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A B S T R A C T

Recent progress in computational pathology has been driven by deep learning. While code and data
availability are essential to reproduce findings from preceding publications, ensuring a deep learning
model’s reusability is more challenging. For that, the codebase should be well-documented and easy
to integrate into existing workflows and models should be robust toward noise and generalizable
toward data from different sources. Strikingly, only a few computational pathology algorithms have
been reused by other researchers so far, let alone employed in a clinical setting. To assess the current
state of reproducibility and reusability of computational pathology algorithms, we evaluated peer-
reviewed articles available in PubMed, published between January 2019 and March 2021, in 5 use
cases: stain normalization; tissue type segmentation; evaluation of cell-level features; genetic
alteration prediction; and inference of grading, staging, and prognostic information. We compiled
criteria for data and code availability and statistical result analysis and assessed them in 160 pub-
lications. We found that only one-quarter (41 of 160 publications) made code publicly available.
Among these 41 studies, three-quarters (30 of 41) analyzed their results statistically, half of them (20
of 41) released their trained model weights, and approximately a third (16 of 41) used an inde-
pendent cohort for evaluation. Our review is intended for both pathologists interested in deep
learning and researchers applying algorithms to computational pathology challenges. We provide a
detailed overview of publications with published code in the field, list reusable data handling tools,
and provide criteria for reproducibility and reusability.

© 2023 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights
reserved.
Introduction

Technical progress has been driving digitization in pathology
over the past decade. Coupledwith advances in deep learning (DL)
methods, computational approaches help to localize, segment,
and classify single cells and tissue types in an automated manner
my of Pathology. Published by Elsevier Inc. All rights reserved.
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Table 1
Glossary for commonly used terms in computational pathology

Digital pathology Histologic slides are scanned and digitized so pathologists can examine the patient material on a screen instead of working on optical
microscopes. Digitized slides can be stored and processed, enabling the use of computational methods in the diagnostic process.

Computational pathology The analysis of digitized histologic slides with computational methods.1

Specimen A tissue sample, for example, obtained during a biopsy or other surgical procedures, typically fixed in formalin and embedded in
paraffin.

Section A thin slice (with a typical thickness of 3-15 mm) of a specimen mounted on a microscopic slide.
WSI: The digitized image of a tissue section on amicroscope slide. Slides can be scanned in very highmagnification resulting in images
of sizes up to several gigapixels.

Patches and tiles WSIs are split up into smaller images (eg, 512 � 512 pixels), also called patches or tiles, that can be processed by neural networks.
Unlike WSIs, these smaller image data units allow for easier and parallelized image processing. The terms “tiles” and “patches” are
often inconsistently used. Overall, “patches” is the more common term, but if the smaller images are used for subsequent WSI
rendering by stitching them back together, they are sometimes called tiles.

Annotations Diagnostic information on pixel or patch levels is obtained frommanual expert pathologist labeling at different levels of resolution (eg,
tumor regions are outlined at 2� to 5� while cell-level annotations are performed at 20� to 40�). WSI-level annotations can be all
diagnostic information about the patient (eg, age, survival, staging, and grading) mainly obtained without additional expert
pathologist interaction.

Supervised learning Training procedure of a neural network, where the ground truth, that is, the correct label for the task, is available for each data point.
However, in medical imaging and especially computational pathology, full expert annotations at pixel or patch level are time-
consuming and, hence, rare. Pixel-level annotations are used to localize tissues in segmentation tasks, where each pixel is assigned a
tissue label. Patch-level annotations are used for classification tasks, where one label is predicted for the entire input patch.

Weakly supervised learning Due to the rareness of fully annotated WSIs, weakly supervised learning approaches, like MIL, are often used to train neural networks.
With MIL, only WSI-level annotations, such as diagnostic information on the cancer type or survival, are required for classification.

CNN A neural network that can be trained to extract features by sliding trainable filters across the image. This makes CNNs translationally
invariant and, therefore, well suited for histologic data because relevant features can be found anywhere on a tile.

U-Net A CNN with an encoder-decoder architecture for segmenting biomedical images.2 It was adapted in many ways and ranks among the
most common architectures for segmentation tasks.

