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SUMMARY
Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for
advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lack-
ing. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by intro-
ducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq
resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblas-
toma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional pro-
gram regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macro-
phages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1,
over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenviron-
ment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly
applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance
the development of more efficacious immunotherapies.
INTRODUCTION

‘‘Wherever anything lives, there is, open somewhere, a register in

which time is being inscribed.’’—Henri Bergson (Creative Evolu-

tion, 1911). All multicellular systems function through dynamic

and coordinated action of cell circuits that change their

activity in response to environmental signals. Single-cell RNA

sequencing (scRNA-seq) has dramatically improved our ability

to measure cell states at high resolution and scale. However,

due to the destructive nature of the methodology, scRNA-seq

can only capture static snapshots of gene expression at experi-

mental endpoints, thus fundamentally omitting the temporal
dimension. Despite this limitation, scRNA-seq profiling at multi-

ple time points in dynamic processes has provided insight into

transcriptional drivers of development and differentiation in

myriad systems.1–3 Computational approaches, such as pseu-

dotime and RNA velocity estimations, infer a temporal dimension

in scRNA-seq experiments either by ordering cells along a trajec-

tory based on gene expression similarity or by estimating the

time derivative of gene expression state by distinguishing

spliced and unspliced mRNAs, respectively.1,4–7 While these ap-

proaches are extremely useful, these algorithmic tools are sensi-

tive to user-defined parameters and lack an empirically

measured ground truth, making it difficult to test imputed
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Figure 1. Zman-seq facilitates tracing of transcriptomic cell states in vivo across time

(A) Schematic illustration of the Zman-seq experimental and computational pipeline.

(B) Median fluorescence intensity bar chart of CD45+ PBMC after increasing concentrations of CD45-PE antibody intravenous injections, measured with flow

cytometry. Error bars indicate mean and 90% CI (n = 3).

(legend continued on next page)
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conclusions, particularly in complex in vivo settings where multi-

ple trajectories may coexist.8,9 Alternatively, combining scRNA-

seq with metabolic labeling of new mRNA molecules offers a

more direct measurement of gene expression changes over

time and has provided insight into rapid cellular responses to

stimuli such as viral entry, glucocorticoid receptor activation,

and T cell signaling.10 However, metabolic labeling is currently

best suited for measuring processes that unfold over hours,

and it is difficult to apply in vivo and to differentiation processes

that span multiple days.

In solid tumors, immune cells that enter the tumor become

subject to and complicit in supporting the immunosuppressive

tumor microenvironment (TME), characterized by limited meta-

bolic resources and immunosuppressive secreted factors.11,12

Intratumoral T and natural killer (NK) cells transition from a func-

tional cytotoxic state to a dysfunctional state characterized by

upregulation of inhibitory receptors, loss of cytotoxicity, and

loss of inflammatory cytokine secretion.13,14 Myeloid cells, espe-

cially monocytes, are instructed by the TME to differentiate into

tumor-associated macrophages (TAMs), producing ligands and

checkpoints that further contribute to T and NK cell dysfunction,

such as interleukin-10 (IL-10) and transforming growth factor b

(TGF-b).15 scRNA-seq analyses of millions of tumor-infiltrating

immune cells across a wide range of mouse models and thou-

sands of patient samples have comprehensively characterized

the dysfunctional and immunosuppressive cell states that arise

in cancer. However, despite these advances, the precise trajec-

tories that newly infiltrating immune cells take to reach these

dysfunctional states, the molecular circuits involved, and the

timescales over which they unfold remain obscured. Resolving

immune cell-state transitions in the TME in real time requires

genomic methods that simultaneously collect both gene expres-

sion and time labels in single cells—relative to a relevant frame of

reference.

We set out to understand how functional immune cells transi-

tion to dysfunctional states upon infiltrating the TME. We devel-

oped Zman-seq ( ןַמְז , Hebrew for ‘‘time’’, pronounced [zman]), an

in vivo technology that adds temporal information to scRNA-seq

data. Zman-seq provides empirical time measurements for tis-

sue exposure of immune cells relative to fluorophore pulse labels

applied in circulation. Using Zman-seq, we reconstructed the

progression of immune cell states across time in the TME in a

syngeneic orthotopic murine model for glioblastoma (GBM), a
(C) Median fluorescence intensity boxplots of CD45+ PBMC after mixing with b

Figure S1B). Staining intensity of PBMCdecreaseswith longer incubation times in

and 75th percentile with the median in bold line (n = 3).

(D) Histology of GBMbrain tumors (GL261) frommice intravenously injectedwith C

Bar chart showing the percentage of extravascular (defined based on endothelia

indicate mean and 90% CI (n = 3), and the p value was calculated using a two-s

(E) Flow cytometry density plots of CD45+ cells from GL261 tumor after intraven

ure S1D) before tumor extraction.

(F) Flow cytometry dot plots and boxplots of CD45+ cells fromGL261 tumor showin

microglia and CD45high infiltrating leukocytes. Infiltrating leukocytes harbor signi

Each dot represents a sample and the box extends to the 25th and 75th percenti

(G) Metacell graph projection of CD45+ cells from blood, colon, and lung pooled

pooled single cells sorted from 3 mice submitted to Zman-seq (12-, 24-, 36-,

cell ratio.

See also Figures S1 and S2.
frequent, highlymalignant and deadly brain tumorwith an excep-

tionally immunosuppressive TME.16 Zman-seq resolved the key

immune trajectories in the tumor, including the progression of

homing cytotoxic NK cells to states with low cytotoxic anti-tumor

activity in �24 h and monocytes to immunosuppressive TAMs.

Further, it revealed time-dependent gene modules, transcription

factor (TF) circuits orchestrating these trajectories, and key time-

dependent receptor-ligand interaction events driving tumor im-

mune evasion.We found the expression of Trem2, a key differen-

tiation signal for TAMs,17 to increase with time as monocytes

progressed to TAMs. Blocking TREM2, using an antagonistic

monoclonal antibody, redirected the monocyte differentiation

trajectory toward pro-inflammatory macrophages, suggesting

that myeloid reprogramming strategies may represent an attrac-

tive immunotherapy direction. In summary, Zman-seq experi-

mentally introduces time stamps into immune cells and reveals

a plethora of time-dependent transcriptomic, signaling and

cell-cell interaction events. By introducing the temporal dimen-

sion into single-cell transcriptomic data, Zman-seq paves the

way to dynamic models of multicellular systems in vivo with

broad applicability. Zman-seq will be instrumental in resolving

the dynamics of the TME to develop the next generation of

immunotherapies.

RESULTS

Zman-seq resolves in vivo transcriptomic cell states
across time
Cells respond to external stimuli by changing their functional

state over time. To dissect how cells are reprogrammed in vivo

upon exposure to a new environment, we developed Zman-

seq, a technology combining fluorescent temporal tracking of

cells with scRNA-seq (Figure 1A). Zman-seq is based on a phys-

ical barrier separating two biological compartments such that la-

beling (pulse) of cells only occurs in one compartment, allowing

for cell tracking across compartments (chase). We took advan-

tage of this pulse-chase principle and fluorescently labeled the

circulating immune compartment with a temporal sequence of

fluorophores in a syngeneicmodel for GBM (GL261). Leukocytes

could be fluorescently labeled while in the vasculature but were

shielded from consecutive rounds of labeling once they left the

circulation and entered the tissue/tumor. Immune cells within

the tumor were profiled using fluorescence-activated cell sorting
lood from mice injected with CD45-PE antibody for increasing durations (see

the donormouse. Each dot represents a sample and the box extends to the 25th

D45 antibody 24 h (BB515, green) and 15min (PE, red) before tumor extraction.

stained with CD31, blue) cells harboring the 24-h or 15-min staining. Error bars

ided Wilcoxon test.

ous fluorescent CD45 antibody injections 24, 36, 48, and 60 h (see also Fig-

g the in vivoCD45 antibody time labeling (CD45-PE/BB515/BUV737/BV711) of

ficantly more temporal labeling, compared with microglia (p = 0.02434, n = 3).

le with the median in bold line.

(left) and separated by organ (right), consisting of 91 MCs representing 8,976

and 48-h time stamps), and a heatmap of time-stamped/non-stained CD45+
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(FACS), and fluorescent stamps on individual cells were

captured using index sorting to infer the time of tumor infiltration.

This enabled us to define the time each immune cell spent in the

tumor—termed tumor exposure time. Combining tumor expo-

sure timemeasurements with single-cell transcriptomic profiling,

Zman-seq generates temporal maps of the TME.

In order to establish an in vivo labeling protocol, we titrated the

staining of peripheral bloodmononuclear cells (PBMCs) by intra-

vascular injections of fluorescent anti-CD45 antibodies. Concen-

trations ranging from 20 to 200 mg/kg body weight (bw) stained

the entirety of PBMCs (99.8% ± 0.26%, n = 9), with the mean

fluorescent intensity increasing with antibody dose (Figures 1B

and S1A). To ensure that Zman-seq faithfully measures tumor

exposure time between a labeling event in the circulation and

harvest in the tumor, it was critical to validate that our fluorescent

antibody injections specifically label circulating immune cells

and not tumor-resident immune cells. Reasoning that any non-

specific labeling of tumor-resident immune cells would require

extravasation of antibodies into the tumor and would therefore

be highly influenced by plasma antibody concentrations, we first

measured the kinetics of unbound antibody levels in the circula-

tion (Figures 1C and S1B). We found that the amount of unbound

antibody available for staining decays rapidly, dropping below

detection level 60 min after injection, likely a consequence of

high blood CD45 antigen levels and in agreement with published

data.18 Building on this, we then performed histological analysis

on GL261 tumors from mice injected with fluorescent anti-CD45

antibodies 15 min (when the unbound plasma-antibody concen-

tration was still sufficiently high) and 24 h before harvest. This

analysis demonstrated significantly more extravascular localiza-

tion of the 24-h labeled cells, compared with the 15-min labeled

cells: while 84.8% (±5.9% confidence interval, n = 3) of the

15-min signal was intravascular, after 24 h 80% (±13.6%) of

the signal shifted to the extravascular compartment

(Figures 1D and S1C). Importantly, there was no non-specific la-

beling of tumor-resident immune cells at the 15-min time point.

We next analyzed the effective time window of Zman-seq label-

ing by quantifying fluorescently labeled circulating CD45+ cells

that extravasate to the tumor over a range of labeling time points

spanning biologically relevant tumor-immune exposure times.

To this end, we injected anti-CD45 antibodies every 12 h be-

tween 60 and 24 h prior to GL261 tumor harvest, using a set of

distinct fluorophores for every time point. We detected fluores-

cently labeled leukocytes in the tumor from all injection time

points, demonstrating the applicability of Zman-seq to pro-

cesses unfolding over multiple days in the tumor (Figures 1E

and S1D). To evaluate the rate of false-positive Zman-seq label-

ing, we analyzed CD45+ cell labeling in the brain after 12-, 24-,

36-, and 48-h time stamps. We found that microglia, resident

brain macrophages that express CD45 and are entirely of yolk

sac origin, were not labeled with any of the anti-CD45 time stamp

injections, highlighting the selectivity of the method to unambig-

uously label circulating leukocytes (Figures 1F and S1E). To

further estimate the time window for which labeled cells can be

tracked using Zman-seq, we labeled PBMCs from B6.SJL

mice carrying the CD45.1 allele with anti-CD45-PE antibody

ex vivo and transferred the cells into CD45.2 recipient mice.

Notably, we observed that anti-CD45-PE-labeled CD45.1 leuko-
152 Cell 187, 149–165, January 4, 2024
cytes could be reliably detected in the blood across immune cell

subsets for 96 h and longer (Figure S1F). Altogether, the rapid

decay of unbound anti-CD45 antibody in circulation, combined

with the accumulation of sparsely distributed labeled immune

cells in the tumor and no off-target labeling of microglia, is

consistent with the desired properties of specific and stable

high-resolution (�30 min) stamping of circulating immune cells.

Specific detection of labels from each time point enabled

grouping of leukocytes into tumor exposure time bins based

on their fluorescent profiles recorded during single-cell FACS in-

dex sorting. Tumor exposure time was determined based on the

last antibody a cell was exposed to in the circulation (Figure S2A;

STAR Methods). For example, a cell was considered in the 36-h

tumor exposure time bin if it was only labeled with the 36-h fluo-

rophore but also if it was additionally labeled with the 48- and/or

60-h fluorophores—meaning that the cell was in circulation and

exposed to antibody injections between 60 and 36 h before it

entered the tumor and was shielded from the 24-h injection. To

assess whether our empirical time measurement methodology

could be generalized to peripheral organs beyond the central

nervous system, we benchmarked Zman-seq in the physiolog-

ical steady state of colon and lung tissues by injecting 12-, 24-,

36-, and 48-h anti-CD45 time stamps. The profiled leukocytes

showed remarkable organ-specific cell-state adaptation,

compared with circulating leukocytes, highlighting the potential

of Zman-seq to investigate time-resolved immune cell adapta-

tion (Figure 1G). We detected robust time stamp signals across

all immune cell states except for embryonically derived alveolar

macrophages, tissue-resident intestinal innate-like lymphoid

cells, and intestinal IgA plasma cells—highlighting the exclusion

of time stamps from long-term tissue-resident cells of the colon

and the lung and thus the broad applicability of Zman-seq to pro-

file cellular dynamics of diverse tissues (Figures 1G, S2B, and

S2C). Collectively, we demonstrate that time-stamping, using

sequential in vivo injections of fluorescently labeled antibodies,

facilitates a robust methodology to trace cellular and molecular

kinetics of leukocytes across different organs in healthy and

diseased states.

