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ABSTRACT: Machine Learning (ML) techniques face significant challenges when predicting
advanced chemical properties, such as yield, feasibility of chemical synthesis, and optimal
reaction conditions. These challenges stem from the high-dimensional nature of the prediction
task and the myriad essential variables involved, ranging from reactants and reagents to catalysts,
temperature, and purification processes. Successfully developing a reliable predictive model not
only holds the potential for optimizing high-throughput experiments but can also elevate existing
retrosynthetic predictive approaches and bolster a plethora of applications within the field. In
this review, we systematically evaluate the efficacy of current ML methodologies in
chemoinformatics, shedding light on their milestones and inherent limitations. Additionally, a
detailed examination of a representative case study provides insights into the prevailing issues
related to data availability and transferability in the discipline.

1. INTRODUCTION
Recent advancements in Machine Learning (ML) for chemistry
have established these techniques as invaluable tools for
predicting a wide range of properties associated with chemical
reactions. Such tools typically fall under the umbrella of
computer-assisted synthesis planning and include many differ-
ent tools and models that can help chemists with several tasks.
Retrosynthesis models suggest how to break a compound, either
as a single-step prediction or multistep prediction, which
provides a sequence of steps for how to synthesize a compound
from simpler startingmaterial.1−3 Furthermore, there are a range
of product prediction models, or forward models that predict
what the product of two or more reactants will be,4,5 or can
provide guidance on regioselectivity issues.6,7 There are also
condition or reagent models suggesting suitable catalysts,
solvents, temperatures, etc.8,9 Finally, there are yield or reactivity
models estimating the success of a reaction, which is the topic of
this perspective and will be reviewed below. Although many
encouraging studies have been reported, ML models for
chemistry are not without critique.10,11 Furthermore, while
many studies emphasize general reaction properties, such as
yield prediction in regression and classification tasks, properties
tied to physical chemistry, such as reaction rates and activation
energies, have received less attention.
Reaction yield prediction holds particular significance in

organic synthesis, especially within drug discovery and
pharmaceutical development, where intricate multistep pro-
cesses are routine. Any decrease in yield in a single step can
drastically influence the overall success of the synthesis. Thus,
crafting models that can predict yields for diverse pharmaceuti-
cally relevant reactions is crucial. Such predictive models offer

myriad benefits, from trimming synthesis costs making drugs
more affordable to curtailing the emergence of unwanted
byproducts enhancing synthesis sustainability.

Historically, predicting reaction yields has been a challenging
endeavor. In the 1940s, the Hammett equation emerged,12 a
significant achievement in physical organic chemistry that linked
reactivity and chemical structures. Moving to the 1980s,
chemists started using basic methods to predict the properties
of small organic molecules, and the first application of Neural
Networks for Structure−Activity Relationship was introduced in
1992.13 The 2000s brought successes in QSAR (Quantitative
Structure−Activity Relationship) using Random Forest and
Support Vector Machines.14−16

From the late 1980s to the early 2010s, classical Machine
Learning (ML) models started mimicking chemists’ rules for
predicting physical properties and reaction outcomes, as
described in a review by Williams et al.17 However, limited
computational capabilities hindered advanced approaches. Yet,
by the mid-2010s, advancements in microelectronics spurred
the rise of sophisticated ML techniques. During this resurgence,
Emami et al. achieved significant progress in 2015 by using
thermodynamics calculations on a small set of compounds to
achieve notable correlations.18 Later, Raccuglia et al. employed a
support vector machine-based decision tree to predict reaction

Received: September 21, 2023
Revised: November 29, 2023
Accepted: November 30, 2023
Published: December 20, 2023

Perspectivepubs.acs.org/jcim

© 2023 The Authors. Published by
American Chemical Society

42
https://doi.org/10.1021/acs.jcim.3c01524

J. Chem. Inf. Model. 2024, 64, 42−56

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

H
E

L
M

H
O

L
T

Z
 Z

E
N

T
R

U
M

 M
U

E
N

C
H

E
N

 o
n 

M
ar

ch
 6

, 2
02

5 
at

 1
1:

24
:5

6 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Varvara+Voinarovska"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mikhail+Kabeshov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dmytro+Dudenko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samuel+Genheden"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Igor+V.+Tetko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.3c01524&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01524?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01524?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01524?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01524?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01524?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jcisd8/64/1?ref=pdf
https://pubs.acs.org/toc/jcisd8/64/1?ref=pdf
https://pubs.acs.org/toc/jcisd8/64/1?ref=pdf
https://pubs.acs.org/toc/jcisd8/64/1?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01524?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


success.19 The public release of over a million reactions
systematically extracted from patents in 201620 drove further
advancements, leading to more intricate models rooted in
cutting-edge Deep Learning methods.2,21,22

To provide a comprehensive view of the present challenges in
yield prediction, this work focuses on two key aspects: data and
modeling. These aspects encompass the core of the current
challenge. We also provide a section with our analysis of current
approaches and challenges in modeling processing.

2. DATA
The Data section is designed to provide an overview, spanning
from the practical aspects of organic chemistry experimentation
and data recording to the subsequent chemoinformatic
modeling of reactions using these recorded representations.
This structure takes us from the tangible, real-life processes to
the digital domain, culminating in an exploration of the
challenges encountered from both perspectives.

2.1. Experimental Methods to Generate Reaction
Data. While an enormous amount of reaction data is already
available, it is important to highlight a few exemplary, promising
experimental approaches that facilitate high-quality reaction
data generation in the modern Artificial Intelligence (AI)-driven
era.
One of the key concepts developed in recent years is the

automation of organic synthesis.23 This includes advances in
automatic solid and liquid handling, precise dispensing,
automatic compound purification using catch-and-release
techniques, and the autonomous control of reaction parameters
such as temperature, pressure, homogeneity, and color.
Implementing reaction automation has increased the through-
put of compound synthesis and reaction reproducibility by
eliminating errors and mishandling from human interaction.
By combining automated synthesis and purification, re-

searchers could generate 14 classes of organic compounds using
the Suzuki-Miyaura cross-coupling reaction while recording
high-quality reaction data.24

Further, increasing reaction data generation throughput can
also be achieved by lowering the scale of individual experiments.
This was exemplified in a study where more than 1500
Buchwald-Hartwig experiments were performed in less than a
day using as little as 0.2 mg of starting material per reaction.25

