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Diverse biological functions of vitamin K: 
from coagulation to ferroptosis

Eikan Mishima    1,2,4 , Adam Wahida1,3,4, Tobias Seibt1 & Marcus Conrad    1 

Vitamin K is essential for several physiological processes, such as 
blood coagulation, in which it serves as a cofactor for the conversion of 
peptide-bound glutamate to γ-carboxyglutamate in vitamin K-dependent 
proteins. This process is driven by the vitamin K cycle facilitated by 
γ-carboxyglutamyl carboxylase, vitamin K epoxide reductase and 
ferroptosis suppressor protein-1, the latter of which was recently identified 
as the long-sought-after warfarin-resistant vitamin K reductase. In 
addition, vitamin K has carboxylation-independent functions. Akin to 
ubiquinone, vitamin K acts as an electron carrier for ATP production in some 
organisms and prevents ferroptosis, a type of cell death hallmarked by lipid 
peroxidation. In this Perspective, we provide an overview of the diverse 
functions of vitamin K in physiology and metabolism and, at the same 
time, offer a perspective on its role in ferroptosis together with ferroptosis 
suppressor protein-1. A comparison between vitamin K and ubiquinone, 
from an evolutionary perspective, may offer further insights into the 
manifold roles of vitamin K in biology.

Vitamin K is an essential micronutrient involved in a variety of 
physiological processes. Chiefly, vitamin K is essential to the blood 
clotting cascade by serving as a cofactor for the γ-carboxylation of 
vitamin K-dependent (VKD) coagulation factors (including factors 
II, VII, IX and X) generated in the liver. In addition, several other VKD 
proteins have been identified, totalling 19 in mammals1. The discov-
ery of these additional proteins has expanded our understanding 
of vitamin K’s importance beyond coagulation, with roles in bone 
formation and vascular mineralization. Furthermore, vitamin K has 
γ-carboxylation-independent functions, such as transcriptional 
regulatory effect2. Additionally, similar to ubiquinone, vitamin K—a 
redox-active naphthoquinone—serves as an electron carrier for ATP 
production in plants and bacteria3 and was recently shown to prevent 
ferroptosis4, a type of cell death triggered by unrestrained (phospho)
lipid peroxidation5,6. Examining the redox-based function of vitamin 
K compared to ubiquinone may provide insight into its evolutionary 
role and may serve as a springboard for the future therapeutic use of 
vitamin K, beyond its role in haematology.

History of vitamin K and warfarin
Discovery of vitamin K
In 1935, Danish scientist Henrik Dam discovered the coagulation vitamin 
(vitamin K), which was given the letter K from the German word ‘Koagu-
lation’ due to the observation that chickens on a fat-free diet tended 
to bleed easily7 (Fig. 1). In 1939, Dam and Doisy independently purified 
both the yellow oil form (vitamin K1) and crystalline form (vitamin K2) 
of the vitamin K from alfalfa and putrefied fish meal, respectively8,9 
(Fig. 2a). Due to its central role in coagulation, vitamin K has been used 
to prevent haemorrhagic disease in newborns since the 1940s10. In 
the 1970s, it was found that vitamin K acts as a cofactor for the micro-
somal enzyme γ-carboxyglutamyl carboxylase (GGCX), an enzyme 
catalysing the conversion of distinct peptide-bound glutamate (Glu) 
to γ-carboxyglutamate (Gla)11. This posttranslational modification of 
Glu to Gla is critical for the biological activity of VKD proteins. In 1974, 
the specific role of vitamin K in coagulation was further elucidated 
when it was discovered that prothrombin, a coagulation factor, is a 
VKD protein12. Subsequent research has identified several other VKD 
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K, a redox-active naphthoquinone, exists in nature in its chemically 
stable quinone form. GGCX uses VKH2 as a cofactor in γ-carboxylation, 
during which VKH2 is oxidized to an epoxide and then converted back 
to vitamin K quinone by VKOR, whose activity is inhibited by warfarin 
(Fig. 2c). After the initial reports of the enzymatic activities of GGCX and 
VKOR in the 1970s, it took several decades to clone the genes encoding 
GGCX (GGCX) and VKOR (VKORC1), which occurred in 1991 and 2004, 
respectively29–31. Moreover, the highly sophisticated cell-based assays 
using chimeric VKD reporter proteins afforded to gain precise insights 
into the mechanistic and phenotypic properties of these enzymes28.

