
R E S E A R CH A R T I C L E

Scaffold Matcher: A CMA-ES based algorithm for identifying
hotspot aligned peptidomimetic scaffolds

Erin R. Claussen1 | P. Douglas Renfrew2 | Christian L. Müller3,4,5 | Kevin Drew1

1Department of Biological Sciences, University

of Illinois at Chicago, Chicago, Illinois, USA

2Center for Computational Biology, Flatiron

Institute, New York, New York, USA

3Department of Statistics, Ludwig-

Maximilians-Universität München, Munich,

Germany

4Institute of Computational Biology, Helmholtz

Zentrum München, Munich, Germany

5Center for Computational Mathematics,

Flatiron Institute, New York, New York, USA

Correspondence

Kevin Drew, Department of Biological

Sciences, University of Illinois at Chicago,

Chicago, IL 60607, USA.

Email: ksdrew@uic.edu

Funding information

National Institutes of Health, Grant/Award

Numbers: L40 HD096554, R00 HD092613;

RosettaCommons, Grant/Award Number:

RC22024

Abstract

The design of protein interaction inhibitors is a promising approach to address aber-

rant protein interactions that cause disease. One strategy in designing inhibitors is to

use peptidomimetic scaffolds that mimic the natural interaction interface. A central

challenge in using peptidomimetics as protein interaction inhibitors, however, is

determining how best the molecular scaffold aligns to the residues of the interface it

is attempting to mimic. Here we present the Scaffold Matcher algorithm that aligns a

given molecular scaffold onto hotspot residues from a protein interaction interface.

To optimize the degrees of freedom of the molecular scaffold we implement the

covariance matrix adaptation evolution strategy (CMA-ES), a state-of-the-art

derivative-free optimization algorithm in Rosetta. To evaluate the performance of the

CMA-ES, we used 26 peptides from the FlexPepDock Benchmark and compared with

three other algorithms in Rosetta, specifically, Rosetta's default minimizer, a Monte

Carlo protocol of small backbone perturbations, and a Genetic algorithm. We test the

algorithms' performance on their ability to align a molecular scaffold to a series of

hotspot residues (i.e., constraints) along native peptides. Of the 4 methods, CMA-ES

was able to find the lowest energy conformation for all 26 benchmark peptides. Addi-

tionally, as a proof of concept, we apply the Scaffold Match algorithm with CMA-ES

to align a peptidomimetic oligooxopiperazine scaffold to the hotspot residues of the

substrate of the main protease of severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2). Our implementation of CMA-ES into Rosetta allows for an alterna-

tive optimization method to be used on macromolecular modeling problems with

rough energy landscapes. Finally, our Scaffold Matcher algorithm allows for the iden-

tification of initial conformations of interaction inhibitors that can be further

designed and optimized as high-affinity reagents.
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1 | INTRODUCTION

Protein interactions govern a wide range of biological functions. Aber-

rant protein interactions disrupt cellular function and often lead to

human disease.1 The design of protein interaction inhibitors is one

strategy to correct aberrant protein interactions.2 A promising

approach to designing protein interaction inhibitors is to mimic the

residues at the interface of one binding partner using a stable and syn-

thetically tractable molecular scaffold known as a peptidomimetic.3

Residues at the interface of a protein interaction that contribute most

to the binding affinity are designated hotspot residues4 and are ideal

residues to mimic when designing inhibitors. A central challenge in

designing peptidomimetic inhibitors is the identification of a peptido-

mimetic molecular scaffold that aligns with the hotspot residues at

the interface of the interaction. Unfortunately, there are limited tools

available in which to achieve this goal. However, recent advances in

molecular modeling allow for this challenge to be addressed

computationally.5–7

The Rosetta macromolecular modeling toolkit is a computational

package that offers users and developers state-of-the-art methods for

important applications such as structure prediction, protein docking,

loop modeling, protein design, antibody modeling, and many others.5,8

Noncanonical backbones (i.e., peptidomimetics) have been incorpo-

rated into Rosetta to allow for the modeling and design of scaffolds

such as oligooxopiperazines, peptoids, stapled helices, among

others.6,9 We have previously used Rosetta to design oligooxopipera-

zines inhibitors of MDM2 mimicking P53 hotspot residues as well as

inhibitors of P300 mimicking HIF1alpha hotspot residues.7 However,

in these cases, the starting placement of the oligooxopiperazine scaf-

fold was aligned manually to the Cß atoms of the hotspot residues

without considering the scaffold internal degrees of freedom or evalu-

ating the energy of the molecule until later downstream analysis. This

leaves open the question of whether there are more optimal confor-

mations of the scaffold aligned with the hotspots.

We therefore introduce the Scaffold Matcher algorithm in

Rosetta. The Scaffold Matcher algorithm aligns a given molecular scaf-

fold (e.g., peptidomimetic) onto hotspot residues from a protein bind-

ing interface and scores the alignment given Rosetta's energy

function. To efficiently traverse the Rosetta's energy function, we

implemented the covariance matrix adaptation evolution strategy

(CMA-ES) algorithm. CMA-ES is a stochastic gradient-free method for

optimizing nonconvex functions.10 CMA-ES starts by taking many

samples from an isotropic multivariate normal distribution that are dis-

tributed broadly across the energy landscape rather than centered in

one local energy minimum. The algorithm also takes advantage of

updating the covariance matrix which increases the probability

of optimal search directions. Originally proposed as an alternative to

conjugate gradient methods,11 CMA-ES has been shown to outper-

form many other optimization algorithms on standard benchmarks12

and has recently been applied to structural modeling problems with

promising results.13–19

While the ultimate purpose of the Scaffold Matcher algorithm is

to align peptidomimetic scaffolds to hotspot residues, there are no

curated benchmarks of peptidomimetics bound to their protein part-

ners. To evaluate our algorithm's performance on a gold standard test

set, we therefore use the FlexPepDock benchmark of 26 peptides,

and compare CMA-ES's results to three other algorithms, a Genetic

algorithm, Rosetta's gradient descent minimizer, and a Monte Carlo

protocol of small backbone perturbations. We show CMA-ES's perfor-

mance is superior using multiple metrics of structural comparison and

show a time analysis demonstrating CMA-ES is competitive or even

superior with other algorithms. Finally, we show a proof of principle

demonstration of the Scaffold Matcher algorithm's use on matching

hotspot residues of the SARS-CoV-2 main protease (mPro) substrate

peptide using an oligooxopiperazine peptidomimetic scaffold.