Mask R-CNN A CNN architecture for instance segmentation in object detection.3 In contrast to U-Net, which does not distinguish between instances
of a class, Mask region-CNN (Mask R-CNN) outputs a segmentation mask for each instance on the image, which makes it useful for
tasks such as nuclei segmentation and cell counting.

CNN, convolutional neural network; MIL, multiple instance learning; WSI, whole slide image.
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and form the research field of computational pathology1 (see
Table 1 for a glossary1-3). In particular, deep neural networks have
recently been shown to reach the performance level of medical
experts on well-defined tasks such as skin cancer diagnosis,4 lung
cancer subtype classification,5 or the recognition of malignant
white blood cells.6

However, despite the steady increase in publications in this
field (Fig. 1) and their promising results, only a few have reached
clinical implementation.7,8 This is due to several reasons: for DL-
based methods, code availability is a natural requirement for
reproducibility and, in particular, reusability, which, unfortu-
nately, is not yet current practice formost publications. Evenwhen
code is available, reproducing the original results can be chal-
lenging and requires the assistance of the original author.9 In
particular, ready-to-use scripts with sufficient instructions or
intuitive demo examples are rarely published. This makes the
reuse of current methods difficult for non-DL experts, especially
for pathologists who are not supported by computational experts.
Figure 1.
The number of articles published in the field of computational pathology in PubMed (ret

2

Another reason, particularly relevant to clinical implementation,
is the generalization gap of algorithms in computational pathol-
ogy. Often, the published performance of DL algorithms cannot be
transferred to other data sets due to differences in staining or
scanner settings. Therefore, external validation of algorithms and
statistical robustness analysis are essential to assess generaliz-
ability. Finally, algorithms marketed for use in a clinical setting
must additionally be approved by national or international au-
thorities such as the US Food and Drugs Administration or the
European Medicines Agency, an often lengthy and complicated
process involving business markets and legal issues, which is
beyond the scope of this review.

Here, we focus on DL algorithms for computational pathology
and their reproducibility and reusability. For the ultimate goal of
reusing DL algorithms, the algorithms must be reproducible and
generalizable to similar data sets (ie, robust) and external data sets
(ie, replicable) (see Table 29-13 and Fig. 2 for definitions of repro-
ducibility, reusability, and related terms). Because hematoxylin
rieved on July 22, 2021) has markedly increased in the past 15 years.



Table 2
Definitions of reproducibility, reusability, and related terms

Reproducibility Using identical materials and procedures, the results of a study can be duplicated, and ultimately, identical conclusions can be drawn.10 In the
context of algorithms, the same result can be obtained from the same data, code, and analysis methods.9,11

Robustness The same results are obtained from an algorithm despite small perturbations in the input.12,13

Replicability Conclusions are stable based on independently acquired data,9,11 that is, code and analysis methods can be employed to external data with similar
results and performance. For deep learning algorithms, replicability is equivalent to model generalizability, a key requirement for the clinical
application of new algorithms.

Reusability A piece of software is considered reusable if it can be included in an existing computational pathology setup with minor efforts (eg, without the
need for extensive rearrangements of the workflow or software development).
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and eosin (H&E) staining is the most commonly used routine
staining for cancer diagnosis,14 we restricted this review to
methods for H&E-stained whole slide image (WSI) analysis. We
considered 5 computational pathology use cases and assembled a
systematic overview of publications published between January
2019 and March 2021. For this, we compiled criteria for repro-
ducibility in a practical context and examined each work with
respect to these. We additionally provide an overview of current
data handling tools.
Use Cases

We collected 160 studies between January 2019 and March
2021 on the automated analysis of histologic slides for cancer
diagnosis and treatment (Supplementary Tables S1-S5; flowchart
for the selection is presented in Supplementary Fig. S1). We split
this body of literature into the following use cases: (1) stain
normalization; (2) tissue type segmentation; (3) evaluation of
cell-level features; (4) genetic alteration prediction; and (5)
inference of grading, staging, and prognostic information (Fig. 3).

In this technical chapter, we first briefly introduce every use
case, followed by an overview of the latest DL methods, focusing
onworks that provide code along with the publication. At the end
of each section, wewrap up with an analysis of the reproducibility
in the specific context.

