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Preterm and term neonates may postnatally develop 
lung injury that can potentially evolve into chron-

ic lung disease, also referred to as bronchopulmonary 
dysplasia (BPD) (1–4). The current diagnostic process 
relies solely on clinical observation, occasional chest 
radiography, and late-stage pulmonary function. This 
process has limited capacity to capture in-depth disease 
characteristics, resulting in reduced prognostic value. 
Thus, the development of much needed personalized 
treatment and monitoring strategies in this high-risk 
cohort depends on the implementation of sensitive, 

radiation-free imaging strategies and their standardized 
assessment to critically inform the diagnostic process by 
adding structural information (1,5,6).

The low sensitivity and diagnostic value of conven-
tional chest radiography and the limitations of CT due to 
radiation exposure (7,8) resulted in the exploration of al-
ternative imaging techniques such as MRI to characterize 
lung disease (9–13). The use of MRI is supported by its 
established role in the diagnosis of central nervous system 
abnormalities (14). Initial studies targeted lung volume 
measurements in MRI (9–11), whereas only a few studies 
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Purpose: To analyze the performance of deep learning (DL) models for segmentation of the neonatal lung in MRI and investigate the 
use of automated MRI-based features for assessment of neonatal lung disease.

Materials and Methods: Quiet-breathing MRI was prospectively performed in two independent cohorts of preterm infants (median ges-
tational age, 26.57 weeks; IQR, 25.3–28.6 weeks; 55 female and 48 male infants) with (n = 86) and without (n = 21) chronic lung 
disease (bronchopulmonary dysplasia [BPD]). Convolutional neural networks were developed for lung segmentation, and a three-
dimensional reconstruction was used to calculate MRI features for lung volume, shape, pixel intensity, and surface. These features were 
explored as indicators of BPD and disease-associated lung structural remodeling through correlation with lung injury scores and multi-
nomial models for BPD severity stratification.

Results: The lung segmentation model reached a volumetric Dice coefficient of 0.908 in cross-validation and 0.880 on the indepen-
dent test dataset, matching expert-level performance across disease grades. MRI lung features demonstrated significant correlations 
with lung injury scores and added structural information for the separation of neonates with BPD (BPD vs no BPD: average area 
under the receiver operating characteristic curve [AUC], 0.92 ± 0.02 [SD]; no or mild BPD vs moderate or severe BPD: average AUC, 
0.84 ± 0.03).

Conclusion: This study demonstrated high performance of DL models for MRI neonatal lung segmentation and showed the potential of 
automated MRI features for diagnostic assessment of neonatal lung disease while avoiding radiation exposure.

Supplemental material is available for this article.
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25.3–28.6 weeks) with and without later development of BPD 
at two study sites (cohort 1: Perinatal Centre Hospital of the 
Ludwig-Maximilian University in Munich, Germany [n = 86]; 
cohort 2: Universitätsklinikum Giessen und Marburg, Germany 
[n = 21]). We performed 3-T lung MRI near term age during 
quiet breathing after obtaining informed parental consent (ethics 
vote cohort 1 [EC#195–07] and cohort 2 [EC#135–12]). MR 
images were acquired during quiet sleep at room air breathing in 
unsedated infants (cohort 1) or under light sedation with chlo-
ral hydrate (30–40 mg/kg orally, cohort 2) (Appendix S1, sec-
tion 1). BPD was diagnosed in 73 infants and was classified into 
three severity grades based on the National Institutes of Health 
consensus definition summarized by Jobe and Bancalari (1) as 
mild (n = 42; requirement of supplemental oxygen for 28 days, 
no need for oxygen supplementation at 36 weeks postmenstrual 
age), moderate (n = 11; requirement of supplemental oxygen for 
28 days and oxygen supplementation <30% fraction of inspired 
oxygen [FiO2] at 36 weeks postmenstrual age), and severe (n = 
20; requirement of supplemental oxygen for 28 days and oxy-
gen supplementation >30% FiO2 at 36 weeks postmenstrual age  
and/or positive pressure ventilation or continuous positive pres-
sure). Thirty-four infants did not develop BPD. Clinical data 
were obtained from participants of both cohorts (n = 103) (Table 
1). Four infants were excluded from the regression analysis due 
to missing clinical parameters (Fig 1).

MRI Protocols and Annotations
Axial MR images were obtained near term age (median, 35.95 
weeks; IQR, 33.7–37.9 weeks) using 3-T MRI scanners (Sie-
mens Skyra [cohort 1] and Siemens Verio [cohort 2]), with 
a size-adapted number of coil elements from the 32-channel 
spine array coil, an 18-channel flexible body array coil, and a 
20-channel head-and-neck array coil (Appendix S1, section 2). 
A T2-weighted half-Fourier-acquired single-shot fast spin-echo 
sequence with an echo time of 57 msec was used, providing 
T2-weighted signal and contrast for lung structural assessment 
(19). Spatial resolution was 1.3 × 1.9 mm2 in plane, with a sec-
tion thickness of 4 mm and a section gap of 0.4 mm.