FSP1: long-sought-after warfarin-resistant vitamin K reductase
Despite the identification of GGCX and VKOR in the canonical vita-
min K cycle, the identity of the enzyme(s) responsible for reducing 
vitamin K quinone to VKH2 in this cycle had remained unknown. It 
was suggested that two independent enzymes, a warfarin-sensitive 
reductase and a warfarin-resistant NAD(P)H-dependent reductase, 
are responsible for this step (Fig. 2b)32,33. VKOR was shown to be able 
to reduce vitamin K to VKH2 at least in vitro34, indicating that it also 
functions as a warfarin-sensitive vitamin K reductase. However, even 
when VKOR activity is extremely inhibited by high doses of warfarin, 
an impaired coagulation status could be restored by administering an 
appropriate dose of vitamin K, suggesting the existence of an alterna-
tive warfarin-resistant enzyme for vitamin K reduction. This enzyme, 
known as the ‘antidotal’ vitamin K reductase35, remained obscure 
although it first was described more than half a century ago32,36. NAD(P)
H:quinone reductase 1 (NQO1) has been repeatedly proposed as a candi-
date enzyme exerting this role, albeit it was shown to have low reducing 
activity against natural forms of vitamin K37 (it can, however, reduce 
menadione, a synthetic form of vitamin K38). In addition, supplementa-
tion of vitamin K rescues warfarin intoxication in Nqo1-deficient mice37, 
indicating that NQO1 does not play a major role in reducing vitamin K 
required for the carboxylation of VKD proteins.

In 2022, Mishima et al. identified ferroptosis suppressor protein-1 
(FSP1), also known as extra-mitochondrial NAD(P)H:ubiquinone 
reductase or apoptosis-inducing factor mitochondria-associated 2 
(AIFM2)39,40, as the warfarin-resistant vitamin K reductase rather ser-
endipitously when studying its role on ferroptosis4. Initially, Mishima 
et al. performed a cell-based compound screening of naturally occur-
ring antioxidants and discovered that fully reduced vitamin K exhibits 
a potent anti-ferroptotic effect by acting as a so-called radical-trapping 
antioxidant. By comparing the structural similarities between vitamin 
K and ubiquinone, the authors further discovered that the NAD(P)
H:ubiquinone reductase FSP1 can function as a vitamin K reductase, 
thereby regenerating VKH2 and averting lipid peroxidation and asso-
ciated ferroptosis. Notably, because the enzymatic activity of FSP1 is 
not affected by warfarin unlike VKOR, the study additionally unveiled 

proteins, such as the anticoagulant proteins protein C and S13,14. Among 
extrahepatic VKD proteins, osteocalcin, matrix Gla protein and growth 
arrest-specific protein 6 (Gas6) play various roles in processes like bone 
homeostasis and vascular mineralization15. These findings established 
the mechanistic link between vitamin K and bone metabolism that had 
been suggested as early as in the 1960s16. In addition to vertebrates, 
VKD carboxylation is observed in non-vertebrate organisms17. Toxins 
called conantokins produced by marine cone snails have been found 
to be VKD proteins18. VKD carboxylase activity has also been reported 
in Drosophila, although the specific VKD proteins remain to be identi-
fied in this organism19.

Discovery of warfarin
In tandem with investigations into vitamin K, the mechanism and 
function of warfarin, a vitamin K antagonist and the most widely used 
anticoagulant drug globally, were studied. The early 1920s witnessed 
an outbreak of cattle haemorrhaging disease in parts of the United 
States and Canada. In 1921, Frank Schofield found that the cattle had 
ingested mouldy silage made from sweet clover, which acted as a potent 
anticoagulant20. In 1941, the haemorrhagic agent in the spoiled hay, 
dicoumarol, was isolated21. Based on dicoumarol, warfarin, a more 
potent anticoagulant, was developed22. Warfarin was first commer-
cially utilized in 1948 as a rodenticide. However, the use of warfarin for 
humans was not approved due to the risk of bleeding in case of over-
dosing. After an incident in 1951, in which an army inductee attempted 
suicide with warfarin in rodenticide, but fully recovered after treat-
ment with vitamin K23 (which was by then known as a specific antidote), 
research into the use of warfarin as a therapeutic anticoagulant was 
initiated. The US Food and Drug Administration approved warfarin 
for medical use in humans in 1954, and it was subsequently widely used 
as an anticoagulant for the treatment and prevention of thrombosis 
worldwide. The precise mechanism of warfarin’s anticoagulant action 
was clarified in 1978 when it was identified to inhibit the enzyme vitamin 
K epoxide reductase (VKOR), thereby disrupting the vitamin K cycle 
and decreasing the rate of carboxylation in VKD coagulation factors24.