As a prerequisite, open and publicly available data handling
tools for reading, annotating, and sharing histopathological data
are essential. We compiled the most common tools in Table 315-20

and provided amore detailed overview in Supplementary Table S6
Reproducible
(results are reproducible with given code

Robust
(similar results despite small changes

Replicable
(similar results on external data

Reusable
(integrable in

existing workflows)

Figure 2.
Reproducibility, robustness, replicability, and reusability in the context of deep learning a

3

on software features, requirements, and the possibility of
extending the tool by its own code.

Stain Normalization
Most work in computational histopathology focuses on H&E-

stained routine sections, with hematoxylin staining nuclei in blue-
purple and eosin staining extracellular material in pink.21 Digitized
sections are prone to many image variations caused by differences
in the tissue preparation technique (eg, the thickness and flatness of
the sample cut), staining protocols, handling, and storage condi-
tions. Moreover, slide scanners differ in microscope illumination,
image postprocessing, or noise handling. These factors lead to sig-
nificant variability in the visual appearance of WSIs, which affects
subsequent analysis and may lead to poor generalizability of algo-
rithms. Computational methods aim at reducing the effects of these
variations,22 for example, by normalizing the stain color from a
predefined source domain to 1 or more target domains. These
methods include improved analytical approaches, such as color
deconvolution and, more recently, DL-based methods.

Color Space Methods. Color deconvolution separates the hema-
toxylin from the eosin component in optical density space based
on a reference tile.23 This approach has been developed further
recently: adaptive color deconvolution24 incorporated the un-
derlying stain distribution of the target WSI instead of only a
single tile. Alternatively, nonnegative matrix factorization has
been used to obtain a color deconvolution matrix25 and was
optimized for graphics processing unit (GPU) usage.26 (This
approach is not DL-based. We decided to keep it in the article
because noneDL-based color space methods are heavily used in
DL applications of computational pathology.)
 and data)

 in data)

)

noise/perturbations
in data

different data source

good documentation &
integrability 

lgorithms for computational pathology.



Digitized slides

Stain normalization

Tissue type segmentation

Genetic alteration
prediction

Grading, staging, and
prognostic information
extraction

(ii)

(iii)

(v)

Evaluation of cell-
level features

(iv)

Whole-slide image (WSI)
(i)

Tile/patch
Data preparation

Image analysis

in
pu

t
pr

ed

...

Tissue section on
microscopic slide

pr
ob

ab
ilit

y

mutations

pr
ob

ab
ilit

y

time

Figure 3.
Overview of the use of deep learning in computational pathology, including data handling tools for reading, annotating, and sharing whole slide images (WSIs) (Table 3), and 5
applications of deep learning methods, which are covered in the Use Cases.
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Generative Models. The increasing popularity of generative
adversarial networks (GANs) has led to the development of style
transfer methods for stain normalization,27 which can be trained
on all target WSI tiles instead of expert-picked reference tiles.28

StainGAN was trained with a cycle consistency loss between the
source and target domains, and the generator of the target domain
was used to normalize all images in that domain.29 However,
GANsmay not always preserve the tissue structure.30 To overcome
this, StainNet trained a convolutional neural network (CNN)
consisting of 1 � 1 convolutions, transforming the source image
from its original color space to the target color space without
losing structural information.31 Alternatively, additional loss
functions that compare images before and after normalization can
be used to preserve the histopathological information, including
texture, structure, and color features.28

Stain Augmentation. In contrast to normalization methods, GANs
can also simulate stain variability by generating synthetic images.
Table 3
Overview of commonly used data handling tools in computational pathology

An essential prerequisite for implementing, transferring, and reusing computational
institutions is a software structure for exchanging image data, annotations, and m
handling tools have been developed. In many tools, image data handling is based o
Remote Objects (OMERO).16 They enable data to be interoperable between differen
for pathologists to analyze and annotate images. Annotations include class labeling
image data handling and annotation tools were developed as standalone packages
increasing number of recently developed packages, such as Cytomine19 or EXpert A
handling, which is essential for distributing, exchanging, and annotating data as w

In addition to image annotation and exchange, data handling packages allow integra
tools offer integrated scripting for the automation of tasks, for example, using Groo
languages, such as Python, have been developed, for example, for OMERO. Several t
deep learning models. A detailed overview of open and publicly available data han
Table S1.