Manual lung annotation was performed independently by 
three trained physicians, including a senior radiologist (V.K., 
with ≥5 years of experience) and medical students (F.H., L.H.), 
referred to as “raters” in the analysis (Appendix S1, section 2), 
using ITK-SNAP (20). Pseudonymization of images and clinical 
information was performed for all participants. MR images were 
automatically cropped to 128 × 128 pixels for model training.

Lung Injury Score
Standardized scoring of MR images for lung structural changes 
was performed independently by a senior neonatologist and a 
senior radiologist, both blinded to the clinical diagnosis (Ap-
pendix S1, section 2), in a subcohort of infants from cohort 
1 (n = 58; median GA at birth, 26.9 weeks [IQR, 25.4–28.7 
weeks]; median birth weight, 817.5 g [IQR, 712.5–1077.5 
g]; 22 without BPD, 16 with mild BPD, seven with moderate 
BPD, and 13 with severe BPD), as previously described (21). 
Variables, scored on a five-point Likert scale, included intersti-
tial enhancement, caudocranial and anteroposterior gradients, 

explored the assessments of structural changes in the neonatal 
lung (12,15).

In the neonatal lung, MRI is technically challenged by small 
patient sizes, lower spatial resolution, and sensitivity to infant 
motion, resulting in blurring, ghosting, and other image artifacts 
(16); this demands expert knowledge to obtain qualitative and 
quantitative measurements (10,12). The reduced standardization 
due to interrater inconsistencies limits high-throughput MRI-
based analysis and thus monitoring of neonatal lung disease.

We, therefore, developed a deep learning (DL)–based model 
to enable robust and standardized analysis of lung MRI in pre-
term neonates with and without BPD performed during quiet-
breathing at near-term age. We combined recent advances in 
computational methods (2,17,18), that is, convolutional neural 
networks, to improve the applicability and robustness of DL 
methods for performing MRI lung segmentation in preterm in-
fants. The obtained lung segmentations were used to compute 
three-dimensional (3D) MRI lung features that quantify lung 
volume and shape, pixel intensity distributions, and surface. We 
assessed these structural features for their added value in classify-
ing infants according to the clinical diagnosis of BPD.

Materials and Methods

Study Cohort
We prospectively enrolled 107 preterm infants less than 32 weeks 
gestational age (GA) at birth (median age, 26.57 weeks; IQR, 

Abbreviations
AUC = area under the receiver operating characteristic curve,  
BPD = bronchopulmonary dysplasia, DL = deep learning, GA = 
gestational age, ME = model ensemble, 3D = three-dimensional, 
VDC = volumetric dice coefficient

Summary
The deep learning model ensemble demonstrated high performance 
for segmentation of the neonatal lung in quiet-breathing MRI; 
automated three-dimensional MRI lung features showed potential for 
a standardized assessment of neonatal lung disease.

Key Points
 ■ The deep learning models matched expert-level concordance for 

MRI neonatal lung segmentation (volumetric Dice coefficients: 
cross-validation scheme, 0.91; independent test dataset, 0.88).

 ■ Three-dimensional (3D) MRI features correlated with lung disease 
indicators, including lung volume by birth weight and duration of 
mechanical ventilation (Spearman r = 0.735, P ≤ .001, n = 103) 
and MRI anteroposterior centroid displacement and anteroposte-
rior ventilation inhomogeneity score (Spearman r = 0.516 for left 
lung, P ≤ .001).

 ■ The 3D MRI features added structural information for the clas-
sification of neonatal lung disease, separating neonates with and 
without bronchopulmonary dysplasia (BPD) (area under the 
receiver operating characteristic curve [AUC], 0.92 ± 0.02), mild 
versus severe BPD (AUC, 0.84 ± 0.03), and single-level BPD 
(AUC, 0.75 ± 0.01).

Keywords
Bronchopulmonary Dysplasia, Chronic Lung Disease, Preterm 
Infant, Lung Segmentation, Lung MRI, BPD Severity Assessment, 
Deep Learning, Lung Imaging Biomarkers, Lung Topology
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Table 1: Demographic and Clinical Information of the Preterm Neonatal Cohorts

Clinical Variable All BPD Levels No BPD Mild BPD Moderate BPD Severe BPD P Value* 

No. of partici-
pants

103 33 39 11 20 …

Sex .49
 M 48 14 22 4 8
 F 55 19 17 7 12
GA (wk) 26.57 (25.3–28.6) 29.43 (28.3–30.1) 26.00 (25.3–27.1) 25.14 (24.1–27.1) 25.50 (24.4–26.4) ≤.001
Birth weight (g) 810 (705.0–1085.0) 1240 (960.0–1440.0) 780 (720.0–925.0) 650 (570.0–730.0) 735 (638.8–823.7) ≤.001
Body size (cm)† 33.15 (31.5–37.8) 39.00 (37.0–40.8) 32.50 (31.5–34.8) 30.50 (29.3–33.0) 32.00 (30.8–33.0) ≤.001
Apgar score at 5 

minutes
8.00 (7.0–9.0) 8.00 (8.0–9.0) 8.00 (8.0–9.0) 8.00 (7.0–9.0) 7.00 (6.0–8.3) .10

