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ABSTRACT

A powerful feature of single-cell genomics is the possibility of
identifying cell types from their molecular profiles. In particular,
identifying novel rare cell types and their marker genes is a key
potential of single-cell RNA sequencing. Standard clustering
approaches perform well in identifying relatively abundant cell
types, but tend to miss rarer cell types. Here, we have developed
CIARA (Cluster Independent Algorithm for the identification of
markers of RAre cell types), a cluster-independent computational
tool designed to select genes that are likely to be markers of rare cell
types. Genes selected by CIARA are subsequently integrated with
common clustering algorithms to single out groups of rare cell types.
CIARA outperforms existing methods for rare cell type detection,
and we use it to find previously uncharacterized rare populations
of cells in a human gastrula and among mouse embryonic stem
cells treated with retinoic acid. Moreover, CIARA can be applied
more generally to any type of single-cell omic data, thus allowing
the identification of rare cells across multiple data modalities.
We provide implementations of CIARA in user-friendly packages
available in R and Python.

KEY WORDS: Computational method, Rare cell types, Single-cell
sequencing

INTRODUCTION
The development of single-cell omics technologies has allowed the
molecular characterization of cell types in a large number of organs
and tissues in many different organisms. One goal of single-cell
studies is the identification of rare cell types, which bulk techniques
are not able to access. Characterization of rare cells is fundamentally
important in many biological contexts: for example, during

development, to pin down the stage at which a given cell type
starts to emerge; when studying cancer, to look for rare cells that
might develop drug resistance (Emert et al., 2021); or for the
characterization of stem cell lines, searching for cell transitions in
different pluripotency states (Taubenschmid-Stowers et al., 2022;
Rodriguez-Terrones et al., 2018).

In particular, transcriptional profiling obtained with single-cell
RNA sequencing (scRNA-seq) enables the identification of rare
cells and their marker genes. Some types of cells can be challenging
to identify because, in addition to being rare, they have overlapping
markers with other, more abundant cell types. This is the case, for
instance, for primordial germ cells, which share markers with cells
from the primitive streak (Tyser et al., 2021b; Pijuan-Sala et al.,
2019).

Cell type identification is carried out by performing unsupervised
clustering, which is typically done using highly variable genes
(Luecken andTheis, 2019). Although this strategy is usually successful
at identifying large clusters of distinct cell types, it often fails to detect
small-sized clusters of cells with fewer specific marker genes.

For this reason, many algorithms that are specifically designed to
detect rare cell types in scRNA-seq data have been devised. Some
algorithms (e.g. CellSIUS; Wegmann et al., 2019) rely on an
existing cluster annotation or assign a rareness score to each of the
cells using a sketching technique to measure the density around
them (such as FiRE; Jindal et al., 2018). Others, e.g. GiniClust
(Dong and Yuan, 2020) and RaceID (Herman et al., 2018), work
in a cluster-independent way to identify rare cells and/or their
markers.

These methods generally work well in selecting rare cells with
strong markers, but they are less efficient in identifying very small
cell populations (<1%) with a limited number of specific markers.
Moreover, some of these methods tend to overfit and identify a large
number of small cell clusters without specific markers.

Here, we developed a novel algorithm called CIARA (Cluster
Independent Algorithm for the identification of markers of RAre
cell types) that identifies potential marker genes of rare cell types by
exploiting their property of being highly expressed in a small
number of cells with similar transcriptomic signatures. To achieve
this, CIARA ranks genes based on their enrichment in local
neighborhoods defined from a K-nearest neighbors (KNN) graph.
The top-ranked genes can then be used with standard clustering
algorithms to identify groups of rare cell types with high efficiency,
requiring the specification of a minimal number of parameters.

We show how CIARA outperforms existing algorithms for rare
cell type identification on scRNA-seq datasets generated from
different organisms and from different protocols. Moreover, we use
CIARA to detect rare cells in a new scRNA-seq dataset of mouse
embryonic stem cells (mESCs) treated with retinoic acid and in a
recently published dataset from a human gastrula (Tyser et al.,
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2021b), where we find several groups of rare cells. Finally, we
demonstrate how CIARA can be applied to other types of single-cell
omic datasets and can identify rare cells across multiple data
modalities.
CIARA is available as R and Python packages, and the scripts to

perform all analyses are freely accessible in GitHub.

RESULTS
Overview of CIARA
The input of CIARA is a normalized gene count matrix and a KNN
graph that can be computed with a standard approach (Luecken and
Theis, 2019; Fig. 1A, left; Materials and Methods). Because rare
cell type markers are only expressed in a small number of cells, we
restrict the set of genes analyzed to those that are expressed above a
threshold in a limited number of cells (by default, more than 1
normalized log-count in 20 cells at most).
If a gene were a marker of a rare cell type, then there would be at

least one cell neighborhood in which there is an enrichment of cells
expressing the gene. Conversely, if a gene is not a marker of a rare
cell type, but its changes in expression are driven by noise, we

would expect it to be detected in cells that are randomly scattered
across the KNN graph. In this case, the number of cells where
the gene is detected in any given neighborhood follows a
hypergeometric distribution (see Materials and Methods).

Starting from these observations, CIARA performs a one-tailed
Fisher’s test to verify whether the number of cells in which the gene
is detected is enriched or not in the neighborhoods of all cells
defined from the KNN graph. If a gene shows a significant
enrichment (P<0.001 by default) in at least one neighborhood, then
it is assigned a score equal to the minimum P-value across all
neighborhoods (Fig. 1A, left); if the enrichment never reaches
statistical significance, then it is assigned a score equal to 1.

All tested genes are then ranked by increasing scores: the genes
with lower scores are those that are most likely to be markers of rare
cell types. Such a ranked list is given in the output by CIARA
(Fig. 1A, left).

CIARA can also generate a 2D representation of the data [e.g.
with uniform manifold approximation and projection (UMAP);
McInnes and Healy, 2018 preprint], which shows how many and
which of the top selected genes each cell expresses and shares with

Fig. 1. Schematic representation and example of application of CIARA. (A) Left: CIARA computes a score for each gene based on how cells expressing
that gene are distributed on a K-nearest neighbor graph. Lower scores correspond to genes that are mostly expressed in neighboring cells, i.e. are ‘highly
localized’ and hence are more likely to be markers of rare cell types. Right: Summary of how the top-ranked genes are used to visualize and identify groups
of rare cells. (B) UMAP representation of a previously published mESC dataset (n=1285 cells; Iturbide et al., 2021). The different shades of blue indicate the
number of genes among the top 100 selected by CIARA that each given cell and its neighbors express. Nearby groups of darker-colored cells are more likely
to represent rare cell types. (C) UMAP representation of the same dataset shown in B, with cells colored according to their cluster.
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its neighbors (Fig. 1A, right; Fig. 1B). Such a plot is also available
in an interactive format, where the names of the genes are displayed
(see examples in Figs S7-S9). The significant genes can then be
used with standard clustering algorithms to define the group of rare
cell types, either on the whole dataset or within specific clusters that
were previously defined in the data (Fig. 1A, right; Materials and
Methods).
Importantly, CIARA also provides an unsupervised, quantitative