2 | RESULTS

Figure 1 shows a general scheme for alignment of a scaffold onto hot-

spot residues. First, a protein complex is identified (Figure 1A), and

one subunit of the complex is selected to be the target while the

other is selected to be mimicked. Hotspot residues are determined

from the mimicked subunit and are isolated in space by removing the

backbone atoms (Figure 1B). A peptidomimetic scaffold is then aligned

onto the hotspot residue positions therefore mimicking their role at

the protein interaction interface (Figure 1C). Many peptidomimetic

scaffolds are similar to peptides and therefore have similar degrees of

freedom allowing flexibility in their structure (Figure 1D). To address

the challenge of matching a molecular scaffold to a set of hotspot resi-

dues, we first require an optimization algorithm that will efficiently

sample these degrees of freedom of the molecular scaffold. We there-

fore implemented CMA-ES, an evolutionary optimization algorithm,

into the Rosetta framework.

2.1 | CMA-ES algorithm

CMA-ES generates samples from a multivariate normal distribution

where the samples are then ranked using the objective function to be

minimized. Based on this ranking, a subset of the samples is then

selected and used to update the mean and covariance matrix of the

multivariate normal distribution for the next iteration. The process is

repeated until convergence. In principle, CMA-ES can be regarded as

an iterative (biased) principal component analysis on previously

selected samples to adapt future sampling directions. We fully detail

the mathematical description of the algorithm in Supplementary

Methods (File S1) and include a graphical representation of the algo-

rithm's procedure in Figure S1.

2.2 | CMA-ES algorithm evaluation on model tri-
peptide

The CMA-ES algorithm is a general purpose optimization algorithm,

which can be utilized independently of matching molecular scaffolds

344 CLAUSSEN ET AL.

 10970134, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26619 by H

elm
holtz Z

entrum
 M

uenchen D
eutsches Forschungszentrum

, W
iley O

nline L
ibrary on [07/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



to hotspot residues. We therefore first demonstrate our implementa-

tion of the CMA-ES algorithm in Rosetta by minimizing a model tri-

peptide (i.e., Ala His Ala) from a high energy state to a lower energy

state. The CMA-ES algorithm generates samples from a multivariate

normal distribution. In the case of peptide minimization, the algorithm

samples dihedral angles of the peptide backbone and side chains to

generate a new conformation (i.e., pose). Once new conformations

are generated, each resulting pose is scored using the Rosetta energy

function. The poses are ranked according to their score. Top scoring

conformations are used to adapt the sampling distribution for the gen-

eration of new poses. Figure S2A shows conformations from selected

iterations throughout the algorithm's procedure when applied to the

tri-peptide. We observe a substantial amount of conformational sam-

pling by iteration 30 allowing the algorithm to explore a rough energy

landscape and escape local energy minima. By iterations 60 and

90 sampling focuses on exploring a more local area of the conforma-

tional space. And finally, by iteration 120 the algorithm converges

toward sampling around the (potentially) global minimum

conformation.

We can also observe how individual dihedral angles are being

sampled throughout the optimization process. Unlike a Monte Carlo

simulation, for example, which is sampling from an a priori fixed distri-

bution, the CMA-ES algorithm is updating the multivariate distribution

every iteration. Therefore, individual dihedral angles may be sampled

variably during optimization and in a correlated manner. We can

observe this behavior in Figure S2B. We see dihedral angles along the

backbone and Histidine side chain of the tri-peptide dynamically

change their values as a function of CMA-ES iteration. In particular,

we see the first Alanine residue's Psi angle being sampled continu-

ously through iteration 90, whereas the Chi angles of the Histidine

side chain are relatively constant throughout optimization. This shows

that the CMA-ES algorithm efficiently samples only the degrees of

freedom necessary to find a low energy conformation.

A major feature of the CMA-ES algorithm is its ability to navigate

rough energy landscapes. Consistent with our observations above

where we see a large amount of conformational sampling (Figure S2A)

we also see increases in Rosetta energy at various iterations along the

optimization procedure (Figure S2C). This increase in conformational

sampling and energy allows for the escape out of local energy minima.

In particular, we observe a spike in Rosetta energy at iteration

30 where the largest amount of conformational sampling is seen.

Rosetta energy is further seen to decrease with less variance until

convergence.

2.3 | Scaffold Matcher algorithm

We next introduce the Scaffold Matcher algorithm, designed to iden-

tify a low-energy conformation of a given molecular scaffold aligned

to a set of hotspot residues. The algorithm can accommodate a range

of molecular scaffolds including oligooxopiperazines and peptides as

shown in Figure 1D. Figure 2 shows the overall workflow of the Scaf-

fold Matcher algorithm. As shown in Figure 2A, the first step of the

workflow begins with a target peptide bound to a protein. The pep-

tide is extracted from the target keeping the peptide's conformation

fixed (Figure 2B). Next, backbone atoms of the peptide are removed

from the pose, leaving only the sidechain atoms (i.e., Disembodied

Sidechains, Figure 2C). We then select one sidechain residue to be

the primary hotspot and all other side-chain residues as ancillary hot-

spots. The primary hotspot is often selected based on the value from

a ΔΔG calculation or some other prior information suggesting the res-

idue is important for binding.