Early onset infec-
tion‡

.27

 No 80 29 30 7 14
 Yes 23 4 9 4 6
Administration 

of postnatal 
corticosteroids

≤.001

 No 61 28 22 6 5
 Yes 42 5 17 5 15
Oxygen supple-

mentation (d)
44.00 (6.0–72.5) 3.00 (1.0–6.0) 48.00 (31.5–63.0) 84.00 (61.0–98.5) 98.00 (75.0–125.3) ≤.001

Mechanical ven-
tilation (d)§

51.00 (28.0–66.0) 15.00 (6.0–28.0) 56.00 (45.0–61.0) 66.00 (51.5–75.5) 73.00 (68.0–85.8) ≤.001

Note.—Data are numbers of participants or medians and IQRs (25%–75%). BPD = bronchopulmonary dysplasia, GA = gestational age.
* Differences between BPD severity levels were determined with the Kruskal-Wallis H test. 
† Linear imputation (with GA and birth weight) was performed for 18 body sizes.
‡ Early onset infection was defined per Sherman et al (45).
§ Mechanical ventilation includes the days of invasive and noninvasive mechanical ventilation.

Figure 1: Data flow and participant exclusion process for the analyses performed in this study. n = number of participants analyzed. APGAR = appearance, pulse, gri-
mace, activity, and respiration, BPD = bronchopulmonary dysplasia, DL = deep learning, FRC = functional residual capacity, ILFT = infant lung function testing.
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obtained by pixelwise majority voting. The average interrater 
VDC concordance between physicians and performance of each 
individual model were evaluated for reference.

After segmentation, a 3D representation of the lung was cre-
ated by thresholding the predicted lung masks and finding the 
connected voxels in 3D. Lungs were rotated to a common refer-
ence frame (Appendix S1, section 4). Lung volumes obtained 
from the U-Net segmentations were validated through compari-
son with volumes obtained from manual segmentations.

Morphologic MRI Lung Features
We automatically extracted a set of 78 MRI lung features 
from 3D reconstructions of the lung, thereby representing the 
morphologic features of the left and right lung, based on the 
analysis described by Waibel et al (27). In addition, we pro-
posed a set of pixel-intensity features using scikit-Image 0.19.2 
(28) to investigate their potential for describing lung injury in 
the challenging case of neonatal lung MRI. MRI lung features 
were grouped into the following categories: volumetric features 
(n = 38) describing volumes, axis lengths, centroids, inertias, 
and moments for each 3D axis; intensity features (n = 30), in-
cluding intensity-weighted centroids and descriptive statistics 
of the distribution of pixel intensities in the lung; and surface 
features (n = 10) quantifying surface area, roughness, and con-
vexity (Table S4). An exploratory analysis was performed to 
investigate the correlation between MRI lung features and 
BPD indicators, clinical parameters, and lung injury scores 
(Appendix S1, section 5). For reference, we additionally ex-
tracted standard radiomic features (120 per lung) that are used 
for medical imaging in adult patients using the Python package 
PyRadiomics 3.0.1 (Appendix S1, section 9) (29).

BPD Severity Classification Models
The integrated potential of MRI lung features to complement 
BPD disease classification by adding information on lung vol-

emphysema and atelectasis, and airway accentuation (Appen-
dix S1, section 2).

Infant Lung Function Testing
Infant lung function testing was performed in a subcohort of 
preterm infants from cohort 1 (n = 33; median GA at birth, 
28.0 weeks [IQR, 25.4–30.0 weeks]; median birth weight, 920 
g [IQR, 750–1300 g]; 17 with no BPD, 10 with mild BPD, 
two with moderate BPD, and four with severe BPD) at near-
term age (median age, 36.6 weeks [IQR, 34.6–38.7 weeks]) 
and included tidal breathing analysis and functional residual 
capacity at body plethysmography (22).

DL MRI Lung Segmentation Model
We trained a set of U-Net convolutional neural network mod-
els (23) to perform two-dimensional lung segmentation on the 
collected neonatal MR images, with each model (models 1–3) 
based on the manual annotations of every rater, and combined 
them through pixelwise majority voting to a model ensemble 
(ME) (Fig 2).

U-Net architecture and hyperparameters are available in Ap-
pendix S1, section 3, in Tables S2 and S3, and in the code reposi-
tory (https://github.com/SchubertLab/NeoLUNet). The Instant-
DL framework was adapted for model training (24). In addition, 
we trained multiple 3D U-Net models (25) to investigate their 
performance in comparison with the two-dimensional models 
(Appendix S1, section 3).