Temporal dynamics of the TME in GBM
GBM is the most frequent and aggressive lethal primary brain

malignancy in adults, with a gold standard radio-chemotherapy

protocol that has not been significantly improved for two de-

cades, thus remaining a major unmet need.19 The lack of suc-

cessful immunotherapy approaches in GBM highlights a need

to better understand and curtail immunosuppressive differentia-

tion trajectories in the TME. For this purpose, we used Zman-seq

(labeling 12-, 24-, and 36-h time stamps) and measured scRNA

profiles of 10,583 high-quality leukocytes sorted from the TME of

the murine syngeneic GL261 glioma model, simultaneously with

tumor exposure time stamps. We grouped these cells by their

transcriptomes into 139 metacells (MCs) containing 55–170

cells/metacells.20 We identified a large myeloid compartment

consisting of monocytes (Plac8+, Chil3+), TAMs (Trem2+,

Arg1+), and dendritic cells (DCs) (H2-Oa+). Lymphocytes in the

tumor comprised CD4+ T helper cells, CD8+ cytotoxic T cells,

T regulatory cells, and NK cells. NK cells could be further subset-

ted into chemotactic (S1pr5+), cytotoxic/effector (Prf1+, Gzma+,
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Figure 2. Zman-seq resolves temporal dynamics of the TME in glioblastoma

(A) Two-dimensional graph projection of 139 metacells representing 10,584 single cells sorted from CD45+ gating from GL261 GBM tumors.

(B) Marker gene projections of log2 normalized footprint expression on lymphocytes (top) and myeloid cells (bottom), respectively.

(C) Density enrichment of cells from each labeled time bin downsampled to 250 cells per time bin from CD45+ gated cells.

(D) Stacked percentage area plot that shows the relative percentage of cells at each time bin (12, 24, and 36 h, respectively). The left plot shows the distribution of

NK subtypes across time bins, and the right plot shows the distribution of cells from the mononuclear phagocyte populations.

(E) Correlation plots of log2 normalized footprint marker expression against time enrichment in NK cells (left panel showing XCL1 and S1pr5 expression) and

mononuclear phagocyte populations (right panel showing Trem2 and Plac8 expression). The x axis represents the log2 enrichment of 36-h time bin over 12-h time

bin where positive values represent enrichment in 36-h time bin and vice versa. The Spearman’s correlation rho and p value are shown, and the fitted regression

line shows a 95% confidence interval.

See also Figure S2.
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and Gzmb+), and dysfunctional (Itga1+, Xcl1+, Eomes�, and

Pmepa1+), with the latter resembling signatures of NK cells

exposed to TGF-b21–24 (Figures 2A, 2B, S2D, and S2E;
Table S1). Leukocytes assigned to 12-, 24-, or 36-h tumor expo-

sure time bins clustered distinctly (Figures 2C and S2F), suggest-

ing an association between tumor exposure time and immune
Cell 187, 149–165, January 4, 2024 153
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Figure 3. Zman-seq reveals temporal NK cell trajectories in the tumor

(A) Two-dimensional graph projection of reclustered lymphocytes consisting of 37 metacells representing 2,431 single cells, including NK cells, CD8 T cells, and

CD4 T cells.

(B) Cumulative sumdistribution plot of each time bin (12, 24, and 36 h) in eachmetacell. Each line represents ametacell, and the color denotes the normalized area

under the curve that we define as cTET. The dotted boxes show the distribution of normalized frequency of each time bin within the earliest cTETmetacell (top left)

and the longest cTET metacell (bottom right).

(C) Projection of normalized cTET values onto the NK subpopulations as annotated in (A).

(D) Base trajectory inference of the time development along the cell types from the earliest cTET chemotactic NK to the latest cTET dysfunctional NK. The shaded

color represents the cell-type clusters, and the four trajectory points correspond to the cluster average cTET. The trajectory arrows are drawn based on the

ordering of average cTET (STAR Methods).

(legend continued on next page)
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cell functional states. Analysis of the distribution of cell types in

the 12-, 24-, and 36-h tumor exposure time bins corresponded

with specific cell states. To better resolve cellular states, we

increased the MC resolution and reclustered the myeloid and

lymphoid cell compartments separately. Indeed, chemotactic

(S1pr5+) and cytotoxic (Prf1+, Gzma+, and Gzmb+) NK cells

showed high enrichment in early (12-h) time points, whereas

dysfunctional NK cells (Itga1+, Ctla2a+, Gzmc+, and Prf1/Gzma/

Gzmb-low) were enriched in later (24- to 36-h) time points—sug-

gesting that Zman-seq captured biologically plausible and rele-

vant information of the NK response to tumor signals21,22

(Figures 2D and S2G). For instance, Ducimetiere and colleagues

described a set of NK clusters: mature/effector (Gzma+, Zeb2+,

Prf1+, and Klrg1+ cNK_5), immature (Ctla2a+ and Ccr2+

cNK_4), and TGF-b-imprinted (Gzmc+, Pmepa1+, Xcl1+, and

Ctla2a+ cNK_6) NK cells found only in immunologically cold tu-

mors, which aligned well with the clusters we defined with

distinct temporal kinetics (Figure S2H). The myeloid compart-

ment showed a similar association of differentiation and time,

with monocytes (Ear2+, Ace+,Chil3+, and Plac8+) harboring early

(12-h) time stamps and TAMS (C1qa+, Trem2+, and Arg1+)

harboring late time stamps, consistent with the expected transi-

tion of circulating monocytes to TAMs in the tumor (Figures 2C

and 2D).24 These cell-state changes upon exposure to the

TME were associated with extensive molecular dynamics. For

instance, in NK cells the expression of the homing receptor

S1pr5 decreased with time, whereas Xcl1 expression, a chemo-

attractant for DCs, increased. Similarly, in the myeloid

compartment, the expression of Plac8, highly expressed in

monocytes,24,25 decreased with tumor exposure time, whereas

the expression of the myeloid checkpoint Trem2 increased (Fig-

ure 2E). In summary, we demonstrate that Zman-seq is capable

of resolving fine-grained temporal gene expression trends during

assembly of the TME, thereby providing a technology to resolve

immune escape mechanisms evoked by the tumor.

Molecular trajectories of NK cell dysfunction in GBM
A limitation of most single-cell transcriptome atlases is the

inability to empirically define cellular trajectories over time. To

overcome this limitation in our GBM model, we annotated im-

mune cell states at high resolution and leveraged our temporal

labeling to track transcriptional trajectories between states

(Figures 3A and S3A; Table S1). To translate single-cell time

stamps to a time axis over which to observe differentiation tra-

jectories, we developed a robust statistical method to assign

continuous tumor exposure time (cTET) values on the MC level

(Figure S3B; STAR Methods). For each MC, we calculated a cu-
(E) Heatmaps of significantly upregulated (left) or downregulated (right) genes ac

cTET of each metacell and shows the transitioning of genes from chemotactic N

(F) Lollipop plot (left) and MCmap (right) displaying the predicted time-dependent

gene expression of the two ligands Tgfb1 and CCL12 across cell types (potential

expression of TGF-b1- and CCL12-regulated target genes in NK cells.

(G) Heatmap (middle) showing the interaction potential for the 20 most prioritized

Ligands have been prioritized by their capability to explain gene expression chan

each ligand. Ligands have been manually grouped into biologically relevant subty

across time (red = downregulated, blue = upregulated, shaded area = 90% confi

cTET, continuous tumor exposure time.

See also Figure S3.
mulative distribution function (CDF) based on the frequency of

cells in 12-, 24-, and 36-h bins (Figures 3B, S3B, and S3C). For

each MC CDF, the area under the curve (AUC) represents the

cTET. Overlaying the AUC profile on the MC map elucidated

the gradual shift of cell states across time (Figure 3C). We then

used the average cTET for each annotated cell cluster (Figure 3A)

to define the trajectory underlying these observed cell-state tran-

sitions (Figure 3D). Next, we temporally ordered MCs by cTET

and identified the most significant genes correlating with time

(Figure 3E; Table S1). This approach revealed multiple gene

expression changes unfolding at different rates in response to tu-

mor exposure. Genes that were upregulated immediately upon

tumor exposure included the TGF-b response genes Pmepa1

and Srgn, NK immaturity markers Ccr2 and Tcf7,22 as well as

the inhibitory checkpoint receptor Tigit.26 Upregulation of TGF-

b-driven Car2 and Ctla2a, previously shown to hamper NK

anti-tumor activity, closely followed, along with Xcl1 and

Itga1.22 Gzmc expression, also shown to be TGF-b driven,

increased rapidly during the final stage of the trajectory—sug-

gesting that major biomarkers of NK exposure to GBM TME

are TGF-b-associated signaling modules and are indicators of

the duration of TGF-b exposure. Genes that were immediately

downregulated upon tumor exposure include homing receptors

(S1pr5 and Cx3cr1) and NK effector and maturity markers (Klrg1

andCma1).27–29 Expression of inflammatory cytokines and cyto-

toxic molecules (Ccl3, Gzmb, Gzma, and Prf1) decreased more

gradually30 (Figure 3E).

To identify the drivers of these transcriptional dynamics, we

next estimated the TF activities of each MC, based on the

average gene expression signature of the gene targets of each

TF, using the dorothea database31 (Figure S3D; STARMethods).

This analysis revealed anti-correlated activity over time of

SMAD3 and SMAD4, critical downstream mediators of TGF-b

signaling. SMAD3 relays TGF-b signaling, leading to reduced

cytotoxicity in NK cells,30 whereas SMAD4 counteracts this ef-

fect.32 Consistently, Zman-seq showed that SMAD4 was initially

active for a sustained period, counteracting TGF-b signaling, fol-

lowed by a rapid drop at the end of the temporal trajectory that

coincided with a spike in SMAD3 activity orchestrating TGF-b

signaling and leading to the emergence of the TGF-b-imprinted

dysfunctional NK cell state. Additionally, the activity of TFs

involved in NK differentiation, maturation, and interferon-g

(IFN-g) signaling decreased along the temporal trajectory at

distinct rates: decrease in GATA3 activity was gradual, whereas

FOSL2 and GATA2 were faster.33–35

A core focus in immuno-oncology is to understand interac-

tions in the tumor-immune environment leading to ineffective
ross cTET in NK cells. Each row is normalized and smoothed according to the

K to dysfunctional NK as ordered by cTET.

interaction between NK cells and the TME. Lollipop plots show the normalized

senders). MC maps are colored by the scaled weighted cumulative target gene

ligands and their respective target genes in NK cells that correlate with time.

ges across time in NK cells. Heatmap (left) indicates the predicted activity for

pes. Line plots (top) display scaled gene expression of target genes in NK cells

dence intervals).
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Figure 4. Zman-seq reveals monocytes-to-TAM differentiation in GBM

(A) Metacell graph projection of myeloid cells consisting of 94 MCs representing 7,421 single cells sorted from 3 IgG control mice and 3 aTREM2-treated mice on

CD45+ gating.

(B) Projection of treatment enrichment by the number of cells of each condition within a metacell. The enrichment is log scaled where positive values indicate

enrichment upon aTREM2 treatment, and negative values represent control enrichment.

(C) Trajectory of themonocyte-to-TAMdifferentiation in the control axis based on cTET values. The shaded color represents the cell-type clusters, and each of the

four points in the trajectory corresponds to the cluster average cTET.

(legend continued on next page)

ll

156 Cell 187, 149–165, January 4, 2024

Article



ll
Article
anti-tumor immunity. Zman-seq provides a critical analytical tool

to identify ligands that reprogram immune cells into a tumor-

tolerant state upon TME exposure (Figure S3E). To infer

putative upstream ligands that may drive the observed im-

mune-escape gene programs in NK cells, we prioritized

ligands based on their ability to explain the temporal gene

expression changes detected using Zman-seq. Consistent with

the TGF-b-responsive gene expression module and TF activity

dynamics we observed, this analysis revealed TGF-b1 as amajor

ligand driving the NK dysfunctional trajectory in the TME

(Figures 3F, 3G, S3F, and S3G). Additional predicted ligands

driving NK dynamics included the macrophage-derived chemo-

kine CCL12 and cell-cell contact ligands ICAM1 and APOE

(Figures 3F, 3G, S3F, and S3G). However, TGF-b1 explained

almost exclusively the temporal transition of Itga1low to Itga1high

NK cells with concomitant reduction in cytotoxic activity (Gzmb

and Prf1; Figure 3F). Late dysfunctional NK cells had high

Tgfb1 expression, although contribution by resident non-im-

mune cells of themicroenvironment, such as tumor cells, stromal

cells, ormicroglia, also appears likely36 (Figure 3F).We next used

functional assays on primary human patient samples to ask

whether the data showing that TGF-b signaling in the GBM

TME inhibits NK cell cytotoxicity translate to human pathology

in GMB patients. By co-culturing human glioma stem cells with

primary human NK cells in vitro, we evaluated degranulation

(CD107a), tumor necrosis factor alpha (TNF-a), and IFN-g

expression in response to TGF-b blockade (Figure S3H).37

Consistent with the dynamics we observed using Zman-seq in

the mouse model, we found a strong negative association be-

tween TGF-b signaling and the production of cytotoxic mole-

cules and inflammatory cytokines in human NK cells (Fig-

ure S3H). Altogether, we demonstrate a principled analytical

framework for Zman-seq data and how it can resolve the com-

plex trajectory of NK cells and the signaling and TF circuitry of

the TME, leading to a gradual decline in NK cytotoxic activity in

contribution to tumor immune escape.

Temporal molecular trajectories of the mononuclear
phagocyte system in the TME
TAMs are a major component of the immunosuppressive TME

and are key to tumor persistence.38 TAMs in GBM originate

from infiltrating circulating monocytes and local microglia.39

Characterizing the molecular trajectories of the mononuclear
(D) Heatmaps of significantly upregulated (top) or downregulated (bottom) genes a

and smoothed according to the cTET of each metacell and shows the dynamic

by cTET.

(E) Heatmaps of significantly upregulated (top) or downregulated (bottom) transc

ferentiation. Each row is normalized and smoothed according to the cTET of each

as ordered by cTET.

(F) Metacell map displaying the predicted time-dependent interaction between

Metacell maps are colored by the scaled weighted cumulative target gene express

mononuclear phagocytes.