However, it is crucial to note that the reaction data generated by
this method can only be used for predicting reaction feasibility
and rough yield estimation as no isolated yield information can
be obtained.
Continuous flow chemistry methods are gaining popularity in

the synthesis community. They permit a wider range of reaction
types to be performed, such as photo- and electrochemistry, and
the use of more reactive intermediates due to the possibilities of
in situ generation and capture. One method used to quickly
generate a diverse range of reactions is segmented flow, where
segments of pure solvent separate individual reaction samples in
a single flow reactor.26 This technique allowed more than 5700
Suzuki-Miyaura reactions to be performed and automatically
purified over an uninterrupted 4-day process.
The subsequent work demonstrated that a similar approach

could be applied to diazonium cross-coupling chemistry and
parallelized across 16 reaction channels,27 thus increasing the
output of reaction data.
Both batch and continuous flow chemistry methods can be

directly coupled with a computer control system to form a
closed-loop, autonomous synthesis unit.28 It was shown that

computer control could directly utilize the Suzuki-Miyaura
reaction data generated. As a result of the active learning Design
of Experiment (DoE) approach, all of the products of interest
were obtained in high yield without any human intervention.

2.2. Complexity of Chemical Reactions as a Physical
Object. The challenge of predicting the reaction yield stems
from the intricate interplay of numerous variables. Organic
reactions, in particular, can follow diverse pathways under
varying conditions, resulting in a spectrum of products with
associated yields. We present the most significant influences on
the experimental yield in Table 1.

Determining and reporting reaction yields introduces
variability, as reflected by terms such as crude yield, isolated
yield, conversion yield, and selectivity. Each term conveys
unique nuances of the overall yield. Specifically, the isolated
yield, which factors in the purification process, often reports
lower values than the crude yield due to losses during
purification. Conversion yield quantifies the proportion of
reactants converted to desired products, and selectivity reflects
the extent to which the desired product is exclusively formed. In
contrast, the crude yield provides a better estimate of the
intrinsic chemical reactivity. Still, its accuracy may be
compromised by the presence of contaminants, including
unintended side products, in the final mixture. Thus, selecting
the most relevant yield term is essential to accurately evaluate a
chemical reaction accurately.

The research carried out by Murray et al.29 illuminated the
numerous factors that significantly impact the results of
chemical reactions. Their results indicated that understanding
all of the variables influencing a Suzuki reaction for a single pair
of reactants would require an astonishing six billion experiments.
These findings highlight the deep complexity and challenges
scientists face in unraveling the intricate details of chemical
reactivity.

Overcoming these challenges requires a strong partnership
between synthetic chemists and chemoinformaticians. Combin-
ing essential knowledge about molecular reactivity, properties of
all components, and their interactions is essential for accurate
predictions. The presence of reliable, high-quality data is a
fundamental element driving progress in predicting yields for
chemical reactions.

Table 1. Factors Influencing Yield of a Chemical Reaction

Factors Influencing
Yield Explanation

Low Reactivity Reactants may not fully react, resulting in a low yield of
the desired product.

Side Reactions Other thermodynamically possible reaction paths may
be followed, leading to side products and lower yield.

Reactant/Reagent/
Catalyst
Deactivation

Deactivation of reactants, reagents, or catalysts caused
by other reaction system components.

Thermodynamic and
Kinetic Factors

Reaction conditions (temperature, pressure,
concentration, etc.) can affect the reaction rate and
yield.

Contaminants Impurities in reactants or reagents can interfere with
the reaction and reduce the yield.

Sensitivity to
Environment

Reactions may be sensitive to environmental factors
like air, moisture, or light.

Product
Degradation/
Reactivity

The desired product may be too reactive or unstable,
leading to further reactions or degradation.

Product Isolation Difficulties in isolation or purification of the product
can result in a lower yield.
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2.3. Data Storage Formats. Data curation and storage in
the field of chemistry continue to be focal points of in-depth
discourse, bringing together chemoinformatics specialists,
chemists, and machine learning experts to discuss nuances in
reaction preprocessing. Among the array of formats available for
molecular data storage, three-dimensional (3D) formats such as
MOL, SDF, andMDLRXN stand out for their level of detail and
clarity in representing molecular structures. Yet, despite their
detailed nature, they do not enjoy the same widespread
acceptance as one-dimensional (1D) and two-dimensional
(2D) string-based molecular representations. The need for
nontrivial preprocessing further reduces their use in machine
learning tasks.
The SimplifiedMolecular Input Line Entry System (SMILES)

format,30 commonly employed in machine learning, holds
attributes like widespread acceptance, user-friendliness, and
legibility. However, its use comes with inherent challenges such
as nonstandardized representations, difficulties in depicting
complex metalorganic compounds, and the possibility of
generating chemically inconsistent yet technically valid strings.
Sodium hydroxide, for instance, can be denoted as [Na+].
[OH−]. Yet, it could also be represented as [Na]O,NaOH, orO.
[NaH], among other possible variants, some of which could be
treated as invalid entries in most chemoinformatics packages,
such as RDKit,31 for example. These discrepancies can introduce
ambiguity and make data preprocessing more complicated.
The limitations of SMILES representation become more

apparent in the context of complex entities, for example,
transitional metalorganic compounds,32 such as palladium
catalysts often employed in Buchwald-Hartwig coupling
reactions. Molecules such as Pd(Ph3P)22+ and Pd(Ph3P)4 might
be erroneously represented in a similar fashion using SMILES,
introducing potential discrepancies into the data. In addition,
palladium complexes can be denoted in neutral and ionic forms,
raising the likelihood of generating incorrect SMILES notations,
which can adversely impact the molecular encoding. Moreover,
during data storage, SMILES representations of diverse
palladium catalyst ligands could mistakenly be classified as

duplicates, potentially resulting in unintended exclusions from
the final data set. We visually illustrate their problems in Figure
1.

Efforts to address the issues of nonuniqueness and invalid
SMILES representations led to the development of Self-
Referencing Embedded Strings (SELFIES),33 designed to
produce only valid molecular structures. Yet, even with
advancements in the realm of SELFIES,34 its adoption remains
limited, and it has not completely resolved the current issues
associated with complex molecules. The work by Varnek’s
team35 offers a comprehensive overview of the prevalent
challenges in reaction data standardization, highlighting issues
like inaccurate data recording and parsing. While their proposed
data curation pipeline is thorough, it may be deemed overly
broad for specific tasks such as predicting reagents or
stereochemistry given its procedures for removing ions,
stereochemistry, and radicals.

