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• Weused deep-learning neural networks to
detect pollen grains inmicroscope images.

• Our algorithm was compared against the
built-in of an automated device BAA500.

• We achieved an unweighted average F1
score of 76.9 % vs. 61.3 % of the BAA500.

• Deep learning pollen detection contrib-
utes further to operational pollenmonitor-
ing.
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Airborne pollen monitoring has been conducted for more than a century now, as knowledge of the quantity and peri-
odicity of airborne pollen has diverse use cases, like reconstructing historic climates and tracking current climate
change, forensic applications, and up to warning those affected by pollen-induced respiratory allergies. Hence, related
work on automation of pollen classification already exists. In contrast, detection of pollen is still conducted manually,
and it is the gold standard for accuracy. So, herewe used a new-generation, automated, near-real-time pollenmonitor-
ing sampler, the BAA500, and we used data consisting of both raw and synthesisedmicroscope images. Apart from the
automatically generated, commercially-labelled data of all pollen taxa, we additionally usedmanual corrections to the
pollen taxa, as well as a manually created test set of bounding boxes and pollen taxa, so as to more accurately evaluate
the real-life performance. For the pollen detection, we employed two-stage deep neural network object detectors. We
explored a semi-supervised training scheme to remedy the partial labelling. Using a teacher-student approach, the
model can add pseudo-labels to complete the labelling during training. To evaluate the performance of our deep learn-
ing algorithms and to compare them to the commercial algorithm of the BAA500, we created a manual test set, in
which an expert aerobiologist corrected automatically annotated labels. For the novel manual test set, both the super-
vised and semi-supervised approaches clearly outperform the commercial algorithm with an F1 score of up to 76.9 %
intersection over union; mAP, mean average precision.
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compared to 61.3 %. On an automatically created and partially labelled test dataset, we obtain a maximum mAP of
92.7 %. Additional experiments on raw microscope images show comparable performance for the best models,
which potentially justifies reducing the complexity of the image generation process. Our results bring automatic pollen
monitoring a step forward, as they close the gap in pollen detection performance between manual and automated
procedure.
1. Introduction

A large proportion of the general population displays allergic reactions
to airborne pollen. Affected people can experience severe impairment due
to pollen-induced allergic rhinitis which is often accompanied by allergic
asthma (Bergmann et al., 2016; Meltzer et al., 2009; Brożek et al., 2017).
The symptoms include nasal obstruction, rhinorrhoea (runny nose), sneez-
ing, itching of the nose, and post-nasal drainage (Bousquet et al., 2001). In-
creasing the burden, pollen seasons in northern mid-latitudes start earlier
due to climate change (Cissé et al., 2022). As a result, the prevalence of al-
lergic respiratory diseases increases (Cissé et al., 2022; Damialis et al.,
2019). Effective countermeasures can be immunotherapy, pharmacother-
apy, or prophylaxis by limiting exposure to pollen (Bousquet et al., 2001).
As for the latter, digital health systems can support individuals in assessing
their risk and adapting their daily plans accordingly.

To illustrate, digital health systems have already been introduced in
other medical use cases such as depression recognition (see https://
deprexis.com/ or https://www.novego.de/) and treatment of diabetes
(see https://www.emperra.com/en/esysta-product-system/). In both
cases, these systems monitor diurnal conditions, increase the patient's
awareness, and support healthy decisions. In the case of digital health sys-
tems for patients experiencing allergic rhinitis due to exposure to airborne
pollen, two components are crucial: the provision of real-time information
and accurate pollen monitoring.

Provisioning of real-time information has been implemented in the
form of web applications (e.g. https://pollenmonitor.com and https://
www.pollensense.com). Pollen monitoring has traditionally been per-
formed bymanual expert labour which is still considered the gold standard
with regard to the accuracy (Oteros et al., 2020). However, the effort of
manual labour limits the realisation of genuine real-time monitoring. Vari-
ous approaches to automating the monitoring process have been proposed:
currently, they are distinguished into two groups, those based on digital mi-
croscopy and image recognition, and those using light-induced fluores-
cence (Buters et al., 2022). The former category of monitoring process,
which is also the oldest and might be considered as the most developed
so far, can be further distinguished between approaches for mere classifica-
tion (assigning the correct pollen class for an image with a single pollen
grain) on which there already exists extensive work (Viertel and König,
2022) and approaches for detection (finding the locations of potentially
multiple pollen grains in an image and assigning the correct class to each
of them). Detection describes amore holistic approach to pollenmonitoring
as entire microscope images can be fed into detection algorithms. There-
fore, pollen detection includes the additional step of cropping raw micro-
scope images, which is the precondition of pollen classification and thus
seems more relevant for real-world application. Leaps in progress in the
field of object detection (with applications such as autonomous driving,
robot vision, and video surveillance) as described in Zou et al. (2019)
and, likewise, domain knowledge transfer, promise to close the gap in qual-
ity between manual and automatic pollen monitoring.