4

This renders neural networks on downstream tasks more robust
and avoids loss of relevant information due to the limitations of
normalization methods. Yamashita et al32 propose data augmen-
tation based on style transfer from artistic paintings, and Wagner
et al33 used a GAN architecture for multiple domains to synthesize
realistic histologic images while preserving the tissue structure.

Stain-Aware Models. Unlike the above stain normalization
methods that project the external test data to the original training
domain as a preprocessing step, stain information can be incor-
porated directly into the model, for example, for nuclei segmen-
tation by creating a hematoxylin-aware CNN.34

Tissue Type Segmentation
Accurate segmentation of a WSI into tissue types (eg, epithelial

vs stromal vs lymphatic tissue) allows for quantitative follow-up
analysis. Depending on the kind of available annotations, we
discriminate between the following categories: methods for pixel-
pathology algorithms between researchers and different laboratories or
eta-information. With the progress of computational pathology, numerous data
n system-level libraries, such as OpenSlide15 or Open Microscopy Environment
t vendor-specific image formats. Most of these tools also provide user interfaces
or point flags, geometric shapes, and image-level labeling. While many popular
(eg, SlideRunner,17 QuPath,18 and Automated Slide Analysis Platform [ASAP]), an
lgorithm Collaboration Tool (EXACT),20 allow for web-based, collaborative data
ell as evaluating models in a multi-institutional setting.

tion with independently developed analysis algorithms at different levels. Some
vy in QuPath. Additionally, programming interfaces to popular machine learning
ools, such as EXACT and CaMicroscope, offer integrated, server-side evaluation of
dling tools and their respective functionalities is provided in Supplementary
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wise or patch-wise segmentation, hierarchical architectures that
imitate a pathologist’s workflow, and methods that use WSI-level
annotations and are therefore weakly supervised.

Pixel-Wise Segmentation. Vellal et al35 assessed the risk of breast
cancer from image features, such as the percentage of fibrous
stroma, epithelium, and fatty tissue. Graham et al36 developed a
rotation-invariant CNN to account for the inherent rotational
symmetry of histology images and validated their application on
pixel-wise gland segmentation. Jayapandian et al37 used pixel-
wise segmentation for identifying 6 tissue types in kidney bi-
opsies, applying the same U-Net architecture for segmenting
patches with different magnifications.

Patch-Wise Segmentation. Image patches can be classified sepa-
rately and subsequently stitched together to create a coarse seg-
mentation map of the entire WSI. Zhao et al38 computed a WSI’s
tumor-to-stroma ratio from such segmented patches, a prognostic
factor for colorectal cancer. Rączkowski et al39 proposed an active
learning framework to train a CNN for patch classification in
colorectal cancer. The network’s uncertainty, estimated via
Monte-Carlo dropout sampling,40 was used to detect outlier tiles
in the training set and to select them afterward for reconsidera-
tion. Wang et al41 generated spatial tissue maps by classifying
single cells into tumor, stroma, and lymphocytes.

Hierarchical Segmentation. Hierarchical segmentation approaches
mimic the workflow of pathologists by aggregating information
from multiple scales of magnification. Schmitz et al42 created a
family of U-Netebased encoder-decoder architectures that pro-
cess high- and low-resolution image tiles in separate branches,
fusing them with learnable gates from 3 publicly available data
sets with liver, breast, and lymph node tissues. Alternatively,
HookNet43 fused the hidden space of multiple U-Netebased
models that operate on different scales to deal with high-
resolution and contextual information in breast and lung cancers.

Weakly Supervised Methods. Weakly supervisedmethods typically
require slide-level annotations only. One recent approach was
training CNNs directly on the entireWSI of lung cancer sections.44

Subsequently, class activation maps45 highlight relevant
cancerous regions that were also identified by pathologists, which
can be interpreted as a confidencemeasure of the algorithm. Silva-
Rodríguez et al46 trained a feature extraction network on the
entire downsampled WSI to classify global Gleason grades on
prostate cancer. During inference, semantic segmentations are
upscaled from the feature maps and achieve similar performance
as fully supervised approaches while only using the global labels.
Alternatively, the WSI can be split into patches and patch-wise
features for WSI classification.47 Using this approach, attention
scores produce interpretable heatmaps to visualize which regions
contribute to the network’s prediction.

