of
these vulnerable plaques often occurs without clinical syndromes,
representing an integral part of plaque progression*. Furthermore,
although stenting of lesions with vulnerable plaque features is safe”,
there is currently a paucity of data supporting focal treatment of
vulnerable plaques. Therefore, the concept of the vulnerable plaque
remains controversial®*, The clinical implications of quantitative
non-invasive and invasive imaging of vulnerable plaques in coronary
arteries have also been described in a consensus statement derived
from findings from the second QCI meeting on clinical quantitative
coronary artery stenosis and coronary atherosclerosis imaging'. Fur-
ther characterization of coronary atherosclerosis using Almight result
intheidentification of additional features associated with rapid plaque
progression and increased risk of adverse events.

Imaging modalities

Coronary atherosclerotic plaque can be assessed by a range of inva-
sive and non-invasive imaging modalities”. CT and MRI facilitate
non-invasive structural imaging of coronary plaque, whereas X-ray
coronary angiography, IVUS, OCT and NIRS are invasive imaging
techniques that can be used to assess coronary artery morphology.
Although OCT and IVUS are superior to CT in terms of resolution, these
invasive modalities are not widely available®. Beyond anatomical imag-
ing, coronary plaque biology can be assessed non-invasively through
the use of appropriately targeted radiotracers. Only PET, which againis
notwidely available, allows the assessment of coronary atherosclerotic
plaque biology via radiotracer uptake®.

Non-invasive plaque imaging. CCTA is a non-invasive imaging
modality that facilitates the identification of qualitative high-risk
plaque features, such as the napkin-ring sign, and the quantification
of total plaque burden using CCTA% correlates well with assessment by
IVUS*?, Moreover, the CCTA-derived measure of plaque attenuation
can be used to determine plaque composition, including total, calci-
fied, non-calcified or low attenuation plaque (Fig.2). Low attenuation
plaqueisof particularinterest becauseit correlates with thelipid-rich
necrotic core of atheromatous plaques and has been associated with
adverse outcomes®. Importantly, CT quantification of coronary athero-
scleroticburden canbe used to predict the risk of fatal or non-fatal myo-
cardial infarction in patients with stable or unstable coronary artery
disease®****, Of note, however, CCTA is associated with exposure to
amodestlevel of radiation, and image quality can be compromised by
cardiac motion or coronary calcification.

Invasive plaque imaging. Coronary X-ray angiography is the most
frequently used invasive modality for imaging the coronary arteries
because it allows excellent visualization of the coronary lumen, but
not of coronary plaque. Therefore, invasive assessment of coronary
plaque requires intravascular imaging techniques such as IVUS, OCT
and NIRS**?, Specifically, plaque imaging using IVUS or OCT is instru-
mental for studying vulnerable plaque features®, and has been used to
guide percutaneous coronary interventions®** and to monitor vascular
tissue response®*. OCT is currently the only imaging modality with
sufficient spatial resolution to identify the thin cap (<0.065 mm) that
defines true TCFA. Of note, these non-invasive techniques cannot be
used to assess severe stenotic disease, small-calibre vessels or deeper
plaque structures. Of note, intracoronary imaging is expensive, can
cause serious complications because of its invasive nature and is,
therefore, impractical for population-wide application.

Technigque to mimic human cognition

» Automated plaque characterization

» Diagnosis and prognostic assessment
of coronary artery disease

« Automated generation of medical
reports

Artificial intelligence

Learning from imaging and clinical data

» Supervised learning (linear regression,
support vector machines, extreme
gradient boosting)

o Unsupervised learning (k-means
clustering, principal component
analysis)

Machine learning

) Multilayered artificial neural networks
» Convolutional neural networks

» Recurrent neural networks

» Generative adversarial networks

Fig.1|Basics of artificial intelligence, machine learning and deep learning.
Artificial intelligence in medicine mimics the intelligence of ahumanin
performing various medical tasks. Machine learning is a subfield of artificial
intelligence with afocus on how computers learn from examples. Deep learning
is a specific form of machine learning involving an algorithm that learns directly
from data*®.