Ideally, pollen monitoring applications include real-time information
from a large number of high-quality automatedmonitoring stations. The in-
formation of such a network can also enhance accurate pollen forecast, sim-
ilar to current weather prognosis. An example of the creation of a pollen
monitoring network is the electronic pollen information network (see
https://epin.lgl.bayern.de/pollenflug-aktuell) that has been deployed in
Bavaria, Germany by the Bavarian Health and Food Safety Authority. Be-
yond the medical application, pollen monitoring can also be applied in fur-
ther use cases including tracking of climate-induced change of pollen
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prevalence (Lind et al., 2016), reconstruction of historic climates and envi-
ronmental change (Zhang et al., 2017; Ivanov et al., 2002), and even the
solving of forensic issues (Mildenhall et al., 2006).

In this work, we focus on the improvement of automated pollen detec-
tion, expanding on previous research, such as in Gallardo-Caballero et al.
(2019) and based on data, which has partly been used for classification
tasks before (Schiele et al., 2019; Schäfer et al., 2021). Our main contribu-
tions here are the training and evaluation of two-stage object detectors on a
dataset with pollen grain images sampled over the period of two years. To
our knowledge, our training dataset (manually classified image library) is
the largest worldwide, with more than 100,000 images identified. Further-
more, we train and evaluate our models on raw microscope images from a
single focal range that are less sharp than previously used images. And last
but not least, we propose a novel semi-supervised training scheme to deal
with the specific challenges of an automatically created dataset that was
only partially corrected by aerobiologist experts.

2. Material and methods

We used microscope images created by BAA500 commercial pollen
monitors located at two different sites in Augsburg, Germany. For 2016,
the images were created at the Bavarian Environment Agency located at
48°19′33.6″N, 10°54′10.8″E and 1.5 m above ground level. For 2018, the
images were created at the Chair of Environmental Medicine at 48° 23′
04.15″N, 10° 50′35.95″E at 4 m above ground level. (Smaller) parts of the
2016 data have been analysed in previous research on automated pollen
classification (Schiele et al., 2019; Schäfer et al., 2021). The BAA500 can
produce microscope images at a varying frequency. Typically, the commer-
cial standard model uses 3-hourly intervals. The pollen monitor exercises
two main tasks: creating images of particles that are currently in the air
and localising and identifying pollen grains in the created images.

The process of the pollen monitor to create the images is described in
Heimann et al. (2009). The pollen monitor creates stacks of images for dif-
ferent focal ranges. Afterwards, two different processes aggregate the stacks
into a single image. The first process selects the raw image from the stack
with maximum sharpness. The second process synthesises the entire stack
of raw images into a single synthesised image with optimum sharpness de-
rived from the single images. For the second process, an additional non-
optional step deletes parts of the image that the proprietary algorithm of
the pollen monitor deems background.

2.1. Datasets

We trained our models on two datasets. For the characteristics of the
datasets refer to the upper part of Table 1. Both datasets derived from the
images created by the pollen monitor. 2016 + 2018Augsburg15 consists
of synthesised and raw images which could both be retrieved from the pol-
len monitor. For 2016Augsburg15 only synthesised images were available.
Both datasets contain 15 distinct pollen taxa that were also previously se-
lected by Schiele et al., 2019 and Schäfer et al. (2021). The 15 pollen taxa
include most common pollen types in the atmosphere and some of the
most important allergenic pollen taxa (Kolek et al., 2021).