(G) Heatmap (middle) showing the interaction potential for the 20 most prioritize

correlate with time. Ligands have been prioritized by their ability to explain gene

indicates the predicted activity for each ligand. Ligands were manually group

expression of target genes in mononuclear phagocytes across time (red = down

cTET, continuous tumor exposure time; MoMac, monocyte-derived macrophage

See also Figures S4 and S5.
phagocyte system in the TME is crucial for better understanding

the signals and pathways associated with immune dysfunction

in GBM and solid tumors in general. We found a strong correla-

tion between tumor exposure time and Trem2 expression

(Figures 2B and 2E), an immunosuppressive signaling hub for

macrophages.17 Previous studies have shown that genetic abla-

tion of Trem2 or blocking TREM2 with monoclonal antibodies

modifies TAMs and evokes anti-tumor immunity.40–42 These

studies raise the question of whether blocking TREM2 affects

mature Trem2+ TAM function or acts earlier in the differentiation

of monocytes into TAMs. To address this question and to define

monocyte-to-TAM differentiation in the presence and absence

of TREM2 signaling, we treated six mice with an antagonistic

antibody targeting TREM2 (aTREM2) and six mice with a control

antibody at days 2 and 7 post tumor implantation, similar to Mol-

gora and colleagues (Figure S4A).40 Then, 11 days after tumor

implantation, leukocytes were time-stamped 12, 24, 36, and

48 h before tissue harvesting. Control mice recapitulated the

TME composition observed previously, including activated and

dysfunctional NK states, infiltrating monocytes, DCs, and

TAMs (Figures 2, 4A, and S4B–S4D; Table S2). The myeloid

compartment of mice treated with the aTREM2 antibody con-

tained macrophage cell states highly separated from those in

the control antibody-treated mice (Figure 4B). In mice treated

with the control antibody, Zman-seq revealed a well-defined

temporal trajectory of monocyte to TAMs: infiltrating Chil3high,

Plac8high monocytes harbored the earliest time stamps and

gradually differentiated to Arg1high, Gpnmbhigh regulatory

macrophage populations, described in the context of immuno-

suppressive myeloid cells in cancer (Figures 4C, S4E, and

S4F).41 The expression of genes promoting immunosuppression

in the TME showed distinct temporal patterns along this trajec-

tory (Figure 4D; Table S2). The first changes were related to dif-

ferentiation from the monocyte state by decreasing the expres-

sion of Plac8 and Chil3. In parallel, Sat1 and Ccl3, genes

involved in inflammatory processes,43,44 rapidly decayed in

monocytes. This was followed by a rapid increase in the expres-

sion of macrophage programs and pro-tumorigenic factors such

asC3, as well as the pro-angiogenic factorVegfa and its receptor

Flt1.45–47 Simultaneously, Pirb (LILRB3), an inhibitory receptor

that binds to major histocompatibility complex class 1 (MHC

class I) instructing immunosuppressive TAM differentiation,48

was transiently upregulated at the monocyte-macrophage
cross cTET in control monocyte-to-TAMdifferentiation. Each row is normalized

s of gene expression along the monocyte-to-TAMGpnmb transition as ordered

ription factor (TF) activities across cTET in the control monocyte-to-TAM dif-

metacell and shows the transitioning of TF activity frommonocyte to TAMGpnmb

mononuclear phagocytes (monocytes, MoMacs, and TAMs) and the TME.

ion, termed ‘‘effect strength’’, of TGF-b1- and ANXA1-regulated target genes in

d ligands and their respective target genes in mononuclear phagocytes that

expression changes across time in mononuclear phagocytes. Heatmap (left)

ed into biologically relevant subtypes. Line plots (top) display scaled gene

regulated, blue = upregulated, shaded area = 90% confidence intervals).

s; TAM, tumor-associated macrophage.
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junction. This was followed by robust activation of tumor macro-

phages programs with upregulation of immunosuppressive

pathways Arg1, Cd274 (PDL1), and Il18bp,24,49 followed by

Trem2 and Gpnmb, a hallmark for suppressive Mregs, peaking

in the terminal sections of the temporal trajectory.41

Analysis of the TF circuits regulating this myeloid trajectory re-

vealed distinct temporal patterns, including the downregulation

of pro-inflammatory and upregulation of immunosuppressive

TF circuits (Figure 4E). Downregulation of nuclear factor kB

(NF-kB)-associated RELA activity, together with POU2F1

involved in inflammatory macrophage activation, was among

the first TF responses upon monocyte tumor exposure.50,51

This was followed by loss of STAT2 and IRF9 activity, key nodes

in antiviral pathways.52,53 The final step of reprogramming to-

ward TAM included upregulation of immunosuppressive STAT3

activity, followed by monotonical upregulation of HIF1A and

CREB1 activity, involved in hypoxic suppressive TAM function

and suppressive macrophage polarization, respectively.54–56

The terminal portion of our analyzed trajectory was characterized

by high NFE2L2 activity, involved in suppressing inflammatory

cytokine secretion in macrophages.57

We next applied these temporal data to analyze the upstream

ligands that may drive the differentiation process from infiltrating

monocytes to TAMs, potentially representing attractive targets

for immunotherapy (Figures S3E, S5A, and S5B). The ligands

that best explained the trajectory from monocytes to TAMs

included pro-tumorigenic TGF-b1 and ANXA1 and pro-inflam-

matory APOA1, whereas chemokines (e.g., CCL2, CCL3, and

CCL8) contributed less58–60 (Figures 4F, 4G, and S5C). The cu-

mulative expression of target genes regulated by TGF-b1 and

ANXA1 was relatively low in monocytes and increased along

the temporal trajectory until its peak in Arg1high and Gpnmbhigh

TAMs (Figure 4F). The number of time-dependent genes affected

by a given ligand was highly variable; for instance, TGF-b1 or

CCL3 and CCL2 contributed to a broad set of target genes,

whereas ANXA1 only affected the upregulation of monocyte

recruitment via CCL12 and the downregulation of inflammatory

factors Il1b and Junb.61 Arg1, a metabolic immunosuppressive

hallmark gene of TAM differentiation, was influenced by only a

few pro-tumorigenic ligands: TGF-b1, IL-13, and AGT62,63 (Fig-

ure 4G). To assess whether TGF- b1 could indeed orchestrate

the observed cell trajectory from circulating monocytes to pro-

tumorigenic TAMs, we differentiated murine bone-marrow-

derived myeloid cells in the presence or absence of TGF-b1

and confirmed the emergence of regulatory macrophage cell

states expressing Il18bp and Gpnmb in vitro (Figure S5D).

To evaluate to what extent the Zman-seq-resolved trajectory

of the mononuclear phagocyte compartment in GL261-bearing

mice reflected human pathology in GBM patients, we next

analyzed publicly available transcriptomic data of human GBM

patients. We tested how genes controlling the myeloid trajectory

across time in murine GBM relate to myeloid states found in hu-

man GBM patients (Figure S5E).24 Murine genes defining early

cell states of the trajectory (Figure 4D, upper panel) aligned

with monocyte and inflammatory TAM states in humans,

whereas late genes (Figure 4D, lower panel) overlappedwith reg-

ulatory lipid TAMs and phagocytic TAMs—suggesting robust

translation of themurine temporal results to human data. Overall,
158 Cell 187, 149–165, January 4, 2024
Zman-seq enabled in vivo characterization of the molecular tra-

jectory of monocyte differentiation to regulatory macrophages,

which are a major driver of the immune dysfunction in the

GBM TME. Our analysis lays the foundation for improved under-

standing of myeloid reprogramming in the tumor and for identi-

fying effective molecules that antagonize regulatory macro-

phage differentiation in the TME.

Blocking TREM2 signaling redirects the monocyte-to-
macrophage trajectory in the TME
Next, we assessed how TREM2 antagonistic immunotherapy

influenced the differentiation of the mononuclear phagocyte

system in GBM. Three of the six mice treated with aTREM2

antibody showed marked differences in their respective TME,

compared with control mice (indicating an immunological

response), whereas three mice showed more subtle perturba-

tion. As expected, Trem2-expressing myeloid cells, such as

TAMs and monocyte-derived macrophages, responded most

to the TREM2 antagonistic therapy, indicating that the efficacy

of the therapy may be attributed to direct effects on Trem2-ex-

pressing cells (Figures S5F and S5G). We compared myeloid

cells of mice treated with aTREM2 with myeloid cells of mice

treated with the control antibody, and we used Zman-seq to

investigate the immune dynamics of the two treatment groups

(Figure 4B). aTREM2 treatment resulted in a distinct TAM pop-

ulation, compared with the control group, characterized by

downregulation of immunosuppressive genes such as Arg1,

Pirb (LILRB3), Il18bp, Vegfa, and Cd274 (PDL1) and upregula-

tion of pro-inflammatory genes (Ccl3, Ccl4, Cd81, and Cd83),

in line with previous reports.40,41,64,65 These two distinct TAM

populations developed through a striking bifurcation of mono-

cyte-to-TAM trajectory (Figures 5A and 5B; Table S3). We uti-

lized this dataset as a ground truth to perform detailed analyt-

ical benchmarking and compared the performance of

computational approaches with our empirical time measure-

ment methodology (summarized in STAR Methods; Figure S6).

In short, trajectories predicted by commonly used pseudotime

and RNA velocity algorithms showed variable results, strongly

depending on the selection of genes. These comparisons high-

light the limitations of current computational approaches to

resolve cellular trajectories and demonstrate the synergy of

combining analytical and empirical time measurements in sin-

gle-cell transcriptomic studies.

To better understand the mechanism of action of anti-TREM2

immunotherapy, we next investigated the trajectory bifurcation

elicited by the treatment. The roots of both the control and

aTREM2 trajectories were similar, consisting of infiltratingmono-

cytes that did not express Trem2 (Figure S4D). In both groups,

initial state transitions entailed the downregulation of monocyte

transcripts (Chil3 and Plac8) (Figure 5C; Table S2). We observed

immediate and late transcriptomic changes distinguishing the

control and aTREM2 trajectories. Early changes upon TREM2-

inhibition included the rapid upregulation of pro-inflammatory

factors Ccl4 and Cd81 and inhibition of early upregulation of

immunosuppressive factors seen in the control group (e.g.,

Pirb and Vegfa).45–47 In monocyte-derived macrophages,

aTREM2 elicited a transient upregulation of an IFN-induced

gene module including Ifit2 and Ifit3.66 This was followed by
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Figure 5. TREM2 antagonistic antibody reprograms the TME by disrupting monocyte-to-TAM transition

(A) Volcano plot depicting the differential genes between the Arg1 TAMs of the IgG treatment against the Acp5 TAMs of the aTREM2 treatment. The significant

genes (p < 0.001 and log2 fold change > 0.5) were colored purple if they were enriched in IgG treatment and blue if enriched in aTREM2 treatment.

(B) Metacell graph projection of monocytes and TAMs from both IgG and aTREM2 axis, denoting the trajectory of the aTREM2-treated monocyte-to-TAM

differentiation based on cTET. The shaded color represents the cell clusters, and each of the three points in the trajectory corresponds to the cluster

average cTET.

(C) Heatmaps of significant genes along cTET in the aTREM2-treated monocyte-to-TAM differentiation. Each row is normalized and smoothed according to the

cTET of each metacell and shows the transitioning of genes from monocyte to Acp5 TAMs as ordered by cTET.

(D) Heatmaps of significant TF activity along cTET in the aTREM2-treated monocyte-to-TAM differentiation. Each row is normalized and smoothed according to

the cTET of each metacell and shows the transitioning of TF activity from monocyte to Acp5 TAMs as ordered by cTET.

(E) Dot plot displaying the normalized gene expression of in vitro differentiated BMDMs cultured with GL261 cell culture supernatant in the presence of TREM2-

blocking antibody or isotype or PBS control. Dot size indicates percentage of cells expressing the respective gene, and color indicates scaled mean gene

expression per group.

(F) Circos plot (left) indicating the interaction between chemokine ligands produced by Trem2-expressing cells (senders) and receiver cell types (as presented in

Figures S9A–S9D). Color indicates the log2 fold change enrichment for each ligand upon TREM2 inhibition. Outer semi-circle displays the interaction potential

between each ligand and the top 20 affected target genes per cell type. Line plots (right) showing scaled expression of chemokine ligands produced by

monocyte-derived phagocytes (monocytes, MoMacs, and TAMs) across time for aTREM2-treated mice (blue) and mice receiving isotype control (purple).

Expression has been smoothed using a polynomial regression model, and mean and 95% confidence intervals (shaded area) are shown.

BMDMs, bone-marrow-derived macrophages.

See also Figures S5 and S7.
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TAMs upregulating additional pro-inflammatory markers (Ccl3,

Acp5, and Cd72),64,65,67 and downregulating immunosuppres-

sive genes (Arg1, Il18bp, and Il7r).