evaluation of whether a cluster in the data may include a rare sub-
population of cells: this is done by testing the statistical significance
of the overlap between the set of highly variable genes within the
cluster and the potential rare cell type markers identified by CIARA
(Fig. 1A, right).
To showcase how CIARA works, we applied it to a previously

published scRNA-seq dataset from mESCs (Iturbide et al., 2021)
that includes a rare population of 2-cell-like cells (2CLC)
(Macfarlan et al., 2012). The 2CLCs represent an in vitro model
of totipotent-like cells and are typically present at a <1% frequency
in mESC cultures. When applied to this dataset, CIARA found well-
known 2CLC markers such as Zscan4f and Zscan4c among the top
15 ranked genes (Fig. 1B; Figs S1A, S7). By contrast, the genes that
were ranked low were detected in a small number of cells that are not
close on the KNN graph and, thus, are unlikely to represent any
specific cell type (Fig. S1B). In addition, the top-ranked genes
also included Pdgfra and Gata6, which are known markers of
primitive endoderm cells, and thus expressed in differentiating cells
(Iturbide et al., 2021; Wamaitha et al., 2015). A UMAP plot shows
that the markers from 2CLCs and from those cells undergoing
differentiation are expressed in two small groups of cells (Fig. 1B).
Indeed, when the data was clustered with the 2475 genes selected by
CIARA, we found three clusters: in addition to the largest cluster
made of pluripotent cells, one cluster represents 2CLCs (18 cells,
∼2% of total), and the other includes four differentiating precursor
cells (0.3% of the total; Fig. 1C; Fig. S1C,D). We also sub-sampled
this mESC dataset to include fewer 2CLCs, and found that 2CLC
markers are enriched among the genes selected by CIARA even
when only three 2CLCs are present in the dataset (P<0.05, Fisher’s
exact test).
Furthermore, CIARA can also be applied to atlas-sized datasets

(Fig. S2; Materials and Methods). To show this, we processed
two datasets including ∼105 cells with CIARA, which led to the
identification of several potential rare populations of cells
expressing very specific markers (Table S7).

CIARA outperforms existing methods for rare cell type
identification
We tested the performance of CIARA against several existing
methods currently available to detect rare cell types from scRNA-
seq datasets: GiniClust (Tsoucas and Yuan, 2018; Dong and Yuan,
2020), CellSIUS (Wegmann et al., 2019), FiRE (Jindal et al., 2018),
RaceID (Herman et al., 2018) and GapClust (Fa et al., 2021). All
these methods provide clusters of rare cells as output. As for
CIARA, a list of rare cell type markers is also provided by GiniClust
and CellSIUS. CellSIUS requires data partitioning in clusters as
input, whereas all other algorithms do not. The features of the
algorithms are summarized in Fig. 2A. We evaluated performance
by quantifying the agreement between the classification of rare cells
obtained with each method and the ground truth classification using
Matthew’s correlation coefficient (MCC; see Materials and
Methods).
To make the comparison as fair as possible and minimize the

effects of confounding factors due to, for example, the use of

sub-optimal parameter settings, we ran a first series of tests on the
datasets included in the papers where the alternative algorithms
were introduced. The results of this benchmarking analysis are
illustrated in Fig. 2B, and they show that CIARA generally
outperforms the other algorithms (see also Materials and Methods;
Fig. S3A-G). Specifically, CIARA tends to find fewer false
positives, requires less manual curation (e.g. a manual merging of
clusters), and can robustly detect extremely rare cell types (e.g. with
n=3; see Materials and Methods).

We also ran all algorithms on a recently published scRNA-seq
dataset that comprises 1195 cells from a human gastrula (Tyser
et al., 2021b). A small population of seven primordial germ cells
(PGCs) was identified within this dataset, which is marked by the
expression of previously known PGC markers (NANOS3, NANOG,
DPPA5, SOX17). However, PGCs have markers in common with
other cell types, such as SOX17 and ETV4 (marking endodermal
cells), which complicates the identification of PGCs with
unsupervised methods.

CIARA detected a cluster including all seven PGCs, achieving an
MCC=1 (see Materials and Methods). Conversely, all other
algorithms achieved a lower MCC value (Fig. 2C; Fig. S3H,I;
Materials and Methods).

In addition to the algorithms mentioned above, we ran three more
algorithms on the human gastrula dataset: singleCellHayStack
(Vandenbon and Diez, 2020), SAM (Tarashansky et al., 2019) and
Triku (M Ascensión et al., 2022). Although not specifically
designed for detecting rare cell types, these algorithms find genes
that have a non-random distribution of expression values across
cells. These approaches offer a valid alternative to standard
differential expression analysis methods, but they tend to miss
rare cell markers, as is seen with PGC markers (Fig. 2D; Materials
and Methods).

Overall, these analyses show that CIARA performs better than
alternative algorithms with respect to detecting rare cells in several
published datasets, also in the most challenging situations when the
rare cells share marker genes with more abundant cell types.

CIARA detects small changes in cell type composition in
mESCs after retinoic acid treatment
Time-course scRNA-seq experiments are particularly suitable to the
study of systems undergoing cell differentiation or reprogramming
in order to capture and characterize cell types as they emerge, in vivo
and in vitro (Griffiths et al., 2018).

In a recent study (Iturbide et al., 2021), we showed that low doses
of retinoids induce the reprogramming of mESCs into 2CLCs, a cell
type that resembles totipotent cells (Rodriguez-Terrones et al.,
2018; Macfarlan et al., 2012). In particular, by performing a time-
course experiment with scRNA-seq, we found that, although
transcriptional changes are small within the first 12 h of treatment
with retinoic acid (RA), after 48 h the cell type composition shows
major changes: (1) the relative abundance of 2CLCs increases by
∼41% (from 2.6% to 44%) and (2) a small cluster of differentiating
precursor cells (3%) is present.

However, when these transcriptional and cellular composition
changes start to emerge and how long the RA treatment must be to
produce any effects on cell fate decisions is unknown. Thus, we
generated a new scRNA-seq dataset from mESCs following a 24 h
RA treatment (Fig. 3A), and we analyzed the dataset with CIARA to
determine changes in cell type composition.

We first applied standard quality-control thresholds, which led
to the selection of 766 good-quality cells (Fig. S4A-D; Materials
and Methods). A UMAP plot showing which cells express the

3

TECHNIQUES AND RESOURCES Development (2023) 150, dev201264. doi:10.1242/dev.201264

D
E
V
E
LO

P
M

E
N
T

https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201264
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201264
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201264
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201264
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201264
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201264
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201264
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201264
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201264
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201264


significant genes identified by CIARA (Fig. 3B) highlights the
presence of two small groups of cells: one expressing well-known
markers of 2CLCs, such as Zscan4f, Zscan4c and Arg2, and the
other expressing markers of differentiating precursor cells, such as
Pdgfra. Indeed, clustering with the genes selected by CIARA
detected three different clusters (Fig. 3C). The largest cluster (744,
∼97% of the total) included pluripotent cells expressing, for
example, Zfp42 (also known as Rex1) and Sox2; the intermediate
cluster of 18 cells (∼2%) corresponded to 2CLCs (marked by, for
example, Zscan4d); and the smallest cluster of four cells (<1%) was
marked by a distinct set of genes including differentiation markers
such as Gata4 and Gata6 (Fig. 3D; Tables S1-S3).
A comparison with previously published datasets (Iturbide et al.,

2021) confirmed that this small cluster includes four precursor cells
that are compatible with those found at 0 h and 48 h of treatment
(see Materials and Methods). These results indicate that, during the
first 48 h of RA treatment, the cell types present within the mESC
culture (as determined by their transcriptional features) remain the
same, but their relative abundance changes only after more than 24 h
of treatment (Fig. 3E). This is in agreement with the previously
published quantification of 2CLCs by fluorescence-activated cell

sorting (FACS), showing that the percentage of 2CLCs does not
increase significantly after 24 h of RA treatment (Iturbide et al.,
2021).