To generate unbiased training in cohort 1, a set of k models 
were trained in a leave-one-patient-out cross-validation scheme. 
Additionally, a model trained with all the data from cohort 1 was 
validated in cohort 2. Lung segmentation performance was mea-
sured with the volumetric Dice coefficient (VDC) (26). The ME 
prediction was evaluated by comparing its VDC performance 
against the manual segmentation of each physician (physician 1, 
physician 2, physician 3), as well as against a physician consensus 

Figure 2: MRI-based neonatal lung segmentation and automated MRI analysis. (A) Clinical study including preterm infants with and without bronchopulmonary dys-
plasia (BPD). Free-breathing neonatal MRI was performed at mean gestational age of 37 weeks ± 5.8. (B) Manual MRI annotation of the lung was performed by three 
trained physicians (physician 1 [P1], physician 2 [P2], and physician 3 [P3]). MRI morphologic injuries (eg, emphysema, fibrosis, ventilation inhomogeneity) were scored by 
two trained physicians. (C, D) U-Net deep learning models (MP1, MP2, MP3) were trained for lung segmentation, and a final lung-mask prediction was calculated with 
an ensemble of the models (ME) through majority voting. (E) Lung volume three-dimensional (3D) reconstruction and automated calculation of 78 lung morphologic 3D 
descriptors.

http://radiology-ai.rsna.org
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Results

Participant Characteristics
Demographic and clinical variables of the study cohorts (median 
GA, 26.57 weeks [IQR, 25.3–28.6 weeks]; 55 female and 48 male 
infants) (Table 1) were found comparable between cohorts (Table 
S1) and within the range of previous published studies (4,33).

DL Enables Robust MRI Neonatal Lung Segmentation across 
Disease Grades
The DL lung segmentation ME achieved high segmentation 
performance (Fig 3A), measured as the VDC against each rater 
(mean VDC = 0.859 ± 0.046 [SD] for ME vs physician 1,  
0.886 ± 0.044 for ME vs physician 2, and 0.897 ± 0.043 for 
ME vs physician 3) (Fig 3B). This was in line with the inter-
rater concordance (mean VDC = 0.877 ± 0.038 for physician 
1 vs physician 2, 0.872 ± 0.036 for physician 1 vs physician 
3, and 0.885 ± 0.038 for physician 2 vs physician 3). The ME 
compared with the physician consensus showed a mean VDC 
of 0.903 ± 0.040 (Fig 3B), confirming human-level accuracy 
of the artificial intelligence–based segmentation. The VDC 
between cohorts was statistically different (Mann-Whitney U 
= 422, P ≤ .001) by 0.028 points (cohort 1: cross-validation, 
0.908 ± 0.039; cohort 2: test dataset, 0.880 ± 0.036). The per-
formance of individual models was comparable to the corre-
sponding raters (Fig S1A; Appendix S1, section 7). The 3D 
U-Net models reached a performance of 0.793 ± 0.097 VDC, 
distinctly below the two-dimensional U-Net models (Appen-
dix S1, section 3).

We found an effect of image quality on segmentation per-
formance for both manual and automated segmentations (Fig 
S1B) and lower image qualities in cohort 2 (Mann-Whitney U = 
462, P ≤ .001). In contrast, we found no evidence of a difference 
in the model’s segmentation performance between BPD severity 
grades (Fig S1C) or lung injury scores (Fig S2).

Reflecting the robust performance of the segmentation mod-
els, manual and DL-based computed MRI lung volumes (Fig 3C) 
were highly correlated (Spearman r = 0.915, P ≤ .001, n = 107).

MRI Lung Features Correlate with BPD Severity, Disease 
Indicators, and Lung Injury Scores
Our exploratory analysis demonstrated significant correlations of 
multiple MRI lung features with BPD severity, indicators of BPD, 
and lung injury scores. When comparing MRI lung volume with 
variables of infant lung function testing, direct estimators of lung 
function, we observed a positive correlation with functional resid-
ual capacity (Pearson r = 0.703, P ≤ .001, n = 27) (Fig 3D) and tidal 
volume (Pearson r = 0.675, P ≤ .001, n = 32) (Fig 3E), with all three 
normalized by birth weight. The normalized MRI lung volume al-
lowed for discrimination between BPD severity grades (Kruskal-
Wallis test, H = 42.17; P ≤ .001; n = 103), as indicated by pairwise 
comparisons (Fig 4A). Moreover, MRI lung volume normalized by 
birth weight correlated with the continuous BPD indicators dura-
tion of mechanical ventilation (Spearman r = 0.735, P ≤ .001, n = 
103) (Fig 4B) and oxygen supplementation (Spearman r = 0.656,  
P ≤ .001, n = 103) (Fig 4C).

ume and structure was estimated by training multiple regres-
sion models for BPD severity (ie, mild, moderate, severe) or 
the expression of BPD indicators (ie, duration of mechanical 
ventilation or oxygen exposure) using three groups of explana-
tory variables: (a) 78 MRI lung features (hereafter, L) and clini-
cal BPD risk factors divided into (b) patient attributes (hereaf-
ter, P) (ie, GA, birth weight, body size, sex) and (c) postnatal 
clinical adaptation (hereafter, C) (ie, 5-minute Apgar score, 
early-onset infection, steroid treatment).

Random forest (30) and logistic regression models with Elas-
tic Net (31) regularization were trained to perform binomial 
classification of two scenarios (no BPD vs BPD; no or mild 
BPD vs moderate or severe BPD) and multinomial classifica-
tion (no BPD, mild BPD, moderate BPD, severe BPD), using 
scikit-learn v.1.1.1 (32). The models were trained using different 
combinations of the grouped explanatory variables (L, PC, PCL) 
to thereby estimate the added value of the MRI lung features to 
characterize BPD.