2.4. Data Sources, Reaction Data Sets. The primary task
for successful modeling of chemical reaction yields is to select a
data set for the purpose. Benchmark data sets frequently
employed in yield prediction include the Buchwald-Hartwig
coupling High-Throughput Experimentation (Buchwald-Hart-
wig HTE or BHHTE) data set,36 the Suzuki coupling HTE data
set,26 and the United States Patent Office (USPTO) extracted
data set.20 The first two data sets originate from high-throughput
screenings that aim at finding the best reaction conditions and
represent a comprehensive exploration of many combinations of
reaction variables. In contrast, the USPTO data set is gathered
by text-mining patents from the United States, covering
publications from 1976 to September 2016, and therefore
encapsulates sparse and diverse chemical reaction data.

The HTE data sets and patent data sets display distinct
differences in their content and quality. While HTE data sets
primarily focus on a specific segment of the chemical reaction
space, they provide detailed information related to certain
reaction templates tested with various selected precursors, such
as reactants, solvents, bases, catalysts, and the like. On the other
hand, reactions found in patents encompass a much wider scope

Figure 1. Illustration of potential inaccuracies in the depiction of molecules using PdCl2(dppf) as an exemplar. This Pd-containing catalyst finds
extensive application in diverse couplings, encompassing Suzuki coupling and Buchwald-Hartwig reactions.
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in the chemical landscape, the extent and nuances of which will
be further discussed in section 4.2.
Other currently available reaction databases include commer-

cial products such as CAS, Reaxys, and Pistachio. Open Reaction
Database (ORD), an open-access initiative,37 was introduced
recently, aiming to curate and host reaction data in a format
tailored for training machine learning models, and the different
data sets in this database are list in Table 2. A significant feature

of this initiative lies in its potential as a hub for sharing industry-
specific data sets, which might otherwise stay confined and not
be accessible to the broader scientific community. Regarding
data quality, HTE data sets have the advantage of representing
reactions and yield measurements carried out using the same
analytical equipment, ensuring consistent and high-quality data
collection.38 On the other hand, yields documented in patents
and journal papers are measured using a range of equipment
used by different institutions. Moreover, the original patent
documentation frequently omits essential details, such as certain
reagents or specific reaction conditions. The inherent challenges
of text mining only add to these issues, often leading to noisy and
incomplete data sets. Still, it needs to be acknowledged that
chemists working on individual experiments most likely take
more care in the purification and analysis of reactions compared
to the massive workup that is required for HTE.
To highlight the variability of the yield of a chemical reaction

as a numeric metric, we investigated the available data from
different sources. HTE data sets were not included in this
analysis because there are very few to no records of the same
reaction. Reactions recorded in these data sets could be executed
multiple times, with each experiment recorded. We analyzed the

mean and standard deviation of yield in the available data sets to
assess the feasibility of regressive yield modeling and better
assess its accuracy expectations. To focus on successful reactions
and understand how the yield deviates in such cases, we filtered
out reactions with a yield of 0. Additionally, we excluded pairs of
yield values of kind [0.0, *value*] under the assumption that
zero yield is likely to be associated with small-scale test reactions
executed without product isolation. Also, we filtered out values
different by ±1% due to potential rounding errors. The results,
Figure 2, revealed a standard deviation of around 16% in more

general data sets combining many reaction types. This indicates
that the general reactivity model faces additional data-related
challenges, and its root-mean-square error (RMSE) can not be
lower than 16% in this case.

2.5. Data Problematics. We summarize the most popular
problems among chemoinformaticians working with the
chemical reaction data in Figure 3. In what follows, we outline
some problems in more detail.

First, we need to address the fact that the availability of yield
data is far from guaranteed for reported reactions. Often, only
the major product is recorded, and any data on side products is
missing. And if the side products are recorded, the distribution
might not be normalized to 1. Thus, much reaction data cannot
be used for yield models or need extensive preprocessing.

Schwaller et al.21 observed that the USPTO includes data
from both subgram and gram reaction scales. A lower reaction
scale is typically indicative of “test reactions”, preliminary
experiments conducted to assess the feasibility of the reaction.
Conversely, higher-scale reactions, often termed “optimized”
reactions, are usually accompanied by an exhaustive exploration
of the reaction condition space to pinpoint the conditions
yielding the maximum product.

Fitzner et al.55 shed light on biases and the diversity present
within chemical literature, pointing out the inherent short-
comings in the contemporary state of reaction data. Through an
extensive analysis of over 62,000 Buchwald-Hartwig couplings
from multiple databases, they furnished data-driven guides.
These guides not only recommend reaction conditions but also
aid in identifying less common ligands that demonstrate optimal

Table 2. Datasetsawith Available Yield Information Available
for Download from ORD37 and Two Proprietary Datasets.

Dataset
Number of
reactions

Synthesis of islatravir by biocatalytic cascade39 3
Copper-Catalyzed Enantioselective Hydroamination of
Alkenes40

3

Development of an automated kinetic profiling system with
online HPLC for reaction optimization41

7

Coupling of a-carboxyl sp3-carbons with aryl halides42 24
Building a Sulfonamide Library by Eco-Friendly Flow
Synthesis43

39

Microwave-assisted Biginelli Condensation Data set44 48
Deoxyfluorination screen45 80
Chemistry informer libraries: a chemoinformatics enabled
approach to evaluate and advance synthetic methods46

90

Imidazopyridines data set47 384
Linking Mechanistic Analysis of Catalytic Reactivity Cliffs to
Ligand Classification48

450

AstraZeneca Electronic Lab Notebook (AZ ELN 750)49 750
Photodehalogenation HTE50 1152
HTE Pd-catalyzed cross-coupling screen25 1536
Nano CN PhotoChemistry Informers Library51 1728
NiCOlit52 1752
Predicting reaction performance in C-N cross-coupling using
machine learning (Buchwald-Hartwig HTE)36

4312

A platform for automated nanomole-scale reaction screening and
micromole-scale synthesis in flow (Suzuki HTE)26

5760

Reaxys (nonpatents)53 ∼1.7M
USPTO curated from ORD20 ∼1.7M
Pistachio54 6.9M
aProprietary datasets not included in ORD are highlighted in bold.