Canonical vitamin K cycle for γ-carboxylation
GGCX and VKOR
Vitamin K, more specifically its fully reduced form, vitamin K hyd-
roquinone (VKH2), acts as a cofactor for the γ-carboxylation of VKD 
proteins25. During this process, VKH2 is being oxidized and converted 
to vitamin K epoxide. Because the amount of vitamin K in the body is 
limiting, the epoxide form must be recycled through the vitamin K 
cycle to prevent its depletion. This concept of the cyclic interconver-
sion of vitamin K and vitamin K epoxide was first postulated during 
the 1970s and 1980s26,27. The cycle involves three chemical reactions 
mediated by GGCX, VKOR and vitamin K reductase28 (Fig. 2b). Vitamin 
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Fig. 1 | History of vitamin K research. Vitamin K (VK) was discovered as a blood 
coagulation vitamin in 1935. In the following decades, it was established that 
VK functions as a cofactor for GGCX, which catalyses the γ-carboxylation in 
VKD proteins, including coagulation factors. Among the key players in the VK 
cycle, the genes encoding GGCX and VKOR were identified in 1991 and 2004, 
respectively. In 2022, FSP1 was identified as the long-postulated but unidentified 

warfarin-resistant VK reductase. The anticoagulant drug warfarin was developed 
in 1948, and the anticoagulation mechanism as an inhibitor of VKOR was 
identified in 1978. Identification of FSP1 as the warfarin-resistant ‘antidotal’ 
enzyme clarified the molecular mechanism of the antidotal effect of VK against 
warfarin intoxication.
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FSP1 as the antidotal enzyme overcoming warfarin poisoning. Indeed, 
in Fsp1-deficient mice, the reduction of vitamin K was impaired under 
warfarin treatment as well as in cells with a genetic deletion of FSP1 
(AIFM2). Consequently, the antidotal effect of vitamin K against war-
farin intoxication was absent in Fsp1-deficient mice4. In clinical set-
tings, warfarin therapy is susceptible to causing warfarin poisoning 
as a result of interactions with other drugs and large variations in the 
dosage required to achieve its anticoagulant effect among individu-
als41,42, thereby potentially leading to life-threatening bleeding. The 
identification of FSP1 as the warfarin-resistant vitamin K reductase 
eventually clarified the molecular mechanism of the antidotal effect 
of vitamin K against warfarin poisoning (Fig. 2c).

This discovery was independently corroborated by another group 
using an entirely different experimental approach. By performing an 
elegant genome-wide CRISPR–Cas9 knockout screening, Jin et al. also 
showed that FSP1 is the warfarin-resistant vitamin K reductase43. Spe-
cifically, they established a VKD apoptotic reporter cell line to identify 
enzymes linked to VKD carboxylation, whereby the reporter cell only 
undergoes apoptosis when the VKD protein is carboxylated. Thus, loss 
of function of the enzymes contributing to the vitamin K cycle would 
prevent apoptosis. In the genome-wide loss-of-function screening 
using the reporter cell line treated with vitamin K and warfarin, FSP1 
was then identified as one of the top candidates. They could also show 
that FSP1 reduces vitamin K, including phylloquinone, menaquinone-4 
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Fig. 2 | Vitamin K cycle for carboxylation of vitamin K-dependent proteins 
and chemical structures of vitamin K. a, Structures and characteristics of VK 
and ubiquinone. b, The canonical VK cycle. This cycle enables the γ-carboxylation 
of VKD proteins and the recycling of VK. The enzyme GGCX, in conjunction with 
the cofactor VKH2, facilitates the conversion of peptide-bound Glu to Gla in VKD 
proteins. This γ-carboxylation reaction produces VK epoxide (VKO), which is 
then reduced to VK quinone by VKOR. VK quinone is reduced to VKH2 through 
either the warfarin-resistant FSP1-mediated pathway or the warfarin-sensitive 