To optimize the hyperparameters with a randomized search 
(Appendix S1, section 6; Table S5), we used a nested cross-vali-
dation scheme where the model performance was estimated with 
10 repetitions. A stratified fivefold train-test split was used for 
inner and outer cross-validation loops.

We also evaluated model performance when applying uni-
variate feature selection or principal component analysis to 
the input features. Ultimately, a set of logistic regression and 
random forest models were trained both with and without 
feature selection, with the aim of finding the best combina-
tion of model, hyperparameters, and groups of features (Ap-
pendix S1, section 6).

For the continuous BPD indicators, regression models (ie, 
Poisson and random forest) were trained to estimate the dura-
tion of required respiratory support and oxygen supplementa-
tion, using the same nested cross-validation and feature selec-
tion schemes.

Statistical Analysis
To identify statistical differences between cohorts and BPD 
severity groups, normality tests (D’Agostino and Pearson) 
were followed by the Kruskal-Wallis H test with Bonferroni 
correction. MRI lung segmentation performance across co-
horts, disease severity, and lung injury scores was evaluated 
with normality and Kruskal-Wallis testing. DL-based lung 
volumes were correlated with other lung volume estimators 
using normality tests and subsequent Pearson or Spearman 
correlations. For the exploratory MRI lung feature analysis 
and correlation heat map, Spearman correlations with Bon-
ferroni corrections were calculated, and Kruskal-Wallis and 
pairwise Mann-Whitney U tests were used to determine the 
individual features’ potential for disease grade or lung in-
jury score discrimination. Performance of BPD classification 
models was calculated via the area under the receiver oper-
ating characteristic curve (AUC). Model performances were 
compared using Kruskal-Wallis and pairwise Mann-Whitney 
U tests. Significant differences were reported when P < .05. 
Statistical analyses were performed with Python 3.7 and 
SciPy 1.10.1 (Python Software Foundation).

http://radiology-ai.rsna.org
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The volumetric feature “lung elongation” helped differentiate 
BPD  severity levels (left lung: Spearman r = −0.502, P ≤ .001; 
right lung: r = −0.370, P ≤ .001; n = 103) (Fig 4D) and correlated 
with the duration of mechanical ventilation (left lung: Spearman 
r = −0.577, P ≤ .001; right lung: r = −0.426, P ≤ .001; n = 103).

We also found positive correlations of MRI lung features 
with variables of the lung injury score, such as between MRI 

anteroposterior centroid displacement and the anteroposterior  
gradient (left lung: Spearman r = 0.516, P ≤ .001; right lung: 
r = 0.395, P = .0099, n = 58) (Fig 4E) as well as between lung 
surface roughness and interstitial enhancement (left lung: Spear-
man r = 0.273, P = .11, n = 58) (Fig 4F); all feature correlations 
are shown in Figure S3 and Appendix S1, section 8; the highest 
correlations are shown in Figure 5.

Figure 3: Lung segmentation and lung volume analysis. (A) MRI lung segmenta-
tion sample with manual annotation (magenta) and machine learning model–gener-
ated lung masks (cyan). (B) Plot shows lung segmentation performances for manual 
physician-based lung annotations (physician 1 [P1], physician 2 [P2], physician 3 
[P3]), and the model ensemble (ME) with majority voting; results are separated for co-
hort 1 and cohort 2. Boxes represent IQR (25th–75th percentile), median value is the 
horizontal midline, whiskers extend to data points within ± 1.5 IQR from each quartile, 
outliers are plotted as diamonds. (C) Graph shows MRI lung volume from the U-Net 
model ensemble segmentations versus estimated lung volume from manual segmenta-
tions (n = 107). (D) Graph shows functional residual capacity per birth weight versus 
MRI model ensemble lung volume per birth weight (n = 27). (E) Graph shows tidal 
volume per birth weight versus MRI model ensemble lung volume per birth weight  
(n = 32). The shaded area in C–E corresponds to the regression 95% CI, and axis 
plots show univariate histograms and probability density curves.

http://radiology-ai.rsna.org
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MRI Lung Features Complement Stratification Value of 
Clinical BPD Estimators
In binary BPD severity classification, all models showed 
comparable performance for separating infants with BPD 
from those without BPD (AUC = 0.92). However, for the 
separation of no and mild BPD from moderate and severe 
BPD, the inclusion of MRI lung features in the PCL model 
improved the average AUC by 0.08 when compared with 
GA alone and by 0.02 when compared with PC (Fig 6A, 
Table 2).

The multiclass classification of BPD severity showed com-
parable performance for the PCL and PC models, with macro-
weighted AUCs of 0.75 and 0.76, respectively (Table 2, Fig 
6B). The individual class performance for the best PCL model 
was highest in the no-BPD class (AUC = 0.92), with similar 
AUC performances in the remaining classes (AUC = 0.67–
0.73) (Fig 6C).