Prognostic value of identifying vulnerable plaques

The prognostic importance of coronary plaque assessment has been
established using various non-invasive and invasive imaging modalities.
TCFA, identified using IVUS or OCT, has been associated with worse
outcomes in several prospective studies”” . Vulnerable plaques that
can be visually identified on CCTA have been linked to an increased
risk of subsequent adverse cardiac events in registry studies*’ and in
randomized controlled trials (RCTs)®***'. In the PROMISE trial*, vulner-
able plaques were present in15% of patients presenting with suspected
coronary artery disease and were associated with an almost twofold
increase in major adverse cardiovascular events, after adjusting for
cardiovascular risk factors. However, this study did not adjust for the
overall disease burden. In addition, findings from studies that quan-
titatively assessed vulnerable plaques suggest that increased plaque
volume and imaging markers of TCFA are associated with a higher risk
of subsequent adverse cardiac events. In the PROSPECT study®, aplaque
burden of 270% and a minimal lumen area of <4.0 mm?, as measured
onlVUS, wereindependently associated with disease progression and
recurrent chest pain at follow-up in patients presenting with acute
coronary syndrome. Inthe SCOT-HEART trial”, alow attenuation plaque
burden on CCTAwasastrong predictor of myocardial infarction, over
and above the cardiovascular risk score, calcium score and presence
of stenosis. Patients with alow attenuation plaque burden of >4% were
nearly five times more likely to have a subsequent myocardial infarc-
tion event than patients who had a low attenuation plaque burden of
<4%.Conversely, preliminary results from the ISCHEMIA trial** did not
find low attenuation plaque to be predictive of death or myocardial
infarction when adjusted for total plaque burden. Importantly, the posi-
tive predictive value of vulnerable plaque features is low, and it is not
possible at present to predict which patients will have plaque progres-
sion that would ultimately cause major adverse cardiovascular events.
Larger studies and the incorporation of Al technology will hopefully
improve the assessment of vulnerable plaque in the future****. Aside
fromtraditional high-risk plaque features, Al technology can support
the automaticidentification of additional high-risk plaque features that
are not visible to the human eye to improve diagnosis and prognosis.
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Table 1| Consensus recommendations on Al applied to imaging of vulnerable plaques in coronary arteries

Question

Level of consensus®

Consensus recommendations

Current state of Al for analysis of plaques in coronary arteries

Q1: reference standard for plaque imaging Consensus

Histology would be preferable but clinically impractical; IVUS and OCT are superior to
CT with regard to resolution but availability is limited; OCT is more precise than IVUS
and can detect high-risk plague features associated with plaque progression

Q2a: importance of multiple observers Partial consensus

Multiple observers are essential to compensate for interobserver variability, provide
generalizability and help with uncertainty estimation

Q2b: required level of expertise for annotation of Partial consensus

plaques

The number of analysed scans and years of experience should both be considered; the
number of expected analysed scans varied from 100 to >1,000; the number of years
of experience ranged from 24 weeks to 5 years; and certifications of cardiovascular
CT experience (such as SCCT level lll) might be sufficient

Q8: availability of Al tools for automated plaque Partial consensus

analysis in academic research

Al tools exist for all modalities, with more tools available for CT; however, access to
research tools is limited

Q4: availability of FDA-approved or CE-approved No consensus
Al tools for automated plaque analysis in clinical

practice

Large discrepancies in the definition of Al tools led to discordance between experts;
the technologies used (such as simple thresholding or deep learning) are mostly
hidden from the user, making it difficult to define Al tools

Current challenges with Al in automated plaque analysis and prognosis

Q5: quality level of current automated vessel wall Consensus
and lumen segmentation for coronary plaque

analysis

No standardization on how to quantify plaque burden is available at present; most
of the available tools are challenged by the presence of artefacts and severe
calcifications; CT is limited in the case of heavy calcification; data interpretation is
subjective with a paucity of quantification, and segmentations are sparse and noisy;
and OCT is more advanced than IVUS in Al segmentation, especially in the case of
insufficient image quality (such as blood artefacts)

Q6: susceptibility of Al tools for plaque analysisto  Partial consensus

image artefacts

Current Al tools are highly susceptible to image artefacts and most Al tools do not
account for them

Q7: technology suited for classification of coronary  Partial consensus

plaques into stable and vulnerable plaques

A combination of radiomics and deep learning provides incremental utility compared
with either method alone; deep learning might be superior to radiomics, but requires
more data, which are not currently available

Trustworthy Al

Q8: mandatory visual confirmation of automated Consensus

segmentation of plaques

Visual confirmation is required until full confidence is achieved; physicians need to be
able to modify or correct coronary segmentations

Q9: requirement for randomized controlled trials No consensus

Randomized controlled trials are required to verify clinical effectiveness and test
advantages over standard care, whereas retrospective studies are sufficient if Al tools
only facilitate simple human tasks (such as image segmentation)

Q10: confidence measure to explain uncertainty Partial consensus

Well-calibrated and reliable quantitative measures are required (such as with 95%
confidence interval); visual methods (such as heatmaps) are required to ensure clarity
in interpretation; and low confidence should alert physicians that further testing
might be required

Q11: bias mitigation Partial consensus

Al tools should be developed and tested on large and diverse populations to ensure
their generalizability; the limitations of Al tools with respect to non-representative
populations should be clearly demonstrated; biases should be evaluated and
quantified; and bias in datasets should be mitigated by adding or upweighting
minority samples when possible

Outlook and future directions

Q12: reading time of an imaging test in clinical Consensus Images are quickly screened in clinical practice (5-10 min) without measuring plaque

practice features, whereas detailed plaque analysis can take >1h; reading time highly depends
on the complexity of the case

Q13: Al-supported time savings Consensus Quantitative plaque assessment is not performed regularly in current clinical
practice; Al tools could provide full quantification without changing reading time;
and higher accuracy and reproducibility are important advantages in addition to time
savings