VKOR pathway, thus completing the cycle. c, In the presence of the anticoagulant 
warfarin, inhibition of VKOR ultimately leads to the depletion of VKD coagulation 
factors. Supplementation of a sufficient dose of VK into the system enables 
the alternative warfarin-resistant FSP1 pathway to bypass the dysfunctional 
VKOR pathway, thereby providing the necessary VKH2 for the GGCX-mediated 
carboxylation reaction. This is the antidotal mechanism of VK against warfarin 
intoxication.
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(MK-4) and menaquinone-7 (MK-7) in a warfarin-insensitive manner. 
Hence, these results reinforce the findings that FSP1 is responsible for 
warfarin-resistant vitamin K reduction (Fig. 2b).

Furthermore, both studies uncovered several important findings 
about FSP1. FSP1 showed comparable substrate preference towards 
vitamin K and ubiquinone4. Although the protein structure of FSP1 
remains to be elucidated, an initial detailed site-directed mutational 
analysis indicates that FSP1 uses the same predicted binding pocket to 
reduce both vitamin K and ubiquinone43. While N-terminal myristyla-
tion, a posttranslational protein modification facilitating membrane 
binding, is essential for the anti-ferroptotic activity of FSP1 (refs. 4,39), 
it was shown to be dispensable for FSP1-mediated vitamin K reduction 
required for VKD γ-carboxylation43.

Disorders by deficits in vitamin K cycling
The enzymes GGCX and VKOR are crucial in carrying out the vitamin K 
cycle for the carboxylation of VKD proteins. Accordingly, the genetic 
loss-of-function mutation of GGCX or VKOR causes hereditary bleed-
ing disorders, known as vitamin K coagulation factor deficiencies 
(VKCFDs), with those caused by mutations in GGCX, referred to as sub-
type 1 (VKCFD1) and mutations in VKORC1 as subtype 2 (VKCFD2)44,45. 
VKCFDs often present with excessive bleeding and bruising from birth. 
In addition to bleeding issues, individuals with VKCFD1 exhibit skin 
symptoms such as pseudoxanthoma elasticum and skeletal and oph-
thalmological manifestations46. Individuals with VKCFD2 display a 
comorbid skeletal abnormality47 similar to the teratogenic effects of 
warfarin use in early pregnancy48. These non-haemostatic symptoms 
are thought to be due to impaired carboxylation of certain VKD proteins 
such as osteocalcin and matrix Gla protein. In people with VKCFDs, daily 
oral supplementation with phylloquinone (1–10 mg) can restore and 
sustain VKD coagulation activities within the normal reference range47. 
Hence, this highlights the importance of providing sufficient vitamin 
K to the FSP1-dependent alternative vitamin K reduction pathway in 
overcoming dysfunctional VKOR, in the same way as warfarin poison-
ing can be treated with an appropriate dose of VK.

The physiological roles of GGCX and VKOR have also been exam-
ined in genetically engineered mice. Ggcx-deficient mice die from 
intra-abdominal haemorrhage shortly after birth due to severe deple-
tion of VKD coagulation factors49,50. Osteoblast-specific and Sertoli 
cell-specific Ggcx-deficient mice show abnormal mineralization in 
bone formation and male fertility due to spermatogenic arrest, respec-
tively51,52. Like Ggcx-null mice, Vkorc1-null mice also die shortly after 
birth due to extensive bleeding53. In contrast to these animal models, 
Fsp1−/− mice show no bleeding abnormalities and normal growth4, 
suggesting that vitamin K reduction by the VKOR pathway alone is suf-
ficient to maintain the coagulation factors at least under steady-state 
conditions in mice.