The protocol next puts energy constraints between the atoms of

the disembodied side-chain residues and the corresponding residues

on the input molecular scaffold. Constraints are used as described in

Fleishman et al.20 and are mathematically described in the

(B) Hotspots at Interface (C) Match Scaffold(A) Peptide in Complex

PeptidomimeticPeptide

(D) Degrees of Freedom

F IGURE 1 Identification of hotspot mimetic scaffolds for interaction inhibitors. (A) Peptide to be mimicked is identified in complex with
partner protein. (B) Hotspot residues at the interface are identified and sidechain coordinates recorded. (C) Identify alternative molecular
scaffolds (i.e., peptidomimetics) that mimic the placement of the hotspot residues. (D) Primary degrees of freedom for peptides and
oligooxopiperazines used during optimization procedure to fit scaffold to hotspot residues. Omega torsion angles and ring constrained phi/psi
torsion angles not labeled for clarity.
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Supplementary Methods (File S1). Each constraint is calculated as a

measure of the overlap between the Cβs, the Cα-Cβ vectors, and the

C N vectors of the disembodied residue and the idealized scaffold

residue (Figure 2D). The constraint is added to the Rosetta energy

function and if fully satisfied will result in a minimum �3 Rosetta

Energy Units (REU) per residue. The molecular scaffold is then posi-

tioned to align position i on the scaffold to the primary hotspot resi-

due. The remaining task is to identify phi and psi angle values that

align the backbone to the disembodied residues and satisfy the energy

constraints. To accomplish this, we utilize our implementation of the

CMA-ES optimization algorithm in the Rosetta framework described

above. Once a low-energy conformation is identified for this given

alignment, a new alignment is created between the scaffold's position

i + 1 and the primary hotspot residue. See Section 3 and Supplemen-

tary Methods (File S1) for full description of the Scaffold Matcher

algorithm.

2.4 | Comparison of algorithms on individual
examples

Due to the limited number of examples of peptidomimetics bound to

target proteins, we chose to evaluate the Scaffold Matcher algorithm

using peptides as a molecular scaffold. We applied the Scaffold Matcher

to a set of 26 peptides in complex with proteins from the FlexPepDock

benchmark.21 For this analysis, all residues on the peptides were consid-

ered hotspots and the primary hotspot was chosen arbitrarily. Further,

the peptide molecular scaffold was constructed of the same length and

secondary structure of the target peptide with idealized phi/psi angles.

Figure 3 highlights individual examples of peptides. In addition to using

the CMA-ES optimization algorithm, we also benchmarked Rosetta's

default gradient-based minimizer, a Genetic algorithm, and a Monte

Carlo algorithm (see Section 3). To compare the four algorithms' perfor-

mance, we calculated RMSD to the native structurally determined

(C) Disembodied Sidechains

(B) Target Peptide

(E) Dock and CMA-ES Optimize

Iteration 0

Primary Hotspot

Ancillary Hotspots

Molecular Scaffold / Peptidomimetic

(A) Target Peptide in Complex

(D) Setup Constraints

Distance

Dot Product

(F) Update Scaffold 
Alignment to

Hotspot

F IGURE 2 Scaffold Matcher algorithm overview. The figure displays a general overview of the Scaffold Matcher workflow which begins with
a peptide (sticks) docked into a protein (surface blue-gray) (A). The target peptide is first isolated from the protein (B). Next, backbone atoms are
removed from hotspot residues of the target peptide leaving only side chain atoms called disembodied side chains (C). One side chain is selected
as the primary hotspot and all others are labeled as ancillary hotspots. Next, constraints are added between residues on an idealized molecular
scaffold (e.g., peptidomimetic) and the hotspot residues (D). The molecular scaffold is then aligned onto the primary hotspot and phi and psi
angles are optimized to match the idealized scaffold residue positions with the ancillary hotspots minimizing the constraints (E). The optimization
is done using the covariance matrix adaptation evolution strategy (CMA-ES) optimization protocol where CMA-ES samples each degree of
freedom updating the mean and standard deviation of the multivariate normal distribution every iteration. The process is iterated for new
alignments of the molecular scaffold and the primary hotspot residue (F).
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Matched Hotspot Residues = 4

Matched Hotspot Residues = 4

Matched Hotspot Residues = 6

1N
V

R
1T

7R
2B

1Z
Rosetta Energy vs RMSD Scatterplot

Algorithm Pose 
Comparison CMA-ES pose vs Native

CMA-ES Monte Carlo
Min Native

CMA-ES

Native Primary Hotspot

Matched Hotspot Residue

(A) (B)

(C)

(D) (E)

(F)

(G) (H)

(I)

GeneticCMA-ES Min Genetic

Matched Hotspot Residues = 4

Matched Hotspot Residues = 4

Matched Hotspot Residues = 6

(A) (B)

(C)

D) (E)

(F)

G) (H)

(I)

Monte Carlo

F IGURE 3 Legend on next page.
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peptide in addition to calculating the Rosetta energy score for the low-

est energy pose of each individual trajectory and plotted a Rosetta

Energy versus RMSD scatterplot. We observe from the example in

PDBID 1NVR in Figure 3A that CMA-ES (blue triangle) outperforms

Minimizer (green circle), Monte Carlo (orange square), and Genetic (pink

x) sampling algorithms, having lower Rosetta energy. CMA-ES also pro-

duced a pose with lower RMSD to native compared with Monte Carlo

and Minimizer. When we specifically compare to the Minimizer algo-

rithm, the top CMA-ES model outperforms the Minimizer model by >10

Rosetta Energy Units (REU) and >0.3 RMSD. We next inspect the three-

dimensional coordinates of the poses to the native and observe good

alignment of the top CMA-ES pose with the native peptide (Figure 3B).