Q14: on-site or cloud-based plaque analysis Consensus Issues of data protection and data privacy preservation must be addressed before
cloud-based solutions can be used; OCT and IVUS require immediate assessment
(real-time systems) to guide decision-making

Q15: automated generation of structured medical Consensus Structured reports should provide treatment recommendations together with

reports

explanations and should include a breakdown of findings (plaque burden and
subtypes) and quantitative measurements with a summary; the ability to add
user-defined free text is also required

Al, artificial intelligence; IVUS, intravascular ultrasonography; OCT, optical coherence tomography; SCCT, Society of Cardiovascular Computed Tomography. °The level of consensus between
experts is graded as no consensus, partial consensus or consensus. The full questionnaire with individual responses is shown in Supplementary Table 2.
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Al for vulnerable plaque assessment

Alisabranch of computer science that aims to mimic human cognition
in performing tasks such as object or pattern recognition and has been
applied to the field of medical imaging®. Machine learning, a subfield
of Al, enables computer algorithms to automatically learnand improve
fromexperience using supervised or unsupervised learning. Deep learn-
ingisaspecific formof machinelearning that uses multilayered artificial
neural networks to make predictions directly frominput (Fig. 1). Unlike
traditional machine learning techniques, deep learning has emerged
in the field of cardiovascular imaging only in the past 7 years*¢, but has
already accelerated research on the assessment of vulnerable plaques
and on prerequisite tasks such as lumen and plaque segmentation*®*’.
The most commonly used deep learning networks for image analysis
are convolutional neural networks (CNNs). CNNs contain many layers,
including one or more convolutional layers that create a feature map
summarizing the presence of detected features in the input. The most
commonimplementation of CNNs allows image segmentation orimage
classification. Although the success of deep learning depends on the
availability of large datasets, standard models, such as U-Net and con-
volutional Long Short-Term Memory networks, as well as specialized
networks have been applied to vulnerable plaque segmentation*. In
addition, radiomics is a technique involving the extraction of alarge

Low attenuation

Spotty calcification

Fibrous cap

Macrophage

Necrotic core

Positive remodelling Napkin-ring sign

y 4
* - CCTA

w

" Lipid core

Intraplaqueﬂ
haemorrhage

IVPS

number of quantitative features (such as shape, texture and grey-level
statistics) thatare often not visible to the human eye to describe texture
and spatial complexity. Machine learning methods are used to perform
precision phenotyping and can build predictive models on the basis of
radiomic patterns. Radiomics canbe used to identify high-risk plaque fea-
tures, characterize plaque vulnerability*®*° and find associations that are
predictive of anincreased risk of major adverse cardiovascular events™.

Al technology allows the quantitative assessment of coronary
plaque and the identification of adverse plaque characteristics in the
coronary arteries. Automatically quantified biomarkers (Fig. 3) can
improve diagnosis and facilitate patient-specific cardiovascular risk
stratification”"'. Relevant studies that have assessed the prognostic
value of vulnerable plaque and their level of automation using Al are
listed in Supplementary Table 3.

Non-invasive assessment

CCTAisafirst-line non-invasive test for assessing patients with suspected
coronary artery disease™. Visual or semi-automatic analysis of CCTA
focuses on grading stenosis severity and assessing basic plaque fea-
tures. Al-based methods can automate not only these time-consuming
and cumbersome quantification tasks, but also the characterization of
coronary artery plaque and stenosis grading*® (Fig. 3).

Cholesterol crystals Thrombus

Fibrotic tissue
Thrombus

()

Microchannel

Plaque rupture Macrophages

OCT-

Plaque burden

Fig.2| The concept of vulnerable plaques and high-risk plaque featuresin
CCTA, IVUS and OCT images. The figure provides an overview of vulnerable
plaque components (lipid core, necrotic core and thin fibrous cap) and associated
high-risk plaque features in coronary CT angiography (CCTA; the arrows point to
low attenuation, spotty calcification and napkin-ring sign, whereas the dashed

Calcification

Microchannels Microchannels

OCT-NIRS: lipid pool necrotic core

linesindicate positive remodelling), intravascular ultrasonography (IVUS; plaque
burden, calcification and microchannels) and optical coherence tomography
(OCT; the large arrows point to cholesterol crystals and thin-cap fibroatheroma
(TCFA), whereas the small arrows indicate macrophages and microchannels).

NC, necrotic core; NIRS, near-infrared spectroscopy.
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Radiomics
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Fig.3| Theinteraction between tasks supported by Al tools for the
assessment of vulnerable plaques in coronary arteries. The figure summarizes
the tools for the assessment of vulnerable plaques supported by artificial
intelligence (Al) in CT, intravascular ultrasonography (IVUS) and optical
coherence tomography (OCT). Al-supported tasks include segmentation
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(coronary tree extraction, calcium scoring and plaque segmentation), feature
extraction (radiomics, PET or CT plaque assessment and stenosis grading),
classification tasks (Coronary Artery Disease Reporting and Data System
(CAD-RADS) categorization'” and multimodal learning), risk stratification and
prediction of major adverse cardiovascular events.