CIARA enables the discovery of rare cell types in a human
gastrula dataset
Single-cell analyses are fundamental to mapping embryonic
development and the first stages of cell differentiation. One of the
milestones of embryo development is gastrulation, during which a
single set of pluripotent cells (the epiblast) differentiates into three
germ layers (endoderm, mesoderm and ectoderm), which later form
the various organs.

Single-cell transcriptomics has contributed to revealing the steps
of cell type diversification during gastrulation in several organisms
(Briggs et al., 2018; Wagner et al., 2018; Nowotschin et al., 2019;
Pijuan-Sala et al., 2019; Bergmann et al., 2022), including
humans, with a recently published single-cell characterization of a
human gastrula (Tyser et al., 2021b). A clustering analysis of this
dataset revealed the presence of 11 main cell populations, some of
which could be split into sub-clusters, representing, for example,
different types of blood and endodermal cells (Tyser et al., 2021b).

Fig. 2. CIARA outperforms existing methods for detecting rare cell types. (A) Table listing the methods for rare cell type identification that we
benchmarked CIARA against. Specific features of each approach are indicated. (B) Table summarizing the data sets and results of the benchmarking
analysis. The last column shows the values of the Matthews Correlation Coefficient (MCC) computed between the group of rare cells identified by each
method and the ground truth. (C) MCC computed for the PGC group of cells present in the human gastrula data (Tyser et al., 2021b). (D) Heatmap showing
the ranking (in natural log scale) of four PGC markers (rows) obtained by four methods (columns).
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Sub-dissection of the sample enabled the cells to be annotated based
on their anatomical location: hence, cells could be identified as
originating from the embryonic disk (rostral or caudal portions) or
the extra-embryonic yolk sac.
Using CIARA, we performed an unsupervised analysis of this

human gastrula dataset in order to search for rare cell types. In
addition to the PGCs described above (Fig. 2C,D), we found two
small populations in the yolk sac endoderm (YSE) and the
megakaryocyte-erythroid progenitor (MEP) clusters (Fig. 4A,B;
Fig. S9).
The small YSE sub-cluster of 11 cells, which we named YSE1,

expressed very specific markers, including, for example, members
of the SERPIN family genes such as SERPIND1 and SERPINC1
(Fig. 4C; Fig. S5B; Table S4). These genes are known to be
expressed in the adult kidney and liver (Heit et al., 2013), which is
consistent with the functions that the yolk sac plays during early
development (Ross and Boroviak, 2020). Interestingly, by running
CIARA on an scRNA-seq dataset from mouse embryos at
embryonic day (E) 7.75 to E8.25 (Tyser et al., 2021a), we found a
sub-cluster of 21 endodermal cells that share the same
transcriptional profile as the YSE1 cluster in the human embryo
(see Materials and Methods; Fig. S5D; Table S6). This observation

indicates that YSE1 is a relatively rare endodermal sub-population
present in human and mouse embryos.

A diffusion map and pseudo-time analysis of the human
endoderm cluster revealed that YSE1 is more transcriptionally
distinct from the embryonic endoderm populations (represented by
the definitive endoderm clusters) than the rest of the YSE cluster
(Fig. 4D; Fig. S5C). Furthermore, all cells included in YSE1 derived
from the yolk sac region, whereas the rest of the YSE cluster also
included cells from the embryonic disk and were annotated as rostral
or caudal (Fig. 4E). This transcriptional signature and separation in
cell origin suggest that YSE1 represents a yolk sac endoderm
population located further away from the embryonic–extra-
embryonic boundary and, therefore, potentially closer to the
forming blood islands where primitive erythropoiesis occurs
(Tyser et al., 2021b). In support of this hypothesis, one of the
markers of YSE1 was transferrin (TF), a protein iron carrier required
for erythropoiesis (Richard and Verdier, 2020), the receptors of
which, TFRC and TFR2, are expressed by erythroblasts (Fig. S5E).

The second population of rare cells detected by CIARAwas in the
MEP cluster, which we named MEP1 (Fig. 4B). This cluster
comprised 13 cells with a distinct transcriptional signature
characterized by high levels of markers such as PPBP, ITGA2B

Fig. 3. CIARA identifies rare populations of totipotent-like and differentiating cells among mESCs treated with retinoic acid. (A) We treated mESCs
with retinoic acid for 24 h before collecting and processing them for scRNA-seq. (B) UMAP representation of the mESC dataset (n=766 cells) indicating the
number of highly localized genes expressed by each cell and shared with their neighbors. (C) Same UMAP representation as in B, with cells colored by
cluster. (D) Top marker genes of the clusters found in the mESC data. The markers for the clusters were detected with the ‘FindMarkers’ function (with
parameter only.pos=T) from Seurat (version 4.0.5). Only markers with adjusted P-value (based on the Bonferroni correction) below or equal to 0.05 were
considered for downstream analysis. Finally, for each cluster, only unique markers (i.e. that are not included among the markers of other clusters) were kept.
Gm8300, Eif1ad8. (E) Cell type composition changes in mESC datasets after 0 h, 24 h and 48h-long RA treatment. The datasets with 0 h (n=1285 cells) and
48h-long treatment (n=1867 cells) are taken from Iturbide et al. (2021).
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Fig. 4. CIARA identifies previously uncharacterized rare populations of cells in a human gastrula dataset. (A) UMAP representation of the human
gastrula dataset (n=1195 cells; Tyser et al., 2021b) showing the number of shared highly localized genes in each cell. (B) Same UMAP representation
as in A, with cells colored according to the clusters they belong to. The sub-clusters highlighted, YSE and MEP, are those in which CIARA finds new rare
cell populations (YSE1 and MEP1). (C) Top marker genes of the YSE1 rare cell population. Mean expression levels are normalized by the maximum
within each cluster. The markers for the clusters were detected with the ‘FindMarkers’ function (with parameter only.pos=T) from Seurat (version 4.0.5).
Only markers with adjusted P-value (based on the Bonferroni correction) below or equal to 0.05 were considered for downstream analysis. Finally, for
each cluster, only unique markers (i.e. that are not included among the markers of other clusters) were kept. (D) Diffusion components 1 and 3 (DC1,
DC3) of the endodermal cells (n=135 cells). (E) Stacked bar plot showing the distribution of the anatomical origin of cells in each cluster. (F) Top marker
genes of the MEP1 rare cell population, identified as explained above. Mean expression levels are normalized by the maximum within each cluster.
(G) Graphical representation of the connectivity between the clusters of blood cells (n=143 cells) estimated with PAGA (Wolf et al., 2019). (H) Top
differentially expressed genes along the differentiation trajectories joining MEP and MEP1 (left) or MEP and Ery (right). The trajectory analysis was
performed using the function slingshot (with start.clus=‘MEP’ and reducedDim equal to the diffusion map provided in the original human gastrula paper)
from the R library slingshot version 1.6.1 (Street et al., 2018). To identify differentially expressed genes along the differentiation trajectories joining MEP
and MEP1 or MEP and Ery, the functions ‘fitGAM’ and ‘startVsEndTest’ (with parameter lineage equal to TRUE) from the R package tradeSeq version
1.2.1 (Van den Berge et al., 2020) were used. HIST1H3H, H3C10; HIST2H2AA4, H2AC19; HIST1H1C, H1-2. DE, definitive endoderm; EMP, erythro-
myeloid progenitors; Endoth, endothelium; Ery, erythroblasts; Hypo, hypoblast; MEP, megakaryocyte-erythroid progenitors; MP, myeloid progenitors;
YSE, yolk sac endoderm.
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and GP1BB (Fig. 4F; Fig. S5F; Table S5). Based on the expression
of these and other markers (LAT, CLEC1B, TREML1, RAB27B;
Pijuan-Sala et al., 2019), we identified these cells as
megakaryocytes, a population of cells reported to be present in
the early human embryo (Ivanovs et al., 2017), but not
transcriptionally defined. This conclusion is also supported by the
analysis of the differentiation trajectories within the blood clusters
(Fig. 4G,H; Materials and Methods). Specifically, we found a
branching event where the MEP cluster splits into the MEP1 cluster
(when megakaryocytes markers are upregulated) and erythroblasts
(Fig. 4G), allowing us to identify genes marking the differentiation
between these two cell types (Fig. 4H).
An analogous rare population of megakaryocytes with the same