Evaluation of Cell-Level Features
The evaluation of cell-level properties is a standard task in

histopathology. For example, cell density and the abundance of
dividing cells in tumor tissue are critical features for tumor
grading. Here, we focus on 2 of the most widely studied cell-level
tasks: segmentation of nuclei and detection of mitoses.

Nuclei Segmentation. Segmentation challenges have been
introduced to benchmark efforts in this field, such as the
Multi-Organ Nucleus Segmentation Challenge,48 which pro-
vided 30 images and approximately 22,000 nuclear boundary
5

annotations in a public data set. Of the top 6 participants, 3
used U-Netebased semantic segmentation,2 2 used Mask re-
gion (R)-CNNebased instance segmentation,3 and one group
used stacked U-Net and R-CNN models. The 2 dominating al-
gorithms have been further tailored toward nuclear segmen-
tation: Cui et al49 predicted a boundary map additionally to
object segmentations to separate touching nuclei efficiently. Jin
et al50 incorporated a U-Net into a pipeline to detect lymph
node metastasis in patients with breast cancer. Mask R-CNN
has been combined with a deep convolutional Gaussian
mixture color normalization model, which clusters pixels ac-
cording to nucleus morphology.51 Recently, other approaches,
such as GANs, have been proposed, where the network is
trained on unpaired data to map segmentation masks to nuclei
images.52 To ease the annotation process for nuclei segmen-
tation, Qu et al53 provided a DL framework trained on
incomplete annotations, which are much easier to generate.

Mitosis Detection. Identifying cells in the cell cycle’s mitotic pha-
ses is a diagnostically relevant task, for example, for breast cancer
grading and prognosis.54 Several challenges released public data
sets and benchmarked competing approaches for mitosis detec-
tion, for example, ICPR MITOS-2012,55 ICPR MITOS-ATYPIA-
2014,56 or Tumor Proliferation Assessment Challenge (TUPAC)
16.54 Most recently developed mitosis detection methods can be
grouped into classification, segmentation, and detection. Pati
et al57 combined a classification task with metric learning to
reduce the necessary amount of labeled data for more efficient
network training for patch-level classification. Another approach
for mitosis detection is pixel-wise semantic segmentation.
Jim�enez and Racoceanu58 showed that a U-Netebased semantic
segmentation approach led to higher accuracy than that with
previous classification approaches. Lafarge et al59 proposed a
special Euclideanmotion group convolution to achieve translation
and rotation invariance, which was integrated into a U-Net ar-
chitecture and improved the model’s robustness. Many other
recent publications on mitosis detection were based on object
detection,60-63 where only a weak centroid annotation that marks
the center of themitotic figure is required, compared to pixel-wise
annotations for segmentation approaches. An alternative
approach applied a cascade network, combining a first-stage ob-
ject detection to identify mitosis candidates and a second-stage
classification network for refinement.64

Genetic Alteration Prediction
As genetic alterations can carry crucial predictive and prog-

nostic information for cancer diagnosis, they have become
increasingly relevant to the diagnostic workup and the selection
of therapeutic pathways.65 Therefore, patients are profiled for
genetic alterations or other biomarkers that characterize their
disease, for example, colorectal cancer,66 to obtain better-
targeted therapies. However, using molecular assays to deter-
mine the mutational spectrum of malignant cells is expensive
and time-consuming. Furthermore, DNA or RNA extracted from
small samples may not suffice quantitatively for a comprehen-
sive analysis. RNA in older samples may already be degraded and,
hence, not qualified for analysis. Techniques such as whole-
genome sequencing require fresh tissue and are thus not appli-
cable to formalin-fixed paraffin-embedded tissue usually used
for histologic sample preparation. Therefore, algorithm-based
prognostic stratification and mutation prediction from H&E-
stained WSIs offer an attractive, cost- and time-effective, as well
as tissue-sparing addition to existing molecular characterization
methods.
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Image-Based Mutation Prediction. Although some genetic alter-
ations, such as mutations, copy number variations, and trans-
locations, can be relevant for disease characterization, most work
has so far focused on mutation prediction from imaging data.
Coudray et al5 found that 6 commonly mutated genes in lung
adenocarcinoma (STK11, EGFR, FAT1, SETBP1, KRAS, and TP53) can be
predicted from WSI images. Since then, image-based mutation
prediction has been applied to various types of cancers, such as
melanoma,67,68 breast cancer,69-71 lung cancer,72,73 colorectal can-
cer,74-76 bladder cancer,77 and thyroid carcinoma.78 Several recent
studies attempt a pan-cancer approach that predicts genetic alter-
ation across multiple tissue types from WSIs directly.79,80