Automated coronary artery calcium scoring. Automated quantifica-
tion of coronary artery calcificationin non-contrast CT*and low-dose
chest CT** shows excellent agreement with non-automated human
quantificationin terms of risk stratification. Automated quantification
of coronary artery calcification identified on CCTA has good accu-
racy compared with non-automated quantification of the traditional
Agatston scores derived from non-contrast CT>>*¢,

Centreline extraction. Methods that detect both calcified and
non-calcified plaque and stenosis usually require the generation
of a coronary artery centreline to facilitate analysis of the artery
and its immediate vicinity*®. Therefore, a number of automatic or
semi-automatic methods have been developed for coronary artery
tree extraction, plaque segmentation and stenosis grading using
conventional machine learning or deep learning techniques***5’,

Identification of vulnerable plaque characteristics. Aside from quan-
tifying plaque burden, Al-based methods have also been used to identify
vulnerable plaque characteristics, such as positive remodelling, low
attenuation plaque, spotty calcification and the napkin-ring sign***,

Radiomics can extract a large number of quantitative features,
most of which are invisible to the human eye, from medical images
(Fig. 3). These features capture the complex spatial relationships
between voxels by describing textural patterns or geometric proper-
ties within a given imaging region of interest, such as a segmented
coronary plaque. CCTA-based radiomics have been used to improve
theidentification of the napkin-ring sign®® and other vulnerable plaque
characteristics®. In this context, machine learning techniques have
resulted in the identification of imaging biomarkers associated with

culpritlesions in acute coronary syndrome®°.

Multimodal plaque assessment. In cardiovascularimaging, Al algo-
rithms can be used both to quantify new imaging biomarkers and
to integrate data from many different sources for comprehensive,
patient-tailored risk prediction (Fig. 3). For example, in a machine
learning analysis of findings from a multicentre prospective registry,
the combination of patient, clinical and plaque characteristics using
aniterative LogitBoost algorithm was found to predict 5-year all-cause
mortality more accurately than using existing clinical or CCTA metrics
alone®. Another study combined qualitative and quantitative plaque
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featuresin XGBoost models toidentify precursors of culpritlesionsin
patients with acute coronary syndrome; this boosted ensemble algo-
rithm outperformed the use of traditional metrics of diameter stenosis,
CCTA-related high-risk plaque features and lesion-level characteristics
inthe detection of culpritlesions®. Furthermore, several studies have
used machine learning to combine plaque characteristics, includ-
ing size, geometry and density, to identify myocardial ischaemia® .
Investigators in a multicentre trial involving 254 patients combined
clinical data with quantitative and qualitative plaque characteris-
tics using a LogitBoost algorithm to detect lesion-specific ischaemia
that was defined by invasive fractional flow reserve®. This approach
predicted the presence of lesion-specific ischaemia (area under the
receiver operating characteristic curve (AUC) 0.84) more accurately
than parameters such as quantitative stenosis (AUC 0.76), total plaque
volume (AUC 0.74) and pre-test likelihood of coronary artery disease
(AUC 0.63), highlighting the usefulness of analysing detailed plaque
characteristics.

Al has been used to improve cardiovascular risk prediction by
integrating complex clinical data with multimodality coronary plaque
data®. One study showed that machine learning by extreme gradi-
ent boosting using clinical data, quantitative CCTA plaque analysis
and measures of coronary plaque activity from ®F-sodium fluoride
('8F-NaF) PET could predict adverse clinical outcomes in patients with
established coronary artery disease®®. The investigators demonstrated
that the Almodel that best predicted myocardial infarction (AUC 0.85)
combined clinical data with both quantitative measures of anatomi-
cal coronary plaque from CCTA and coronary disease activity from
8F-NaF PET*®,

Investigators in an international multicentre study involving
921 patients undergoing CCTA developed and validated a deep learn-
ing system for CCTA-derived measures of plaque volume and stenosis
severity”. The deep learning convolutional network was trained to
segment plaques in all patients and then validated in a test set involv-
ing >200 patients, including 50 patients undergoing coronary IVUS
within 1 month of CCTA. The deep learning system completed plaque
analysis in less time than expert readers (5.7 s versus 25.7 min), with
good or excellent agreement between the two sets of measurements®.
Therewas also excellent agreement between the deep learning-derived
measurements and the expert-derived measurements with regard to
IVUS for total plaque volume and minimal luminal area, as well as in
the assignment of patients to categories of stenosis severity®’. The
investigators further validated the capacity of deep learning-based
plaque quantification to predict cardiovascular outcomes in another
external cohort of 1,611 patients from the SCOT-HEART trial*’. A deep
learning-based total plaque volume of >238 mm?3 was associated with
afivefold higher risk of myocardialinfarction, adding prognostic value
to the presence of obstructive stenosis and the clinical risk score.

Invasive assessment

Manual expert quantification of plaque burden and vulnerable plaque
characteristics (Fig. 2), such as measuring lipid arcs and minimal
fibrous cap thickness in images derived from OCT and IVUS, is very
time-consuming and requires real-time decision-making (Table 1).
The use of Al technology can improve the efficiency and accuracy of
these processes.