Structure and metabolism of vitamin K
Structure of vitamin K
Vitamin K describes a group of lipophilic molecules that share a 
2-methyl-1,4-naphthoquinone head group and a polyisoprenoid side 
chain, varying in both length and hydrophobicity (Fig. 2a). In nature, 
there are two forms of vitamin K: phylloquinone (also known as vita-
min K1), which is found in photosynthetic organisms such as green 
plants, cyanobacteria and algae; and menaquinones (also referred to 
as vitamin K2), which are found in animal and bacterial sources. There 
are different types of menaquinones, classified based on the length of 
their unsaturated side chains (from MK-1 to MK-15). The most common 
form of menaquinones in animal-derived foods is MK-4, a short-chain 
menaquinone and long-chain menaquinones MK-7 through MK-10, 
which are produced by bacteria including gut microbiota54. Menadione, 
also known as vitamin K3, is a synthetic hydrophilic variant lacking the 
polyisoprenoid side chain and is the intermediate in the biosynthesis 
of MK-4.

Intake and metabolism of vitamin K
Most dietary vitamin K is phylloquinone, which is abundant in green 
leafy vegetables. Menaquinones (MK-n), present in fermented foods 
such as cheese and natto (traditional Japanese foods made from fer-
mented soybeans), are another major source of vitamin K. Animal foods 
such as meat and eggs contain MK-4, although in smaller amounts 
as compared to phylloquinone. Phylloquinone is ingested and first 
incorporated into mixed micelles with bile salts in the proximal region 
of the small intestine and is subsequently absorbed in the proximal 
intestine by enterocytes and transferred across the brush-border 
membrane55 (Fig. 3a). Niemann–Pick C1-like 1 (NPC1L1), previously 
known as a transporter for dietary cholesterol and alpha-tocopherol56, 
is a key transporter of intestinal phylloquinone absorption57. Previous 
research further suggested that other cholesterol transporter proteins 
(scavenger receptor class B type I and CD36) may play a potential role 
in intestinal vitamin K absorption58.

While phylloquinone is a major form of dietary vitamin K, MK-4 
is more prevalent in some organs than phylloquinone. This is because 
dietary ingested phylloquinone and MK-n can be converted to MK-4 
locally within tissues (Fig. 3a). After being ingested, the side chain 
of phylloquinone is cleaved within enterocytes yielding menadione, 
which in turn is transported via the lymphatic system to other tissues59. 
In the target tissues, menadione is prenylated, and the side chain is 
added to form MK-4 through the action of the enzyme, UbiA prenyl-
transferase domain-containing protein-1 (UBIAD1)60. UBIAD1 transfers 
geranylgeranyl moieties from geranylgeranyl pyrophosphate, a prod-
uct in the mevalonate pathway, to menadione thereby generating MK-4.

The distribution of phylloquinone and MK-n is tissue specific and 
variable61. For example, MK-4 is not evenly distributed among different 
mammalian tissues, with particularly high concentrations found in the 
exocrine and endocrine glands as well as in the kidney and brain61,62. In 
addition to the main target organs for vitamin K function, each organ 
is capable of locally producing MK-4, suggesting that MK-4 may play 
important and specific roles in different tissues, although the reasons 
for this are not yet fully understood.

Vitamin K deficiency
The well-established result of a deficiency in vitamin K on health is a 
hypocoagulable state resulting from an insufficient amount of VKD 
coagulation factors, similar to the condition when treated with warfa-
rin. In adults, bleeding due to nutritional deficiency of vitamin K is rare 
and is almost always associated with a pathological condition, such as a 
status of malabsorption especially owing to cholestatic liver disease63. 
In contrast, breastfed newborns have a high risk of life-threatening 
bleeding caused by deficiency of vitamin K due to the low pool of vita-
min K in the body, low levels of vitamin K in breast milk and an immature 
gut microbiome, an important source of vitamin K64. For this reason, 
there is a consensus that all newborn infants should receive vitamin 
K prophylaxis65. In addition to the hypocoagulable state, impaired 
γ-carboxylation of VKD proteins due to vitamin K insufficiency has 
been investigated in relation to bone and cardiovascular health, glucose 
metabolism and cognition66,67.