To specifically analyze the subgroup of extremely premature 
infants where clinical features show less discriminative power, we 
re-evaluated the model performance in a subgroup that included 

Figure 4: Correlation of MRI lung features with bronchopulmonary dysplasia (BPD) severity and lung injury scores. (A) Plot shows predicted lung volume normalized 
by birth weight against BPD severity grades (n = 103). (B) Graph shows correlation of lung volume based on model ensemble segmentations normalized by birth weight 
against duration of mechanical ventilation (in days) (n = 103). (C) Graph shows correlation of lung volume based on model ensemble segmentations normalized by birth 
weight with duration of oxygen supplementation (in days) (n = 103). (D) Plot shows lung elongation (major axis/minor axis) by BPD severity for right and left lungs (n = 
103). The shaded area in B and C corresponds to the regression 95% CI (Figure 4 continues). 
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Figure 5: Correlation matrix of three-dimensional (3D) MRI lung features with clinical variables (bronchopulmonary dysplasia [BPD] diagnosis variables and BPD risk 
factors) and lung injury scores. MRI lung features are grouped by feature type (volumetric, intensity, and surface). A subset of morphologic features with the highest Spear-
man correlations is shown. Statistical significance is annotated based on Spearman correlations with multiple test Bonferroni correction (* = P ≤ .05, ** = P ≤ .01, *** = P ≤ 
.001). AP = anteroposterior, CC = craniocaudal, gest = gestational, resp = respiratory.

Figure 4 (continued): (E) Plot shows MRI lung intensity anteroposterior (AP) centroid displacement versus anteroposterior gradient score for ventilation inhomoge-
neity (n = 58). (F) Plot shows MRI lung volumetric surface roughness versus interstitial lung injury score for fibrosis (n = 58). max = maximum. Differences were tested with 
the Kruskal-Wallis H test with Bonferroni multiple test correction, and pairwise comparisons were performed with the Mann-Whitney U test (* = P ≤ .05, ** = P ≤ .01, *** 
= P ≤ .001). Boxes in A and D–F represent IQR (25th–75th percentile), median value is the horizontal midline, whiskers extend to data points within ± 1.5 IQR from each 
quartile, outliers are plotted as diamonds.
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the most immature participant without BPD and the most ma-
ture infants with severe BPD (GA between 25.4 and 28.6 weeks; 
n = 50). Here, GA did not sufficiently discriminate for disease 
severity (AUC = 0.55), whereas the inclusion of lung MRI fea-
tures significantly improved the separation of BPD grades, with 
an increase in performance of the PCL model by 0.05 versus PC 
and 0.13 versus GA (Table 2; Fig 6E, 6F).

Permutation feature importance analysis (100 repetitions) on 
the best logistic regression model trained with all the features 

(PCL) and data points (n = 103) revealed higher importance 
scores of 16 MRI lung features, next to GA and birth weight (Fig 
S4A). In the random forest model, 17 MRI lung features showed 
relevance for BPD classification (Fig S4B). Features identified 
in both analyses included lung volumes, lung elongation, and 
signal intensity centroids.

We investigated the models’ performance when classifying 
by BPD indicators, that is, duration of mechanical ventilation 
and oxygen supplementation, as continuous variables (Table 3). 

Figure 6: Bronchopulmonary dysplasia (BPD) classification with best performing models by feature group (GA = gestational age, L = 78 MRI automated lung features, 
PC = patient and clinical variables, PCL = patient, clinical, and lung features). (A) Plot shows BPD binomial classification performance (no or mild vs moderate or severe). 
(B) Plot shows BPD multinomial classification performance (no, mild, moderate, severe). (C) Graph shows BPD multinomial receiver operating characteristic (ROC) curve 
for the best model with PCL features. (D) Plot shows regression performance for duration of respiratory support (Figure 6 continues).
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Figure 6 (continued): (E) Plot shows BPD multinomial classification performance for patients with GA between 25.4 and 28.6 weeks. (F) Graph shows BPD 
multinomial receiver operating characteristic curve (ROC) for the best model with PCL features with GA (25.4–28.6 weeks). AUC = area under the receiver operating 
characteristic curve, Log. Reg. = logistic regression, PCA = principal component analysis, RF = random forest, UFS = univariate feature selection. Differences were tested with 
the Kruskal-Wallis H test with Bonferroni multiple test correction, and pairwise comparisons were performed with the Mann-Whitney U test (* = P ≤ .05, ** = P ≤ .01, *** = 
P ≤ .001). Boxes in A, B, D, and E represent IQR (25th–75th percentile), median value is the horizontal midline, whiskers extend to data points within ± 1.5 IQR from each 
quartile, and outliers are plotted as diamonds.

For the duration of respiratory support, the PCL model achieved 
the lowest mean absolute error over all feature groups (average 
mean absolute error, 11.85 days for PCL model, 12.45 days for 
PC model, and 13.12 days for GA model) (Fig 6D). For the 
duration of oxygen supplementation, the PCL model showed a 
similar performance to the PC and GA models, with an average 
mean absolute error of 23.88 days.