Automatic segmentation in OCT. To date, automation of the quan-
tification and characterization of atherosclerotic plaque is mostly
restricted to automatic segmentation. Deep learning approaches

allow accurate and very fast segmentation in a matter of milliseconds”.
These technologies relieve human experts of repetitive tasks and allow
real-time analysis, whichis crucial inintravascularimaging. Moreover,
experts have an opportunity to understand what segmentation the
Al model has performed, which improves trust and user acceptance
(Table1).

A-line-based classification. For A-line-based classification” "%, the
cross-sectional view is rearranged longitudinally and plaques are sub-
sequently classified circumferentially on each A-line. These algorithms
use the natural direction of light emitted by the OCT catheter and
are independent of the indeterminable external elastic membrane
resulting from complete light attenuationinlipid plaques (Fig. 2). This
technique also allows fibrous cap detection and quantification after
manual adjustmentin 5.5% of frames”.

Pixel-based deep learning. Conversely, pixel-based deep learning
algorithms allow the segmentation of individual plaque components on
cross-sectional views and canincorporate 3D spatialinformation, which
is fundamental for intravascular image analysis. Investigators have
developed a U-shaped neural network that automatically segments a
single OCT framein 0.07 + 0.01 swith amean Dice similarity coefficient
of 0.764, which had lower accuracy for high-risk plaque components
(such as macrophage accumulation) than for plaque segmentation®.
In this study, the overall diagnostic accuracy for region segmenta-
tion and characterization of the external validation cohort was
86.6%". A pixel-based approach using CNNs developed by another
group of investigators resulted in sensitivities and specificities of >85%
for the identification of lipid and calcified plaques’™. Classification
can also be performed in a binary per-frame fashion (for example,
for TCFA identification)”’¢. In a study that assessed the utility of a
DenseNet model to classify frames with OCT-derived TCFA, the deep
learningalgorithmaccurately detected an OCT-derived TCFA with high
reproducibility in theirinternal validation set of almost 10,000 frames
(AUC 0.96)”. However, the percentage of false-positive classifications
was 6% atthe frame level and 31% at the vessel level. The time required
to analyse a pullback was only 2.1+ 0.3 s compared with 289 £ 270 s
for manual assessment. Interestingly, the results of histology-based
training in addition to OCT-based training were found to be superior
to OCT-based training only”’.

Automated segmentation in IVUS. Image-based approachesinIVUS
are limited by low spatial resolution. Consequently, most algorithms
use binary per-frame or circumferential plaque segmentation'®’,
Deep learning-based plaque analysis with feature extraction has led
to promising results for the identification of TCFA (AUC 0.84-0.91),
with OCT as the gold standard’®. Furthermore, in another study, the
Dice similarity coefficients for the identification of calcified plaque
and attenuation were 0.79 and 0.74 at the angle-level, respectively,
after degree-wise learning'.

Availability of Al tools

Although numerous Almethods for the assessment of coronary artery
plaques have been developed and usedinresearch, they are not widely
available for clinical use (Table 2). Published scientific papers often
do not provided access to the source code, data or trained models in
public repositories, which prevents reproducibility analysis. The QCI
expert group reached a partial consensus on the current state of the
availability of Al tools for plaque assessment in academic research.
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Table 2 | Relevant Al tools for plaque imaging in research and clinical practice

Modality Device orsoftware Manufacturer  Approval Approval Al support Intended use Refs.
pathway number
CT vascuCAP Elucid FDA 510(k) 2017;  K183012 Fully 3D segmentations of Not intended to provide a 103-105
Bioimaging CE mark October lumen, wall and each tissue diagnosis, but intended to assist
2017 type on CCTA trained physicians with patients
who have been identified as
having atherosclerosis
cvi42 Auto Circle FDA 510(k) July K213998  Calcium scoring and To assist physicians in perform- 82,106
Imaging Software Cardiovascular  2022; CE mark centreline placement in ing calcium scoring and in semi-
Application Imaging February 2019 coronary vessels automatic placement of the
centreline in coronary vessels
Syngo.CT Siemens FDA 510(k) May K201034  Automated coronary calcium To support the physician in 82,107
CaScoring Medical 2020; CE mark scoring on ECG-gated evaluating and documenting
(SOMARIS/8 VB50) Solutions USA  May 2019 non-contrast CT calcified lesions in coronary
arteries
iNtuition- TeraRecon FDA 510(k) K191585 Automatic centreline To assist in the assessment of 108
Structural Heart July 2019 extraction and automated calcium in the coronary arteries
Module coronary calcium scoring for calcium scoring
Al-Rad Companion  Siemens FDA 510(k) K183268  Deep learning-based To support radiologists in the 82,109
(Cardiovascular) Medical September 2019; automated coronary calcium quantification of total calcium
Solutions USA  CE mark August scoring on non-gated CT volume in the coronary arteries
2019
AVIEW Coreline Soft FDA 510(k) K200714  Automatic deep To support the segmentation 10,111
September 2020 learning-based calcium of coronary arteries and
scoring; segments and quantification of coronary artery
provides overlay of four main calcium scores
arteries and myocardium
Cleerly Labs v2.0 Cleerly FDA 510(k) K202280 Deep learning tool to identify Not to replace a qualified medical 112,113
October 2020 high-quality images, segment  practitioner, but to provide a
and label coronary arteries, and  more robust semi-automatic
segment lumen and vessel segmentation software
walls on CCTA
Cardiac Solution Nanox.Al FDA 510(k) K210085 Al algorithm for coronary Not intended to be used 114115
(HealthCCSng) (Zebra Medical  September 2021 calcium scoring from alone, but intended to provide
Vision) non-cardiac gated, radiologists with an estimated
non-contrast CT coronary artery calcium detection
category (low, medium or high)
HeartFlow Analysis  HeartFlow FDA 510(k) K213857  Automatic machine Intended to support risk 1617
October 2022 learning-based detection and assessment for coronary artery
characterization of coronary disease
artery plaques
Autoplaque Cedars-Sinai FDA 510(k) May K212758 Automatic deep Intended to be used as an 87
Medical Center 2023 learning-based vessel, plaque interactive tool for viewing and
and lumen segmentation analysing cardiac CT data for
determining the presence and
extent of coronary plaques
OCT Ultreon 1.0 Abbott FDA 510(k); CE K210458  Automatic detection of The physician might use the 18,119