transcriptional signature was also identified in mice at a later
developmental stage (see Materials and Methods), which is
consistent with human hematopoiesis starting earlier than in mice,
as suggested by other analyses (Tyser et al., 2021b).

CIARA identifies rare cells across multiple single-cell data
modalities
So far, we have shown applications of CIARA to scRNA-seq
datasets. However, the main requirement of CIARA is the definition
of a KNN graph, which can be built with any type of data where a
notion of distance is defined. Hence, its applicability is very broad;
in particular, CIARA can be applied to any type of single-cell omic
datasets, such as DNA-seq, assay for transposase-accessible
chromatin with sequencing (ATAC-seq), bisulfite sequencing, etc.
Such wide applicability could be used, for instance, to identify rare
populations of cells across multiple data modalities.
As proof of principle, we ran CIARA on a paired scRNA/ATAC-

seq dataset generated from 34,774 mouse skin cells with the
SHARE-seq protocol (Ma et al., 2020). Running CIARA on each
modality provided a list of cells that had at least one localized feature
shared with its neighbors, which represent candidates for rare cell
types (Fig. S6). With the scATAC-seq modality, we performed the
analysis using different sets of features: peaks, genes or enhancers
(Danese et al., 2021).
We then computed the overlaps of these lists of cells obtained

from the scRNA-seq and the scATAC-seq modalities, and found
that they are statistically significant (Fisher’s exact test, P-values
were all less than ∼5e−5; see Materials and Methods), regardless
of the features used in the analysis of the scATAC-seq dataset
(Fig. S6D; Materials and Methods). One example of a potential rare
population that CIARA found is a group of seven cells in the
endothelial cluster, which emerged both in the scRNA-seq and the
scATAC-seq modalities (Fig. S6A-C).
Overall, this result suggests that rare cell types can be identified

across multiple modalities with CIARA, which could help validate
the presence of rare cells and find genes or enhancers regulating
their emergence.

DISCUSSION
We have developed a new algorithm, CIARA, that can identify
potential marker genes of rare populations of cells in scRNA-seq
data. Starting from a KNN graph, CIARA compares the number
of cells in which a gene is detected in each K-neighborhood with
the value expected from a hypergeometric distribution and
then combines the results across all neighborhoods to provide a
‘score’ for each gene. Lower scores indicate a tendency of a gene
to be detected only in small groups of cells with similar
transcriptomes, which suggests that the gene is a potential marker
of a rare cell type.

These marker genes can then be used to find rare cell types
by exploring the data in a cluster-independent manner or in
combination with standard clustering algorithms. This results in the
identification of groups of rare cell types that are typically missed
when following common strategies involving gene selection based
on, for example, high variability. In the implementation we
presented, CIARA identifies marker genes that are detected in
small cell populations only. However, the algorithm can be
generalized to find marker genes that are expressed in multiple
cell populations (Materials and Methods; Fig. S1E).

The use of an exact probability distribution to compute the scores
and the lack of a requirement for pre-defined clusters (similar to
recently published methods to compare cell type abundance across
conditions; Dann et al., 2022) imply that, to run CIARA, only few
parameters need to be specified and that it can scale to atlas-size
datasets (Fig. S2).

Both R and Python are standard choices for scRNA-seq data
analysis in the scientific community. Hence, we made CIARA
available as R and Python packages: the R package is available from
CRAN, and the Python package can be downloaded from GitHub.
Both packages can be easily integrated with standard analysis
pipelines based on, for example, Seurat (Hao et al., 2021) and
Scanpy (Wolf et al., 2018) (see ‘Code Availability’ in the Materials
and Methods section for details).

The identification of rare cell types is an important task in single-
cell omic data analysis; thus, in the last few years, many algorithms
to identify rare cell types have been developed.

We performed a comprehensive benchmarking of CIARA against
five algorithms for rare cell detection and three algorithms for gene
selection. We showed that CIARA outperforms all these algorithms
with respect to the identification of rare cells and their markers
(Fig. 2), as it is able to cope with extremely rare populations (down to
approximately three cells in the datasets we analyzed here) that might
be specified by a limited number of markers. For example, CIARA
was the only algorithm able to identify in an unsupervised manner a
group of seven primordial germ cells in an scRNA-seq dataset from a
human gastrula (Fig. 2C,D; Fig. S5A; Materials and Methods).

To demonstrate CIARA’s capabilities further, we applied it to
two datasets.

The first dataset was a newly generated scRNA-seq data from
mESCs treated with retinoic acid for 24 h. In addition to a cluster of
reprogrammed 2CLCs, CIARA identified a small group of four
differentiating, precursor cells. By comparing these results with a
previously published study (Iturbide et al., 2021), we found that
after 24 h of retinoic acid treatment, the same cell types as after a
48h-long treatment are present, even though the relative abundance
is different (Fig. 3).

The second dataset included cells from a gastrulating human
embryo (Tyser et al., 2021b). CIARA identified in an unsupervised
manner two previously uncharacterized rare cell populations.
One rare cell group was composed of endodermal cells from the
yolk sac, likely located in a region distant from the embryonic disk
and potentially closer to differentiating blood cells. The other group
of rare cells represents megakaryocytes, and their identification
allowed us to reconstruct the transcriptional changes during
primitive blood differentiation (Fig. 4).