The images in Fig. 1 show the advantages and disadvantages of the two
types of output images. On the one hand, the raw images keep information
from all parts of the image. As a result, a raw image is not dependent on the
proprietary algorithm of the pollen monitor to correctly identify which
parts of the image contain pollen grains — which is potentially error-
prone. As highlighted in the top centre of the images in Fig. 1, pollen grains
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Table 1
Overviewof the characteristics of our datasets. Training datasets are shown in the upper part, whereas datasets used for selection and evaluation are shown in the bottom part.
The abbreviation Syn. denotes synthesised images. The imbalance ratio is shownunder ρ. Note that due to technical problems, images are not available in the time frame from
09/05/2018 to 05/07/2018, depicted in 2016 + 2018Augsburg15.

Period of time Type #Bounding boxes #Images ρ

2016Augsburg15 04/11/2015–05/10/2016 Syn. 30,785 11,822 64.4
2016 + 2018Augsburg15 01/01/2016–31/12/2016, 02/01/2018–26/12/2018 Raw & Syn. 253,794 88,131 53.6
PoMoVal Sampled throughout 2016 Syn. 10,258 3974 70.0
PoMoTest Sampled throughout 2016 Syn. 10,257 4051 61.5
ManTest Sampled throughout 2018 Raw & Syn. 3791 976 39.3

Fig. 1. Examples of raw and synthesised images created by the BAA500. Highlight at a location of an additional pollen grain which is deleted in the synthesised image. Since
the particles can be at different ranges from the camera, not all objects can be sharp for the raw image.

Fig. 2. Example of an image where the pollen monitor pollen detection algorithm
only finds a fraction of the existing pollen grains. The bounding boxes derived
from the pollen monitor with the manually corrected label are depicted with red
boxes.

                                                     
can be deleted from the synthesised image by the pollen monitor algorithm
because the algorithm does not detect the pollen grain. Since the pollen
monitor algorithm does not edit the raw images, those pollen grains will
still appear in the raw images. The synthesised images, on the other hand,
have the advantage of combining information from all images of the
stack. As a result, the synthesised images are generally sharper (compare
the images in Fig. 1). Since raw images contain information from a single
focal range, some pollen grains merely appear as blurry, unidentifiable,
round objects.

In addition to creating images of pollen grains, the pollen monitor also
detects pollen grains in the form of bounding boxes with a class label iden-
tifying the pollen grain in an automated fashion. For the classification, mor-
phological and textural characteristics are used to determine the label. The
manufacturer claims precision and recall of more than 90 % for
allergologically more relevant pollen types (Alnus, Ambrosia, Artemisia,
Betula, Corylus, Poaceae, and Taxus) and allergologically less relevant
(Acer, Carpinus, Quercus, and Salix) (Heimann et al., 2009).

In practice, the labelling of the bounding boxes by the pollen monitor
can be improved. To do so, the class labels of the bounding boxes provided
by the pollen monitor were manually corrected by expert aerobiologists.

In contrast, the locations of the bounding boxes are not manually
corrected. Therefore, the locations of the bounding boxes exhibit several
problems. For one, multiple overlapping pollen grains can be combined
into a single bounding box. Additionally, pollen grains can be combined
with dust or other unidentified particles. Finally, some pollen grains do
not have a bounding box (see Fig. 2). All the above lead to a consistent
3



                                                     
underestimation of the total amount of pollen counted. Especially for images
with many pollen grains, the pollen monitor struggles to locate all samples.
Therefore,we call the data partially labelled. To dealwith the above problem,
we cleaned the dataset in such a way that only the bounding boxes which
contain a single pollen grain remain. With this process, we make sure that
the pollen detection algorithm is only trained to detect high-quality bounding
boxes, even though we concede a penalty if the algorithm predicts a pollen,
whose bounding box has been removed. Due to the challenges with missing
bounding boxes, we expect our algorithms thus to be pushed towards a bias
of false negatives over false positives, i.e., detections of pollen are likely to
be correct, but not all pollen grains will be detected.

Another general challenge with the datasets is the distribution of sam-
ples for the classes. As shown in Table 1, all datasets exhibit a notable
class imbalance. The class imbalance for the different datasets is measured
with the imbalance ratio ρ defined in Johnson and Khoshgoftaar (2019).
The imbalance ratio shows the ratio between the number of samples in
the class with the most samples and the class with the least samples.
Thus, a high ρ shows a high imbalance.

For overviews on the distribution of pollen grain classes for the datasets,
please refer to Supplementary Material, Figs. S1, S2, and S3.