mark April 2021

lumen, stent, external elastic
membrane and calcium

acquired parameters along with
other information to determine
if therapeutic intervention is
indicated

Al, artificial intelligence; CCTA, coronary CT angiography; ECG, electrocardiogram.

However, the underlying technologiesin acommercial product might
not be accessible to the user, leading to the discordance about their
availability in clinical practice. Furthermore, most applications have not
overcomethe technical and regulatory challenges of full automation,
and require human intervention’°,

To identify relevant research tools and the CE-certified and
FDA-certified products for coronary plaque assessment, we analysed

Al-enabled and machine learning-enabled medical device databases® ¢
(Table 2). Automated calcium scoring analysis in electrocardiogram
(ECG)-synchronized or non-ECG-synchronized CT has been estab-
lished in numerous cardiovascularimaging software products. Several
products focus on plaque assessmentin CCTA and numerous research
tools that have been evaluated in clinical studies***” are gradually
beingimplemented inclinical practice. Most of the available software
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packages containtools for the automatic segmentation of tissue types
and anatomical structures, such as the vessel wall and the lumen. How-
ever,depending onimage quality and the presence of anatomical vari-
ants, manual correction, such as centreline correction or vessel wall
adjustment and lumen or plaque segmentation, is often still required
for quality assurance, calling into question the time savings and cost
efficiency of Al-based tools.

Similarly, commercially available CE-certified and FDA-certified
products for plaque analysis inintravascular modalities are emerging.
The latest OCT software packages incorporate lumen, stent, exter-
nal elastic membrane and calcium detection, and some even include
Al-based plaque assessment”. However, Al-based plaque assessment
is currently available only for research purposes.

Challenges with Al tools in clinical practice

Alisan emergingtechnology in cardiovascularimaging, and the future
benefits of Alin vulnerable plaque imaging are difficult to predict®.
Importantly, high expectations should not obscure the challenges that
stillhave to be overcome before Al becomes a standard toolin clinical
practice. A major challenge for the development of clinical Al tools is
the availability of large, diverse, anonymized and annotated datasets
with available outcome data for testing, training and validation. The
collection, curation and annotation of large sets of images required for
Aldevelopment are very time-consuming (Table 1). The quality of the
annotationsis also animportant concern, and the expertise required
forannotation will depend on the task in question. Inaddition, Al tools
must be tested on external validation datasets with clinical outcomes
to ensure their generalizability to wider populations. Poorimage qual-
ity can also cause difficulties for Al development and use. Many Al
tools are trained on curated and annotated datasets with high image
quality and, therefore, under-perform in real-world clinical practice.
In addition, image artefacts and variation inimage acquisition might
preclude the use of Al tools or resultininaccurate or unreliable output
(Table 1). Standardization of image acquisition would aid Al develop-
ment, including consistent naming, conformity in the reconstruction
of algorithms and structured reporting.

For clinical use, an Al-based tool must provide results in a way
that clinicians will understand and trust. Machine learning models
might generate a probability of a result, but this outcome is not usu-
ally communicated by the Altools. Methods toimprove interpretabil-
ity — so-called explainable Al — include dedicated models, post hoc
assessments, feature importance and graphical visualization. Code,
data and model sharing can also help other researchers to reproduce
research results and to facilitate clinical uptake, but might be chal-
lenging in terms of data privacy and research use of data. Large-scale
prospective RCTs of the clinical utility of cardiovascular imaging Al
tools have not been conducted®, For the assessment of certain tasks,
such as segmentation, such trials might not be required. However,
for many tasks that can affect subsequent patient management,
itisimperative that Al tools meet the same clinical standards as other
medical treatments, and that both efficacy and cost-effectiveness are
assessed. A 2022 systematic review found only 41 RCTs of medical Al
tools, with none adhering to standardized reporting guidelines, and
the overall risk of bias was high in seven of these trials®. The selection
of appropriate metrics to assess the capabilities of Altools is essential,
asistheuse of standardized reporting guidelines for Al research. Given
that Al tools must be integrated into the usual clinical workflow, an
important research task is to investigate how to facilitate human-Al
interactionsinclinical practice.