These applications exemplify two general tasks for which
CIARA can be employed: first, the detection of small changes in
cell type composition over a time-course experiment; second, the
characterization of a system in which new cell types are just
emerging, to pinpoint the first transcriptional steps that accompany
cellular fate decisions.
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CIARA is a powerful method to identify and characterize rare cell
types, and its main requirement is the definition of a KNN graph.
Hence, it is applicable to any single-cell dataset, such as ATAC-seq
(Fig. S6). In particular, the application of CIARA to multi-omic
datasets allows the identification of rare cells across multiple
modalities, which could lead to a more in-depth characterization of
rare cell types as they differentiate.

MATERIALS AND METHODS
CIARA algorithm
Gene selection
CIARA starts from a normalized gene count matrix and KNN
graph, which can be built with standard approaches available in the
Seurat (Hao et al., 2021) or Scanpy (Wolf et al., 2018) libraries. Given
its goal to find potential markers of rare cells, CIARA performs a filtering
step to select only genes that are expressed above a threshold value in a
relatively small number of cells. All thresholds can be set manually;
otherwise, default values will apply for the following parameters: threshold
expression value, threshold=1; minimum number of cells, n_cells_low=3.
The user needs to specify the maximum number of cells in which a gene
can be detected (n_cells_high). Unless specified otherwise, we used
n_cells_high=20 in all the analyses we performed. It might be useful to
increase this value in experiments with higher sensitivities, where genes
tend to be detected in a larger number of cells. Although we found that the
default parameters work well with all the datasets we analyzed, we verified
that the results are robust to parameter changes (see ‘Robustness analysis’
section).

For the genes that pass this filtering step, CIARA carries out a one-
sided Fisher’s exact test to check whether there is a statistically
significant enrichment of cells expressing the gene in each neighborhood
(formed by a cell and its KNN). This is donewith the function ‘fisher.test’ in
R, with the option ‘alternative=greater’. By default, the result of the test is
considered statistically significant if the unadjusted P-value is less than
0.001.

All the genes that show statistically significant enrichment in at least one
neighborhood have expression patterns that are highly localized and are
considered potential markers of rare cell types. These highly localized genes
are assigned a score equal to the minimum P-value obtained across all
neighborhoods (Fig. 1A). Such a score is used to rank the genes, with
smaller scores being associated with genes that are more strongly enriched in
at least one neighborhood. If a gene is not enriched in any neighborhood, it
gets assigned a score equal to 1.

The gene selection procedure can be generalized to select marker genes
that are expressed in multiple cell types. To achieve this, first, only the top
10% (default value) genes with the largest interdecile range are considered.
Then, the expression levels are binarized by assigning a value of 1 to the
20 cells (default value) with the highest expression values and a value of
0 to all other cells. Finally, the standard procedure of CIARA is run to
identify the genes with local enrichments of ‘1’ values on the KNN graph.

The genes selected by such a procedure (implemented in the function
‘get_background_full’ with the option ‘extend_binarization=TRUE’) will
include markers that have higher levels of expression in potential rare cell
types but are also expressed in other cell types in the dataset. For example,
by using this function on the mESC dataset, we were able to detect 2CLC
markers such as Tmem72, which are ubiquitously expressed in the dataset
but have higher levels in 2CLCs (see Fig. S1E).

Identifying rare cells
The highly localized genes (having a score <1, see above) are used by
CIARA to identify groups of rare cell types following two main strategies.

The first is clustering independent, and consists of counting for every
single cell the number of highly localized genes expressed in that cell and in
its KNN: the larger this number, the more likely it is that the cell is part of a
group of rare cells. The results of this analysis are reported in a 2D
representation of the data, such as a UMAP plot (see Figs 1B, 3B and 4A),
where each cell is colored based on the number of highly localized genes
expressed and shared across the KNN. These 2D plots are also available in

an interactive html format; hovering the mouse cursor over any cell reveals
the names of the top highly localized genes expressed and shared across the
KNN (see Figs S7-S9).

The second strategy for rare cell type identification is based on
utilizing standard clustering algorithms with the highly localized genes
selected by CIARA. In the R version of CIARA, clustering is done with the
Louvain algorithm on the first 30 principal components as a default value
(defined from the top 2000 highly variable genes) with the functions
‘FindNeighbors’ and ‘FindClusters’ from the R library Seurat version 4.0.5.

The clustering can involve the entire dataset or only part of it. In
particular, given an existing partition of the data, CIARA can verify which
clusters are more likely to include groups of rare cell types by testing the
enrichment of highly localized genes among the top 100 (default value)
highly variable genes within each cluster (Fisher’s test, P<0.001 and odds
ratio greater than 1). Clusters that show a significant enrichment are then
sub-clustered with the same algorithm as specified above.

Marker gene identification
The markers for the clusters identified by CIARA are detected with the
‘FindMarkers’ function (with parameter only.pos=T) from Seurat (version
4.0.5). Only markers with adjusted P-value (based on the Bonferroni
correction) less than or equal to 0.05 are considered for downstream
analysis. Finally, for each cluster, only unique markers (i.e. those not
included among the markers of other clusters) are kept.

Unless otherwise specified, in the balloon plots showing marker genes
expression the size of the dots is determined by the fraction of cells with log
norm counts above 1 (function ‘NormalizeData’ from R library Seurat).

Analysis of previously published datasets for method
benchmarking
Below, we briefly describe the datasets we used for the benchmarking
analysis shown in Fig. 2B. To evaluate the performance of each algorithm,
we quantified the agreement between the classification of rare cells obtained
with each method and the ground truth classification using the MCC. MCC
is a metric that quantifies the overall agreement between two binary
classifications, taking into account both true and false positives and
negatives. MCC values range from −1 to 1, where 1 indicates a perfect
agreement between clustering and the ground truth, 0 means the clustering is
as good as a random guess, and −1 indicates no overlap between the
clustering and the ground truth. MCC is computed with the function ‘mcc’
from the R library mltools version 0.3.5 (https://CRAN.R-project.org/
package=mltools). The MCC values shown in Fig. 2B,C for each algorithm
represent the maximum values obtained across all clusters.

In all the datasets analyzed with CIARA, the normalized count
matrix was obtained with the function ‘NormalizeData’ (with parameter
normalization.method=LogNormalize) and the KNN graph was built with
the function ‘FindNeighbors’ (on the first 30 principal components built
from the top 2000 highly variable genes). Both functions are from Seurat
version 4.0.5.

293T and Jurkat cells (Fig. 2B)
This dataset of 1580 cells comprises 293T and Jurkat cells in a known
proportion, with the Jurkat cells being the rare population (40 cells, ∼2.5% of
total cells). This datasetwas previouslyanalyzedusingFiRE (Jindal et al., 2018).

Here, CIARA identified 2077 highly localized genes. By clustering the
data with these genes, we found two clusters (resolution 0.1, k.param equal
to 5 and number of principal components equal to 30), one of which
corresponded to Jurkat cells, based on the markers expressed.

CIARA outperforms FiRE (MCC values are 0.95 and 0.74, respectively;
see Fig. 2B), based on fewer false positives (four cells) compared with those
detected by FiRE (32 cells).