2.2. PoMoVal, PoMoTest, and ManTest

For the selection of models and for a first evaluation of the models, we
used the types of images that are in 2016Augsburg15. As a result, the train-
ing on 2016Augsburg15 and 2016+ 2018Augsburg15 is likely to excel on
these datasets. However, as another result, the datasets also suffer from the
same bias to the pollen monitor and the derived challenges described in
Section 2.1. Therefore, we call these datasets Pollen Monitor Validation
(PoMoVal) and PollenMonitor Test (PoMoTest) in the following. PoMoVal
and PoMoTest differ slightly when used for models that are trained on
2016Augsburg15 and 2016 + 2018Augsburg15, respectively. When used
for models trained on 2016 + 2018Augsburg15, 81 (or about 2 %) of the
4051 images are omitted to ensure comparability between experiments
on raw and on synthesised images.

To accurately measure the real-world performance of a model, we
created an additional Manual Test set (ManTest) with additional
bounding boxes for pollen grain samples that the pollen monitor did
not detect. The annotations were performed by expert aerobiologists
in the current team by use of a customised annotation tool. 74 % of
the bounding boxes were correctly created by the pollen monitor, the re-
maining 26 % were added manually with the used annotation tool. For
an overview of the pollen frequency and the distribution of the added
manual labels please refer to Fig. S3.

Despite the manual effort, the resulting test set still exhibits properties
which make pollen detection challenging for evaluated models on both
the raw and the synthesised images:

1. The bounding box location distribution of themanual test set is different
from 2016Augsburg15 and 2016+ 2018Augsburg15. While the former
contains bounding boxes for pollen grain samples at the edges of the
image, the latter do not.

2. Previously existing bounding boxes can contain unidentifiable content
in the raw images, because they are not sharp in all parts of the image.

3. Additional pollen grain samples can exist without bounding boxes in
synthesised images, as themanual labelling was done on the raw images
where parts of the image can be blurry.

4. Bounding boxes can be in blackened parts of the synthesised image.

Some of the challenges arise from the fact that raw images were chosen
for the labelling process, since the synthesised images do not contain any in-
formation in the blackened parts of the images.

2.3. Data augmentation and pre-processing

To prevent overfitting, we employed data augmentation to artificially
inflate the existing dataset. For the experiments, we applied different
4

configurations of the following data augmentations. For geometric aug-
mentations we use: horizontal flip, vertical flip, centre crop, and rotation.
When used, each of the augmentations was applied with a probability of
0.5. For some of the geometric augmentations, there are implications that
are not immediately obvious. The centre crop augmentation adds bounding
boxes at the edges of the image. These bounding boxes often only contain
parts of a whole pollen grain. Such bounding boxes do not appear in
2016Augsburg15 or in 2016 + 2018Augsburg15. The same holds true
for rotation augmentation since bounding boxes can be partly rotated out-
side of the image. A second implication of the rotation augmentation is
slightly less accurate bounding boxes because simply rotating the bounding
boxes leads to boxes that are not aligned with the image frame. Therefore,
the rotated bounding boxes are enclosed in bigger – hence, less accurate –
but aligned bounding boxes.

Furthermore, we employed augmentation that changes the value of
pixels in the image. Here, we use sharpness adjustment augmentation for
the semi-supervised model, with a probability of 0.25. We also tried out
solarisation and colour jitter augmentations in preliminary experiments,
but decided against their usage due to inferior performance.

2.4. Supervised model

As a baseline, we trained a set of supervised learning algorithms as this
is the most straightforward approach for most object detection tasks. Here,
we used an adapted implementation of a Faster R-CNN (Ren et al., 2017)
from torchvision (Paszke et al., 2019). For the backbone convolutional neu-
ral network (CNN), we used pre-trained models obtained from PyTorch
Image Models (Wightman, 2019). For future work, the written experiment
code allows for theflexible integration of the plethora of pre-trainedmodels
that are available in Wightman (2019) and will presumably work with fu-
turemodels withminimal effort, too. On top of the backbone, a feature pyr-
amid network (Lin et al., 2017a) was employed to exploit the information
encoded at different scales of the backbone CNN. The resulting feature
mapswere used by the region proposal network to identify objects in differ-
ent scales.