TF activity analysis identified regulators of the pro-inflamma-

tory trajectory induced by TREM2 inhibition (Figure 5D). Early

on, FOSL1, part of the AP-1 TF complex enhancing inflammation

by inhibiting Arg1 transcription,68 showed high activity in mono-

cytes and maintained this throughout the trajectory of macro-

phages treated with aTREM2 antibody. TFs showing high tran-

sient activity in monocyte states included components of the

NF-kB complex, such as RELA (p65) and NFKB1 (p50), forming

a heterodimer and promoting pro-inflammatory transcriptional

programs.69 ATF2, indicated in inflammatory macrophages,70

showed a similar early transient activity as NFKB1. Slightly later,

in the monocyte-macrophage junction, pro-inflammatory STAT2

and IRF9 involved in IFN signaling showed a transient activity

peak. In parallel, aTREM2 treatment downregulated the immu-

nosuppressive activities of STAT3 and STAT6.52,71 In the final

TAM program, aTREM2 treatment induced pro-inflammatory

NFKB2 activity (p52)69 and inhibited the upregulation of immuno-

suppressive HIF1A and NFE2L2 activity.54,57

Differential gene expression analysis of TAMs during TREM2

inhibition revealed differentially abundant transcripts involved

in metabolic functions, such as Sat1, Arg1, and Hif1a72

(Figures 5A, 5C, and S5G). Similar changes in metabolic profile

have previously been associated with the conversion of regula-

tory T cells to highly inflammatory T helper 17 cells.73 It therefore

appears plausible that an analog metabolic mechanism coexists

during the conversion of monocytes to immunosuppressive

TAMs and that this metabolic pathway is remodeled following

TREM2 blockade. To assess whether the observed effects in

TAMs were directly mediated by the aTREM2 antibody, we per-

formed in vitro differentiation of bone-marrow-derived macro-

phages using varying doses of GBM-conditioned medium in

the presence or absence of the aTREM2 antibody. Supplement-

ing cell culture mediumwith varying doses of GL261 supernatant

elicited a dose-dependent effect on the state of bone-marrow-

derived macrophages, mimicking the in vivo TME (Fig-

ures S7A–S7C). Using these in vitro GBM TME conditions, we

recapitulated several of the in vivo effects of TREM2 blockade

in primarymurinemacrophages (Figures 5E and S7B). Moreover,

we observed increased Sat1 expression in bone-marrow-

derived myeloid cells treated with aTREM2 antibody, indicating

that the metabolic changes may be a direct consequence of

TREM2 blockade (Figures 5E and S7B).

To obtain mechanistic insights into the environmental context

in which aTREM2 treatment redirects TAM differentiation toward

an inflammatory state, we investigated the potential downstream

crosstalk of Trem2-expressing cells following aTREM2 treat-

ment. We investigated ligand-receptor pairs that could explain

the observed changes in target gene expression elicited by

aTREM2 treatment in TAMs. Strikingly, a small set of ligands

was predicted to explain a large portion of the downstream ef-

fects of TREM2 inhibition in TAMs (p = 3.9 3 10–102). These li-

gands were mostly restricted to the chemokines CCL3, CCL4,

CCL5, CCL7, CCL8, and CXCL9 and complement factor C3

(Figures 5F and S7D–S7G). In addition to their predicted role,

the same chemokines ranked among the most differentially ex-
160 Cell 187, 149–165, January 4, 2024
pressed genes in TAMs following aTREM2 treatment (C3, Ccl3,

Ccl4, Ccl5, Ccl7, Ccl8, and Cxcl9) and demonstrated temporal

expression kinetics, providing further evidence that this set of

chemokines may be crucial for the myeloid remodeling and

even for clinical outcomes (CCL5, CCL7; p = 0.016 and

p = 0.029, respectively) (Figures 5C, 5F, S7G, and S7H). Chemo-

kine circuits have been reported to play a fundamental role in the

establishment and modulation of the TME.74 Thus, we next as-

sessed whether the set of differentially abundant chemokines,

which explained the majority of downstream signaling upon

TREM2 inhibition in TAMs, may also affect neighboring leuko-

cytes in a paracrine fashion. Interestingly, these chemokines

and complement factor C3 showed widespread effects in modu-

lating gene expression in receiver cells. The identified set of

ligands explained a large fraction of the observed gene expres-

sion changes upon TREM2 inhibition in NK cells, monocytes,

and monocyte-derived macrophages, providing a rationale for

how modulating TAM differentiation may affect the organization

of the TME (Figure 5F).

In summary, applying Zman-seq in a therapeutic context iden-

tified the capacity of TREM2 inhibition to reprogram the mono-

cyte-to-regulatory macrophage trajectory and temporally

resolved molecular circuits downstream of TREM2 that facilitate

the transition of circulating monocytes to suppressive TAM.

DISCUSSION

Single-cell technologies opened a new chapter in biology by

large-scale phenotyping of cells as the minimal unit of life.

Analyzing millions of cells has provided seminal insights into

cell states across diverse tissues and pathologies. Here, we ad-

dressed the fundamental question of how competent immune

cells become an accomplice of the tumor, using Zman-seq, an

in vivo scRNA-seq technology that empirically resolves immune

cell-state transitions across time.

Weapplied Zman-seq to amurine syngeneicGBMmodel, aim-

ing to resolve cell-state trajectories in infiltrating leukocytes. This

analysis revealed rapid transition of NK cells from a cytotoxic to a

dysfunctional state within 24 h. While transitioning through this

trajectory, NK cells upregulated gene programs associated with

TGF-b imprinting, in linewith previously described tumor-associ-

ated NK cell studies.22 Temporal ligand-receptor interaction

analysis highlighted a set of ligands, including TGF-b1 and

CCL12, as major factors dampening NK cell activity in the tumor.

The advantage of empirically determined temporal dynamics via

Zman-seq over conventional static sequencing approaches was

exemplified by revealing a potential temporal TF circuit of coordi-

nated SMAD3 and SMAD4 activities downstream of TGF-b,

immediately preceding the emergence of the TGF-b-imprinted

terminal NK state.30,32 In the myeloid compartment, Zman-seq

uncovered state transitions from early infiltrating monocytes to

tumor-associated regulatory macrophages (Mreg) within 36–48

h.41 Along this trajectory, monocytes transitioned throughmono-

cyte-derived macrophage and TAM states by upregulating

immunosuppressive modules and downregulating pro-inflam-

matory modules. Upstream TF activities also showed increasing

pro-tumor and decreasing anti-tumor activities across time,

driven by signals such as TGF-b1 and ANXA1. Zman-seq also
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highlighted immunosuppressive genes and TFs that showed

distinct transient activity over time (e.g., LILRB3 and STAT3).48

These examples showcase tightly coordinated gene and TF ac-

tivities as components of the dynamic regulation of immunosup-

pression in the TME, only detectable with the unique temporal

resolution that Zman-seq provides. This conceptual advance

can be readily applied to develop the next generation of immuno-

therapeutic agents in a data-driven fashion by hijacking tumor

escape modules. For instance, Zman-seq revealed that chemo-

kines such as CCL5, produced by mature TAMs, may recruit

circulating leukocytes such as monocytes and T cells into the

TME, whereas the presence of TGF-b in the TME dramatically

interfered with their anti-tumor effector function. Modulating

both immune cell infiltration and effector functions of leukocytes

may be promising strategies to combat difficult-to-treat tumors,

and indeed, therapeutic application of molecules interfering

with TGF-b andCCL5 signaling are currently being explored.75,76

Zman-seq identifies genemodules that canbe targeted to specif-

ically interfere with critical checkpoints in immune cell differenti-

ation, such as the monocyte to TAM transition.

Finally, we tested whether Zman-seq can uncover the mecha-

nism of action of myeloid checkpoints and thereby help prioritize

their application as monotherapy and in combination in pre-clin-

ical trials. Inhibition of TREM2, a known signaling hub for immu-

nosuppressive TAMs,17 with an antagonistic antibody resulted

in extensive direct effects inmacrophages and secondary effects

in other interacting cells, such as NK cells. Zman-seq showed

that cells with the earliest time stamps comprised monocyte

states that were shared across aTREM2-treated and control

mice. However, after this early state, macrophages of aTREM2-

treated mice followed a completely distinct TAM differentiation

trajectory. In contrast to Arg1high TAMs in control-treated mice,

aTREM2 treatment resulted in Acp5high and Cd72high inflamma-

tory TAMs. In progression to this state over time, macrophages

increased pro-inflammatory signaling, decreased or reversed

suppressive signaling, and in parallel exhibited significant meta-

bolic changes. Temporally resolved ligand-receptor analysis re-

vealed chemokines such as CCL3 and CCL4 as important

signaling hubs mediating TME reprogramming in the context of

TREM2 blockade. CCL3 is pro-inflammatory, recruiting T and

NK cells but also recruiting TAMs.77 Its cognate receptor CCR5

on TAMs promotes immunosuppression correlating with worse

clinical outcomes—targeted in clinical trials.78,79 TREM2 immu-

notherapy greatly increased Ccl3 expression while decreasing

its cognate receptor Ccr5 on TAMs—suggesting that blocking

TREM2 enhanced and channeled CCL3 signaling to support

inflammation (Figure S7G).

The main goal of science, according to John von Neumann80,

is to generate models. In biology, the modeled systems are dy-

namic, that is, the components of the system change as a func-

tion of time. Thus, describing an endless number of single cells in

minute detail will not result in useful scientific models, unless

these observations are related to each other temporally. Along

these lines, a recent study revealed causal links between genetic

variants and the single-cell expression quantitative trait loci

across the course of exogenous T cell activation. A large fraction

of these genotype-to-phenotype links would have been omitted

when analyzing time-agnostic static endpoints.81 Similarly, a
temporally resolved CRISPR-activation screen of single cells

identified TFs regulating zygotic genome activation.82 While

the incorporation of the time component in these studies was

crucial to understand how individual genes orchestrate cellular

processes like activation or differentiation, they fail to capture

the underlying complexity of intact multicellular organisms.

With Zman-seq, an empirical tool to infer gene causalities in vivo,

we usher in the next era of in vivo perturbation studies. Adding a

temporal dimension to large-scale chemical drug screens in ze-

brafish models for inflammatory disorders83 or genomic CRISPR

screens in the context of tumor immunology84 will provide a

much-needed causal understanding of the influence of genes

and the environment in biological systems. Time-stamping

combined with lineage tracing approaches will provide valuable

insights by integrating temporal dynamics with cell phylogeny

estimates. The combination of Zman-seq with spatial transcrip-

tomic methods will shed light on the temporal sequence of cell-

cell interactions and their influence on cell state in tissue, leading

to a quasi cinemagraphic window into biology. We show the util-

ity of Zman-seq in a tumor model; however, it is also well suited

to study models of infection, autoimmunity, and differentiation

beyond immunology.

Overall, our work highlights that introducing a temporal dimen-

sion into otherwise static single-cell genomic experiments pro-

vides a conceptual advance with the unique opportunity to infer

causality during cellular transitions. The application of Zman-seq

to tumor immunology clarified the progression of immune

dysfunction in the GBM TME and its rewiring under therapeutic

intervention. Empirically resolving cell-state transitions across

time is the only way toward dynamic models of complex cellular

systems approaching reality—improving our understanding of

physiology and diseases.

Limitations of the study
Zman-seq is an empirical in vivo single-cell technology providing

a ground truth of state transitions of cells across time and thus

can uncover fundamental insights into the biology of cell adap-

tions. Yet, Zman-seq in its current version has limitations that

could be addressed in future studies. For example, the number

of fluorescent time stamps is currently limited by the spectral

overlap of available dyes. However, advances in fluorescent

dyes and full spectrum analyzers virtually extend this to a total

number of more than 40 detectable fluorophores.85 In future

studies, fluorophores could be replaced by oligonucleotide barc-

odes, thereby increasing the number of possible time stamps

and ensuring compatibility with commercial droplet-based sin-

gle-cell transcriptomics pipelines. Further, fluorescent signals

fade with time after multiple days,18 and in addition, cells might

shed and recycle the CD45 epitope,86 leading to loss of labeling

and lower signal to noise for measurements of tissue exposure

times longer than �7 days.
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87. Aibar, S., González-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imri-

chova, H., Hulselmans, G., Rambow, F., Marine, J.C., Geurts, P., Aerts,

J., et al. (2017). SCENIC: single-cell regulatory network inference and

clustering. Nat. Methods 14, 1083–1086.

88. Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017). GEPIA: a

web server for cancer and normal gene expression profiling and interac-

tive analyses. Nucleic Acids Res. 45, W98–W102.

89. Jiang, H., Gomez-Manzano, C., Aoki, H., Alonso, M.M., Kondo, S., Mc-

Cormick, F., Xu, J., Kondo, Y., Bekele, B.N., Colman, H., et al. (2007). Ex-

amination of the therapeutic potential of Delta-24-RGD in brain tumor

stem cells: role of autophagic cell death. J. Natl. Cancer Inst. 99,

1410–1414.

90. Pollard, S.M., Yoshikawa, K., Clarke, I.D., Danovi, D., Stricker, S., Rus-

sell, R., Bayani, J., Head, R., Lee, M., Bernstein, M., et al. (2009). Glioma

stem cell lines expanded in adherent culture have tumor-specific pheno-

types and are suitable for chemical and genetic screens. Cell StemCell 4,

568–580.

91. Look, T., Puca, E., Bühler, M., Kirschenbaum, D., De Luca, R., Stucchi,

R., Ravazza, D., Di Nitto, C., Roth, P., Katzenelenbogen, Y., et al.

(2023). Targeted delivery of tumor necrosis factor in combination with
CCNU induces a T cell-dependent regression of glioblastoma. Sci.

Transl. Med. 15, eadf2281.

92. Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaret-

sky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A., and Amit, I. (2014).

Massively parallel single-cell RNA-seq for marker-free decomposition

of tissues into cell types. Science 343, 776–779.

93. Keren-Shaul, H., Kenigsberg, E., Jaitin, D.A., David, E., Paul, F., Tanay,

A., and Amit, I. (2019). MARS-seq2.0: an experimental and analytical

pipeline for indexed sorting combined with single-cell RNA sequencing.

Nat. Protoc. 14, 1841–1862.

94. Stirling, D.R., Swain-Bowden, M.J., Lucas, A.M., Carpenter, A.E., Cimini,

B.A., and Goodman, A. (2021). CellProfiler 4: improvements in speed,

utility and usability. BMC Bioinformatics 22, 433.

95. Xie, K., Liu, Z., Chen, N., and Chen, T. (2021). redPATH: reconstructing

the pseudo development time of cell lineages in single-cell RNA-seq

data and applications in cancer. Genomics Proteomics Bioinformatics

19, 292–305.

96. Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., 2nd, Treacy, D.,

Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al.

(2016). Dissecting the multicellular ecosystem of metastatic melanoma

by single-cell RNA-seq. Science 352, 189–196.

97. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck,W.M., 3rd, Zheng, S., But-

ler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated

analysis of multimodal single-cell data. Cell 184, 3573–3587.e29.

98. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of

fold change and dispersion for RNA-seq data with DESeq2. Genome

Biol. 15, 550.

99. Browaeys, R., Saelens, W., and Saeys, Y. (2020). NicheNet: modeling

intercellular communication by linking ligands to target genes. Nat.

Methods 17, 159–162.

100. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale sin-

gle-cell gene expression data analysis. Genome Biol. 19, 15.

101. Pierre, B., Justin, H., Adam, G., Michael, I.J., Elham, A., andNir, Y. (2022).

Deep generative modeling for quantifying sample-level heterogeneity in

single-cell omics. bioRxiv. https://www.biorxiv.org/content/10.1101/

2022.10.04.510898v1.

102. Bergen, V., Lange, M., Peidli, S., Wolf, F.A., and Theis, F.J. (2020). Gener-

alizing RNA velocity to transient cell states through dynamical modeling.

Nat. Biotechnol. 38, 1408–1414.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat anti-CD45 clone 30F11 PE Biolegend #Cat 103106;

Rat anti-CD45 clone 30F11 BV711 BD Biosciences #Cat 563709; RRID: AB_2687455

Rat anti-CD45 clone 30F11 BUV737 BD Biosciences #Cat 748371; RRID: AB_2872790

Rat anti-CD45 clone 30F11 BB515 BD Biosciences #Cat 564590; RRID: AB_2738857

Rat anti-CD45 clone 30F11 APC BD Biosciences #Cat 559864; RRID: AB_398672

Rat anti-CD45 clone 30F11 BV421 BD Biosciences #Cat 563890; RRID: AB_2651151

Anti murine TREM2 clone 178 Provided by Marco Colonna, WUSTL N/A

Anti human ILT1 clone 135.5 Provided by Marco Colonna, WUSTL N/A

Anti P2RY12 clone S16007D Alexa Fluor 647 Biolegend #Cat 848017;RRID:

AB_2941635

Anti CD11b clone M1/70 BV605 Biolegend #Cat 101237;RRID: AB_11126744

Anti CD31 clone MEC13.3 APC Biolegend #Cat 102509; RRID: AB_312916

Anti F4/80 clone BM8 APC-eFluor780 eBioscience #Cat 47480182;RRID: AB_2735036

TruStain FcX, anti CD16/32 clone 93 Biolegend #Cat 101319;RRID: AB_1574973

Anti TGF-b 123 clone 1D11 R&D #Cat MAB1835-500;RRID: AB_357931

Anti CD107a clone H4A3 PE-CF594 BD Biosciences Cat# 562628;RRID: AB_2737686

Anti CD56 clone HCD56 BV605 Biolegend Cat# 318334; RRID: AB_2561912

Anti IFNg clone B27 v450 BD Biosciences Cat# 560372; RRID: AB_1645595

Anti TNFa clone Mab11 Alexa700 BD Biosciences Cat# 557996; RRID: AB_396978

Anti CD3 clone SK7 APC-Cy7 Biolegend Cat#344818; RRID: AB_10645474

Anti LY-6C clone HK1.4 PerCP/Cy5.5 Biolegend #Cat 128012; RRID: AB_1659241

Anti TCR b chain H57-597 APC/Cy7 Biolegend #Cat 109219;RRID: AB_893626

Anti CD45.1 clone A20 Alexa Fluor 488 Biolegend #Cat 110717; RRID: AB_492863

Anti CD19 clone 6D5 PE/Cy7 Biolegend #Cat 115520; RRID: AB_313655

Biological samples

Human GSC cell lines MD Anderson Cancer Center N/A

Human NK cells MD Anderson Cancer Center N/A

Chemicals, peptides, and recombinant proteins

Recombinant human TGF- b Peprotech Cat# 100-21C-10

MCSF Peprotech Cat# 300-25-100

L-glutamine Sartorius Cat# 030201B

Non Essential Amino Acids Biological Industries Cat# 013401B

Mercaptoethanol Gibco Cat# 35310-010

Sodium pyruvate 1mM Sartorius Cat# 03-042-1B

Penicillin-streptomycin Biological Industries Cat# 03-031-1B;

Fetal bovine serum (HyClone) GE Cat# SH30071.03

Albumine Bovine, Fraction V MP-Biomedicals Cat# 9048-46-8

Ficoll-Paque PLUS Sigma-Aldrich Cat# 17-1440-03

Brefeldin A Sigma-Aldrich Cat# B7651

PMA Sigma-Aldrich Cat# P8139

Ionomycin Sigma-Aldrich Cat# I9657

Live/dead aqua viability dye Thermo Fisher Scientific Cat# L34957

BD Cytofix/Cytoperm� Fixation/Permeabilization Kit BD Biosciences Cat# 554714

Percoll Sigma-Aldrich Cat# GE17089101

(Continued on next page)
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EDTA 0.5M in water, pH 8.0 Sigma-Aldrich Cat# 03690

4’,6-Diamidino-2-Phenylindole, Dilactate (DAPI) Biolegend Cat# 422801

Dithiotreithol, 0.1M (SuperScript II) Thermo Fisher Scientific Cat# 18064022

RBC lysis solution Sigma Cat# R7757

Monensin, GolgiStopTM BD Biosciences Cat# 554724

Murine GM-CSF PeproTech Cat# 315-03-20

ACK Lysing Buffer Thermo Fisher Scientific Cat# A1049201

Collagenase IV Worthington Cat# LS004188

DNase Roche Cat# 10104159001

Deposited data

Zman-seq scRNAseq raw data, brain tumor and

peripheral organs

NCBI Gene Expression Omnibus GEO: GSE232040

Human scRNAseq data from brain tumor Pombo Antunes et al.24 GEO: GSE163120

TCGA human cancer database Tang et al.87 http://gepia.cancer-pku.cn

Experimental models: Cell lines

Mouse: GL261 glioblastoma Provided by the laboratory of Tobias Weiss88 CVCL_Y003

Human: K562 erythroleukemia ATCC CCL-243; CVCL_0004

Experimental models: Organisms/strains

Mouse: C57BL/6/WT Harlan N/A

Mouse: C57BL/6 Ub-GFP The Jackson Laboratory IMSR_JAX:004353

Mouse: C57BL/6/SJL CD45.1 The Jackson Laboratory IMSR_JAX:002014

Oligonucleotides

qPCR primer Actb left:

GGAGGGGGTTGAGGTGTT

This paper N/A

qPCR primer Actb right:

TGTGCACTTTTATTGGTCTCAAG

This paper N/A

Software and algorithms

ZmanR package This paper https://github.com/kenxie7/ZmanR

Python version 3.8.16 Python Software Foundation https://www.python.org/

R version 4.1.0 The R Foundation http://www.r-project.org/

FlowJo software FlowJo, LLC https://www.flowjo.com/

ImageJ Version 1.53t National Institutes of Health https://imagej.net/ij/index.html

CellProfiler version 4.2.5 Broad Institute https://cellprofiler.org

Other

MARS-seq reagents Jaitin et al.89 and Keren-Shaul et al.90 N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ido Amit

(ido.amit@weizmann.ac.il).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single-cell RNA-seq data have been deposited at GEO and are publicly available as of the date of publication. Accession

numbers are listed in the key resources table. All original code has been deposited at GitHub and is publicly available as of

the date of publication. URL is listed in the key resources table. Microscopy data reported in this paper will be shared by

the lead contact upon request.
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d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table, or are available at http://gepia.cancer-pku.cn.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines
GL261 mouse glioma cells (kindly provided by the laboratory of T. Weiss, University Hospital Zurich)88 were grown in Dulbecco’s

Modified EagleMedium (DMEM,Gibco, 41965-039) at 37� Cwith 5%CO2, supplemented with 1%penicillin-streptomycin (Biological

Industries, 03-031-1B), 2mM L-glutamine (Sartorius, 03-020-1B), 1mM sodium pyruvate (Sartorius, 03-042-1B) and 10% heat inac-

tivated fetal bovine serum (GE, Cat# SH30071.03).

Mouse primary bone marrow derived macrophages (BMDMs)
Primary bone marrow cells from female C57BL/6 mouse were cultured with C10 medium containing RPMI medium supplemented

with 10% FBS (GE, Cat# SH30071.03), 1mM sodium pyruvate (Sartorius, Cat# 03-042-1B), 1% x100 non-essential amino acids (Bio-

logical Industries, Cat# 013401B), 10mM HEPES buffer, 2mM L-glutamine (Sartorius, Cat# 030201B) and 50mM b-mercaptoethanol

(Gibco, Cat# 35310-010), 30 ng/ml MCSF (Peprotech, Cat# 300-25-100), maintained at 37�C and 5% CO2.

Mouse models
For all Zman-seq experiments female (8–13 weeks old) wildtype mice (C57BL/6) (Harlan) were housed in the Weizmann Institute an-

imal facility under pathogen-free conditions and 12-h light/12-h dark cycle. Food and water was provided ad libitum. For antibody

decay measurements C57BL/6 Ub-GFP transgenic mice (Strain #004353) and B6.SJL mice (Strain #033076) were used.

All experiments were conducted as approved by the Institutional Animal Care and Use Committee. Mice were monitored daily for

3 days after tumor implantation. Tumor bearing mice were sacrificed before (<14 days post implantation) the development of symp-

toms for scRNAseq experiments.

METHOD DETAILS

Animal treatments
Glioma-bearing mice were treated intraperitoneally (i.p.) with aTREM2 antibody (clone 178; Fc-mutated recombinant mAb,

200mg/mouse) on day 2 and 7.40 Anti-hILT1 (clone 135.5; Fc-mutated recombinant mAb specific for human ILT1, a receptor ab-

sent in mice) was used as a control (200 mg/mouse).

Brain tumor implantation
Eleven-week-old female mice were anesthetized with isoflurane (Isoflurane, USP Terrell, Piramal) (3-4% induction, 1.5-2% mainte-

nance), received local 2 mg/kg lidocaine (Vetmarket 2%, 162097) and systemic 0.05 mg/kg buprenorphine (Bupaq, 0.3mg/ml,

Richter Pharma) analgesia. Mice were intracerebrally injected with 2x104 GL261 cells in 2ml PBS in the right anterior striatum (coor-

dinates from Bregma: +0.5 mm antero-posterior, +2.2 mm medio-lateral, -3.5 mm dorso-ventral). Mice were kept on a heating pad

during the procedure and until mice were awake and mobile. After surgery mice were monitored and treated with meloxicam 5mg/kg

(Loxicom, 5 mg/ml, Norbrook) subcutaneously daily, for three days.

In vivo time stamping
Mice were briefly anesthetized with isoflurane (3-4%) and were injected with 100 ml of fluorescent antibody solution intravenously

(containing 1.2 or 4 mg antibody corresponding to 60 mg/kg or 200 mg/kg body weight (bw) respectively). Time stamping was

done with CD45 antibodies, clone 30-F11 with following fluorophores: PE (Biolegend, Cat# 103106), BB515 (BD Biosciences,

Cat# 564590), BUV737 (BD Biosciences, Cat# 748371), BV711 (BD Biosciences, Cat# 563709). We consistently observed a broad

range of fluorescence intensities of PBMC cells for all fluorophores, already 15 minutes after in vivo CD45-antibody injection.

In order to calibrate antibody concentrations for in vivo timestamping we injected 20, 60 and 200 ug/kg bw CD45-PE labeled an-

tibodies and analyzed the PBMCs 15 minutes later via FACS (Figures 1B and S1A).

We established at what rate injected CD45 antibodies become unavailable for binding CD45 in the blood by sampling the blood

(50 ml) of mice 5, 15, 30, 60, and 90 minutes after injecting 200 ug/kg bw CD45-PE. We indirectly measured the amount of unbound

CD45-PE antibody bymixing the samples with 50 ml blood from aGFP-mouse for 15minutes, followed bywashing andmeasuring the

PE emission of GFP+ cells via FACS (Figures 1C and S1B).

Estimating the in vivo labeling decay
The decay of anti-CD45-PE antibody from stained cells (Figure S1F) was measured by transferring CD45-PE stained CD45.1+ cells

(2x106 in 100 ml PBS) from congenic mice (B6.SJL) to CD45.2 mice. Three mice received CD45-PE stained CD45.1 cells, one control
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mouse received CD45.1 cells without PE stain, one mouse did not receive cell transfer. CD45.1 PBMCs were isolated from the blood

of 5 femalemicewith Ficoll density gradient andwere stained for 20minutes on 4�Cwith CD45-PE antibody (Biolegend, Cat# 103106,

1:100). At 4, 8, 24, 48, 96, 144 hours after cell transfer, 100 ml of blood was drawn. Red blood cells were lysed with RBC lysis solution

(Sigma, Cat# R7757) washed with FACS buffer and stained with antibodies against CD45.1 (Biolegend, Alexa 488, clone A20, Cat#

110717), CD11b (Biolegend, BV605, clone M1/70, Cat#101237), CD19 (Biolegend, PE/Cy7, clone 6D5, Cat# 313655), TCR b chain

(BioLegend, APC/Cy7, clone H57-597, Cat #109219), LY-6c (Biolegend, PerCP/Cy5.5, clone HK1.4, Cat# 128012) and DAPI live/

dead stain. Cells were washed with FACS buffer and measured with BD LSR II flow cytometer. Data was analyzed with FlowJo

and R.

Flow cytometry analysis of tumor infiltrating and resident CD45+ cells
We tested for how long in vivo stained leukocytes can be detected in the tumor by injecting mice with distinct fluorescent CD45 an-

tibodies 60, 48, 36 and 24 hours (PE, BV711, BB515, BUV737 respectively) before mice were sacrificed (Figures 1E and S1D). Mice

were transcardially perfused with PBS to wash out the blood. Tumors were dissociated into single cell suspensions, stained for

CD45-APC (BD Biosciences, Cat# 559864) and were recorded with BD Symphony 6 flow cytometer. To test whether microglia

gets stained by 48, 36, 24 and 12 hour CD45 time stamping, tumor bearing hemispheres were dissociated into single cells and

stained 1:100 with CD45-BV421 (BD Biosciences, #Cat 563890), CD11b-BV605 (Biolegend, Cat# 101237), P2RY12-Alexa647 (Bio-

legend, Cat# 848017), F4/80-APC/eFluor780 (eBioscience, Cat# 47480182), LY6C-PerCP/Cy5.5 (Biolegend, #Cat 128012)

(Figures 1F and S1E) and recorded with BD Symphony 6. Data was analyzed with Flowjo and R.