Trustworthy Al
Although there is a huge potential for Al to improve clinical coronary
plaqueimaging, the lack of trustworthy Alapproaches remains aserious
concern. According to the EU’s ethics guidelines’, trustworthy Almust
belawful, ethicaland robust from both atechnical and asocial perspec-
tive (Box 1). In the context of clinical Al solutions, these tools should
support decision-making rather than make autonomous decisions, be
robust and safe, and provide transparent and unbiased recommenda-
tions. In fulfilling these criteria, Al solutions could maximize the benefit
for clinicians and patients alike while minimizing the risk to patients.
During clinical deployment, the robustness and safety of Al solu-
tions should be determined interms of accuracy, reliability and repro-
ducibility. The trustworthiness of Al solutions depends not only on
technical aspects, but also on human factors that affect their perfor-
mance in real-world settings. This requirement necessitates compre-
hensive and transparent evaluation of Al solutionsinaccordance with
established reporting guidelines. For example, diagnostic accuracy
before clinical deployment should be evaluated using the STARD-AI

Box 1

Requirements for trustworthy Al

The following characteristics are required for an artificial
intelligence (Al) tool to be trustworthy when applied to the imaging
of vulnerable plaques in coronary arteries.

Robust Al

e Technical and clinical robustness (image noise and artefacts,
anatomical abnormalities, and evidence from randomized
controlled trials)
Reliability
o Safety
Real-time decision-making (guided by optical coherence
tomography or intravascular ultrasonography)
Generalizability (patient population and scanner type)
Technical developments (photon counting CT and
reconstruction algorithm)
Confidence communication of Al (95% Cl, heatmap)

Ethical and fair Al

o Safety (recommendation of interventions, such as percutaneous
coronary intervention or coronary artery bypass graft surgery)
Privacy and security (anonymization of patient data)
Transparency (accessibility of data to the patient)
Fairness and inclusivity
Unbiased Al models (for example, no bias against age, sex or
ethnicity)
Explanation and interpretation of automated diagnosis and
prognosis for physicians and patients

Lawful Al
o Certification of devices and software (CE-approved or
FDA-approved)
e General data protection regulation
¢ Medical device regulation
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guidelines”, whereas the DECIDE-Al guidelines’” contain recommen-
dations for evaluating the diagnostic accuracy of the tool in the early
phases of clinical deployment. Finally, the CONSORT-Al guidelines® for
the evaluation of Al solutions should be usedin the context of RCTs. The
question of when RCTs are needed to verify clinical effectiveness and to
testadvantages over standard care and when retrospective studies are
sufficient for the evaluation of simple human tasks (such as segmenta-
tion tasks) is controversial among experts (Table 1). In the context of
clinical deployment, Al solutions should increase the confidence in
the recommendations in a suitable manner, ideally in a quantitative
fashion, so that clinicians can easily interpret their output (Table 1).

Explainability, interpretability and generalizability
Al explainability and interpretability are often used interchangeably,
but differ slightly in meaning. Al explainability refers to inspecting the
Al modelinterior to confirm its output, whereas Al interpretability
more formally puts cause and effect into relation, so that the model
outputcanalways belinked back to the model input. These standards
areincludedin the EU ethics guidelines for trustworthy AlI*? and in the
WHO guidance on ethics and governance of Al for health®, as part of
amove to ensure transparency and fairness in Al development and
deployment (Fig. 4).Inthe context of atherosclerotic plaqueimaging,
editable contours for segmentation models or visualization of output
probability distributions might be used to provide information on
decision-making.

Almodelsfor plaque analysis require careful creation and curation
of training datasets to ensure their generalizability. Changes ininput
data quality could have undesired effects on predictions, such aswhen

modelsaretrained on quality-controlled research dataand thenapplied
toclinicaldataacquired acrossavariety of clinical situations or with a
different imaging technique, or when Al software for atherosclerotic
plaque analysis trained on datasets acquired with energy-integrated
detectors might fail when applied to photon-counting CT datasets.
Solutions for dealing with these domain shifts include: transfer learn-
ing, in which the modelis retrained on a small subset of the new data;
data augmentation, by simulating the new domain properties; use
oftraining data from alarge variety of domains; and acombination of
these techniques®. Finally, differences in plaque annotations by
different radiologists with varying levels of experience and expertise
can also lead to differences in model performance. In these cases,
model output uncertainty should be reported to informa clinician to
revisit their own findings, or to include annotation uncertainty in the
model training for more robust output. The QCl experts of this Road-
map reached a consensus that multiple observersintraining datasets
arerequired to compensate for interobserver variability and provide
generalizability and can support the uncertainty estimation process.