Further, in Figure 3C, we see four out of the five hotspot residue con-

straints are matched with the CMA-ES algorithm. In comparison, only

three hotspot residue constraints are matched with Genetic, two are

matched with Monte Carlo, and one (the primary hotspot) is matched

using the Minimizer (see Table S1).

Similar to 1NVR, we see CMA-ES outperform the Minimizer and

Monte Carlo algorithms on other examples as well. In Figure 3D,G

CMA-ES shows superior performance versus the other algorithms,

improving on both energy (REU) and RMSD for peptides in PDBs

1T7R and 2B1Z respectively. When we inspect the poses overlaid

with the native peptides (Figure 3E,H), we see a substantial improve-

ment in terms of RMSD. The CMA-ES poses (blue) match very well to

the native (gray) while the Minimizer (green) and Monte Carlo (orange)

produce poses that deviate from the native. We also identify four

matched hotspot residues by CMA-ES for 1T7R and six matched hot-

spot residues by CMA-ES for 2B1Z (Figure 3F,I). This is better than

the Minimizer and Monte Carlo algorithms which had at most three

matched hotspot residues but often lower (see Table S1). Additional

benchmark examples can be found in Figure S3 which shows CMA-ES

improved performance over the other algorithms.

2.5 | Global comparison of algorithms

Now that we have shown individual examples of CMA-ES outper-

forming other optimization algorithms, we evaluate each algorithm's

models on all 26 peptides in the benchmark for a global comparison.

Figure 4A shows a bar graph of the number of benchmark instances

where each algorithm matched more hotspot residues than the other

algorithms. In this winner-take-all analysis, CMA-ES matched more

hotspot residues than the other algorithms for 11 benchmark

instances while the Genetic algorithm and Monte Carlo produced

the top model for only two and one benchmark instances, respec-

tively. Minimizer did not match the most hotspot residues for any

benchmark instance. Alternatively, we evaluate the difference in the

number of matched hotspot residues between all four algorithms.

This analysis provides a quantitative look at not just which algorithm

had the top scoring model but by how much. In Figure S4A,C, we

observe many benchmark instances where the CMA-ES algorithm

matched +1, +2, +3, and +4 hotspot residues relative to the Monte

Carlo and Genetic algorithms while there were no instances where

the Monte Carlo or Genetic algorithm matched greater than +1

compared with CMA-ES. Similar behavior can be observed in

Figure S4B, where many instances of CMA-ES match > +2 com-

pared with the Minimizer algorithm while no instances were

observed where the Minimizer matched more than +2 in comparison

to CMA-ES. We also compare the other algorithms (Figure S4D–F)

and observe the Monte Carlo and Genetic algorithms perform better

than Minimizer. The Monte Carlo and Genetic algorithms are compa-

rable in number of matched hotspots.

In addition to matching hotspot residues, we also evaluate each

algorithms' performance in regards to total Rosetta energy. Figure 4B

shows the CMA-ES models scored lower energies for all benchmark

instances. Figure S4G–I shows the difference in Rosetta energy

between models produced by CMA-ES and other algorithms. The

mean difference between Rosetta energies of CMA-ES and Monte

Carlo algorithms is �4.9 REU but as Figure S4G shows, for some

benchmark instances, the CMA-ES models scored substantially lower

in energy compared with Monte Carlo models (�10 REU). When we

compare CMA-ES to the Minimizer algorithm, we see a more pro-

nounced effect (Figure S4H) with CMA-ES models having substan-

tially lower Rosetta energies including a mean difference in Rosetta

energies of �15.4. There was also a substantial mean energy differ-

ence between CMA-ES and Genetic of �10.5.

The primary objective of the scaffold matching algorithm is to align

a scaffold to hotspot residues. The scaffold is often a peptidomimetic

F IGURE 3 Highlighted examples show covariance matrix adaptation evolution strategy (CMA-ES) outperforms alternative algorithms.
Benchmark examples where CMA-ES outperforms Monte Carlo Gradient-based Minimizer (Min), and Genetic algorithms. Row 1: 5-mer peptide
from PDB 1NVR. (A) RMSD versus Rosetta Energy scatter plot shows top CMA-ES poses (blue triangles) have lower energy than poses generated
with Monte Carlo (orange squares), Minimization (green circle), or Genetic algorithm (pink x) (B) Alignment of lowest energy pose backbones
CMA-ES (blue), Monte Carlo (orange), Minimization (green), and Genetic (pink) aligned to native (gray). (C) Alignment of CMA-ES pose to native
backbone shows four satisfied hotspot constraints (yellow). Primary hotspot is highlighted in red. Row 2: 10-mer peptide from PDB 1T7R. Same

colors as row 1. (D) RMSD versus Rosetta Energy scatter plot shows CMA-ES poses have lower energy and lower RMSD than Monte Carlo,
Minimization, and Genetic algorithm. (E) Lowest energy CMA-ES pose aligns very well to native compared with other lowest energy alternative
algorithm poses. (F) CMA-ES pose aligned to native satisfies 4 hotspot constraints. Row 3: 9-mer peptide from PDB 2B1Z. Same colors as row
1. (G) RMSD versus Rosetta Energy scatter plot shows nearly all CMA-ES poses have lower energy and lower RMSD than Monte Carlo,
Minimization, and Genetic algorithm. (H) Lowest energy CMA-ES pose aligns well with native backbone compared with other lowest energy
alternative algorithm poses. (I) CMA-ES pose aligned to native satisfies six hotspot constraints. *Poses with a Rosetta energy score >50 are not
shown on scatter plots, number of data points not shown is indicated on plot.
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which does not have a native pose to compare to. Additionally, to evalu-