Mixture of eight human cell lines (Fig. 2B)
This dataset includes 3984 cells, and was previously analyzed using
CellSIUS (Wegmann et al., 2019). Two rare populations of H1437 and
Jurkat cells (three and six cells, respectively) are present and marked in the
dataset.
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Here, CIARA identified 3704 highly localized genes. By clustering the
data with these genes, we identified nine clusters (resolution 0.1, k.param
equal to 3, and number of principal components equal to 30). Two of these
clusters could be identified as H1437 and Jurkat cells based on their
markers. Hence, CIARA could identify both of these rare cell types,
achieving the same performance as CellSIUS (MCC equal to 1 for both
methods; Fig. 2B).

Glioblastoma (GBM) primary tumors (Fig. 2B)
This dataset includes 472 cells, and was previously analyzed using
GiniClust (Jiang et al., 2016). It includes a small group of 16
oligodendrocytes, which are defined as the cells co-expressing the four
marker genes CLDN11,MBP, PLP1 and KLK6 (Jiang et al., 2016). CIARA
identified 68 highly localized genes. By clustering the data with these genes,
we identified 13 clusters (resolution 0.1, k.param equal to 3 and number of
principal components equal to 30), one of which corresponded to
oligodendrocytes.

Differentiating mESCs at day 4 after LIF withdrawal (Fig. 2B)
This dataset includes 278 mESCs that are differentiating after LIF removal,
and was previously analyzed using GiniClust2 (Tsoucas and Yuan, 2018).
On day 4 after LIF removal, two small clusters of cells (nine and eight cells)
were detected by GiniClust2, which, based on their markers, were identified
as cells differentiating towards primitive endoderm (PrE cells; markers:
Col4a1, Col4a2, Lama1, Lama2 and Ctsl) and cells expressing maternally
imprinted genes (Rhox6, Rhox9 and Sct).

CIARA identified 287 highly localized genes. By clustering the data with
these genes, we identified three clusters (resolution 0.3, k.param equal to 5
and number of principal components equal to 30). Two of these clusters
expressed the same markers as the rare cells identified by GiniClust2
(Fig. S3A-C). Although in this dataset we lack a ‘ground truth’ for the rare
cells, we defined a set of ‘bona fide’ clusters based on the co-expression of
the marker genes mentioned above, and we computed the MCC values of
GiniClust2 and CIARA using these clusters as reference. The two methods
had the same MCC score for the cluster of differentiating cells, but CIARA
achieved a higher MCC value on the set of cells expressing maternally
imprinted genes (Fig. 2B).

Murine intestinal epithelial cells (Fig. 2B)
This dataset includes 317 cells and was previously analyzed with RaceID
(Grün et al., 2016) (see vignette https://cran.r-project.org/web/packages/
RaceID/vignettes/RaceID.html). Here, four rare cell types (enterocytes,
goblet cells, Paneth cells and enteroendocrine cells) were found after
manually merging multiple clusters expressing similar marker genes (Grün
et al., 2016). CIARA identified 1514 highly localized genes. By clustering
the data with these genes, we found eight clusters (resolution 0.2, k.param
equal to 3, and number of principal components equal to 20), four of which
correspond to the rare cell types that RaceID found. Additionally, one of the
clusters found by CIARA (cluster number 7) expressed markers of Tuft cells
(Fig. S3F).

The markers for the dataset (using the clusters defined with CIARA,
see Fig. S3D-F) were identified as specified above.

To investigate the relationship between the six smallest clusters
(≤25 cells) detected by CIARA (2, 3, 4, 5, 6 and 7) and the original
cluster partition obtained with RaceID, a plot was generated with the
function ‘clustree’ from the R package clustree version 0.4.4 (Zappia and
Oshlack, 2018; Fig. S3G).

Among these clusters identified by CIARA, cluster 2 corresponds to
goblet cells (marked by Clca3), cluster 3 to enterocytes (marked by Apoa1),
cluster 4 to Paneth cells (marked by Defa24), cluster 5 to enteroendocrine
cells (marked by Chgb) and cluster 7 to Tuft cells (Herman et al., 2018). The
markers used to label the clusters from 2 to 5 are described in Fig. S2B from
Grün et al. (2016), where the data were published. The clustree plot in Fig.
S3G shows that each of the above rare cell types identified by CIARA are
split between several clusters with RaceID. Cluster 6 (4 cells) shows a very
clear transcriptional profile and corresponds to a cell type not previously
described (Fig. S3E).

Identification of PGCs from a human gastrula dataset
We analyzed a previously published human gastrula dataset from Tyser et al.
(2021b) using CIARA and the other seven algorithms we tested in Fig. 2.
Among the 1195 cells of this dataset, there is a small population of seven
PGCs, which were identified by Tyser et al. (2021b) in a supervised way (i.e.
by using the co-expression of known PGC markers such as NANOS3,
NANOG and DPPA5). We describe below how we ran the algorithms and
tested their ability to find PGCs.

CIARA found 2917 highly localized genes in the whole dataset. By
clustering the data with these genes, the seven PGCs are always identified as
a single cluster over a wide range of resolutions (Fig. S5A).

GiniClust2 and GiniClust3 pipelines were used following the
documentation available from https://github.com/dtsoucas/GiniClust2 and
https://github.com/rdong08/GiniClust3 with default values for all parameters.
Note that the gene selection based on the Gini index tends to miss PGC
markers owing to their low average expression values (Fig. S3H,I).

For CellSIUS, we used the R package available from https://github.com/
Novartis/CellSIUS/. We decreased the value of the ‘min_n_cells’
parameter from its default value 10 to 5 (given that there are only seven
PGCs in the data), whereas default values were used for the other
parameters.

The FiRE R package is available from https://github.com/
princethewinner/FiRE. Using the default threshold on the FiRE score (i.e.
1.5*interquartile range+third quantile), no rare cells were identified. Hence,
we chose a less stringent threshold of 0.5*interquartile range+third quantile.
Because FiRE does not provide clusters of cells as output, for the MCC
computation we considered the rare cells identified by FiRE in the ‘Primitive
Streak’ cluster as PGCs.

The analysis with RaceID 3 was performed with standard parameters
using the R package https://github.com/dgrun/RaceID3_StemID2_package.

For the analysis with GapClust, we used the implementation available
from the GitHub repository https://github.com/fabotao/GapClust with
default parameters.

The SingleCellHaystack algorithm is implemented in the R package
available from https://github.com/alexisvdb/singleCellHaystack. Default
values were used for all parameters, and the algorithm was run on the first
30 principal components.

Analysis with SAM was performed with default values of all parameters
from the Python package https://github.com/atarashansky/self-assembling-
manifold/tree/master.

The Triku algorithm is implemented from the Python package available
from the website https://triku.readthedocs.io/en/latest/. This website also
includes a tutorial that we followed to perform our analysis. For gene
filtering, we ran the function pp.filter_genes from Scanpy (version 1.8.0)
with min_cells=3 instead of the default value equal to 10 (given that the
number of PGCs is less than 10).

SingleCellHaystack, SAM and Triku return a ranked list of ‘most
informative’ genes having a non-random distribution of expression values
across cells. We verified whether the top 1000 genes selected by these three
algorithms were enriched with PGC markers by running a Fisher’s test
(R function ‘fisher.test’ with alternative=‘two.sided’) using as background
all the genes with normalized expression above 0.5 in more than six cells.
None of the tested methods showed a statistically significant enrichment
of PGC markers, apart from CIARA (P=8×10−4). The data normalization
was done with the function ‘NormalizeData’ from Seurat with parameter
normalization.method=‘LogNormalize’.