Figure 2. Plot illustrates that the mean yield deviation between the
inner data and Reaxys data sets is consistent, but the Pistachio data set
exhibits a lower standard deviation (std) in comparison.
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performance when aligned with specific substrate properties
chosen by users.
In their study, Schleinitz et al.52 carried out a curated

extraction of Ni-catalyzed reactions, underscoring the impor-
tance of thorough data extraction from scholarly articles and

optimization tables that support reaction optimization experi-
ments. Furthermore, they benchmarked a range of cutting-edge
machine learning methods, shedding light on the evident
selection bias in published works and highlighting the notable
lack of reported negative data.

Strieth-Kalthoff et al.56 in their recent study also study biases
in reported reaction data. They discussed mainly three sources
of bias: experimental errors, experimental selection bias, and
result reporting bias. By modeling these sources of biases, they
could conclude that it is predominantly the interplay between
the sparsity of the data and the lack of negative data that restricts
the possibility of deriving predictive models for chemical
reactions.

As highlighted in the editorial by Maloney et al.,57 there is a
pronounced deficiency in the reported negative reaction data.
They point out that many High-Throughput Experiments
(HTEs) conducted in academia often do not make it to
machine-readable formats. Moreover, researchers presenting
novel reactions in their publications frequently omit to mention
the unsuccessful trials that paved the way to discovering the
conditions for successful ones.

Maloney and coauthors propose a more granular differ-
entiation of unsuccessful experiments, dividing them into three
specific categories as follows.

• Experiments with neither remaining starting material nor
detectable product.

• Experiments where the majority, if not all, of the starting
material remains unreacted.

• Experiments not conducted as initially planned.

Having access to such detailed negative reaction data would
not only allow for a clearer distinction between unreactive
combinations and those that are overly reactive, leading to
intricate mixtures, but also aid in identifying reactions that
deviate from best practices. This would enable a more accurate
association between the failed experiments and the systems’
inherent reactivity.

The significance of negative reaction data, along with other
experimental details that are often omitted or inconsistently

Figure 3. Main problems that chemoinformaticians are facing when
working with chemical data sets.

Figure 4. Two current State-of-the-Art approaches in yield prediction. The top row illustrates a more classical approach, while the bottom row
illustrates a modern approach.
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recorded in conventional publication templates, was emphasized
in a recent review.58 Among various considerations, the authors
argue that compared to other domains, such as crystallographic
or NMR data, organic synthesis lacks a community-accepted
standard for reporting reaction information. In an initial attempt
to address this issue,59 the authors proposed the XDL markup
language format, designed to capture comprehensive exper-
imental details, including the timing of additions, temperature,
and standard types of chemical equipment and glassware.
Consequently, reaction data reported in this format would be
machine-readable and writable, allowing for the postprocessing
of historical reaction data and the generation of new data
through fully automated synthesis. To facilitate data extraction
from the literature and convert it into machine-readable format,
Qian et al.60 and Wilary and Cole61 introduced tools for
automated extraction of reactions and reaction conditions from
diagrams and schemes. This tool holds promise for addressing
the data extraction challenges previously mentioned.

3. MODELING
Researchers are actively investigating diverse strategies for
chemical reaction yield prediction, broadly categorized into local
and global approaches, and closely linked to the scale of data
employed for modeling. The former encompasses traditional
fingerprint-based methods tailored to precision within specific
reactions, while the latter involves cutting-edge Deep Learning
techniques capable of handling large databases. This section
offers a comprehensive overview of these strategies, highlighting
their respective strengths and challenges in predicting reaction
yields.
Closely associated with the scale of data used for modeling,

the chemical reaction yield prediction can be categorized into
two groups. The first group encompasses traditional fingerprint-
based methods reminiscent of those employed in quantitative
structure−activity relationship (QSAR) modeling for smaller
chemical systems. The second, a more recent area of research,
involves Deep Learning techniques that harness language model
encodings and graph encodings, typical for big data tasks (Figure
4). We begin by discussing the well-established fingerprint-
based methods, many of which have assimilated novel features.
Thereafter, our attention shifted to cutting-edge Deep Learning
techniques. This review is intended to deliver a comprehensive
overview of the prevalent strategies in the domain, underscoring
their respective merits and potential challenges.
The first approach focuses on smaller reaction spaces,

tailoring models to optimize specific experiments and thus
aiming for precision within a particular context. Typical
benchmark data sets employed here include the Buchwald-
Hartwig and Suzuki HTEs. Integral to this method is feature
analysis; by identifying crucial features, scientists intend to boost
both the accuracy and the interpretability of their models.
On the other hand, the second approach navigates larger data

sets, deploying more complex models capable of handling vast
volumes of data. The key objective here is to develop a
comprehensive reactivity model that can predict yields across a
diverse range of reaction types.

3.1. Reaction Encoding. The history of fingerprint
encoding can be traced back to the 1960s with the creation of
the first substructure-based fingerprints, notably the Morgan
fingerprints.62 Over the decades, these substructure-centric
fingerprints have retained their prominence, capturing the
critical chemical attributes of a compound. More recently
developed fingerprints harness the capabilities of pretrained

Deep Learning models, including Graph Neural Networks
(GNN) and Large Language Models. The most widely used
examples of fingerprints are shown in Table 3.

CGR, or Condensed Graph of Reaction, is a representation
that combines reactants and products into a single 2D graph,
encompassing both conventional and changing bonds. Devel-
oped by Varnek and colleagues,63 the CGR approach encodes
molecular structures using fragment occurrence in a matrix. It
offers a superposition of reactant and product molecules,
describing alterations in atoms and bonds, reminiscent of the
transition-state concept.64 This approach has seen increasing
adoption in recent cheminformatics research, leading to the
creation of an open-source toolkit by Varnek and colleagues to
facilitate wider CGR utilization.65 However, it is worth noting
that this approach relies on correct reaction atom mapping, a
current challenge in the field.

Apart from fingerprints and graph representations of the
reactions, the SMILES representation discussed in section 2.3
can be used directly with language models.

3.2. Low-Data ML & Active Learning.The optimization of
chemical reactions via high-throughput experiments often
demands significant resources. This has led researchers to
investigate alternative strategies, especially active learning, to
navigate situations with limited data. The essence of these
strategies is to glean maximum insights from such narrow data
sets by pinpointing and harnessing the most important and
informative features. The data sets derived from a single
experimental setup, usually HTE, are referred to by us as “low-
data” experiments. Usually, the settings of the experiment are as
such: the number of data points derived from a single
experiment does not exceed ten 000 single reactions.