Isolation and in vitro treatment of BMDMs
Bone marrow was isolated from a 8-weeks-old female C57BL/6 mouse by flushing the femora and tibiae with C10 culture medium

using a 21-gauge needle. The suspension was filtered through a 70-mm cell strainer. Cells were centrifuged at 350 xg for 5 minutes at

4�C. Cells were resuspended in red blood cell lysis solution and incubated for 5 minutes at room temperature, followed by washing

and resuspension in C10medium. Cells were then cultured by plating 150k cells per well (12-well non-tissue culture treated plates) in

1 ml of C10 supplemented with 30 ng/ml human MCSF (Peprotech, Cat #300-25-100). On Day 2 and 5, the medium was replaced by

regular C10 medium or one of two preparations of conditioned medium (a 3:1 or 6:1 mixture C10 medium with GL261 supernatant

collected and filtered two days after splitting GL261 cell cultures). Cells were treated with 0.01 ug/ml aTREM2 antibody or 0.01 ug/ml

isotype control (anti-hILT1) antibody or left untreated. On day 7, cells were washed with PBS and detached with accutase for 15 mi-

nutes followed by FACS sorting into MARS-seq capture plates for scRNAseq. For TGF-b treatment experiment, BMDMs were stim-

ulated on day 6 with 20 ng/ml recombinant human TGF-b (Peprotech, Cat# 100-21C-10) and harvested on day 7.

PBMC isolation and FACS analysis
Fresh mouse blood samples were purified via sterile density gradient centrifugation (Ficoll-Paque (GE Healthcare Life Sciences)) at a

1:1 ratio. Centrifugation (500 g, 25 min) was performed at 10�C, and the mononuclear cells were carefully aspirated and washed with

ice-cold FACS buffer, followed by washing with ice-cold FACS buffer and staining with CD45-APC and DAPI. Cells were filtered

through a 70 mm cell strainer and measured on a BD FACS Symphony 6 (BD Biosciences), data was analyzed with FlowJo and R.

In vitro human NK cell suppression assays
Glioma stem cells (GSCs) were obtained from primary patient samples as previously described.91,92 GSCs and magnetically purified

(Miltenyi) healthy control PBMCNK cells were co-cultured in a 1:1 ratio in the presence or absence of anti–TGF-b 123 (5 mg/ml) (clone

1D11; cat# MAB1835-500, R&D). After 48 hours, K562 target cells (ATCC CCL-243, human erythroleukemia) were added at an opti-

mized effector:target ratio of 5:1 together with CD107a PE-CF594 (clone H4A3; cat# 562628, BD Biosciences), monensin (BD

GolgiStopTM, BD Biosciences) and BFA (Brefeldin A, Sigma-Aldrich, Cat# B7651). For negative control, NK cells were incubated

without targets while for positive control they were stimulated with PMA (50 ng/mL, Sigma-Aldrich, Cat# P8139) and ionomycin

(2 mg/mL, Sigma-Aldrich, Cat# I9657) to directly activate PKC. Cells were collected, washed and stained with a live/dead-aqua

viability dye (Thermo Fisher Scientific, cat# L34957) and surface antibodies against CD3-APC-Cy7 (clone SK7; cat# 344818, Bio-

legend) and CD56-BV605 (clone HCD56; cat# 318334, Biolegend) and then fixed, permeabilized (BD Biosciences, Cat# 554714)

and stained with IFN-g-v450 (clone B27; cat# 560372) and TNF-a Alexa700 (cloneMAb11; cat# 557996) (BD Biosciences) antibodies

for 30 minutes before washed. The data were acquired using LSRFortessa instrument (BD Biosciences) and analyzed using FlowJo

software (FlowJo LLC, BD Biosciences).

Histology of in vivo labeled leukocytes in GL261 tumors
Three 8-week-old female mice were stereotaxically implanted with GL261 tumors. Mice were sacrificed 13 days later. 24 hours and

15minutes before transcardial perfusion with ice-cold PBS and brain extraction, mice were injected with 200 ug/kg bw CD45-BB515

and CD45-PE, respectively. Whole brains were dissected and embedded in Optimal Cutting Temperature compound (Sigma-

Aldrich). The blocks were laid on dry ice to freeze. 10 mm sections were cut using a LEICA CM1950 cryostat. Next, sections were

fixed with 4% PFA at room temperature for 10 minutes, then washed with PBS three times, followed by 2 hours blocking (5%

FBS, 1% BSA and 0.2% TritonX100) at room temperature. Sections were incubated with APC-conjugated CD31 (MEC13.3, Cat#
Cell 187, 149–165.e1–e9, January 4, 2024 e4
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102509, 1:100, BioLegend) overnight at 4 �C. DAPI nuclear stain was added for 10 minutes. Sections were mounted with SlowFade

(Invitrogen, Cat# S36937) and sealed with coverslips. Imaging was performed using Andor Dragonfly spinning disk confocal micro-

scope. Images were cropped to contain tumor tissue and downscaled by a factor of 0.5 using ImageJ. Segmentation and quantifi-

cation was done with CellProfiler.93

Single cell isolation and sorting for RNA sequencing
Tumor-bearing mice were sacrificed 13 days after tumor inoculation. Mice were deeply anaesthetized by intraperitoneal injection of

ketamin 10 mg/ml (Ketavet Veterinary, 100mg/ml, Zoetis) and xylazine 2 mg/ml (Sedaxylan 20mg/ml, Eurovet). Mice were transcar-

dially perfused with 10 ml of ice cold PBS. After brain extraction, tumors were dissected to reduce the amount non-tumorous brain

tissue in downstream analyses. Samples were blade-minced on ice and transferred to 1.3 ml digestion buffer (0.0125 mg/ml dNase

type I (Roche) and 1 mg/ml collagenase IV (Worthington) in RPMI-1640 (Gibco, 21875-034). Samples were incubated for 20 min at

37 �C, during this incubation samples were mechanically dissociated with syringes (gauge 26). Cells were then transferred to ice and

filtered through a 100-mm cell strainer, washed with ice-cold FACS buffer (0.5% BSA, 2 mM EDTA in PBS), and centrifuged (5 min,

4 �C, 350g). Supernatant was aspirated and samples were resuspended in 37%Percoll (Sigma, Cat# GE17089101) density gradient,

followed by centrifugation at 800 g, 30 min at 4 �C. The cell pellet was washed PBS, followed by Fc-blocking (1:200) (TruStain FcX,

Clone 93, BioLegend) and staining with CD45-APC (30-F11, BD Biosciences). DAPI 0.1 mg/ml (BioLegend) was used for live/dead

stain. Cells were filtered through a 70 mm cell strainer. Cell sorting was done on BD FACS Symphony 6 flow cytometer (BD Biosci-

ences). Dead cells and doublets were excluded by gating, after which CD45+ cells were gated based on APC fluorescence, followed

by gating for the in vivoCD45 stains. Single cells were sorted into 384-well capture plates either by the ex vivoCD45-APC stain, or by

sorting cells harboring any of the in vivo CD45 stains. Capture plates contained 100 nl of lysis solution, 3 ml of mineral oil and 20 nM

barcoded poly(T) reverse transcription primers for scRNA-seq. After sorting, plates were first centrifuged and then snap-frozen on dry

ice and stored at –80 �C. Cells were analyzed using BD FACSDiva software (BD Bioscience) and FlowJo software (FlowJo LLC).

Colon, lung and blood processing for Zman-seq
Mice (5-weeks-old) were treated with the Zman-seq (n = 3, +1 non-stained control) protocol with timestamping antibody injections 48

(CD45-PE), 36 (CD45-BB515), 24 (CD45-BUV737), 12 (CD45-BV711) hours prior to tissue harvesting. Blood was sampled from the

heart, then mice were transcardially perfused with PBS. Blood was washed and incubated with 1 ml 1x ACK lysis buffer (Thermo

Fisher, Cat# A1049201) for 5 min at RT. After washing and centrifugation, leukocytes were resuspended in FACS buffer and kept

on ice until staining.

Lungs from perfused mice were cut into small pieces and digested for 60 minutes at 37�C with digestion buffer containing colla-

genase IV (final 0.2 mg/ml) and DNase I (final 0.05 mg/ml) in RPMI-1640 medium supplemented with 10% FBS. Next, tissue pieces

were dissociated with syringes. Cell suspensions were passed through a 70 mm strainer, washed and centrifuged. Cells were resus-

pended in FACS buffer and kept on ice until staining.

Colon was opened longitudinally, cleaned, cut into 0.5 cm long sections and washed with PBS. Colon tissues were incubated in

PBS with 5 mM EDTA and 2mMDTT at 37�C for 20 min to detach epithelial cells. Colon pieces were vigorously shaken up and down

for 15 seconds by hand. The remaining tissue was washed with PBS twice to remove EDTA. Next, tissue was then cut into small

pieces and was added to the digestion solution and incubated at 37�C for 60 minutes. Digested tissues were dissociated with sy-

ringes, passed through a 70 mm strainer, washed and centrifuged. Cells were resuspended in FACS buffer and kept on ice until stain-

ing. Leukocytes were stained with CD45-APC stain and DAPI. CD45-APC+ cells were sorted with BD FACS Symphony 6 sorter into

barcoded capture plates for scRNAseq.

Single cell library preparation
The scRNA-seq libraries were created using a revised version of the massively parallel scRNA-seq technique.89,90 The process

involved capturing polyadenylated mRNA from individual cells that had been sorted into 384-well plates, and then barcoding the

mRNA during the reverse transcription into cDNA. The resulting cDNA was then pooled for each plate, and underwent fragmentation

and amplification to generate sequencing-ready libraries for Illumina sequencing. Quality and DNA concentration tests were per-

formed on each library created from a plate.

Read alignment
The scRNA-seq libraries were pooled at equimolar concentrations and sequenced on an Illumina NovaSeq 6000 sequencer with a

sequencing depth ranging from 10k to 50k reads per cell. Reads were condensed into original molecules by counting same unique

molecular identifiers (UMI). We ensure that the batches for analysis showed a low level cross single-cell contamination (less than 3%)

by statistics on the detected spurious UMI in empty wells. Alignment of reads was done using the MARS-seq2.0 pipeline. In short

reads were filtered for low quality reads, subsequently mapped to the mouse reference genome mm10 using HISAT (version

0.1.6), excluding reads with multiple mapping positions.89 The UCSC genome browser was used as a reference to assign exonic

reads to genes. Cell UMI uniqueness was tested for 3kb aria. In cases where exons of different genes shared a genomic position

on the same strand, reads were considered as a single gene with a concatenated gene symbol.
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Time bin assignment
To assign a tumor exposure time bin to each cell, we classified the fluorescent FACS signal of each time stamp into stained or non-

stained (Figure S2A). As the fluorescence signal is variable in each cell due to their diversity in size and cell types as well as autofluor-

escence, the fluorescence cutoffs could not be generalized. To this end, we additionally sorted CD45+ unstained cells to build our

classification model. For each fluorescence time stamp, we trained a second order individual generalized linear model (GLM) with

forward scatter (FSC), side scatter (SSC), and DAPI channels as model predictors. Our assumption is that the forward and sideward

scatters account for the diverse cell types and ensure that we have an unbiased GLMmodel across different cell types. Formally, let

each fluorescence channel be denoted as Yi and x = ½x1;.;xp� be the vector predictor variables (where p = 7 for DAPI, three forward

scatter channels and sideward scatter channels respectively). We define the generalized linear model of second order interactions

with gaussian link as:

Y =
Xp

i = 1
bixi +

Xp

i = 1
bijxixj + e

where e � Nð0;1Þ is the independent identically distributed normal error. We check that the residuals of the model are normally

distributed by assessing plotting the residuals against the fitted values as well as Q-Q plots. Then cells with measured fluorescent

values of p< 0:001 were considered as stained. Finally, we assign a tumor exposure time bin to each cell based on the positive anti-

body stain, which in case of multiple positive stains was determined by the last stain the cell was exposed to in the circulation

(Figure S2A).

We also developed an approach for feeding the GLMwith unstained FACS events without index sorting. For this, we first manually

defined the cutoff for unstained cells in stained samples. Then we applied the same generalized linear model on unstained samples

falling into the manually defined cutoff.

MetaCell Construction
Weused the R packageMetaCell20 to analyze the single-cell data in the paper.We first removed specificmitochondrial genes, immu-

noglobulin genes, ribosomal genes, and genes linked with poorly supported transcriptional models (such as those annotated with the

suffix ‘‘Rik’’ and so on). We also discarded cells with less than 300 UMIs from the subsequent analysis. Informative genes with high

dispersion were selected using the variance-to-mean parameter T vm> 0:1 and minimum total UMI count > 100. To construct the

metacells, we used standard parameters of K = 100 and 750 bootstrap iterations to resample 75% of the cells in each iteration to

ensure homogeneity within each metacell. Cells across treatment conditions were combined for metacell construction in the treat-

ment data (Figures 4 and 5) for global characterization. Metacells were then manually annotated based on analysis of marker genes

and known cell type markers.

In the initial clustering of the metacells, we identified themajor clusters of myeloid and lymphoid cells, as well as doublet contamina-

tions. We then removed the doublet metacells andmanually annotated the clustering of the myeloid and lymphoid clusters separately.