The PGC markers were detected with the ‘FindMarkers’ function (with
parameter only.pos=T) from Seurat using a threshold for the Bonferroni-
adjusted P-value of 0.05 and excluding all genes that were also markers of
other non-PGC clusters.

mESCs experiment
Cell culture
Cells were grown in a medium containing DMEM-GlutaMAX-I, 15%
fetal bovine serum, 0.1 mM 2-β-mercaptoethanol, non-essential amino
acids, penicillin and streptomycin and 2× LIF over gelatin-coated plates.
The medium was supplemented with 2i (3 µM CHIR99021 and 1 µM
PD0324901, Miltenyi Biotec) for maintenance and expansion. The 2i was
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removed 24 h before the addition of RA as described by Iturbide et al.
(2021).

scRNA-seq
Cells were collected after RA treatment and sorted for live single cells by
FACS. Cells were then counted and tested for viability with an automated
cell counter. Five thousand cells of the sample were then input into the 10x
Genomics protocol. Gel bead-in-emulsion (GEM) generation, reverse
transcription, cDNA amplification, and library construction steps were
performed according to the manufacturer’s instructions (Chromium Single
Cell 3′ v3, 10x Genomics). Samples were run on an Illumina NovaSeq 6000
platform.

Gene counting
Unique molecular identifier (UMI) counts were obtained using the kallisto
(version 0.46.0) bustools (version 0.39.3) pipeline (Melsted et al., 2021).
First, the mouse transcriptome and genome (release 98) fasta and gtf files
were downloaded from the Ensembl website, and 10x barcodes list version 3
was downloaded from the bustools website. We built an index file with the
‘kallisto index’ function with default parameters. Then, pseudoalignment
was performed using the ‘kallisto bus’ function with default parameters and
the barcodes for 10x version 3. The BUS files were corrected for barcode
errors with ‘bustools correct’ (default parameters), and a gene count matrix
was obtained with ‘bustools count’ (default parameters).

Quality control and normalization
To remove barcodes corresponding to empty droplets, we used the
‘emptyDrops’ function from the R library ‘DropletUtils’ version 1.6.1
(Lun et al., 2019). For this, a lower threshold of 1000 UMI counts
per barcodewas considered. Afterward, quality control was performed using
the Scanpy library. Cells having more than 10% counts mapped to
mitochondrial genes or fewer than 1000 detected genes were removed. After
quality control, 766 cells were kept for downstream analysis (Fig. S4A-D).

Analysis with CIARA
CIARA identified 2475 highly localized genes in this dataset. We ran cluster
analysis on these genes with the ‘FindNeighbors’ (on the 30 top principal
components and with k.param equal to 3) and ‘FindClusters’ functions (with
resolution 0.1), which gave three clusters.

The marker genes of these clusters (see Tables S1-S3) were detected
with the ‘FindMarkers’ function (with parameter only.pos=T) from Seurat.
Only markers with an adjusted P-value based on Bonferroni correction
below or equal to 0.05 (for 2CLCs and precursor cells) or with a P-value
below 0.05 (for pluripotent cells) are considered for downstream analysis.
Moreover, for each cluster, only unique markers (e.g. those not included in
the marker list of other clusters) were kept.

Based on the lists of marker genes, the three clusters could be identified as
pluripotent cells, 2CLCs and precursor cells (Fig. 3B-D).

Comparison with previously published mESC data
We compared the clusters found in our mESC dataset with those in the
previously published mESC datasets after a 0 h and 48 h RA treatment
(Iturbide et al., 2021). The dataset at 0 h was re-analyzed with CIARA, which
identified 3302 highly localized genes. Using these genes, we performed
clustering with the functions ‘FindNeighbors’ (on the top 30 principal
components with k.param=5) and ‘FindClusters’ with resolution 0.1, which
gave three clusters. Based on their markers (found with the procedure
described above), these clusters could be identified as pluripotent cells (1245
cells), 2CLCs (36 cells) and precursor cells (four cells; Fig. S1). These same
clusters were identified in the dataset at 48 h by Iturbide et al. (2021).

We assessed the statistical significance of the intersection between the
markers of the three clusters found at 0 h, 24 h and 48 h by using a Fisher’s
test (with the ‘fisher.test’ function from the R package stats, with
‘alternative=two.sided’).

The intersections between the markers of the precursor cells clusters at
24 h versus 48 h (P=7×10−48) and at 24 h versus 0 h (P=10−31) were both
statistically significant.

Similarly, the markers of the 2CLC cluster had a significant overlap at
24 h versus 48 h (P=9×10−102) and at 24 h versus 0 h (P=6×10−83).

Finally, also the intersections between the markers of pluripotent cells at
24 h versus 0 h (P=0.0001) and at 24 h versus 48 h (P=2×10−91) were
statistically significant.

Identifying rare cell types in the human gastrula dataset
First, we tested the enrichment of the 2917 highly localized genes found by
CIARA among the top 100 highly variable genes (HVGs) within each of the
clusters provided by Tyser et al. (2021b) (as described above in the
‘Identifying rare cells’ section).

We found a statistically significant overlap in the endoderm (Endo;
P=4×10−5) and the hemato-endothelial progenitors (HEP; P=4×10−5)
clusters. Then, we sub-clustered the Endo and HEP clusters using their
HVGs (for the Endo cluster: resolution=0.2, k.param=5, top 30 principal
components; for the HEP cluster: resolution=0.6, k.param=5, top 30
principal components). The two smallest clusters found in the Endo and
HEP clusters are denoted as YSE1 and MEP1, respectively, and they were
not described by Tyser et al. (2021b).

Marker analysis
The markers for the human gastrula were detected with the ‘FindMarkers’
function (with parameter only.pos=T) from Seurat, with the same criteria
described above. The analysis was run separately using all sub-clusters reported
by Tyser et al. (2021b) for the Endo cluster (including the new rare cluster found
by CIARA, YSE1) and the HEP cluster (including MEP1 found by CIARA).

Trajectory and PAGA analysis
For the cells in the Endo sub-clusters (i.e. DE1, DE2, YSE, Hypoblast and
YSE1), a diffusion map was computed from the normalized count matrix
with the top 2000 highly variable genes (using the ‘NormalizeData’ and
‘FindVariableFeatures’ functions from Seurat) with the function
‘DiffusionMap’ from the R package destiny version 3.2.0 (Angerer et al.,
2016). The diffusion pseudotime was computed using the function ‘DPT’
from the same package.

For the cells in the HEP sub-clusters (EMP, HE, MP, MEP, MEP1) and
the erythroblast cluster, trajectory analysis was performed using the function
‘slingshot’ (with start.clus=‘MEP’ and reducedDim equal to the diffusion
map provided in the original human gastrula paper) from the R library
slingshot version 1.6.1 (Street et al., 2018).

To identify differentially expressed genes along the differentiation
trajectories joining MEP and MEP1 or MEP and erythroblasts, the
functions ‘fitGAM’ and ‘startVsEndTest’ (with parameter lineage equal to
TRUE) from the R package tradeSeq version 1.2.1 (Van den Berge et al.,
2020) were used.