In a pioneering attempt at yield prediction using machine
learning, Ahneman et al.36 tackled the problem on the
Buchwald-Hartwig HTE data set by leveraging multiple density
functional theory (DFT) calculated descriptors and a range of
ML techniques, including Random Forest and simple Neural
Networks, reaching Root Mean Squared Error (RMSE) 7.8%
and R2 value of 0.92 for the best Random Forest Model (RF) for
70/30 train/test random split set. For leave-one-additive-out,
the average RMSE was 11.3% and R2 0.83. However, their
methodology was later scrutinized by Chuang and Keiser,73 who

Table 3. Most Common Reaction Encodings for Yield
Prediction

Reaction
encoding Short description

Methods developed specifically for the reaction encoding
RXNFP66 Developed to encode SMILES using a pretrained BERT model

fine-tuned on Pistachio.
DRFP67 A binary fingerprint based on the symmetric difference of two sets

containing the circular molecular n-grams generated from the
molecules listed left and right from the reaction arrow in
SMILES.

Graph-based
encodings

Chemprop68,69 implemented the support of CGR63 and uses the
pseudomolecule for message passing.

Encodings calculated for the individual components of the reactions
DFT
fingerprints

Include various features, calculated for each molecule using
Quantum Calculation software.

Structural
fingerprints
(ECFP, Rdkit
structural)

Fingerprints that are based on the structure of the molecule and
calculated structural features,70 use SMILES.

Graph-based
encodings

AttentiveFP,71 MoGAT.72
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pointed out potential redundancy and the minimal informa-
tional value of the DFT features, especially considering their
computational cost since they reached RMSE of 7.9% and R2 of
0.91 with random features for the same splitting. Despite this
criticism, subsequent research by Żuranśki et al.74 indicated that
DFT features could indeed offer valuable insights into reaction
mechanisms and exhibit enhanced generalization across diverse
reaction spaces, demonstrating RMSE between 5 and 25% for
leave-one-additive-out approach with RF. Building on this,
Sandfort et al.75 found that a combination of features often
outperforms simplistic one-hot encodings, reaching an R2 score
of 0.93, while one-hot showed R2 of 0.89 on 70/30 random split
of BH HTE data set. In another work, Dong et al.76 studied the
importance of specific features in yield prediction using the
SHAP (Shapley Additive exPlanations) library in tandem with
XGBoost models, and SHAP usage gives an insight into themost
important features, such as electronic descriptors of aryls and
ligands. Also, the XGBoost model showed a good performance
on the BH HTE data set with a 90/10 random split of RMSE
5.01% and R2 of 0.97, on the leave-one-additive-out the
XGBoost model outperformed RF.
Johansson et al.77 demonstrated that learning just a fraction of

the HTE data set can be enough to achieve high prediction
accuracy. They employed various models, including simple
neural networks, complex neural networks, random forests, and
Bayesian matrix factorization models. The study utilized an
uncertainty-based active learning strategy known as Margin and
reached an area under the receiver operating characteristic
(AUROC) of 0.9 using only selected 10% of the BH HTE data
set. Prior work on active learning for predicting outcomes of
Suzuki coupling was conducted by Eyke et al.,78 although Active
Learning was not outperforming random learning until the
Active Learning approach had less than 17% of the Suzuki data
set. The authors employed this approach to optimize the
number of experiments required to learn the essential features of
reactions.
Kexin et al.79 propose MetaRF, an attention-based random

forest model optimized by a meta-learning framework for few-
shot yield prediction, and introduce a dimensionality reduction-
based sampling method to improve few-shot learning perform-
ance. The methodology shows the performance of R2 of 0.7738
for leave-one-ligand-out and shows R2 of 0.648 using only
selected 2.5% of the BH HTE data set.
Haywood et al.80 compared different Support Vector

Regression (SVR) kernels with different descriptors, including
DFT calculated and structural for the BH HTE data set, and
found that structural fingerprints perform slightly better than the
DFT ones, with RMSE of 17.4% and R2 of 0.51 for the structural
and RMSE of 23.1% and R2 of 0.24 for DFT in leave-one-
additive-out setting. The authors also attempted to assess the
model applicability domain, investigating leave-one-aryl halide-
out, leave-one-base-out, and others. They claim that the HTE
data need to be more diverse to allow building a better
generalizable model. Using different fingerprints, Bayesian
modeling, and the BH HTE data set as a benchmark, Rankovic ́
et al.81 optimized the selection of additives that lead to higher-
yielding reactions. The authors highlighted that employing
Bayesian optimization modeling should facilitate the reaction
optimization process using HTE. The development of a
chemoinformatics workflow for achieving high yields in
Buchwald-Hartwig couplings was explored in a study by Fitzner
et al.82 The investigation focused on developing a new descriptor
to reduce the number of experiments necessary for capturing

critical information using an active learning approach; to assess
the success of the descriptor, they used the Spearman coefficient
ρ that takes values between−1 and 1, and their customXGBoost
model reached a value of 0.5. This research also studied the
obstacles preventing the achievement of good results in
modeling Buchwald-Hartwig C-N coupling reactions.

Reker et al.83 developed LabMate.ML which is a computa-
tional framework for leveraging random, unbiased experiments
to navigate the selected reactivity space employing adaptive
machine learning.

Collectively, the studies listed above highlight the active
learning strategies employed in yield prediction, the importance
of feature selection and engineering, and the efforts made to
optimize experimental workflows and effectively capture
information from the limited data for various types of chemical
reactions.

3.3. Big-Data Deep Learning Models. In Deep Learning
(DL), featurization for the reactions is done using either
SMILES representation as strings of tokens or molecular graph
representation with nodes and edges. We refer to “big-data” as
the data derived frommultiple experiments of the same reaction
type and more general data sets that combine multiple reaction
types derived from diverse sources. Usually, the number of data
points exceeds tens of thousands.

Yield-BERT, developed by Schwaller et al.,21 was a
groundbreaking model that successfully implemented the
Transformer architecture84 and used SMILES representation
as an input, reaching R2 of 0.951 for random 70/30 BH HTE,
and RMSE of 12.07% andR2 of 0.81 for Suzuki data set on 70/30
random split. Data augmentation played a pivotal role in
enhancing the capabilities of Yield-BERT, especially in
situations with sparse data sets. This enhancement increased
the model’s robustness and endowed it with the capacity to
assess the uncertainty inherent in yield predictions. In a related
study, Baraka et al.85 employed a Multimodal Transformer-
based Model for predicting yields in Buchwald-Hartwig and
Suzuki-Miyaura reactions, reaching R2 of 0.959 for BH HTE on
70/30 random split, RMSE of 5.5 andR2 of 0.833 for Suzuki, and
RMSE of 11.5 on 70/30 random split. Their findings
emphasized that amalgamating diverse modalities into the
prediction process can significantly improve the results for these
specific chemical reactions.