2.5. Semi-supervised model

To tackle the challenge of missing bounding boxes, we used a semi-
supervised teacher-student model. The goal is to jointly learn to detect cor-
rect bounding boxes as they appear in the ground truth labelling of the
dataset and be able to add bounding boxes in order to detect additional pol-
len grains that aremissing in the labelling of an image. As a result, the train-
ing configuration was slightly different from the traditional approach in
semi-supervised learning, which often operates on a smaller dataset
consisting of labelled images and a larger unlabelled dataset. An overview
of the proposed architecture can be found in Fig. 3.

In more detail, both the teacher and the student consist of a Faster R-
CNN as described in Section 2.4. However, only the student is trainable,
while the teacher's parameters are frozen. For the training of the student,
first the teacher predicts bounding boxes for the images that are fed to
the student.

The predicted bounding boxes with their class labels, so-called pseudo
labels (Lee, 2013), were filtered to obtain bounding boxes with high
confidence only.

The filtering was done twice. First, we discarded region proposals with
objectness scores smaller than 0.9, i.e., if the probability assigned by the
model to indicate if a region proposal contains a pollen grain is smaller
than 0.9. And, second, we discarded final output bounding boxes with con-
fidence scores smaller than 0.9. Furthermore, bounding boxes with an in-
tersection over union (IoU) greater than 0.7 compared to any of the
existing ground truth bounding boxes were discarded, such that multiple
detections of the same pollen grain were not encouraged. IoU is a metric
measuring to what extent two bounding boxes overlap with each other.
To aggressively remove overlapping boxes, we do not take the predicted
class into account in this step.



Fig. 3.Overview of our semi-supervised learning approach. A teachermodel enriches the available labelled datawith pseudo labels. The student trains on the dataset labels in
conjunction with the pseudo labels. The teacher parameters are an exponentially weighted average of the student parameters.

                                                     
The image with the ground truth bounding boxes and the pseudo labels
was forwarded to the student to use for training according to the supervised
learning paradigm. However, teacher and student used differently aug-
mented input images, with the student having an additional sharpness ad-
justment augmentation applied. This practice of weak augmentation for
the teacher in conjunction with stronger augmentation for the student has
been called consistency regularisation (Sohn et al., 2020) and has previ-
ously been described in Bachman et al. (2014); Sajjadi et al. (2016); Laine
and Aila (2017). We employed geometric augmentations for teacher and
student. The student input images are augmentedwith an additional adjust-
ment of the sharpness for stronger augmentation.

Furthermore, for the classification of the region of interest heads, a new
loss function as described in Xu et al. (2021) was used. The loss comprises a
supervised loss and an unsupervised loss. Here, we base both losses on the
focal loss (Lin et al., 2017b). In addition, the loss function leverages confi-
dence scores from the teacher model for the predicted bounding boxes of
the student to weigh the loss derived from the student boxes.

To update the teacher, we used an exponential weighted average of the
parameters of the student as described in Tarvainen and Valpola (2017).

Our experiments are implemented with Python and the neural network
code is based on PyTorch (Paszke et al., 2019). Furthermore, we used
PyTorchLightning (Falcon et al., 2019) to avoid boilerplate code for the
training implementation. The code for the experiments is publicly available
(supervised at https://github.com/MilesGrey/pollen-detection and semi-
supervised at https://github.com/MilesGrey/ssl-pollen-detection).

3. Results

3.1. Metrics

We evaluated the performance of our models with two distinct types of
metrics: the F1 score, which shows the capabilities of assigning a bounding
box to the correct pollen class in terms of precision and recall, and themean
average precision (mAP), commonly used for object detection, which mea-
sures overall detection performance (Liu et al., 2020; Jiao et al., 2019; Zaidi
et al., 2022). For the latter, predicted bounding boxes are compared to the
ground truth box for each class individually and correct detections are con-
sidered if the IoU between predicted and ground truth bounding box is
above a certain threshold, otherwise, they are assigned to the background
class. For our work, we chose a threshold of 0.5 (denoted as mAP@0.5),
which is on the lower end of commonly used thresholds, since a pixel-
5

accurate location of the bounding boxes is not considered important for
the task at hand.