Wecombined the clusters if therewere no significant difference in theirmarker genes and annotated themwith knowncell typemarkers

(e.g.Clec9a – cDC1,C1qa – TAMs, Arg1 – Arg1 TAM,Ace andChil3 –Monocytes, Foxp3 – Treg,Prf1 and granzymes –NKs, and so on).

The 2D projection of metacells is computed using a force-directed layout algorithm on the regularized similarity metacell graph GM

as described in the MetaCell algorithm.20 For the single cell projection, first we compute a raw similarity matrix using Pearson’s cor-

relation and then construct a weighted adjacency matrix to define a directed cell graph G. Cells are then positioned by taking the

average metacell coordinates of filtered neighbor cells from G.

MetaCell Time Trajectory Construction
To estimate a continuous tumor exposure time (cTET) profile for eachmetacell, we used the distribution of each time point within each

metacell to calculate the corresponding cumulative distribution (CDF) and area under curve which we define as cTET (top panel of

Figure S3B). Specifically, let us denote a distribution of timepoints TPi where i e f0; 12;24;36; 48g time bins. For each metacell, the

CDF of PðX % iÞ is defined as the normalized proportion of each time point TPi. Then we estimate the cTET values as

cTET = 1 � AUC�min ðAUCÞ
maxðAUCÞ�min ðAUCÞ using the area under curve (AUC) of the CDF. Since earlier time bins correspond to a larger AUC,

we renormalize the cTET such that cTET e ½0;1� and that smaller cTET indicates an earlier time bin.

We then refine the cTET profile to construct the trajectory of cell differentiation along tumor exposure time (bottom panel of Fig-

ure S3B). First, we construct a base reference trajectory Tr = ½t1;.;tn� where tie ½0;1� that shows the transitioning of cTET by taking

the average cTET in each of the annotated cell type cluster. The trajectory is ordered by the average cTET and we plot the arrows

according to the cTET values. Subsequently, we performed a correlation-based unsupervised clustering on the top informative

cell type specific genes for k e ½3.N� as described previously.94 Briefly, we used the dispersion ratio to select the top informative

genes and performed a hierarchical clustering on the normalized Spearman correlation distance matrix to obtain unbiased cell

type clusters. Then for each k, we construct a clustering trajectory Tk by ordering the cluster average cTET. We define the refined

cTET profile by the combined trajectory as follows:

Tc = a:Tr + b:

P
Tk

ðN � kÞ where a = b =
1

2
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Temporally-resolved Trajectory Analysis
We utilized the refined cTET trajectory to delve deeper into the molecular changes across time in the transitioning of cell types (e.g.

chemotactic NKs to dysfunctional NKs). We used the Spearman’s rank correlation to first identify top genes which are significantly

correlated with cTET (p < 0:05). The expression of the top genes were then smoothed across cTET using loess fitting and each gene

was re-normalized to [0, 1] across all metacells. Groups of up-regulated, down-regulated, and transiently-regulated gene modules

were then visualized as heatmaps by clustering genes of similar patterns together.

To further investigate the underlyingmechanisms that drive the gene regulations, we infer the TF activity of eachmetacell, followed

by the same correlation analysis and loess smoothing across cTET as mentioned above. The TF activity was estimated using the

Dorothea31 database with genes of confidence levels of ‘‘A’’ and ‘‘B’’. The top correlated TF activities are shown as heatmaps

showing the shift of TF regulation across time.

Projection of publicly available NK cell signatures
To investigate the emergence of NK cell subtypes across time in the context of the literature, gene signatures reported in Ducimetière

et al.22 have been retrieved and filtered for average log2(fold change) expression > 0. The obtained gene signatures have been scored

in MCs of the NK cell compartment by computing the average expression across gene signatures in MCs and subtracting the aggre-

gated expression of 100 control feature sets using Seurat’s AddModuleScore implementation.95,96 Expression scores for each gene

signature per MC have been smoothed using a polynomial fit and visualized in lineplots using ggplot2.

Differential gene analysis
We used a pseudo-bulk approach to identify differential genes between the Acp5 TAMs (enriched in the aTREM2 antibody treatment)

and Arg1 TAMs (enriched in the control antibody treatment). The gene counts were first summed within each individual mouse as

pseudo-bulk samples, resulting in 3 aTREM2 treated samples and 3 control-treated samples. Then DESeq297 was applied to

normalize the counts and to perform differential gene analysis. The top genes were visualized in Figure 5D as volcano plot with a

threshold of p-value < 0.001 and log2 fold change > 0.5.

Ligand receptor analysis across time
To estimate ligands in the TME that may drive the observed changes in gene expression upon entering the tissue, Nichenet was uti-

lized.98 Genes which showed significant correlation with cTET acrossmetacells were considered as target genes in the receiver pop-

ulation (e.g. NK cells or monocytes). Background genes were defined as genes expressed in (at least 5% of the cells in) the receiver

population and did not show significant correlation with time. Potential ligand-receptor pairs, controlling the observed time-depen-

dent changes in target gene expression, were restricted by receptors that are expressed in the receiver cell population. Ligands were

not restricted to be expressed by putative sender cells within the dataset in order to assess TME ligands being produced by non-

immune cells such as tumor cells or the stromal compartment. Ligands were prioritized based on the binary Pearson’s correlation

of whether a gene significantly correlates with time and their respective ligand-target regulatory potential. Ligand-target regulatory

potential indicates how strong a ligand is associated with a given target gene based on prior knowledge and is presented in Nichnets

integrated weighted networks. To estimate the cumulative downstream activity of a predicted ligand, the weighted average expres-

sion of downstream genes for the specific ligand was computed. For this, the gene expression of each target gene in the subset has

been scaled between 0 and 1 andweights for theweighted average have been retrieved by the respective regulatory potential of each

ligand-target gene pair. For target genes for which a negative correlation with time was observed (Pearson correlation coefficient

r < 0), the weighted expression was multiplied by -1.

Analysis of scRNAseq data of in-vitro differentiated BMDMs
ScRNAseq data of BMDMs have been pre-processed using the MetaCell package as described above. Downstream analysis has

been performed in python 3.9. QC-filtered raw counts have been processed using the scanpy framework,99 normalized, log1p trans-

formed and the top 2000 highly variable genes have been retrieved. To resolve the effect of experimental covariates such as concen-

tration of GBM supernatant in cell culture medium or antibody treatment (aTREM2, control antibody or PBS control) on the single cell

profiles, probabilistic modeling usingMrVI has been employed.100 Themodel has been trained using the raw counts of the 2000most

variable genes. The sample-infused latent representation z has been used to compute the neighbor graph and UMAP representation

using scanpy. The sample-sample distancematrix has been computed in MrVI without prior classification into cell types. Dot plots of

selected genes have been generated in scanpy.

Interaction analysis upon TREM2 inhibition
To investigate the effect of TREM2 inhibition with antagonistic aTREM2 antibody on remodeling the TME inGL261-bearingmice, first,

the Trem2-expressing and -responding cells were determined. Dotplots displaying Trem2 expression across cell subsets were

generated using Seurat v4.3.0.96 To estimate cell types altered upon TREM2 inhibition, differential gene expression between cells

of aTREM2-treatedmice and control-treatedmice were computed for each cell type using aWilcoxon Rank Sum test with Bonferroni

correction for multiple testing. To investigate downstream effects upon TREM2 inhibition and identify putative ligands mediating the
e7 Cell 187, 149–165.e1–e9, January 4, 2024



ll
Article
reorganization of the TME, Nichenet has been employed.98 For this, Trem2-expressing cells (TAMs and monocyte-derived macro-

phages) were defined as sender cells (since thesewere affected by the aTREM2 treatment) and potential ligands have been extracted

that are expressed in at least 5% of cells within either of the two clusters. Potential ligands have been further restricted by filtering

ligand-receptor pairs in which the cognate receptor is expressed in at least 5% of the receiver cell population.

To investigate autocrine signaling networks in response to TREM2 inhibition, ligands expressed by Trem2-expressing cell types

have been prioritized based on their ability to predict the observed changes in target gene expression in TAMs. To provide further

evidence that identified ligands may mediate the observed changes in target gene expression, ligands have been filtered to show

an absolute average log2(fold change) of > 1 in response to TREM2 inhibition. Thus, ligands are prioritized by both their ability to

explain changes in target gene expression based on reported ligand-target interactions in receiver cells, and their differential abun-

dance in sender cells.

To investigate indirect paracrine effects of TREM2 inhibition in leukocytes within the TME, Trem2-expressing cells have been

defined as sender cells and cell types lacking Trem2 expression but changing in response to aTREM2 treatment as potential receiver

cell types. To assess to what extent the identified set of signaling ligandsmay explain changes in downstream target gene expression

of neighboring leukocytes in the TME, hypergeometric tests have been performed using the stats package. For this, the overlap of

target genes regulated by the set of signaling ligands (99th percentile regulatory potential for each ligand) has been compared to the

differentially expressed genes upon TREM2 inhibition in the respective cell population.

Circos visualizations have been drawn using the circlize package. All other visualizations have been drawn using ggplot2.

Projection of Zman-seq derived gene signatures on human GBM
For clinical and human relevance, we wanted to assess how the Zman-seq derived genes can be utilized in human GBM. We

analyzed published data from newly diagnosed GBM patients focusing on myeloid cells.24 Using the code provided by Pombo-

Antunes and colleagues on github, we recapitulated their analysis in Seurat and produced the 2D UMAP projection plot with their

provided annotations (Figure S5E-left) and showed top relevant genes from our gene set. We used the mouse-human orthologs

to convert mouse genes to human genes, and used the AUCell101 package to score the set of genes for each single cell in the human

data. Based on the annotations, we then calculated the average score for each cell type annotation and re-normalized the scores to

0 to 1 for visualization (Figure S5E-right).

Survival analysis of human GBM patients
To assess whether expression of a given ligand is significantly associated with overall survival in human GBM patients, GEPIA (Gene

Expression Profiling Interactive Analysis) has been utilized based on the The Cancer Genome Atlas Program (TCGA).87 GBMpatients

have been stratified based on the 75th percentile of CCL5 expression and the hazard ratio of CCL5 expression for overall survival has

been tested using a Mantel-Cox test.

RNA velocity and pseudotime benchmarking with Zman-seq
To benchmark how velocity inference performs on our empirical dataset and depict the variation between different gene selection

methods, we applied scVelo102 on single cell RNA seq data of monocytes and macrophages of mice treated with an anti-TREM2

blocking antibody and isotype control (Figure S6). We applied the dynamic model from scVelo using 2000 highly variable genes (Fig-

ure S6A), and observed reverse differentiation directions from MonMac1 to monocytes. We hypothesized that this is highly depen-

dent on the number and selection of genes which had sufficient spliced / unspliced transcripts to be fittedwith the velocity model. For

instance, we show in Figure S6B that the velocity is nicely fitted for Arg1 andHif1a but not forCd274 and Il18bp despite the observed

gene expression pattern. The performance of velocity inference is highly dependent on the selected genes as well as genes which

could be fitted by the rate of spliced and unspliced transcripts. In order to quantify the results, we pooled the single cells and calcu-

lated the averaged inferred latent time per metacell to compare with our AUC time (Figures S6C and S6D). Although our Zman-seq

derived genes increased the correlation, we can observe in Figure S6D (panel 1) that the latent time mainly improves accuracy of

differentiation estimation in the TAMs (Cd72_TAMs and Arg1_TAMs), bringing them closer to the empirically determined AUC. We

calculated a deviation distance metric to show the total Euclidean distance that the inferred latent time deviates from the AUC,

and the results are concordant with the spearman correlations.

Similarly to RNA velocity inference, we benchmarked pseudotime algorithms on our empirical single-cell dataset. Since pseudo-

time algorithms can be applied on gene expression matrix independent of spliced and unspliced transcripts, we tested various al-

gorithms including DPT, Palantir, Monocle2, redPATH, and SCORPIUS5,94,103–107 on the metacells. We downsampled the number

of UMIs on the aggregated metacell gene expression matrix before normalization to ensure that each metacell is comparable to a

single cell. We used the top 1000 HVGs, gene ontology (GO) selected genes as previously described,94 and Zman-seq derived genes

for comparison (Figure S6E). It is worth mentioning that both DPT and Palantir are semi-supervised requiring a prior defined starting

node which we assigned based on the earliest AUC, whereas the other algorithms were run fully unsupervised. Both Zman-seq

derived genes and GO selected genes greatly increased the correlation performance and the deviation distance metric showed a

similar pattern (Figures S6F–S6J). Although the correlation values were similar for redPATH, DPT, and Palantir, we showed that

each algorithm performed quite differently in Figure S6H-J respectively. redPATH showed concordant results in the TAMs but the

pseudotime was earlier in the MonMac2 population; DPT showed similar performance in the TAMs, but assigned later pseudotime
Cell 187, 149–165.e1–e9, January 4, 2024 e8
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for monocytes, MonMac1 and MonMac2; and lastly Palantir was affected by a few outliers in MonMac1 and MonMac2 populations.

Taken together, we showed that current pseudotime algorithms are similarly highly dependent on gene selection.We propose that for

cell type specific differentiation, using prior knowledge genes such as Gene Ontology genes94 vastly improve the pseudotime

reconstructions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Plots and analyses were generated with R and are detailed in the respective methods sections including the statistical tests used.

Statistical details such as error estimation and number of replicates are provided in the respective figure legends.

Microscopy images were analyzed with open-source ImageJ and CellProfiler.
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Figure S1. Zman-seq facilitates tracing of transcriptomic cell states in vivo across time, related to Figure 1

(A) Flow cytometry density plots and histograms of CD45+ PBMC after increasing concentrations of CD45-PE antibody intravenous injections. Error bars indicate

mean and 90% CI (n = 3).

(B) Schematic illustration of the measurement of unbound CD45 antibody in the blood. Three wild-type (WT) mice were injected with CD-45-PE antibody and

bloodwas drawn after 5–90min. Each sample wasmixed with equal amounts of blood from a ubiquitously GFP-expressingmouse. Percentage of PE+ GFP+ cells

were determined with FACS.