Toxicity of vitamin K
There have been almost no reported cases of systemic toxicity by natu-
ral vitamin K except allergic reactions due to solubilizing reagents1. As 
such, natural forms of vitamin K are not toxic when consumed orally, 
even in large quantities. In contrast, the administration of menadione 
causes toxicity, such as haemolytic anaemia and jaundice68,69, and is 
therefore prohibited for use in treating vitamin K deficiency in humans. 
However, a low dose of menadione is frequently supplemented as a 
dietary source of vitamin K in animal feed due to its low production 
costs. Under in vitro conditions, menadione generates reactive oxygen 
species and can induce reactive oxygen species-dependent cell death70. 
Vitamin K is highly unstable in light, and the photo-degradation product 
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of vitamin K exhibits phototoxicity to cultured cells following exposure 
to ultraviolet light71. This physicochemical property limits its use in the 
supplementation of vitamin K in cosmetics.

Non-carboxylation function of vitamin K
Vitamin K has various biological effects independent of its role as a 
cofactor for γ-carboxylation of VKD protein (Fig. 3b). Vitamin K has 
transcription regulatory effects. For instance, MK-4 acts as a ligand for 
the steroid and xenobiotic receptor (SXR)2, which is a nuclear hormone 
receptor activated by a diverse array of steroid hormones, drugs and 
xenobiotic compounds. MK-4 was also reported to show its transcrip-
tional regulatory action via the activation of protein kinase A72 and its 
anti-inflammatory effect by suppressing nuclear factor-κB (NF-κB), a 
family of transcription factors that play crucial roles in inflammation73. 
In addition, vitamin K has been reported to show a modest activity in 
driving the differentiation of neural stem cells74.

Prevention of ferroptosis
Recently, Mishima et al. demonstrated that vitamin K has a function 
in preventing ferroptosis4, a type of non-apoptotic, iron-dependent 
cell death characterized by excessive lipid peroxidation of cellular 
membranes5,6. The term ferroptosis was first coined in 2012 (ref. 5), 
and manipulating this process holds the potential to treat a range of 

diseases, including acute organ injury, neurodegeneration and can-
cers75. Unrestrained lipid peroxidation and lipid radicals formed due 
to physicochemical stress and during the lipid peroxidation chain 
reaction are considered the hallmark of ferroptosis (Fig. 4a). Among 
the cell-intrinsic mechanisms that prevent ferroptosis, glutathione per-
oxidase 4 (GPX4) is the prime regulator of ferroptosis by catalysing the 
reduction of potentially toxic (phospho)lipid hydroperoxides to non-
toxic phospholipid alcohols76. The GPX4-independent defence mecha-
nism involves FSP1 that suppresses lipid peroxidation and ferroptosis 
through its NAD(P)H:ubiquinone oxidoreductase activity39,40. Mecha-
nistically, by consuming NAD(P)H, FSP1 reduces extra-mitochondrial 
ubiquinone (also known as coenzyme Q10 (CoQ10)) to its reduced form, 
ubiquinol. Ubiquinol in turn acts as a potent lipophilic radical-trapping 
antioxidant and directly reduces lipid radicals in membranes, thereby 
preventing the lipid peroxidation chain reaction. Mishima et al. discov-
ered that FSP1 reduces vitamin K in a manner like ubiquinone. VKH2 
then acts as a potent radical-trapping antioxidant and inhibitor of 
(phospho)lipid peroxidation4 (Fig. 4b). Notably, this reaction is inde-
pendent of GGCX and VKOR, and therefore warfarin does not affect 
the anti-ferroptotic action of vitamin K. Among the forms of vitamin K, 
MK-4 showed the most potent anti-ferroptotic effect. Taken together, 
FSP1-mediated vitamin K reduction protects cells against detrimental 
lipid peroxidation and ferroptosis in the non-canonical vitamin K cycle, 
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which we tentatively name as the Mishima cycle (Fig. 4b), in analogy to 
the canonical vitamin K cycle required for VKD carboxylation. These 
findings thus clarify the previously reported, yet poorly understood, 
antioxidant and cell-protective mechanism of vitamin K77 in oxidative 
glutamate toxicity in cells78, now widely known as ferroptosis5.