For Deep Learning models that view reactions as graph
entities, the most widely used frameworks are Graph Neural
Networks (GNN) and Message-Passing Neural Networks
(MPNN).86 As an example of this, Sato et al.87 merged
MPNNwith self-attentionmechanisms for yield predictions; the
model resulted in R2 of 0.972 when using Mol2Vec88 atom
embedding for BH HTE data set in 70/30 random split. Their
work highlighted the importance of particular atoms within the
model’s calculations. However, their method encountered
challenges predicting outcomes for certain chemotypes within
the benchmark data sets. In another study, Youngchun et al.89

employed Message-Passing Neural Networks to enable
uncertainty-aware learning of reaction yields using the bench-
mark data sets, introducing the parameter λ which is responsible
for the relative strength of two objectives (minimize the
conventional mean-squared error and maximization of the log-
likelihood over the training data set). With λ = 0.1 the model
reached R2 score of 0.974 for a 70/30 random split for the BH
HTE data set. They have shown that higher predicted variances
are often concomitant with higher prediction errors, which
provide a criterion to selectively dismiss certain predictions. In
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another work, Saebi et al.49 tested various techniques and
reported the YieldGNN. This model performed well on High-
Throughput Experimentation (HTE) data, R2 of 0.957 for
YieldGNN with no chemical features. Nonetheless, its efficacy
deteriorated when tested on a chemically diverse data set from
AstraZeneca’s Electronic Lab Notebooks (AZ ELN), R2 of
0.049.
In the context of yield prediction, the Transformer

architecture has demonstrated a potential benefit over the
GNN models. This success opens avenues to explore the
interpretability of these networks, in particular, to understand
their internal mechanisms of “interpreting” reactions. This was
exemplified by the creators of Yield-BERT, where they
compared the model’s learned attention patterns with reaction
mapping.66

Neves et al.90 introduced a novel technique that augmented
the Transformer model standard SMILES encoding with
reaction equivalents. Their investigation demonstrated the
potential advantages of using this approach to improve industrial
synthesis operations. Their methodology employed a binary
classification, where reactions yielding 5% or less were labeled as
unsuccessful. Uncertainty estimates were analyzed for the
successful and unsuccessful classes. When the model was
validated on the internal ReactLake reaction database using a
temporal split, it was shown that 52.8% of negative reactions can
be correctly flagged and thus experimentally avoided. The
overall model’s performance was satisfactory, with a recorded
receiver operating characteristic (ROC) area under the curve
(AUC) value of 0.76 in experimental validation.
Yarish et al.91 developed the directed message-passing neural

network (RD-MPNN) yield prediction models, which they
tested on Enamine’s proprietary reaction data. Their binary
classification model showed a commendable ROC AUC of 0.78.
When extended to a ternary classification setting, the model
displayed an accuracy of 0.51 across multiple reaction classes.
Interestingly, the RD-MPNN’s performance was on par with the
leading results obtained on the BHHTE benchmark data set and
surpassed other models when tested on the Suzuki data set, with
a coefficient of determination (R2 0.93 for BH HTE, RMSE
10.35%, R2 0.86 for the latter). Also, the authors performed an
analysis of erroneous predictions. They identified key
challenges, including issues associated with product isolation
by chromatography and reduced yields due to steric hindrance
and competing side reactions.
Jian et al.22 developed a unique SMILES-based model for

yield prediction. Based on a bespoke tokenization procedure, a
long short term memory (LSTM)-based architecture, and data
from bothUSPTO and proprietary sources, they could obtain an
RSME of around 20%.

4. BENCHMARKING
In this section, we undertake a series of experiments aimed at
illustrating typical examples of yield or reactivity modeling that
encompass both medium- and large-scale data modeling
scenarios. Our experiments delve into the underlying complex-
ities of the Buchwald-Hartwig reaction, which significantly
impact the modeling process and the feasibility of modeling in
general. This section is structured into two cases: “successful”
and “unsuccessful”, corresponding to modeling using the HTE
Buchwald-Hartwig data set and modeling with USPTO and
Reaxys Buchwald-Hartwig reaction selections, respectively.
Although we limit our experiments to Buchwald-Hartwig
reactions in this report, we believe that the learnings can be

transferred to other reaction classes that are similarly complex.
For reaction classes with less complexity, the modeling might be
more successful. We chose to work with Buchwald-Hartwig
reactions, because it is a very common reaction in the
pharmaceutical industry that consequently has received
attention in the modeling community.

4.1. A Successful Case Example: HTE Buchwald-
Hartwig Amination Yield Prediction. Ahneman et al.
made a significant contribution to the yield prediction field
with their groundbreaking work on the Buchwald-Hartwig
reaction, Figure 5, within a high-throughput experimentation

framework.36 The reaction data set in this work was generated
using high-throughput experimentation in three 1536-well
plates, enabling exhaustive variation of reaction components.
The initial data set retained 3955 reaction data points after
eliminating essential control experiments and reactions
involving the additive 7. This work used 15 aryl halides, 23
additives, four palladium catalysts, and three bases overall.

Ahneman et al. used a range of molecular properties derived
from DFT-level theory simulations of the reaction components
as descriptors. These descriptors included the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) energies, NMR shifts, dipole moments,
electronegativities, and others. The authors evaluated several
machine learning models, ranging from linear models, k-nearest
Neighbors (k-NN), Random Forest Regression, Support Vector
Regression, and Bayes generalized linear models, to a shallow
Artificial Neural Network (ANN). Their findings pointed
toward the Random Forest model as the top performer.

Their research, however, did not proceed without contention.
Chuang and Keiser critiqued their methodology, presenting
evidence that substituting the DFT descriptors with random
values or adopting simple one-hot encoding yielded comparable
model performances.73 They posited that the significance that
Ahneman et al. attributed to the DFT features might have been
overstated. Instead of dismissing these claims, Ahneman and co-
workers acknowledged this critique. They concurred on the
importance of integrating random controls in subsequent
research, emphasizing its critical role in enhancing the
robustness and validity of future work.92

This data set possesses several unique characteristics worth
noting in the context of yield prediction. First, it contains vast,
dense reaction data encompassing diverse combinations of
reactants, ligands, and reagents, all annotated with the respective
yield. This enables the visual representation of the data, as
shown in Figure 6, clustered into different regions colored by
yield. It is possible to identify areas with low and high yields from
that.