ate an optimization algorithm such as CMA-ES, the goal is to find the

lowest energy conformation given the provided energy function irre-

spective of the native conformation. As shown above for individual

examples, RMSD to the native; however, still serves as a valuable sec-

ondary metric to evaluate when available. Here, we evaluate the CMA-

ES algorithm in terms of the lowest energy pose's root mean square

deviation (RMSD) to the native peptide. Overall, when evaluating RMSD

to the native, we did not identify an algorithm that outperformed all

others in all cases (Figure S4M–R). We do note however that the Monte

Carlo algorithm shows a slightly better performance than CMA-ES

(Figure S4M). One outlier in this distribution is the benchmark instance

1SSH. CMA-ES lowest energy pose has an RMSD to the native peptide

of �15.9 Å while Monte Carlo has an RMSD of �7.4 Å for a difference

of �8.5 Å. When visually inspecting the 3D structure of the pose in

comparison to native for these two final poses (Figure S3, 1SSH), we

can see that CMA-ES has sampled much more broadly than Monte

Carlo. Interestingly, the total Rosetta energy for the CMA-ES pose is

lower than the Monte Carlo pose (�10.7 vs. �17.6 REU) and addition-

ally the CMA-ES matches more hotspot residues than the Monte Carlo

(2 vs. 1). This example shows CMA-ES can find low-energy conforma-

tions far from the native that satisfy multiple hotspot residues.

A direct comparison of CMA-ES with the Minimizer algorithm;

however, shows a slight majority of CMA-ES models are more similar

to the native peptide (Figure S4N). CMA-ES also outperformed the

Genetic algorithm, again with a slight majority of models more similar

to the native conformation (Figure S4O).

Using these standard performance metrics, we see CMA-ES is a

robust optimization algorithm. We see that it outcompetes the stan-

dard default Rosetta Minimizer, a customized Monte Carlo algorithm,

and the Genetic algorithm using Rosetta energy score as an evaluation

metric. It also outcompetes the Minimizer and the Genetic algorithm

in terms of RMSD to the native peptide. Finally, CMA-ES matches far

more hotspot residues than any of the other algorithms.

2.6 | Comparison of CMA-ES sigma values

Apart from the coordinates of the scaffold's initial conformation, the

CMA-ES algorithm requires a sigma value which is the initial standard

deviation for the multivariate normal distribution. Although the algo-

rithm automatically updates the sigma value for each degree of free-

dom after every iteration to find an optimal value, we wanted to

evaluate the performance of CMA-ES for different values of sigma.

We therefore ran the test workflow using sigma values of 0.3, 10, 25,

and 60. We identified the sigma value of 25 generated poses with

lower total Rosetta energy in 20 benchmark instances when com-

pared with sigma value of 0.3 and 10, and lower total Rosetta energy

in 17 benchmark instances when compared with sigma value of

60 (Table S1).

As one increases the sigma value, the algorithm samples more

widely. A noteworthy example of this is the benchmark instance

PDBID 1RXZ. In Figure S3 1RXZ, we observe that CMA-ES samples

conformational space that is inaccessible to the Monte Carlo, Mini-

mizer, and Genetic algorithms. In Figure S5, we show the low-energy

poses from CMA-ES runs with increasing sigma values for 1RXZ. We

can see the CMA-ES algorithm first conservatively sampling close to

the initial structure with sigma values of 0.3 and 10. When a sigma

value of 25 is used we see considerably more sampling with portions

of the pose mimicking the native peptide structure. We see in

Table S1, the CMA-ES run with sigma values of 0.3 and 10 matched

only a single hotspot residue. When the sigma value was increased to

25, CMA-ES was able to identify a conformation that matched 3 hot-

spot residues suggesting the increased sampling allowed access into

conformational space in alternative energy minima.

Further, we observe results run with sigma value of 60 increase

conformational sampling, yet results are variable. In particular, the

final poses from sigma = 60 runs match hotspots missed by runs with

lower values of sigma but also miss hotspots matched by other runs

as well. For example, CMA-ES with sigma = 60 produced a low-

energy pose with 5 matched hotspots for PDB 1ER8, where in com-

parison no other algorithm or CMA-ES sigma value matched more

than 1 hotspot (the primary hotspot). However, for PDB 2P54

CMA-ES sigma 60 produced a low-energy pose with only 1 matched

hotspot, but CMA-ES at the other sigma values matched 7 hotspots.

Looking again at PDB 1RXZ (Figure S5), the low-energy pose gener-

ated by sigma = 60 produced a conformation that was substantially

variable from the initial input pose but did not match any hotspots.
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F IGURE 4 Global benchmark analysis showing covariance matrix
adaptation evolution strategy (CMA-ES) performance. The bar plot
shows the number of benchmark instances where CMA-ES (blue),
Monte Carlo (orange), Minimizer (green), or Genetic (pink) algorithms
produced the top performing model. (A) Evaluation of top performing
models based on the number of matched hotspot residues. CMA-ES
matched more hotspot residues than the other algorithms for
11 benchmark instances while Genetic and Monte Carlo produced the
top model for only 2 and 1 benchmark instances, respectively.
(B) Evaluation of top performing models based on Rosetta energy.
CMA-ES models scored lower energies for all 26 Benchmark
instances.
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We decided a sigma value of 25 was optimal for our purposes, as it

produced poses with more matched hotspots and lower energy values

on average.

2.7 | Time comparison of algorithms

With most optimization algorithms, there is a tradeoff between speed

and sampling. We next evaluate the algorithms in terms of their run

time to evaluate their efficiency to better understand this tradeoff. As

can be seen in Figure 5, the Rosetta Minimizer has the fastest runtime

with a median runtime of 15 s among all benchmark instances. The

CMA-ES and Genetic algorithms have comparable median runtimes of

57 and 42 s while the Monte Carlo algorithm has an order of magni-

tude longer median time of 695 s. We therefore conclude based on

the time analysis that the CMA-ES algorithm efficiently samples the

energy landscape and effectively identifies low-energy conformations

appropriately balancing the speed/sampling tradeoff.