3.2. Training on 2016Augsburg15

Themodels were trained on 2016Augsburg15 for 40 epochs with a batch
size of 4 and the best models during training (measured with the mAP@0.5
performance on PoMoVal) were used for the final evaluation on the test
sets. For the training, we chose an Adam optimiser (Kingma and Ba, 2014)
with a learning rate of γ= 0.0001, β1 = 0.9, and β2 = 0.999. While we se-
lected focal as the loss function for the supervisedmodel, we applied an addi-
tional unsupervised loss as described in Section 2.5 for the semi-supervised
model. Additionally, we set the decay of the exponential weighted average
update of the teacher to 0.99 during a ramp-up phase of three epochs and
0.999 afterwards, in our semi-supervised experiments. A ramp-up phase is
suggested by Tarvainen and Valpola (2017) because the student improves
more quickly at the start of the training. For the backbone, we used an
EfficientNetV2 (Tan and Le, 2021) for all experiments. We ran preliminary
experiments with the ubiquitous ResNet50 (He et al., 2016) as a backbone
which exhibited similar performance to the EfficientNetV2, even though
ResNet50 has a much larger number of parameters and thus, requires more
heavy computations for training.

The results of the experiments are summarised in Table 2. It is notice-
able that the performance evaluation depends largely on the employed
test data. Whilst the supervised approach has a slightly better performance
on PoMoTest –with amaximummAP@0.5 of 90.9% compared to 89.6% –
the semi-supervised approach shows a superior performance on the more
relevant manual test set with a maximum mAP@0.5 of 74.6 % compared
to 70.9 %.

Similarly, application of crop and rotation data augmentation is detri-
mental to the evaluation on PoMoTest, but clearly helps the performance
of the semi-supervised approach on the manual test set. For the supervised
approach however, the crop and rotation data augmentation are detrimen-
tal to both test datasets.

3.3. Training on 2016 + 2018Augsburg15

We evaluate the models trained on the 2016 + 2018Augsburg15
dataset similarly to the ones trained on the 2016Augsburg15 dataset. The
hyperparameters are also set similarly, but here, we limited the experi-
ments to using both crop and rotation augmentation.

https://github.com/MilesGrey/pollen-detection
https://github.com/MilesGrey/ssl-pollen-detection


Table 2
Overview of our experiment results with training on 2016Augsburg15 and 2016 + 2018Augsburg15 in terms of mAP@0.5. Supervised
training (see Section 2.4) and semi-supervised training (see Section 2.5) are denoted with SL and SSL, respectively.

2016Augsburg15

Train Crop + Rot. mAP@0.5 (%)

PoMoVal PoMoTest ManTest

SL No 91.0 90.9 70.9
Yes 90.2 89.8 70.5

SSL No 90.0 89.6 71.6
Yes 86.3 85.2 74.6

Synthesised 2016 + 2018Augsburg15

Train Crop + Rot. mAP@0.5 (%)

PoMoVal PoMoTest ManTest

SL Yes 93.1 92.7 77.9
SSL Yes 88.8 88.0 75.9

Raw 2016 + 2018Augsburg15

Train Crop + Rot. mAP@0.5 (%)

PoMoVal PoMoTest ManTest

SL Yes 90.3 90.1 78.3
SSL Yes 73.5 73.0 74.6

                                                     
An overview of the mAP@0.5 scores to compare the supervised and
semi-supervised models is shown in Table 2. Additionally, we utilise the
original (non-corrected) annotations of the pollen monitor as a baseline to
compare our experiments against. Unfortunately, mAP scores cannot be cal-
culated for the pollenmonitor because the predictions of the pollenmonitor
do not have confidence levels. Instead, precision, recall, and F1 scores were
calculated and compared. For our models, we set the confidence level with
maximum F1 score to filter the predictions. The results are shown in
Table 3.

3.3.1. Synthesised images
The mAP@0.5 results show that on this dataset, the supervised model

has the edge over the semi-supervised model with an absolute difference
of about 4.5% on the PoMoTest set and 2% on themanual test set. Overall,
both approaches, in particular the supervised approach, improve their per-
formance compared to the smaller 2016Augsburg15 dataset.

Expectedly, the pollen monitor's performance is competitive with an F1
score of 83.9 % on the PoMoTest set. With 78.2 %, the semi-supervised
model even has a lower F1 score compared to the pollen monitor. The
score can be attributed to the lower precision. In contrast, the performance
on the manual test set is considerably worse for the pollen monitor with an
F1 score of 61.3%. Especially the recall suffers with only roughly half of the
Table 3
Precision, recall, and F1 score to compare ourmodels trained on 2016+2018Augs-
burg15 with the pollen monitor algorithm.