Furthermore, the high data density, coupled with the
subsequent cluster analysis, offered valuable insights into the
scenarios where the use of specific ligands in the HTE setup
resulted in suboptimal yields. A more comprehensive examina-
tion of this phenomenon was undertaken in the study by Fitzner
et al.55

Figure 5. Buchwald-Hartwig Amination Reaction36
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The consistent experimental setupmaintained throughout the
entire HTE campaign ensured the data set was conducive to
accurate predictions of numerical yield values. In such a low-
noise environment, the model is more capable of discerning
patterns from the relevant reactions, capturing critical
information from adjacent data points, and making accurate
extrapolations, resulting in highly precise predictions.
Nevertheless, the constraints of the HTE data sets must be

recognized. The data are bound by the specific experimental
design employed, implying that the model’s predictive capability
is limited to the scope of this design. Predicting the reaction
outcomes for ligands or conditions absent from the data set
could be unreliable or even unfeasible, given the absence of
respective training data. This underlines the importance of
assessing the applicability of the model domain before its
deployment.
To obtain a more comprehensive understanding of the state-

of-the-art approaches applied to this data set, we undertook a set
of experiments to replicate existing results and evaluate the
model’s generalization capabilities.
We decided to employ two modeling approaches that reflect

current trends in reaction yield modeling.

• A classical tree- and kernel-based ML model utilizing
reaction fingerprints.

• The Yield-BERT model, utilizing SMILES encoding, as
reported in ref 21.

Reaction fingerprints (ECFP4,6,70 RXNFP,66 DRFP67), de-
scribed previously in more detail in Table 3, were used for
SVR,93 RFR,94 and Gradient Boosting Regression95 (GBR)
models. For the modeling process, we used the Scikit-Learn96

Python library.
The selected model types also exemplify various Machine

Learning approaches. Random Forest Regression and Gradient
Boost Regression are ensemble methods; the former ensembles
decide trees, while the latter ensembles weak models. On the
other hand, Support Vector Regression utilizes support vector
machines to learn the best-fit hyperplane to categorize the data.

We chose these different fingerprint methods to compare
various approaches for encoding reactions as objects. RXNFP
represents a pure data-driven encoding approach, while ECFP
and DRFP represent structural approaches. This comparison
allows us to gain insights into the strengths and limitations of
each method in the context of yield prediction.

For embedding purposes and to avoid any possible bias
connected to how different methods align the reaction
components, we use the following order to build the reaction
object.

reagents. reactants products

Initially, the models showed modest performance on a
random split, as we can see in Figure 7. The results reveal that,
among the simple models, the DRFP67 encoding exhibits the
best performance, slightly outperforming ECFP4 fingerprints.

That prompted us to conduct further evaluations on the
different parts of the chemical space occupied by the data set.We
could see in Figure 6 the t-distributed stochastic neighbor
embedding (t-SNE) dimensionality reduction performed on
DRFP features and the fact that the data set nicely separates into
different clusters. We decided to employ a leave-one-cluster-out
validation setup with clusters defined based on the DRFP
features. As summarized in Table 4, the results indicate generally
satisfactory performance, albeit with some variability in clusters
that may be regarded as combinations of smaller subclusters.

Upon analysis of the results, it became evident that the
model’s efficacy tends to diminish less when the mean of a given
cluster is closer to the mean of the overall distribution.

Figure 6. t-SNE plot for BH HTE data set, based on DRFP features.
Clusterized with K-Means, number of clusters = 14.

Figure 7.Comparison of the GBRmodel’s performance using different encodings and fingerprints, trained with a random 80:20 ratio and 5-fold Cross-
Validation. RMSE = root-mean-square error, R2 = determination coefficient. The red line represents numpy linear fit. RFR and SVR models were
excluded from the main figure for clarity, and their detailed results can be found in Supporting Information.
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Conversely, there is a marked decline in the performance when
the yield of a cluster deviates substantially from the overall mean.
This indicates that the model probably struggles in predicting
yields at more extreme values.
Furthermore, we investigated the model’s ability to

extrapolate across reactants by executing a leave-one-reactant-
out validation; specifically, focusing on aryl halides in Table 5,
we could see the results of the model trained on leave-one-
reactant-out. The visual results are depicted in S9. The first
column row corresponds to chlorine-associated aryl halides, the
middle column corresponds to bromine-associated aryl halides,
and the last column corresponds to iodide-associated aryl
halides. The model performs moderately well when the left-out
species is a chemically reactive aryl halide. Still, the performance
deteriorates when the left-out species is less reactive, for
example, chlorine-containing aryl halides. This observation
highlights the model’s susceptibility to variations in the chemical
properties of the reactants and its potential limitation to
generalize across the chemical space, even for a well-defined
single chemical reaction type.
We also accessed Yield-BERT properties related to the BH

HTE data set, and they showed the same good results, as
reported in ref 21, although on leave-one-reactant-out it showed
better performance than simple models. For more information,
see S7.

4.2. An Unsuccessful Case Example: Diverse Data Sets
Buchwald-Hartwig Amination Yield Prediction. In this
section, we present a case example that illustrates the challenges
of yield prediction and emphasizes the importance of advancing
our knowledge in condition encoding as well as enhancing the
prediction methods overall. The following example showcases
various aspects of yield prediction, underscoring the complexity
involved. Furthermore, it is important to acknowledge that this

task pertains to a broader reactivity modeling endeavor. As in the
previous section, we continue focusing on Buchwald-Hartwig
amination as one of the essential reactions in the pharmaceutical
industry.

To obtain the reaction data, we used the web interface of
Reaxys53 (7000 entries) and other available open-source data
sets, such as AZ ELN 75049 (500 entries), Doyle’s HTE
Buchwald-Hartwig36 (4000 entries), and data extracted from
USPTO20 (6000 entries). The reactions were cleaned from
duplicates and invalid entries (nonparsed via RDKit), then
mapped with RXNmapper,66 and were classified with
NameRXN.54 Reaction data labeled with the Next Move classes
1.3.1, 1.3.2, 1.3.3, and 1.3.4 (Chloro-, Bromo-, Iodo-, Trifluoxy-
Buchwald-Hartwig Amination, respectively) was selected.