2.8 | Matching of peptidomimetic scaffold to
SARS-CoV-2 mPro substrate residues

Now that we have established CMA-ES as an efficient algorithm to

match scaffolds on to hotspot residues, we next demonstrate the ability

of the full Scaffold Matcher algorithm in conjunction with CMA-ES to

match peptidomimetic scaffolds onto the substrate residues of the

SARS-CoV-2 mPro. The SARS-CoV-2 mPro is a 3C-like protease, which

process nonstructural proteins that function as the replication and tran-

scriptional machinery during the viral life cycle.22 MPro is therefore a

primary target for antiviral drug therapeutics. The peptide substrate fits

into the mPro binding groove with several substrate residues making

high-affinity contacts including a buried Leucine two residues

N-terminal of the cleavage site (position P2) and a Valine (position P3;

Figure 6A). We therefore used the native Leucine rotamer as the pri-

mary hotspot residue and the native Valine rotamer as the ancillary hot-

spot residue. We then used the Scaffold Matcher algorithm with CMA-

ES to dock an oligooxopiperzine scaffold onto these two hotspot resi-

dues. The top matching pose is shown in Figure 6B and aligns well

within mPro's substrate binding groove suggesting it would perform as

an inhibitor blocking an interaction between mPro and its substrate pep-

tide. We can also see good alignment of the oligooxopiperazine with the

hotspot residues shown in complex with mPro (Figure 6C) as well as

rotated with the complex hidden (Figure 6D). We finally compare the

performance of CMA-ES versus the gradient descent minimizer on iden-

tifying low-energy poses that match multiple hotspots. In Figure 6E, we

show CMA-ES identifies low-energy poses that better satisfy the hot-

spot constraints (i.e., Hotspot Constraint Score). This proof-of-concept

demonstration shows how the CMA-ES algorithm can be used to dock

peptidomimetics onto the hotspot residues of therapeutically relevant

drug targets and how the resulting docked molecule could be used for

future lead development.

3 | MATERIALS AND METHODS

3.1 | Scaffold Matcher implementation

The Scaffold Matcher algorithm is implemented in the Rosetta macro-

molecular modeling software suite. A full pseudocode description of the

algorithm can be found in the Supplementary Methods (File S1). Briefly,

the algorithm is given a molecular scaffold (e.g., oligooxopiperazine, pep-

tide) and a set of hotspot residues coordinates. In addition, the algorithm

is passed in the indices of the primary hotspot residue and the anchor

position of the molecular scaffold. The algorithm first aligns the anchor

position of the scaffold to the primary hotspot coordinates. Constraints

are then created for each additional hotspot residue (i.e., ancillary) to all

other scaffold positions. The constraints are formulated such that if a

position on the molecular scaffold aligns with the hotspot coordinates,

the total energy of the system is lowered (additional details are

described in Supplementary Methods, File S1). The CMA-ES optimiza-

tion algorithm (see below) is then used to traverse the energy landscape

to identify a molecular conformation with low energy and that satisfies

the hotspot constraints.

Below is an example commandline to match an idealized 8mer

peptide (i.e., ALA8.pdb) to hotspot residues in the peptide in PDBID

1N7F. To simplify the evaluation framework, we utilize a blank target

peptide (i.e., AAAAAA_blank.pdb) to represent the binding partner

which is distant in space from the hotspots and does not interact with

the molecular scaffold nor change conformation. The anchor position

(i.e., 10) is relative to all positions in the system including the target

peptide. The primary hotspot (i.e., primary_hs_stub_lib) and ancillary

hotspots (ancillary_hs_stub_libs) are pdb formatted files with coordi-

nates the hotspot residues. Here, we evaluate only the native

coordinates. The command generates 100 independent structures

(i.e., nstruct). All input files and example output files can be found at
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F IGURE 5 Run time analysis demonstrates covariance matrix
adaptation evolution strategy (CMA-ES) is competitive with Minimizer
algorithm. Histograms of runtimes for benchmark instances run using
each optimization algorithm: CMA-ES (blue), Monte Carlo (orange),
Minimizer (green), and Genetic (pink). The Minimizer algorithm had a
median runtime of 15 s, while CMA-ES and Genetic had slightly
higher median runtimes of 57 and 42 s, respectively. Monte Carlo had
a substantially slower median runtime of 695 s.
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https://doi.org/10.5281/zenodo.8422476 in ScaffoldMatcherBench-

markFiles_20230410.zip.

~/bin/scaffold_matcher.default.linuxgccrelease -s

./ALA8.pdb -hstarget ./AAAAAA_blank.pdb -nstruct

100 -primary_hs_stub_lib ./1N7F_BD_D90_natOnly_lib.

pdb -ancillary_hs_stub_libs ./1N7F_BD_D87_lib.pdb

./1N7F_BD_D88_lib.pdb ./1N7F_BD_D89_lib.pdb

./1N7F_BD_D91_lib.pdb ./1N7F_BD_D92_lib.pdb

./1N7F_BD_D93_lib.pdb ./1N7F_BD_D94_lib.pdb

-hs_repack_only false -out:file:scorefile

scaffold_matcher.sc -run:

multiple_processes_writing_to_one_directory

-fixed_anchor 10 -use_cmaes true -use_minimizer false

-optimization:cmaes_rgsigma 25

3.2 | CMA-ES implementation in Rosetta

We based our Rosetta CMA-ES optimization implementation on

the core c-cmaes library code from11 (https://github.com/

CMA-ES/c-cmaes). The CMA-ES optimization algorithm is first ini-

tialized with a vector of degrees of freedom which takes the form

of initial means of the multivariate normal distribution. Similar to

other minimization algorithms implemented in Rosetta, degrees of

freedom represent torsion angles along a peptide backbone

(i.e., phi, psi, and omega), side-chain torsion angles (i.e., chi), and

rotational/translational degrees of freedom. A vector of sigma

values is also initialized representing the starting standard deviation

of each degree of freedom in the multivariate normal distribution.