Modeling Strategies for Mutation Prediction. Most approaches rely
on standardized processing pipelines from preprocessing (Stain
Normalization) and region of interest extraction (Tissue Type
Segmentation) to model training and evaluation. Common CNN
or transformer-based models are used as network architectures for
per-tile prediction, where all tiles from a patient’s WSI inherit the
same label. This label can be both continuous (eg, tumormutational
burden) or categorical (eg, the mutation status of a selected gene or
the microsatellite status).5,79 The final prediction at WSI level is an
aggregation of tile labels using, in the simplest case, majority voting
(for categorical targets) or averaging (for continuous targets).
Alternatively, Cao et al76 employed multiple instance learning to
weight the tile-level prediction by importance, which achieved
better accuracy than standard supervised learning methods. Fu
et al81 classified each tile into different malignant and nonmalig-
nant tissue types in a pan-cancer fashion and, subsequently, pre-
dicted driver gene mutations. Almost all studies mentioned above,
except for Bychkov et al,71 trained their networks on publicly
available data from The Cancer Genome Atlas (TCGA).82

Grading, Staging, and Prognostic Information Extraction
A typical goal of histopathology is to recognize and evaluate

primary lesions, determine their histopathologic subtype and
grade (as defined by respective World Health Organization clas-
sifications for different tumor entities), and derive therapeutically
relevant information from these features. In the context of
computational pathology, this set of tasks can be addressed by
determining features known to possess prognostic or predictive
value. Alternatively, extracting prognostic or predictive informa-
tion directly from imaging data, molecular properties, or clinical
data can be attempted. Both methodologies have recently been
applied across a variety of entities.

Inference of Known Factors and Biomarkers. Computational pa-
thology approaches to extract known markers and scores include
determination of the Gleason score in prostate cancer,83-85

grading of gliomas,86,87 and automated evaluation of mito-
ses88,89 or tumor-infiltrating lymphocytes in breast90 and head
and neck cancer.91 Machine learning methods have also been
applied in disease staging, for example, to assess the degree of
spread to the lymph nodes, either by highlighting areas suspicious
for lymphovascular invasion, as in the case of testicular cancer,92

or by predicting the risk of lymph node metastasis from the pri-
mary lesion, as in the case of bladder cancer.93 Several studies
inferred molecular properties with a prognostic value from H&E,
such as microsatellite instability in gastrointestinal cancer94 or the
molecular subtype of invasive bladder cancer.77

Image-Based Biomarkers. Finally, prognostic factors can be derived
directly from histopathology images38 or in combination with
other clinical or molecular data, for example, from the genome or
6

transcriptome.38,95,96 This route can be followed without referring
to previously known prognostic factors. Hence, although these
approaches may first rely on computational predictions alone,
they may also lead to identifying novel prognostic or predictive
factors that lend themselves to direct human evaluation, which
can be identified through explainability methods.97 Examples of
this approach include automated quantification of intratumoral
stroma in rectal cancer,98 evaluation of nuclear morphology for
survival prediction in lung cancer,99 DL-based prognosis in naso-
pharyngeal cancer,98,100 and survival prediction in colorectal
cancer.101,102
Materials and Methods