PCL models using our MRI lung features showed compara-
ble BPD classification performance to models using standard ra-
diomic features. We found an AUC increase of 0.01 when com-
bining both the radiomic and our MRI lung features compared 
with using only radiomic features and an increase of 0.03 in the 
same comparison within the subgroup with GAs between 25.4 
and 28.6 weeks (Fig S5; Tables S6, S7; Appendix S1, section 9).

Discussion
To our knowledge, we are the first to successfully apply 
DL for accurate lung segmentation on lung MR images in 
healthy neonates and those with lung disease (VDC, 0.91). 
We found significant correlations of volumetric and struc-
tural MRI lung features with clinically relevant disease indi-
cators and demonstrated their potential for stratification of 
disease severity (AUC, 0.92 for binary classification and 0.75 
for multiclass classification).

With low variability across disease grades and high accuracy, 
the performance of the segmentation models outweighed indi-
vidual manual annotations, indicating their ability to contribute 
to the standardization of lung MRI analysis in neonates, a pro-
cess that is challenged by small organ size, motion artifacts, and 
blurring. The use of a unique neonatal cohort with multiexpert 

annotations and extensive hyperparameter tuning resulted in a 
DL model ensemble that overcame limitations of scalability and 
sensitivity reported by previous studies on MRI lung segmenta-
tion. Heimann et al (34) used lung shape appearance models to 
perform free-breathing MRI lung segmentation in a cohort of 
32 children, and the reported VDC was only 0.85, possibly due 
to reduced cohort size. Other studies achieved a segmentation 
overlap of 0.94–0.95 using lung region-growing–based methods 
and convolutional neural networks  in MR images from adult 
patients while applying breath-holding maneuvers (35,36). 
Other adult MRI lung segmentation methods reported VDCs in 
the range of 0.82–0.86 (37,38). In contrast, our ensemble model 
achieved equal or superior performance when compared with 
models designed for controlled acquisition protocols in adult 
lungs, with an average performance VDC of 0.90. We demon-
strate robust performance under lung disease conditions, cor-
roborating the potential for clinical application. Differences in 
segmentation performance between cohorts can be explained by 
the significantly lower image qualities of cohort 2. The accurate 
estimation of neonatal lung volumes by our pipeline (compared 
with manual annotations, r = 0.92) were close to the correlation 
levels of MRI lung volume extractions in adults (r = 0.98) (35).

We found that MRI lung volume normalized by birth weight 
was representative of direct estimators of lung function, that is, 
tidal volume and functional residual capacity, validating the DL-
based volumes with variables independent of imaging. In addi-
tion, we showed that MRI lung volumes normalized by birth 
weight sensitively represent the variability in BPD severity grades 
and BPD indicators, with the elevation in lung volume in dis-
ease being in line with previous studies (10,12). In agreement 
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Table 2: BPD Severity Classification by Feature Groups

Classification and Parameter PCL PC GA L

Binary classification: no BPD vs BPD (all 
severity levels)

 AUC (%) 91.67 ± 1.57 92.14 ± 1.14 92.06 ± 0.92 71.74 ± 2.59
 Best model LR (UFS) LR LR LR (PCA)
 Significantly better than L L L 
Binary classification: no or mild BPD vs 

moderate or severe BPD
 AUC 84.11 ± 2.66 81.82 ± 2.21 75.75 ± 1.34 75.20 ± 2.94
 Best model LR (PCA, UFS) RF LR LR
 Significantly better than GA, L GA, L 
Multinomial classification: no BPD, mild, 

moderate, and severe BPD
 AUC 75.21 ± 1.34 75.71 ± 1.23 74.84 ± 2.04 60.75 ± 2.27
 Best model LR (UFS) RF LR LR
 Significantly better than L L L 
Multinomial classification: no BPD, 

mild, moderate, and severe BPD (GA 
[25.4–28.6])

 AUC 67.60 ± 2.60 62.62 ± 3.72 54.65 ± 3.79 60.23 ± 5.17
 Best model LR (UFS) RF LR RF (PCA)
 Significantly better than PC, GA, L GA GA

Note.—AUCs are averages and SDs across 10 repetitions of the nested cross-validation. Significantly better per-
formance of a model is reported if the P value of the Mann-Whitney U test is below .05; for details, see Figure 6. 
BPD = bronchopulmonary dysplasia; C = clinical parameters (Apgar 5-minute score, early-onset infection, post-
natal steroid treatment); GA = gestational age; L = 78 MRI lung volumetric and morphologic descriptors; LR = 
logistic regression; P = patient descriptors (gestational age, birth weight, body size, sex); PC = patient and clinical 
descriptors; PCA = principal component analysis for lung features; PCL = patient, clinical and lung descriptors;  
RF = random forest; UFS = univariate feature selection. 