We use a sigma value of 25 for the starting standard deviation

unless otherwise noted.
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F IGURE 6 Mimicking the interface of
SARS-CoV-2 mPro. (A) SARS-CoV-2 mPro
(6Y2E) with substrate peptide aligned
from 2Q6G. (B) Oligooxopiperazine
scaffold docked into substrate pocket of
SARS-CoV-2 mPro using covariance
matrix adaptation evolution strategy
(CMA-ES). (C) Docked oligooxopiperazine
scaffold shown with matched hotspots

VAL4 and LEU5. (D) Alternative view of
oligooxopiperizine scaffold aligned to
hotspots without mPro shown.
(E) Scatterplot of Hotspot Constraint
Score versus Rosetta Energy Units shows
CMA-ES identifies lower energy-matched
scaffold conformations with better
matched hotspots (blue triangles) in
comparison to gradient-based minimizer
(green circles). Red arrow points to
models of best scoring models (lowest
energy and top hotspot matches) where
only CMA-ES scaffold conformations but
no Minimizer conformations are
represented.
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Once initialized, the algorithm then obtains a population of

samples from the multivariate normal distribution of size lambda.

We use the recommended lambda value of 4 + int(3*log(N)),

where N is the number of degrees of freedom. Each sample is

evaluated using the selected Rosetta energy score function

(ref2015 for this application). The samples are then ranked based

on their evaluated energies and the top mu samples are then used

to select the new mean and update the covariance matrix of the

next iteration's multivariate normal distribution. Mu is set to ½ of

lambda. The algorithm iterates until either a selected tolerance

parameter of 0.001 is reached or a max number of iterations of

1000 is reached.

A full mathematical description of the CMA-ES algorithm is

described in the Supplementary Methods (File S1).

3.3 | Monte Carlo algorithm

We used the Monte Carlo algorithm implementation in Rosetta

which is a modification of the protocol used in Renfrew et al.23

Briefly, the protocol iterates through a perturbation cycle 50 times,

randomly making small and shear moves of backbone phi and psi

angles of max 2 degrees. All phi and psi angles along the peptide

backbone are subject to perturbation. Monte Carlo temperature for

perturbation moves is set at 0.8 while each iteration temperature

value is set at 0.5. In contrast to the original algorithm in Renfrew

et al.,23 docking (i.e., rotation and translation) is turned off to keep

the scaffold fixed on the primary hotspot residue. Also, the design

step is turned off as well as no final design minimization step. We

generated 100 models.

3.4 | Minimizer algorithm

We used the default gradient-based minimizer in Rosetta which opti-

mizes a set of degrees of freedom for a specified score function. The

default minimizer is an implementation of the L-BFGS algorithm

(i.e., lbfgs_armijo_nonmonotone).24 We allowed only backbone torsion

angles to move. We set the tolerance parameter to 0.001.

3.5 | Genetic algorithm

We used the GA_Minimizer in Rosetta which implements a genetic

algorithm for comparison to CMA-ES. The GA_Minimizer, similar to

other minimization algorithms, optimizes a set of degrees of freedom

for a specified score function. First, the algorithm creates a population

of size 20 by adding random noise to the initial degrees of freedom

values and the samples are ranked according to their score. Next,

mutation and crossover steps are performed to diversify the samples.

Mutations and crossovers both performed with 0.5 probability. The

algorithm repeats until the tolerance score threshold of 0.001 is

reached.

3.6 | Model tri-peptide CMA-ES minimization

We used pymol to construct an Ala-His-Ala peptide. We used the

commandline below to minimize the model tri-peptide.

./Rosetta/main/source/bin/minimize.default.

linuxgccrelease -database ./Rosetta/main/database/

-s ./AHA.pdb -run:min_type cmaes

3.7 | Benchmark workflow

We downloaded structures of peptide–protein interaction pairs found

in the FlexPepDock benchmark (https://doi.org/10.1371/journal.

pone.0018934.s002).21 Each structure was “cleaned” using the

pdb_clean.py script provided in the Rosetta tools directory. Structures

were then “relaxed” using Rosetta's FastRelax protocol with the

“-relax:constrain_relax_to_start_coords” flag. 50 decoys were pro-

duced and the lowest scoring model was selected. For each bench-

mark instance, the peptide was extracted from the target and

backbone atoms removed, resulting in a set of disembodied side-

chains. Glycine residues were ignored. Each disembodied sidechain

was placed in a separate pdb formatted stub constraint library file.

Idealized peptides of the same size and nearest secondary structure

as the target peptide were generated using PyMOL.25 A primary hot-

spot residue with its corresponding peptide anchor position was ran-

domly selected for each peptide and all other disembodied side chains

are considered ancillary hotspot residues. The idealized backbone is

aligned to the primary hotspot residue. Hotspot constraints are cre-

ated for the primary hotspot and all ancillary hotspot residues. One

hundred decoy samples were run for each peptide and each algorithm

(i.e., Monte Carlo, Minimizer, and CMA-ES). The Rosetta score func-

tion ref2015 was used for all energy calculations. The root mean

squared deviation (RMSD) was calculated between a Rosetta-

generated peptide conformation and the native peptide conformation

found in the PDB for the respective benchmark instance. Only alpha

carbon atoms were considered in the RMSD calculation.