To assess reproducibility and reusability in computational pa-
thology, we scanned whether and how code was publicly avail-
able, evaluated criteria for data access, and checked if the
statistical variance of the reported findings was provided. In
Supplementary Table S2, we list all 41 publications (out of 160)
together with the following evaluation criteria that we used for
code, data, and statistical variance. (1) Inspired by the FAIR prin-
ciples demanding that data should be Findable, Accessible, Inter-
operable, and Reusable,103 we surveyed whether the code was
made publicly available. Additionally, we noted the platform used
for sharing and the programming language and machine learning
frameworks employed. Furthermore, we checked for instructions
for running the code, whether the code was minimally docu-
mented, and if a pretrained model was available for direct appli-
cation. (2) We evaluated data access for the 41 publications with
available code and checked whether the data set and required
annotations were publicly available. Additionally, we recorded
what kind of data had been used (eg, tiled WSIs vs entire WSIs).
We also reported whether the appropriate preprocessing steps
were provided and the training-validation-test split used for
model development and evaluation. In terms of replicability, we
specified what kind of test set had been used, whether it was
similar to the training set or covered an independent cohort. (3)
Finally, we checked if any measure of statistical variance of the
reported findings was provided. This is one way to tackle the
difficulties concerned with reproducing the results, which can be
introduced on multiple levels: computer-level inaccuracies, such
as floating-point numbers that can be rounded differently on
different machines, architectures, or execution environments,104

or algorithm-level stochasticity due to the stochastic behavior of
optimization techniques. One way of dealing with this is to sta-
tistically analyze the experimental results (eg, by determining the
SD of the results) and perform a sufficient exploration of hyper-
parameters.9 A straightforward evaluation approach is to repeat
an experiment multiple times or over several folds of cross-
validation and report mean and SD across experiments.
Results

Code Availability

In our study, 41 of the 160 publications (26%) made their code
publicly available (Fig. 4A). Interestingly, the ratio of publications
with code differs across the 5 use cases (Fig. 4B). For stain
normalization, we retrieved 29 research articles, where only 7
(24%) of them provided code with their method. In the field of
tissue type segmentation and localization, only 12 of the total 51
investigated articles (24%) had their code publicly available, and



Figure 4.
Analysis of our systematic literature search of computational pathology articles. (A) A quarter of the methods are published with code (26%). (B) The ratio differs across the use
cases. (C) Most works (74%) used PyTorch or TensorFlow as machine learning (ML) frameworks. (D) Half of the publications with code release their final model weights. (E) Half of
the code is published under a license. (F) More than half of the code includes instructions on how to run the code. (G) The computational requirements are mentioned in half of
the repositories. (H) Almost three-quarters documented their code inline. (I) Large public data sets are mainly used and sometimes complemented by private cohorts. (J) Almost
half of the publications used an independent cohort for evaluation. (K) The majority analyzes their results statistically.
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only 3 publications provided the pretrained model weights.
Among the 28 research articles that we screened for the evalua-
tion of cell-level features, 10 articles (39%) provided code with the
publications. The code of 5 of these 10 could be run in Google
Colab and thus was directly applicable. For genetic alteration
prediction, 8 of the 13 articles (61%) have provided their code
along with their method. In survival analysis, only 4 of the 38
studies (11%) published their code. Interestingly, genetic alteration
prediction has the highest ratio of published code. One reason
could be that a key publication included a well-documented
codebase5; most subsequent publications were aware of this
work and, therefore, matched this standard by publishing their
code, including documentations. Hence, the level of reusability in
one field may depend on the preceding publications. This also
strengthens the role of the publisher in the context of reproduc-
ibility and reusability in computational pathology. For the 41 ar-
ticles that published their code, we checked the evaluation criteria
for code, data, and statistical variance detailed in Materials and
Methods and detailed them in Supplementary Table S2.
Machine Learning Frameworks, Model Weights, and License

Almost 75% of the methods were implemented in Python using
the open and publicly available machine learning frameworks
TensorFlow (https://www.tensorflow.org/) (38%) and PyTorch
(https://pytorch.org/) (36%; Fig. 4C). Pretrained model weights
were only available for half of the publications that also provided
7

code (Fig. 4D); this makes reproducing experimental results
difficult, particularly because the preprocessing steps are rarely
available. Also, without model weights, a direct application
without retraining the model is not possible, hampering its use by
pathologists not specialized in DL. Less than half of the re-
positories were published under a license (46%), which is the legal
requirement for reusing code since code without any license falls
under the default copyright laws. This shows that the importance
of licensing is not yet widely recognized in the research field
representing a hurdle toward clinical implementation.
Documentation

Detailed documentation is an essential prerequisite for any
step toward reproducing or reusing a published codebase. In the
repositories analyzed in our study, 27 repositories (66%) contained
instructions on how to run the code or train the DL model.
However, only 21 repositories (51%) defined the computational
requirements or provided a computational environment for
running the code (Fig. 4G). Examining the main code files, 29
codebases (71%) provided at least a minimal level of documenta-
tion in the form of inline comments (Fig. 4H).
Data Sets