Synthesised images

Model PoMoTest ManTest

Prec. (%) Rec. (%) F1 (%) Prec. (%) Rec. (%) F1 (%)

Pollen monitor 87.1 81.9 83.9 79.2 52.5 61.3
SL 84.5 92.1 88.1 82.7 70.3 76.0
SSL 74.1 82.8 78.2 71.6 70.5 71.0

Raw images

Model PoMoTest ManTest

Prec. (%) Rec. (%) F1 (%) Prec. (%) Rec. (%) F1 (%)

Pollen monitor 87.1 81.9 83.9 79.2 52.5 61.3
SL 83.3 87.9 85.5 81.2 73.1 76.9
SSL 68.4 75.1 71.6 75.7 70.0 72.8
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ground truth pollen grains being detected by the pollen monitor (52.5 %).
Compared to the pollen monitor, the supervised and the semi-supervised
approaches yielded drastically better recall with 70.3% and 70.5%, respec-
tively. As a result, both display much better F1 scores with 76.0 % and
71.0 %, as well.

3.3.2. Raw images
On the raw images, themAP@0.5 results on the PoMoTest set for the su-

pervised model were similar but lower with 90.1 %. In contrast, scores for
the semi-supervised model were considerably lower with 73.0 % mAP@
0.5.

For the manual test set, the mAP@0.5 for the supervised model was
slightly higher than for the synthesised images with 78.3 %. While the
score on the manual test set is lower for the semi-supervised model with
74.6 % mAP@0.5, the difference was not as large as on the PoMoTest set.

In comparison to the pollen monitor, the result from the supervised
model on the PoMoTest set trumps the pollen monitor with 85.5 % com-
pared to 83.9 % F1 score. For the semi-supervised model, the F1 score of
71.6 % suffers on the PoMoTest set derived from the pollen monitor. For
the manual test set, the best results were produced from the supervised
model (with an F1 score of 76.9 % compared to 61.3 % of the pollen mon-
itor). The semi-supervised model considerably improved the pollen moni-
tor performance with an F1 score 72.8 %, as well.

A comparison of the class-specific performance is shown in Fig. 4. Fur-
thermore, Fig. 5 displays a confusion matrix of the supervised model to
show the strengths and weaknesses of the model across classes. Notably,
the performance of the models and especially the pollen monitor is volatile
for different classes.

4. Discussion

Regarding the adopted methods, we introduced techniques and imple-
mentation details to train detection algorithms for pollen grains in micro-
scope images with partially labelled data, such as some of the datasets
presented in Section 2.

Here we employed a multi-approach inter-comparison of pollen detec-
tion methods, an outcome quite sought after the last decade. As for the
last almost 70 years the ‘gold-standard’ of airborne pollen monitoring is
still a rather simple technique of sampling and classifying the pollen cap-
tured in the atmosphere, it is obviously necessary to employ the next-
generation, automated and as close to real-time as possible. So, here we



Fig. 4.Depiction of class-specific F1 scores on themanual test set. The supervised and
semi-supervised models were trained on raw images of 2016 + 2018Augsburg15.

                                                     
hypothesised that adoption of cutting-edge, sophisticated methods of pol-
len detection and classification would contribute significantly to advance
the state-of-the-art.
Fig. 5. Confusion matrix of the highest scoring model on the manual test set, the supe
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For the strengths of our work, we highlight the performance of our deep
neural networks compared to the performance of the algorithm of the pol-
len monitor currently deployed as part of the electronic pollen information
network in Bavaria, Germany. In our experiments, the best models show a
better performance on both PoMoTest and ManTest, especially for the lat-
ter, as indicated in Table 3. We also found lower detection performance
for the pollen monitor than was claimed by the manufacturer, albeit with
a different set of pollen taxa for the evaluation.

We also emphasise the performance of the proposed deep learning
models on synthesised images in comparison to their performance on raw
images, which are available from the current version of the pollen
monitor, too.

We find that our best models show comparable performance for both
types of images. As a result, simplifying the image generation process of
the pollenmonitor by reducing the amount of images produced for the syn-
thesised images and by omitting the additional synthesis operation seems
like a viable option. Still, for optimal detection performance we believe
the optimal solution is to use synthesised images, which do not have the ad-
ditional step of blackening parts of the images, which has not previously
been made accessible by the proprietary software. Nevertheless, more re-
cent versions of the pollen monitor provide these images (Hund GmbH,
2009, 2022), so they might be preferred in future work.