Table 3: Estimation of Primary BPD Indicators by Feature Groups

Analysis and Parameter PCL PC GA L

Regression: days of respiratory support
 MAE (d) 11.85 ± 0.44 12.45 ± 0.55 13.12 ± 0.20 19.43 ± 0.97
 Best model RF (PCA) RF Poisson Poisson (PCA)
 Significantly better than PC, L, GA GA GA 
Regression analysis: days of oxygen supplementation
 MAE (d) 23.88 ± 0.62 23.79 ± 1.11 22.36 ± 0.36 33.26 ± 2.17
 Best model RF (PCA) Poisson Poisson Poisson (PCA)
 Significantly better than L L PC, L, PCL 

Note.—Mean absolute errors (MAEs) and SDs across 10 repetitions of the nested cross-validation are reported. Significantly better 
performance of a model is reported if the P value of the Mann-Whitney U test is below .05; for details, see Figure 6. BPD = broncho-
pulmonary dysplasia; C = clinical parameters (Apgar 5-minute score, early-onset infection, postnatal steroids treatment); GA = gesta-
tional age; L = 78 MRI lung volumetric and morphologic descriptors; MAE = mean absolute error; P = patient descriptors (gestational 
age, birth weight, body size, sex); PC = patient and clinical descriptors; PCA = principal component analysis for lung features; PCL = 
patient, clinical, and lung descriptors; RF = random forest.

with these findings, lung elongation allowed for the identifica-
tion of BPD cases, likely reflecting ventilation inhomogeneity 
and consequences of long-term ventilatory support. High cor-
relations of structural markers with lung injury scores, such as 

intensity-weighted centroid displacement with anteroposterior 
gradients, reflect their potential to detect ventilation inhomoge-
neities. Likewise, the positive association between lung surface ir-
regularities and the lung injury score for interstitial enhancement 
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indicates the features’ potential to identify structural remodeling 
in the BPD lung, in line with results obtained in infant (13) 
and adult (39) lung fibrosis. Our approach acknowledges the po-
tential of MRI lung features as interpretable, quantitative mark-
ers of lung structural injuries in neonates, with the prospect of 
representing clinically inapparent disease subtypes, in line with 
adult chronic lung disease imaging-based diagnosis (40,41). We 
thereby complement previous studies on neonatal MRI, which 
were based on proton density measurements (42), lung MRI re-
laxation times (19), and average signal intensities (12).

To highlight possibilities for diagnostic application, we demon-
strated significantly increased performance in BPD classification 
when using our MRI lung features. Previous studies that solely 
relied on the performance of clinical variables achieved accurate 
BPD binary classification but showed only limited performance 
with regard to severity level stratification (4). The performance 
of our best binary model (AUC, 0.92 ± 0.02) exceeded previous 
radiation-free imaging-supported models (AUC, 0.83–0.86 [lung 
US] [9], 0.80 [lung MRI] [19]). Moreover, the inclusion of MRI 
lung features improved the identification of moderate and severe 
BPD cases (AUC, 0.84). Our multinomial BPD severity model 
(AUC, 0.75) outweighed the performance of 13 BPD classifica-
tion models (AUC, 0.54–0.73) (4), resembling the performance 
of Ryan et al (43) (AUC, 0.76), despite this approach being de-
pendent on oxygen supplementation as input for severity classifi-
cation (4). Potential clinical value is especially supported by the 
good performance of the MRI lung features in a subset of ex-
tremely premature infants (GA, 25.4–28.6 weeks) in which clini-
cal parameters do not sufficiently discriminate BPD severity. We 
additionally confirmed the value of automated MRI lung features 
for BPD grading, improving on previous studies estimating the 
duration of mechanical ventilation (15,18,43).

Our features outperformed standard radiomic features in the 
group of extremely premature infants (GA, 25.4–28.6 weeks), 
indicating that they contain complementary information for de-
scribing neonatal lung structure. As the combined application of 
both lung feature sets (radiomic and our lung features) further 
improved overall classification performance, novel approaches 
could benefit from considering comprehensive sets of automated 
MRI features to inform disease characterization.

Future studies need to address larger and more diverse anno-
tated datasets to investigate the generalizability of our method, 
including studies to identify the required level of consistency for 
the imaging protocols and the consideration of different pathol-
ogy patterns for translation into other forms of lung disease. 
Moreover, larger datasets could possibly enable the use of more 
complex DL architectures, such as the 3D U-Net, for which we 
found lower performance on our dataset. As BPD detection in 
this study was solely based on T2-weighted acquisitions, further 
improvement could be achieved by the integration of other im-
aging protocols including contrasts through proton density or 
T1 weighting. The use of two-dimensional multisection acqui-
sitions with anisotropic voxel size in different respiratory states 
and planes can be advanced through ultrashort-echo-time pulse 
sequences (12,44).

In summary, our study contributes to the mounting evi-
dence that artificial intelligence–driven MRI descriptors can 

serve as markers of lung disease in neonates, with the prospect 
of improving diagnostic processes by the use of a radiation-free 
imaging technique. We successfully demonstrated the effec-
tiveness of artificial intelligence methods to generate quantifi-
able 3D MRI lung structural information, with the potential 
to improve precision for lung disease characterization in the 
challenging cohort of preterm neonates. Our results motivate 
future studies to further evaluate the clinical value of the mod-
els proposed, including their capability to guide therapeutic 
strategies and long-term monitoring.
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