Fairness and bias mitigation in plaque imaging

Data-driven Al solutions are susceptible to biases that can amplify
health-care disparities’®°%, which is an important area of concern.
In the context of imaging of vulnerable plaques in coronary arter-
ies, bias can arise from systematic errors such as disproportionate
over-representation or under-representation of certain patient sub-
groups, over-representation of patients at high risk of disease, or
applying Al solutions to subgroups who were notincludedintheinitial
training (for example, using an Al model in patients with stable chest

Al tools for plaque assessment in research
» Automated coronary tree extraction
e Deep learning-based assistance in plague segmentation

and quantification
Revolution of Al
o Automated speech and facial recognition
¢ Al-based language translation
L° Self-driving cars |

significant plaque

¢ Radiomics-based plaque characterization
» Machine learning-based identification of functionally

e Ensemble methods for risk and mortality prediction |

Fig. 4 |Roadmap for Al in the imaging of
vulnerable plaques. The figure shows the advances
and regressions that have occurred during the
integration of artificial intelligence (Al)-based

tools into clinical practice, starting from clinical
evidence for high-risk plaque features through

Progress

N\

the revolution of Al, technical challenges for Al for
plaque assessment, available Al tools for plaque
assessmentinresearch, and the need for evidence-
based and trustworthy Al tools. CCTA, coronary CT
angiography; IVUS, intravascular ultrasonography;
NIRS, near-infrared spectroscopy; OCT, optical
coherence tomography; RCT, randomized
controlled trials; TCFA, thin-cap fibroatheroma.
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CCTA:
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« Positive remodelling

o Spotty calcification

« Napkin-ring sign

‘ Technical challenges of Al for
plaque assessment
o Large, diverse, annotated
datasets of plaques required
for robust model
development

OCT or IVUS: » Reproducibility on external
e Cholesterol crystals datasets (domain shift
e Thrombus between centres, scanners

or scan protocols)
o Robustness with respect to

o Plaque rupture
e Macrophages

e TCFA noise, imaging artefacts or

o Microchannels anatomical abnormalities

e OCT-NIRS » Estimation and visualization

o [IVUS-NIRS of model confidence for Al

‘ Need for evidence-based and
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o RCTs of the clinical utility of
cardiovascular imaging with Al
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o Transparent and fair decision-making

 Evidence about efficacy and
cost-effectiveness
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maintaining privacy
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pain when it was trained in patients with acute chest pain). Unequal
representation in training datasets can particularly affect ethnic and
other minority groups, in which Al solutions might perform poorly if
these groups were not included in the training datasets”.

Twomainsources of bias exist: first, in the data used to train Al algo-
rithmsand, second, intheimplementation and deployment of these Al
algorithms'®’. Representation biases canbe addressed during the col-
lection or preprocessing of training data via reweighting or resampling
of minority groupsin the training data or via data augmentation'**'",
Ideally, clinical data used to train Al algorithms should be based on data
from large-scale clinical trials with a pragmatic trial design and minimal
exclusion criteria to ensure high external validity.

Inaddition, features used in training canbe adjusted not to corre-
late with sensitive attributes or to use adversarial learning approaches
to de-bias Al solutions. When an Al solution has been developed, it is
possible to reduce any biases in its performance by using techniques
such as calibrated equalized odds (Table 1).

Conclusions

Coronary plaque burden and type are important prognostic markers
and can guide patient management. A variety of non-invasive and
invasive imaging modalities can be used to assess plaque and identify
vulnerable plaques. The revolution and the hype surrounding Al have
inspired clinicians and scientists to develop tools to automate the
assessment of vulnerable plaques. Al has the potential to transform
plaque assessment by improving speed and accuracy, but before fully
automated Al tools canbeintegrated into clinical practice, numerous
technical challenges must be addressed (Fig. 4), including reproduc-
ibility, robustness, generalizability and reliability, and Al tools must
be evaluated using large and diverse datasets. Al tools in research
have achieved near-human performance in various plaque assess-
ment tasks, but have mainly been validated in small, preselected and
biased study populations. Evidence from RCTs of the clinical utility
and cost-effectiveness of approved commercial software solutions
is still lacking. Concepts for developing and evaluating trustworthy
Al systems that are safe, transparent, fair, interpretable and explain-
able are still limited and need to be adapted for vulnerable plaque
assessment.

ThisRoadmap for the adoption of Al tools applied to the imaging
ofvulnerable plaquein coronary arteries includes the development of
novel Altools for the identification of vulnerable plaques in coronary
arteries while addressing the many challenges of Al that have been
described. Optimizing theintegration of Al tools into the clinical work-
flow will provide coronary plaque metrics together with other clinical
andimaging markers of coronary artery disease, including physiology,
flow and pericoronary structures. If this Roadmap is adopted, the use
of Al systemsin close collaboration with physicians'®* to facilitate the
imaging of vulnerable plaque in coronary arteries has the potential to
revolutionize the diagnosis, prognostic assessment and management
of patients with coronary artery disease.

Published online: 18 July 2023
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