Because the abundance of ubiquinone in animals and humans is 
much higher than that of vitamin K, the FSP1/ubiquinone pathway is 
likely the prevailing mechanism for intrinsic ferroptosis defence as 
compared to the FSP1/vitamin K pathway. Yet, MK-4 hydroquinone 
has a more potent effect on suppressing lipid peroxidation than 
the reduced form of ubiquinone in vitro4. In this context, high-dose 
vitamin K supplementation might be a way forward to reduce symp-
toms of neurodegenerative and other diseases, where ferroptosis 
inhibition is therapeutically beneficial75. Indeed, a supraphysiologi-
cal dose of vitamin K ameliorated organ injuries induced by genetic 
ablation of Gpx4 or by ischaemia–reperfusion injury in wild-type 
mice, which are in vivo conditions directly associated with increased 
ferroptosis4,79.

Sensitization of cancer cells to ferroptosis by FSP1 inhibition is 
considered a promising strategy for anticancer treatment because 
therapy-resistant cancers show high vulnerability towards ferropto-
sis80. FSP1 inhibitors were in fact shown to sensitize cancer cells to 
ferroptosis39,81. As described above, the deletion of FSP1 had no overt 
effect on the coagulation status at least in mice4, although FSP1 is 
essential for the antidotal effect of vitamin K against warfarin poison-
ing. Therefore, when FSP1 inhibitors ever become clinically available, 
caution should be taken when using in combination with warfarin, as 

warfarin overdose under FSP1-inhibiting conditions may not be over-
come by vitamin K administration.

Electron carrier
Vitamin K acts as an electron carrier in the synthesis of ATP in certain 
organisms. Unicellular organisms generally do not express GGCX, 
indicating that in these organisms the primary functions of vitamin 
K do not relate to the γ-carboxylation of VKD proteins. In eukary-
otes, ubiquinone plays a role in intracellular electron transfer in the 
mitochondrial respiratory chain, while in certain bacteria, including 
Escherichia coli, Streptomyces coelicolor, Bacillus subtilis and Helico-
bacter pylori, MK-n serves as an important electron carrier and is even 
essential for growth82. These bacteria synthesize MK-n from chorismate, 
an intermediate in the production of aromatic amino acids, via the shi-
kimate or futalosine pathway83. The shikimate pathway involves MenA, 
which is a prenyltransferase with homology to mammalian UBIAD1, 
and other enzymes (MenB to MenG)83. In plants, phylloquinone serves 
as an electron acceptor during photosynthesis as part of the electron 
transport chain of photosystem I84. Chorismate serves as a precursor 
for the formation of the naphthoquinone ring in Arabidopsis, while 
phytyl diphosphate, produced through the phosphorylation of phy-
tol, provides the phytyl moiety as the side chain of phylloquinone85. 
In eukaryotes, Vos et al. demonstrated that MK-4 can function as an 
electron carrier required for ATP production via the mitochondrial 
electron transport chain in Drosophila and that supplementation 
of MK-4 improves the efficiency of the electron transport chain and 
ATP production in flies with mitochondrial defects86. By contrast,  
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peroxidation, the hallmark of ferroptosis, may be induced by Fenton-type 
chemistry including hydroxyl radical (•OH) or peroxyl radicals (•OOH). These 
radicals may remove a bisallylic hydrogen atom from a polyunsaturated fatty 
acid (PUFA) incorporated in phospholipids (PL), the main building blocks of lipid 
bilayers, leading to the formation of a phospholipid radical (PL•). In a subsequent 
reaction with molecular oxygen (O2), a phospholipid peroxyl radical (PLOO•) 
is formed, which in turn removes hydrogen from another PUFA-PL to form 
phospholipid hydroperoxide (PLOOH). Uncontrolled and extensive (phospho)
lipid peroxidation and the generation of lipid radicals, such as PLOO• and 
phospholipid alkoxyl radical (PLO•), damages membrane integrity, eventually 
leading to plasma membrane rupture and ferroptosis. The main pathways for 