More than half of all methods (57%) were evaluated on publicly
available data sets (Fig. 4I). Most studies (eg, all 13 studies

https://www.tensorflow.org/
https://pytorch.org/
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reviewed for genetic alteration prediction) developed their
methods based on TCGA82; it contains data from multiple in-
stitutions; thus, it can be split into training and test sets by cohort
level. Complementing TCGA with external, mostly private, data as
an independent evaluation cohort was also a common practice
(Fig. 4J). Nevertheless, TCGA, with a few hundred slides for each
cancer type, is insufficient to represent all cancer heterogeneities.
The reliance of computational pathology on relatively few publicly
available data sets renders their selection strategy and processing
critical. Batch effects can be detected by DL models and lead to
overestimation of the model’s performance.105 Therefore, we
strongly encourage the development of more publicly available
multi-institutional data sets.
Statistical Variance

We believe that a thorough evaluation of sources and magni-
tude of variability, both on an algorithmic and a data level, is
essential to making modern computational pathology algorithms
more reusable and generalizable. Almost three-quarters (73%) of
the methods analyzed their results statistically, in which we
considered all kinds of statistical notions to be statistical analysis
(Fig. 4K). Many different sources of variability can be relevant to
the performance of computational pathology algorithms. It is,
therefore, difficult to devise a single strategy for quantifying all
sources.
Discussion

It has been increasingly recognized that computational
reproducibility and reusability are an essential part of good sci-
entific practice for DL applications.106-109 Especially for the inter-
disciplinary field of computational pathology, both are critical
requirements for enabling wider use of algorithms and the
translation to clinical application.

In our survey of recently published computational pathology
DL approaches, however, we found that there is still a long way to
go. For stain color normalization, for example, techniques to
reduce the color and intensity variations in histologic images from
different laboratories can render a downstream task algorithm
more generalizable. Although neural networkebased stain
normalization techniques have evolved considerably in recent
years (Stain Normalization), their use in downstream applications
is still limited, probably because pretrained stain normalization
models are rarely available and, in most cases, code is not shared.
Instead, we observe that easy-to-use algorithms not based on DL
are typically applied. The lack of reusability hinders the practical
application of innovative network-based methods.

Even if the code is shared, supporting documentation is
necessary to reuse the code but is often missing. Especially for
researchers without a computational background, even a well-
documented codebase might not lower the hurdle sufficiently to
adopt existing DL algorithms. Build-in plugins or models inte-
grated into commonly used data handling tools are desirable from
a clinical perspective.

Furthermore, convincing experiments on external cohorts are
often missing, lowering the chances of successful reuse and
translation. Most state-of-the-art methods in computational pa-
thology are based on DL algorithms and typically require large
amounts of labeled training data. Making these data available is as
crucial as providing a well-documented code. We acknowledge
that data and appropriate annotations cannot be publicly shared
8

in some cases, for example, due to legal or ethical constraints.
Here, reasonable compromises, such as partial data sharing or
evaluation using public data sets,108 should be considered.

Finally, reusable code is likely to have an impact on the
adoption of computational methods not only in a research
context but also in the diagnostic routine. Although the full
translation of research algorithms to a diagnostic setting is a
complex process beyond the scope of the present discussion,
shared and well-documented code can be of key importance for
generating initial results on routine data. These could serve as an
initial test for users from the diagnostic routine to evaluate
whether a given algorithm might be usable and helpful in their
specific setting, hence providing motivation for users to initiate
the path toward integration of algorithms into their diagnostic
routine. An increase of reusable and reproducible algorithms in a
research context is likely to foster the adoption of DL algorithms
in a routine setting.

Despite the lack of reproducibility and reusability in many
computational pathology approaches, we hope the field will profit
from the surging discussions, for example, in computer vision.9 As
a step in this direction, large conferences, such as Medical Image
Computing and Computer-Assisted Intervention since 2021, star-
ted to employ reproducibility checklists for authors in their sub-
mission form that will be publicly available upon acceptance of
the article. We encourage the scientific community to recognize
the long-termvalue of reproducibility and reusability and to foster
their realization in computational pathology.
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