To estimate the connectivity between clusters, we performed an
analysis with PAGA (Wolf et al., 2019) (functions tl.paga and pl.paga
from Scanpy).

Comparison with published mouse datasets
We analyzed with CIARA a previously published dataset from mouse
embryos at E7.75-E8.25 (Tyser et al., 2021a). This dataset of 665 cells
included two small endodermal clusters. CIARA found 1700 highly
localized genes (with n_cells_high=30); using these genes for clustering
(resolution=0.2, k.param=5 and number of principal components equal to
30), we identified three clusters (Fig. S5D), one of which was a small sub-
cluster of 21 cells in the endodermal cluster labeled as ‘En2’. The markers of
this sub-cluster (found with the procedure described above; Table S6) had a
statistically significant overlap with the markers of the YSE1 cluster in the
human gastrula (P=0.0009, two-sided Fisher’s test; only mouse genes with a
1:1 human ortholog were considered, see below).

Pijuan-Sala et al. (2019) identified a cluster of megakaryocytes in mouse
embryos. We tested the statistical significance of the overlap between the
markers of these cells in mouse (from ‘source data Fig. 3f’ in Pijuan-Sala
et al., 2019) and the markers of MEP1 cluster from the human gastrula using
a two-sided Fisher’s test, and obtained a P-value of 9×10−7.

The genes in the two mouse datasets (Tyser et al., 2021a; Pijuan-Sala
et al., 2019) were converted into the corresponding human orthologous
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name if there was a 1:1 correspondence between the mouse and the human
gene name, using g:Profiler (Raudvere et al., 2019).

Analysis of single-cell transcriptomic atlases
The mouse gastrulation atlas dataset (Pijuan-Sala et al., 2019) includes
116,312 cells. CIARA identified 3197 highly localized genes with
parameters: threshold=1, n_cells_low=3, n_cells_high=20. The run time
with the Python CIARA package was ∼3 h with eight 3.0 GHz cores.

The scRNA-seq dataset generated from human peripheral blood
mononuclear cells (Zheng et al., 2017) includes 68,579 cells. CIARA
identified 4207 highly localized genes with parameters: threshold=1,
n_cells_low=3, n_cells_high=100). The run time with the Python CIARA
package was ∼1.8 h with eight 3.0 GHz cores.

Analysis of the SHARE-seq dataset
The rawRNAandATACpeak count matrices (mm10)were downloaded from
Gene Expression Omnibus (GSE140203). The processing of the data was
done using Scanpy 1.9.1 and epiScanpy 0.4.0. Further filtering of the count
matrices was applied. For the RNA count matrix, cell barcodes containing
fewer than 200 genes and genes present in fewer than three cells were filtered
out, resulting in 40,780 cells×21,317 genes. For the ATAC peak count matrix,
we binarized the counts and then filtered out barcodes with fewer than 1000
peaks as well as peaks present in fewer than 20 barcodes. We obtained a
filtered count matrix of 34,166 cells×338,975 peaks.

Additionally, the ATAC gene and enhancer-based count matrix were
built using the fragment file and the list of valid barcodes available on
Gene Expression Omnibus as well as gene coordinates from GENCODE
(release M1) and enhancers coordinates from the EnhancerAtlas 2.0
(Gao and Qian, 2020). The enhancer count matrix was binarized, and
barcodes with fewer than 1000 peaks as well as enhancers present in fewer
than ten barcodes were filtered out, resulting in 34,614 cells×420,475
enhancers.

Further processing was carried out identically for both RNA and ATAC
count matrices. We normalized the data such that the library size had the
same number of total counts per cell by dividing each cell by the total counts
of all genes. The normalized counts were then log transformed. To build the
KNN graph, we used 30 PCs and a number of neighbors of 15.

CIARA identified 639 highly localized genes for the RNA count matrix,
596 highly localized features for the ATAC gene-based count matrix, 17,652
highly localized features for the ATAC peak-based count matrix, and 8205
highly localized features for the ATAC enhancers-based count matrix.

Robustness analysis
We performed several robustness tests to verify how changes in the
parameters affect the results obtained by CIARA.

Gene filtering is the first step in the CIARA algorithm, and is performed
based on threshold values for the gene expression levels and the number of
cells in which a gene is detected. To test CIARA’s robustness relative to
changes in these thresholds, we re-ran CIARA on all the datasets analyzed in
this study using more/less stringent thresholds on the expression values (2 or
0.5 normalized log-count, instead of the default value of 1) and the
maximum number of cells in which a gene is detected (10 or 30 cells, instead
of the default value of 20). To compare the results, we computed the
Pearson’s correlation coefficients between the number of shared highly
localized genes in each cell (which mark candidate rare cell types; see above
and Figs 1B, 3B and 4A) obtained with the different settings (including the
default one). In all cases, we obtained a statistically significant value of
correlation (all P-values were less than ∼2.5e−20), indicating that, overall,
the results are robust to changes in threshold values.

Another key step in CIARA is the building of the KNN graph, which
requires the specification of the number of nearest neighbors, K, the number
of highly variable genes, and the distance metric. We assessed the
robustness of CIARA’s results to changes in all of these parameters using
two datasets: the mESC dataset (Fig. 1B,C) and the human gastrula dataset
(Figs 2C,D and 4), in which the presence of rare cells is well documented
[i.e. the 2CLCs and the precursor cells in the mESC dataset (Iturbide et al.,
2021); and the PGCs in the human gastrula dataset (Tyser et al., 2021b)], but
they mostly go undetected with existing methods (Fig. 2C,D).

First, we ran CIARA on the mESC dataset with different values of K
(3, 5, 10) and of the expression threshold (0.5, 1, 2 log-counts). In each
run, we verified with a Fisher’s exact test whether the lists of marker
genes of the two rare populations present in this dataset were enriched
or not among the genes selected by CIARA. All the statistical tests run
with the markers of both rare cell types were statistically significant
(P<0.01), except for one parameter combination (K=10 and expression
threshold=2. This suggests that CIARA is overall robust to changes in K
and the expression threshold, but that increasing the number of neighbours
and using a more stringent expression threshold can generally impair the
identification of rare cell type markers.

Finally, we ran CIARA on the human gastrula dataset, choosing
different numbers of highly variable genes (top 1000, 2000 or 3000),
different values of K (3, 5, 10, 15, 20), and distance metrics (Euclidean or
cosine distance). CIARA identified the cluster of seven PGCs and their
markers with any of these combinations of parameters. Moreover, we also
ran CIARA on the KNN graph generated after removing all PGC markers
from the set of highly variable genes; even in this case, the PGC cluster
was identified by clustering the data using the genes selected by CIARA.
Taken together, these results suggest that CIARA is robust with respect to
changes in parameters and can successfully identify very rare cells even
when their markers are absent from the genes used to build the KNN
graph.

Code availability
The code used to generate the figures in this paper is available at https://
github.com/ScialdoneLab/CIARA. In this repository, there are also
additional examples of applications of CIARA.

CIARA is available both in R (https://CRAN.R-project.org/package=
CIARA) and Python (https://github.com/ScialdoneLab/CIARA_python).
Both packages can be easily integrated with standard analysis pipelines
based on, for example, Seurat (Hao et al., 2021) and Scanpy (Wolf et al.,
2018).
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