3.8 | Oligooxopiperazine scaffold matched to
SARS-CoV-2 mPro peptide substrate hotspots

We modeled the structure of SARS-CoV-2 mPro using the x-ray crys-

tal structure from PDB ID 6Y2E.26 The substrate peptide from the

SARS-CoV mPro (PDB ID 2Q6G)27 was modeled into the binding

pocket of the SARS-CoV-2 mPro by structural superposition of the

conserved proteases. Hotspot residue pdb files for Leucine and Valine

residues were generated manually by extracting the corresponding

substrate peptide residue's xyz coordinates. A 4-alanine oligooxopi-

perazine scaffold was used as input into the Scaffold Matcher algo-

rithm to align onto the two hotspot residues, Leucine and Valine.

Leucine was designated the primary hotspot and Valine was the ancil-

lary hotspot. The Scaffold Matcher algorithm was run with the CMA-
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ES optimizer (sigma = 10) as well as Rosetta's default gradient-based

minimizer for comparison purposes, both generating 100 poses each.

Input files can be found at https://doi.org/10.5281/zenodo.8422476

in ScaffoldMatcherBenchmarkFiles_20230410.zip.

3.9 | Commandline for scaffold matcher with
CMA-ES for SARS-CoV-2 run

./bin/scaffold_matcher.default.linuxgccrelease -s

./oop_dimer_LLLL_min.pdb -hstarget ./COVI_A.pdb

-nstruct 100 -primary_hs_stub_lib

./COVI_AC_C311_native_lib.pdb

-ancillary_hs_stub_libs ./COVI_AC_C310_native_lib.

pdb -hs_repack_only false -out:file:scorefile

scaffold_matcher.sc -run:

multiple_processes_writing_to_one_directory

-optimization:cmaes_rgsigma 10

All associated code is freely accessible to academic users via the

ROSETTACOMMONS website (http://www.rosettacommons.org).

4 | DISCUSSION

Herein, we describe the implementation of the Scaffold Matcher algo-

rithm which aligns molecular scaffolds onto hotspot residues from a

protein interaction interface. To optimize the multiple degrees of free-

dom within the molecular scaffold during the alignment procedure,

we implemented a state-of-the-art evolutionary optimization algo-

rithm, CMA-ES into the Rosetta macromolecular modeling framework.

We first demonstrate the CMA-ES algorithm's utility by minimiz-

ing the energy of a model tri-peptide. We show that CMA-ES can

escape local energy minima while lowering the overall energy. In addi-

tion, we observe that CMA-ES efficiently samples degrees of freedom

to not waste computation on unnecessary sampling.

We also analyze CMA-ES performance within the Scaffold

Matcher algorithm on the task of aligning peptide scaffolds to hotspot

residues on a benchmark of 26 peptides. We demonstrate CMA-ES

outperforms gradient-based minimization, a Genetic algorithm, and a

Monte Carlo algorithm on several evaluation metrics including total

number of matched hotspot residues and overall decrease in energy.

Interestingly, we observed the Monte Carlo algorithm slightly outper-

form CMA-ES with respect to RMSD to native (Figure S4G). This

result may be due to the Monte Carlo sampling procedure using

Rosetta small and shear moves which sample from the Ramachandran

distribution of phi and psi angles. Sampling from the

Ramachandran distribution is likely to ensure Monte Carlo poses are

in a more peptide-like conformation. CMA-ES on the other hand sam-

ples from a multivariate normal distribution across all degrees of free-

dom and therefore has no prior information on peptide geometry

other than when a pose is evaluated by the Rosetta energy function.

Minor inaccuracies in the Rosetta energy function may be the cause

for the discrepancy between peptide geometry and low-energy

values. Further investigation is needed to determine why CMA-ES

underperforms in the RMSD metric in our analysis.

Finally, we evaluated all four algorithms in terms of their runtime.

While gradient-based minimization performed the fastest as expected,

CMA-ES was highly competitive on most of the test cases (Figure 5).

Also as expected, the Monte Carlo algorithm performed slowest.

Energy optimization is often a tradeoff between speed and finding

lower energy minima. CMA-ES balances this tradeoff by consistently

finding lower energy minima than the gradient-based minimization

algorithm, the Genetic algorithm, and Monte Carlo algorithm as well

as having reasonable run times.

Unlike some other evolutionary algorithms, CMA-ES does not

require many parameters to be specified at runtime. A user only pro-

vides an initial starting conformation and initial sigma value. The sigma

value is automatically updated after each iteration to determine opti-

mal values, so the algorithm is robust to initial values as we describe

above. A user may want to guide CMA-ES toward increased/

decreased sampling and therefore can set sigma higher or lower than

our suggested value of 25. A population value lambda can be modified

but the default value which is a function of the number of degrees of

freedom has been shown to work well in most cases. Additional strat-

egies are being explored to increase the population size after restart

which has shown additional performance improvements.28 Moreover,

hybrid strategies that combine gradient-based optimization and evolu-

tion strategies also show great promise in boosting performance.29

Overall, however, the algorithm in its current state requires minimal to

no tuning from the user. This points to its high-value in many future

modeling applications including ligand docking,30 peptidomimetic

modeling31 and design,7 and cyclic peptide design.32–34

Finally, we demonstrate our Scaffold Matcher algorithm on mim-

icking the hotspot residues from the peptide substrate of the SARS-

CoV-2 mPro. The mPro protein is essential for the lifecycle of the

SARS-CoV-2 virus and developing an inhibitor has been an active area

of interest since early in the pandemic.35 Our approach allows for the

identification of molecular scaffolds that hold the beneficial properties

of peptidomimetics (e.g., proteolytic stability, synthetic tractability),

and mimic the hotspot residues at protein interaction interfaces. We

anticipate the Scaffold Matcher algorithm along with CMA-ES will

greatly speed our ability to identify molecular scaffolds for inhibitors

and ultimately develop leads for therapeutic targets.
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