ferroptosis prevention are the cyst(e)ine/GSH/GPX4 and FSP1/ubiquinone 
(CoQ10) pathways. Glutathione (GSH) is synthesized from cysteine, derived from 
cystine taken up via system Xc−. Using GSH, GPX4 reduces toxic PLOOHs, yielding 
PLOH. Oxidized GSH (GSSG) is recycled to GSH. In the FSP1/CoQ10 pathway, FSP1 
reduces CoQ10 to ubiquinol (CoQ10H2) using electrons from NAD(P)H. CoQ10H2 
in turn suppresses phospholipid peroxidation of lipid bilayers by trapping lipid 
radicals such as PLOO• forming PLOOH. b, Anti-ferroptotic function of VK. By 
consuming NAD(P)H, FSP1 reduces VK quinone to VK hydroquinone (VKH2), 
which acts as a powerful radical-trapping antioxidant. The reaction of VKH2 with 
lipid radicals generates VK quinone, which can be reduced by FSP1 using two 
electrons coming from NAD(P)H. We tentatively name this non-canonical VK 
cycle the ‘Mishima’ cycle.
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in mammalian cells, MK-4 fails to restore electron flow in the respira-
tory chain of cells with ubiquinone deficiency87.

Evolutionary considerations
Vitamin K exhibits several similarities with ubiquinone in terms of struc-
ture, metabolism and biological function (Fig. 2a). Both vitamin K and 
ubiquinone are composed of a quinone head group and a polyisoprene 
side chain. The MK-4 synthesis enzyme, UBIAD1, displays homology 
with the ubiquinone synthesis enzyme COQ2 (ref. 88). During the bio-
synthesis of both MK-4 and ubiquinone, geranylgeranyl pyrophosphate, 
which is the product in the mevalonate pathway, is used as the source 
of the side chain. The intestinal vitamin K transporter, NPC1L1, also 
contributes to the resorption of ubiquinone89. As described above, 
both vitamin K and ubiquinone act as electron carriers for ATP produc-
tion. FSP1 reduces and consequently regenerates both vitamin K and 
ubiquinone, contributing to defence mechanisms against ferroptosis.

While plants and certain bacteria utilize vitamin K as electron 
carriers, eukaryotes use ubiquinone. In light of the evolution of life, it 
appears that vitamin K was replaced by ubiquinone as an electron car-
rier due to its higher redox potential when environmental oxygen con-
centrations increased following the great oxidation event on primordial 
Earth3,90. Menaquinones possess a lower redox midpoint potential 
(~−70 mV) compared to ubiquinone (~+100 mV) due to the charac-
teristics of the different quinone structures91. Notably, the reduced 
forms of vitamin K are readily and non-enzymatically oxidized to their 
oxidized forms in an aerobic atmosphere due to its low redox potential, 
rendering these compounds incapable of efficiently functioning in an 
oxygen-rich environment3.

Ferroptosis, originally studied in mammalian systems, has been 
meanwhile observed in diverse species, such as plants92, cyanobacte-
ria93, protozoa94, fungi95 and Caenorhabditis elegans96, indicating that 
ferroptosis is an evolutionarily conserved cell death mechanism97. 
Among these organisms, the FSP1-mediated lipophilic quinone cycle 
likely performs a protective role against environmental ferroptotic 
stress, such as iron, heat and ultraviolet exposure92,98, dating back to 
the earliest period of Earth’s history. It thus follows that vitamin K might 
be the oldest naturally occurring anti-ferroptotic/antioxidant quinone 
and, considering this, it can be rationalized that ubiquinone and vita-
min K are sibling metabolites. Vitamin K may have evolved to serve 
ATP production and anti-ferroptotic functions in certain organisms, in 
analogy to the roles of mitochondrial and extra-mitochondrial ubiqui-
none in ATP production and ferroptosis suppression in mammals, 
respectively. When considering the role of vitamin K in the context of 
evolution, gut microbiota may provide some interesting insights, as 
several strains of microbiota are known to produce vitamin K and the 
oxygen concentration in the lumen of the distal colon is quite low99 
similar to conditions in the primordial earth. Thus, it is tempting to 
speculate that vitamin K beyond its electron carrier function may serve 
as an important anti-ferroptotic agent in these organisms.

Vitamin K has been traditionally linked with blood coagulation 
and the physiological function of VKD proteins. However, research 
into vitamin K biology has unveiled an increasing number of nonclas-
sical functions of vitamin K, with ferroptosis suppression as the most 
recently identified example. Further clarification of the biological roles 
of vitamin K in the context of the evolution of life across various spe-
cies will likely connect ferroptosis to other areas of vitamin K-related 
biology.
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