Even though someadvantage of the deep learning algorithms seems rea-
sonable as they are presentedwith corrected pollen classes, the extent of the
improvement seems remarkable, since the deep learning algorithms are still
based on the original predictions of the pollen monitor and thus have to
deal with incomplete data in form of missing bounding boxes. Especially
our results on the manual test set imply the potential of deep learning algo-
rithms for automated pollen detection over traditional approaches. This
conclusion becomes even more apparent when considering that a large
part of the misclassifications on the manual test set results from missed
bounding boxes (indicated by the ratio between precision and recall at
rvised model. The model was trained on raw images of 2016 + 2018Augsburg15.



                                                     
the point of maximum F1), which we expect to be improved with a higher
quality of the labelled data.

Furthermore, our methods can be transferred, i.e., they can be re-
trained on datasets with different types of pollen. And, our models are flex-
ible as they can be configured to operate on different confidence levels to
maximise precision or recall.

As for the differences between the different deep neural networks that
we used in our work, we evaluated the performance of semi-supervised
training to deal with partially labelled data compared to purely supervised
training.

We found that the semi-supervisedmodel (see Section 2.5) shows better
performance than the supervised model (see Section 2.4) on the smaller
dataset, while the supervised one exhibits better performance on the larger
training set. Possible reasons for the different performances include differ-
ences in the datasets (difference in size, location of the pollen monitor, an-
notators). Moreover, deep learning models typically improve their
performance when trained on larger training datasets. However, an inter-
esting observation is that the performance of the supervised approach
scales better than the semi-supervised approach. Additional techniques
such as verifying the quality of the pseudo labels created by the semi-
supervised learning method can potentially improve the exploitation of
additional data.

The semi-supervised learning methods described are based on a level of
distrust of the ground truth labels and thereby enable the model to simulta-
neously improve the dataset labelling and to exploit the improved labels.
For our datasets, the motivation for distrust is straightforward as they
have the problem of missing boxes, which we introduced in Section 2.

However, even for completelymanually labelled datasets, single errone-
ous labels are always possible and can hugely impact model performance
(Bulusu et al., 2020). That is why learning models to distrust labelling can
be a fertile research field to pursue based on our findings.

Having said the above, we are aware that our study exhibits certain lim-
itations. First, the datasets are dependent on the image generation and an-
notation of the pollen monitor. All images result from pollen monitors
located at two sites, collecting data in the same region in Augsburg,
Germany, implying potential biases in the data collection. In order to obtain
a more general impression of the generalisability of our models, further
data collection and evaluation is necessary. Furthermore, even though
the bounding box class labels are corrected by experts – and in the case of
the manual test set additional bounding boxes are added – the basis of the
data consists of automatically generated bounding boxes by a proprietary
algorithm of the pollen monitor (for more details on how the pollen moni-
tor operates, refer to Section 2). As a result, the evaluations on the
PoMoTest set are biased by the bounding box creation and even themanual
test set might retain some of that bias. To a certain degree, the design of the
study therefore encourages approximation to the pollenmonitor algorithm.
The above actually pinpoint that even though our employed methods look
promising, we are confident that if we can surpass the existing shortcom-
ings, we would expect even better results in the automatic pollen monitor-
ing techniques.

5. Conclusion

We applied the Faster R-CNN framework on partially labelled data for
the task of airborne pollen grain detection, introducing a novel semi-
supervised learning approach for partially labelled data, based on a
teacher-student design. We show that our deep learning-based approaches
clearly outperform the detection capabilities of the commercial BAA500
pollen monitor on a test data set, which has been manually cleaned by ex-
pert aerobiologists-annotators. Furthermore, we showed that the process-
ing of single raw images from the pollen monitor could be a viable option
compared to a complex pre-processing step synthesising a stack of images,
performed by a proprietary algorithm of the pollen monitor. Future work
can explore adapting the proposed semi-supervised approach on the larger
2016 + 2018Augsburg15 dataset to potentially help the model leverage
the additional training data more effectively. Beyond, further data
8

collection at different places seems necessary to improve and test the ro-
bustness of the algorithm to different environments.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.164295.
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