As illustrated in Figure 8, the data sets obtained from
academic experiments and industrial patents are characterized
by the higher reported yields, whereas data sets derived from
Electronic Laboratory Notebook records and High-Throughput
Experimentation tend to often contain lower-yielding reaction
data points. It is worth noting that while the U.S. Patent and
Trademark Office (USPTO) data set demonstrates a similar,
relatively uniform, yield distribution for this specific reaction, it
is widely acknowledged that the general distribution of the
USPTO data is significantly skewed toward high-yielding
reactions.21

Furthermore, we analyzed the distribution of reaction
embeddings using t-SNE. This will serve as a qualitative analysis
of the applicability domain of our models. Notably, when
reagents were included, the High-Throughput Experimentation
data set exhibited distinct separation in the DRFP embeddings,
as illustrated in Figure 9. Conversely, Reaxys, USPTO, and AZ
ELN data sets occupied dissimilar regions within the chemical
space. This discrepancy could be attributed to variations in the

Table 4. Leave-One-Out Cluster Performance of the Gradient Boosting Regression Model Based on DRFP Featuresa

Cluster No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RMSE 7.71 8.50 12.97 13.54 4.77 23.66 13.33 7.66 9.15 5.59 4.46 17.90 9.56 7.78
R2 0.90 0.86 0.66 0.73 0.96 0.36 0.76 0.88 0.87 0.96 0.98 0.40 0.84 0.92
Mean yield 28.10 25.19 23.33 53.01 30.31 45.94 58.16 23.04 31.28 38.45 40.38 31.75 21.82 35.77
aFor the visual representation of the model’s performance, see Supporting Information Figure S8.

Table 5. Performance of the Gradient Boost Regression Model on DRFP Features with Leave-One-Aryl Halide Outa

aFor a graphical representation of the performance, see Supporting Information Figure S9.
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fundamental recording of reaction components, particularly in
the context of Palladium catalysts, as discussed earlier; we
continue this discussion in 11. This observation leads us to
propose the hypothesis that Buchwald-Hartwig reaction experi-
ments documented in patents and articles may demonstrate a
higher degree of reagent diversity compared to that of HTE
experiments.
Using the extracted data, we modeled the model using the

same procedure detailed in the previous chapter. The analysis of
the model performances, as reflected in the Root Mean Square
Error and coefficient of determination in Figure 10, reveals that
the results achieved are unsatisfactory. When tested on real-
world Buchwald-Hartwig reaction data, simple models exhibit

the same performance as the more complex Yield-BERT model
(see S10). This lack of performance and generalization ability
could stem from various factors, including noise within the data.
However, as indicated by the t-SNE plots in Figure 9, there is
considerable overlap between the USPTO and Reaxys data set,
indicating that the Reaxys reactions are within the applicability
domain of the USPTO-derived model. The same can be said for
at least the AZ ELN data but less for the HTE data set. This
observation implies that current featurization methods might
struggle to capture the intricate nuances inherent to specific
reactions.

Consequently, the challenges in capturing the intricate
chemistry inherent in this specific reaction are not unexpected.
We previously delved into the issues associated with large-scale
data in a dedicated section, and the results of these experiments
corroborate the challenges posed by the vast and diverse
chemical space.

5. CONCLUSION AND FUTURE OUTLOOK
This review highlights that despite the progress in yield
prediction methodologies, there remain significant limitations
in their ability to handle diverse data sets, especially those
containing chemically diverse reactant species. These challenges
arise from both the data and the modeling aspects.

Data utilized for yield prediction frequently contain inherent
noise and may sometimes lack crucial details necessary for
precise predictions. To address this, there is a need for a
standardized recording procedure that can be universally applied
across academic and industrial institutions. By converting
reaction conditions and procedures into a machine-readable,
noise-free format, this standardization would greatly enhance
the modeling process for various reaction properties that
demand in-depth information.

Figure 8. Violin plot for yield distribution for the data sets derived from
public data and Reaxys.

Figure 9. t-SNE plot depicts the distribution of reaction encodings based on DRFP representations. In (a), where all conditions are excluded, the
encodings show an even distribution in hyperspace. In (b), when conditions are included, a notable separation occurs between the BH HTE data set
and others. This indicates that condition representations introduce diversity, adding a layer of complexity to the encodings. We also provide a Principal
Components Analysis (PCA) plot in the S4. We investigate the data recordings more in detail in S11.
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A pivotal issue lies in the limited generalization of the model
capacity. The complexity of the underlying chemical and
physical mechanisms governing reaction yields is profound
and perhaps more intricate than initially assumed. We believe
that the challenge is not just computational but deeply rooted in
understanding the fundamental principles of chemistry. In
essence, the task of predicting chemical reaction yields presents a
multifaceted challenge that is not solely computational. Deeper
integration of the foundational principles of chemistry is crucial
to advance and refine existing prediction models.
Analysis of the variance in reported yields in Figure 2 suggests

that employing classification models with multiple bins can
better address the complexity of the yield prediction problem,
taking into account the noisy data.
The future trajectory of yield prediction development is

expected to proceed along multiple paths. Due to the
advancements in synthesis automation, we foresee the

emergence of enhanced data sets that will incorporate a wider
range of high-quality data. Concurrently, a shift toward
uncertainty-based predictions seems plausible. As previously
noted, the precise numerical yield can often be not feasible due
to the significant noise in data. Consequently, the predicted yield
has a tendency to function more as a classification label for many
experimentalists. As such, broader categorizations such as
excellent, good, or moderate yield might often suffice.

An intriguing avenue to explore involves detailed studies of
widely used reaction classes, aiming to develop, albeit potentially
more computationally intensive, chemically relevant reaction-
specific descriptors. These descriptors can effectively encode
reactions of the same class, enabling predictions within a specific
category. This strategy demands an exhaustive analysis of the
reaction mechanisms, both thermodynamic and kinetic aspects,
and the unique intermediates inherent to each class. A deeper
understanding of the mechanisms underlying specific reactions

Figure 10. RFR model trained on USPTO Buchwald-Hartwig selection and tested on other data sets. For clarity, we show only the DRFP fingerprint
performance on these plots. Other fingerprints’ performance can be found in the Supporting Information.
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can be achieved, leading to the creation of an encoder that
captures these unique attributes.
Venturing into these prospective areas, the domain of yield

prediction is likely to benefit from higher-quality data sets,
refined probabilistic predictions, and focused investigations into
reaction-specific descriptors. These advancements promise to
improve the accuracy and reliability of yield predictions for
chemical reactions.
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