(C) Fluorescent images of a GL261 brain tumor after mice were i.v. injected with CD45-PE and CD45-BB515 antibodies 15 min and 24 h before brain extraction,

respectively. Samples were prepared for microscopy and were stained for endothelia with CD31-APC antibodies. Endothelia, 24 h and 15 min labeled cells were

segmented and for quantification (see also Figure 1D).

(D) Flow cytometry density plots of CD45+ cells from GL261 tumor after intravenous fluorescent CD45 antibody injections 36 and 60 h (see also Figure 1E) before

tumor extraction.

(E) Flow cytometry dot plots of CD45+ cells from GL261 tumor showing the distinction between microglia (CD45int, CD11bhigh, P2RY12high, F4/80low, LY6Clow),

and monocytes (CD45high, CD11bhigh, P2RY12int, F4/80low, LY6Chigh) and macrophages (CD45high, CD11bhigh, P2RY12int, F4/80high, LY6Clow).

(F) Flow cytometry density plots of CD45-PE antibody-stained CD45.1+ positive cells in the blood, 4–144 h after intravenous injection of CD45.1 cells into CD45.2

mice (n = 3, +1 control receiving CD45.1 PBMCwithout CD45-PE antibody stain) (upper lane). Each density plot (4–144 h) is generated from the pooled events of 3

mice. Regression plots (lower lane) of CD45-PE antibody-stained CD45.1 cells from total CD45.1 cells over time. Regression plot of median fluorescent intensity

(MFI) of CD45-PE antibody-stained CD45.1 cells over time. Gray shading represents 95% confidence interval.
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Figure S2. Zman-seq in blood, colon and lung in steady state, and dynamic gene expression profile ofmurine leukocytes in the tumor, related

to Figures 1 and 2

(A) Schematic illustration of time bin assignment. The left panel shows the distribution of stained and unstained cells with FACS intensity (one for each time bin) on

the x axis and the frequency count on the y axis. We apply a second-order GLMmodel on the unstained cells to determine the threshold for stained cells for each

time bin. The right panel depicts the approach to assigning the time bin after classifying the stained cells. The stained cells are assigned to the ‘‘latest’’ time bin

that they were exposed to.

(B) Marker gene projections of log2 normalized footprint expression on CD45+ cells from colon, lung, and blood after 12-, 24-, 36-, and 48-h Zman-seq time

stamps.

(C) Single cells colored by time bin and projected on themetacell graph. The plotted points indicate all cells from the specific organ, respectively, and the contours

indicate the density of all cells from three organs on the metacell graph, see also Figure 1G.

(D) Heatmap showing the top markers for defining the major myeloid clusters. The expression is defined as the log2 footprint (expression over the median) and

normalized within the myeloid cells only.

(E) Heatmap showing the top markers for defining the major lymphoid clusters and is normalized in the same approach as described in (A).

(F) Single cells from each labeled time bin downsampled to 200 cells per time bin from CD45+ gated cells (see also Figure 2C).

(G) Stacked percentage area plot that shows the relative percentage of lymphoid cells at each time bin (12, 24, and 36 h, respectively). The color depicts the

different annotated cell-type clusters.

(H) Line plots (top) showing the weighted expression of published gene signatures in NK cells across time. Weighted expression has been smoothed using a

polynomial regression model and mean and 90% confidence intervals (shaded area) are shown. MCmaps of NK cells (bottom) are colored by the weighted gene

signature scores.
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Figure S3. Zman-seq reveals temporal NK cell trajectories in the tumor, related to Figure 3

(A) Marker gene projections of log2 normalized footprint expression on NK cells only, showing the transitioning from chemotactic NK to dysfunctional NK.

(B) Schematic analytical workflow and methods developed for Zman-seq. The top panel illustrates the approach to define cTET using the cumulative distribution

(CDF) profile for each metacell. The bottom panel depicts the construction of temporally resolved trajectory across time and identification of significant marker

genes across time.

(C) The CDF profile for each cell type is plotted separately, with the mean CDF plotted as a dotted line across the center. Each line depicts a metacell and is

colored by the cTET.

(D) Heatmaps of significant TF activity along cTET in the NK metacells only. Each row is normalized and smoothed according to the cTET of each metacell and

shows the transitioning of TF activity from chemotactic NK to dysfunctional NK as ordered by cTET. Line plots (right) show the normalized TF activity in the NKs

across time for SMAD2 and SMAD3. The TF activity has been smoothed using a polynomial regression model, and the 95% confidence interval is shown as the

shaded area.

(E) Schematic representation of applied interaction analysis. Ligands acting on leukocytes in the TME are predicted by correlating time-dependent target genes in

leukocytes with documented ligand-target gene databases.

(F) Dot plot displaying the gene expression of prioritized ligands that best explain temporal changes in target gene expression in NK cells (as presented in

Figures 3F and 3G). Dot size indicates percentage of cells expressing the respective gene, and color indicates mean normalized gene expression for each cluster.

(G) Heatmap showing the interaction potential between prioritized ligands and their cognate receptor in NK cells.

(H) The effect of TGFb-blocking antibody on the expression of TNF-a and IFN-g, and the degranulation (CD107a) of human NK cells co-cultured with human

glioma stem cells. Each dot represents a sample and the box extends to the 25th and 75th percentile with median in bold line.
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Figure S4. Dynamic gene expression profile of leukocytes in brain tumors upon aTREM2 immunotherapy, related to Figure 4

(A) Schematic illustration of investigating aTREM2 immunotherapy with Zman-seq.

(B) Metacell graph projection of lymphoid cells consisting of 107MCs representing 7,857 single cells sorted from 3 control antibody-treatedmice and 3 aTREM2-

treated mice on CD45+ gating.

(C and D) Heatmap showing the top markers for defining the major lymphoid (C) and myeloid (D) clusters. The expression is defined as the log2 footprint

(expression over the median) and normalized within the lympohid cells and myeloid cells separately.

(E) CDF profile line plot for the myeloid cells only. The metacells are shown in each individual cell-type cluster on the right, and the diagonal dotted line represents

the mean CDF as a reference line. Each line represents a metacell, and the color depicts the cTET value of the metacell.

(F) Projection of cTET profile on the metacell graph for the monocytes to Arg1 TAMs only. The other myeloid cell types are shown in gray on the map.
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Figure S5. Ligand-receptor interactions and metabolic activity of TAMs in brain tumors, and the effect of TREM2 antagonistic antibody on

the monocyte-to-TAM transition, related to Figures 4 and 5

(A) Dot plot displaying the gene expression of prioritized ligands that best explain temporal changes in target gene expression in monocyte-derived phagocytes

(monocytes, MoMac, and TAMs; as presented in Figures 3F and 3G). Dot size indicates percentage of cells expressing the respective gene, and color indicates

mean normalized gene expression for each cluster.

(B) Heatmap showing the interaction potential between prioritized ligands and their cognate receptors in monocyte-derived phagocytes.

(C) MC map displaying the predicted time-dependent interaction between monocyte-derived phagocytes (monocytes, MoMacs, and TAMs) and the TME. MC

maps are colored by the scaled weighted cumulative target gene expression, termed ‘‘effect strength’’, of APOA1- and AGT-regulated target genes in monocyte-

derived phagocytes.

(D) Dot plot displaying the gene expression of BMDMs after TGF-b1 treatment in vitro. Dot size indicates percentage of cells expressing the respective gene, and

color indicates mean normalized gene expression for each condition.

(E) Upper left panel shows the two-dimensional UMAP projection of 18,157 integratedmyeloid cells from 7 newly diagnosed glioblastoma (GBM) patients and the

expression of Zman-seq-derived time-dependent genes (bottom left). The right panel shows the normalized average score of our Zman-seq-derived time-

correlated genes on each cell type from the human dataset. Early myeloid genes are genes that significantly correlate with cells harboring early cTET (right top),

whereas late genes correlate with late cTET (right bottom). Mo, monocytes; Mg, microglia.

(F) Dot plot (left) displaying the expression of Trem2 across cell types. Dot size indicates percentage of cells expressing the respective gene, and color indicates

mean normalized gene expression for each cluster. Bar graph (right) showing the number of differentially expressed genes in response to aTREM2 treatment for

each cell type, determined by a Wilcoxon rank-sum test and Bonferroni correction.

(G) Line plots (right) show the normalized log2 footprint expression of marker genes in the myeloid cells across time for IgG control (in purple) and aTREM2

treatment (in blue). The normalized expression has been smoothed using a polynomial regression model, and the 95% confidence interval is shown as the

shaded area.
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Figure S6. Benchmark with scVelo velocity inference and pseudotime algorithms, related to STAR Methods

(A) Velocities derived from the dynamic model on only monocytes and macrophages at single-cell level, and visualized on the same 2D embedding as shown in

Figure 4A. The depicted latent time is inferred from using 2,000 HVGs.

(B) Putative driver genes identified by the dynamic model where Arg1 and Hif1a depict high likelihoods of dynamic behavior and CD274 and Il18bp showed low

likelihoods.

(legend continued on next page)
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(C) Spearman correlation bar plot showing the correlation between scVelo-derived pseudotime and our AUC by different gene selection methods (Zman-seq-

derived genes, 2,000 and 5,000 HVGs, respectively).

(D) Scatterplot showing the relationship between the scVelo-derived pseudotime (y axis) and our AUC (x axis), colored by the annotated cell types on metacells.

The shown results are based on Zman-seq-derived genes.

(E) Spearman correlation bar plot showing the correlation between algorithm-derived pseudotime and our AUC with different gene selection methods (top 1,000

HVGs, gene ontology genes with dispersion filter from redPATH, and Zman-seq-derived genes).

(F–J) Scatterplot showing the relationship between the algorithm-derived pseudotime (y axis) and our AUC (x axis), colored by the annotated cell types on

metacells. The shown results are based on Zman-seq-derived genes.

The black dotted line shows the AUC order, and red dotted line shows the perfect AUC. The deviation distance shows the Euclidean distance of the inferred

pseudotime from the AUC. HVG, highly variable genes.
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Figure S7. TREM2 inhibition of in vitro differentiated BMDMs resembles the in vivo effect of aTREM2 treatment and reprograms the ligand-

receptor interactions in TME in vivo, related to Figure 5

(A) Heatmap showing the aggregated single-cell distance matrix of in vitro differentiated BMDMs in the presence of TREM2-blocking antibody, isotype, or PBS

control. Supernatant of GL261 cells has been used to condition the cell culture medium at different concentrations. Each row/column corresponds to a biological

replicate.

(B) Dot plot displaying the gene expression of in vitro differentiated BMDMs. Dot size indicates percentage of cells expressing the respective gene, and color

indicates mean scaled gene expression for each condition.

(C) UMAP of MrVIs latent space z displaying the effect of GL261-conditioned cell culture medium (left) and aTREM2 antibody or control (right) on in vitro

differentiated BMDMs.

(D) Dot plot displaying the gene expression of prioritized ligands expressed by Trem2-expressing cells that best explain changes in target gene expression in

TAMs in response to aTREM2 treatment (as presented in Figure 5A). Dot size indicates percentage of cells expressing the respective gene, and color indicates

mean normalized gene expression for each cluster.

(E) Heatmap showing the interaction potential between prioritized ligands and their cognate receptors in TAMs.

(F) Dot plot indicating the differential expression of prioritized ligands between aTREM2-treated and isotype-treated mice, determined by a Wilcoxon rank-sum

test and applying a Bonferroni correction. Dot size indicates significance, and color represents average log2 fold change for aTREM2-treatedmice (high = purple,

low = blue).

(G) Circos plot indicates the autocrine interaction in TAMs induced by ligands that are produced by Trem2-expressing cells (senders) and shows an absolute

average log2 fold chain of more than 1 in response to TREM2 inhibition (as presented in Figure S7F). Color indicates the log2 fold change enrichment for each

ligand upon TREM2 inhibition, determined by pseudobulk analysis using DEseq2 (as shown in Figure 5A). Expression has been smoothed using a polynomial

regression model, and mean and 95% confidence intervals (shaded area) are shown.

(H) TCGA analysis showing the survival curves for GBM patients stratified by C3, CCL4, CCL3, CCL5, CCL7, CCL8, and CXCL9 gene expression (high > 75th

percentile). Hazard ratio of gene expression for overall survival has been tested using a Mantel-Cox test.

BMDMs, bone-marrow derived macrophages; C10, cell culture medium only.

ll
Article


	Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma
	Introduction
	Results
	Zman-seq resolves in vivo transcriptomic cell states across time
	Temporal dynamics of the TME in GBM
	Molecular trajectories of NK cell dysfunction in GBM
	Temporal molecular trajectories of the mononuclear phagocyte system in the TME
	Blocking TREM2 signaling redirects the monocyte-to-macrophage trajectory in the TME

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Cell lines
	Mouse primary bone marrow derived macrophages (BMDMs)
	Mouse models

	Method details
	Animal treatments
	Brain tumor implantation
	In vivo time stamping
	Estimating the in vivo labeling decay
	Flow cytometry analysis of tumor infiltrating and resident CD45+ cells
	Isolation and in vitro treatment of BMDMs
	PBMC isolation and FACS analysis
	In vitro human NK cell suppression assays
	Histology of in vivo labeled leukocytes in GL261 tumors
	Single cell isolation and sorting for RNA sequencing
	Colon, lung and blood processing for Zman-seq
	Single cell library preparation
	Read alignment
	Time bin assignment
	MetaCell Construction
	MetaCell Time Trajectory Construction
	Temporally-resolved Trajectory Analysis
	Projection of publicly available NK cell signatures
	Differential gene analysis
	Ligand receptor analysis across time
	Analysis of scRNAseq data of in-vitro differentiated BMDMs
	Interaction analysis upon TREM2 inhibition
	Projection of Zman-seq derived gene signatures on human GBM
	Survival analysis of human GBM patients
	RNA velocity and pseudotime benchmarking with Zman-seq

	Quantification and statistical analysis



