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SUMMARY
Long non-coding RNAs (lncRNAs) are involved in gene expression regulation in cis. Although enriched in the
cell chromatin fraction, to what degree this defines their regulatory potential remains unclear. Furthermore,
the factors underlying lncRNA chromatin tethering, as well as the molecular basis of efficient lncRNA chro-
matin dissociation and its impact on enhancer activity and target gene expression, remain to be resolved.
Here, we developed chrTT-seq, which combines the pulse-chase metabolic labeling of nascent RNA with
chromatin fractionation and transient transcriptome sequencing to follow nascent RNA transcripts from their
transcription on chromatin to release and allows the quantification of dissociation dynamics. By incorpo-
rating genomic, transcriptomic, and epigenetic metrics, as well as RNA-binding protein propensities, in ma-
chine learning models, we identify features that define transcript groups of different chromatin dissociation
dynamics. Notably, lncRNAs transcribed from enhancers display reduced chromatin retention, suggesting
that, in addition to splicing, their chromatin dissociation may shape enhancer activity.
INTRODUCTION

Long non-coding RNAs (lncRNAs) are a diverse group of mole-

cules that exceed 200 nt in length and comprise the majority of

the human transcriptome. Although lncRNAs have been linked

to various biological processes and diseases, only a small fraction

has been characterized at the molecular level.1–6 Although

typically regarded as nuclear or chromatin enriched, lncRNAs

demonstrate a dynamic and regulated distribution across all cell

compartments and organelles.7 Understanding the principles of

lncRNA subcellular localization, alongwith the compartment-spe-

cific networks of interactions of lncRNAs with proteins and other

nucleic acids, can help elucidate mechanisms of lncRNA func-

tion.7–11 With the help of high-throughput techniques mapping

the specific subcellular and subnuclear localization patterns of

both coding and non-coding RNAs (ncRNAs) at a high resolu-

tion,7,12,13 recent studies have shed light on the sequences, as

well as thecis- and trans-acting factors underlying lncRNAsubcel-

lular localization14–18; however, these mainly focus on nuclear-

versus cytoplasmic-enriched lncRNAs, whereas the molecular

determinants of the chromatin versus nucleoplasmic (NP) enrich-

ment of lncRNAs remain unclear.

Bidirectional transcription is aprominentcharacteristic of active

enhancers, leading to the production of short-lived ncRNA tran-

scripts termed eRNAs. eRNAs are short, non-spliced, potentially
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terminated by the Integrator complex,19 and subjected to rapid

exosome degradation.20 This explains their observed chromatin

enrichment and limited detection in whole-cell RNA sequencing

(RNA-seq) data at steady state. eRNA production, measured by

various techniques of nascent RNA-seq, along with DNase I hy-

persensitivity, distinct histone marks, (H3K27Ac and H3K4me1)

andCBP/p300binding, demarcate active enhancers.20–24 A small

subset of bidirectionally transcribed enhancers produce a more

stable and spliced lncRNA elongating in one direction,21,25,26

whereas a quarter of annotated lncRNAs overlap enhancer-like

regions.27 Enhancer-associated lncRNAs (elncRNAs) are linked

to stronger enhancer activity, characterized by higher levels of

nascent RNA transcription, H3K27Ac histone marks, and DNase

accessibility, and play a crucial role in the regulation of gene

expression in cis and in shaping local chromatin structure.21,25,26

elncRNAs are cell type specific and may shape transcriptional

regulatory programs during development and cell differentiation,

both in normal and pathological contexts. Thus, recent studies

aim to uncover the mechanisms of elncRNA biogenesis and co-

transcriptional processing.28–32 However, we still lack mecha-

nistic insights into how elncRNAs regulate gene expression in

cis and whether all elncRNAs follow a uniform mechanistic

mode of action. It also remains unclear to what extent elncRNAs

remain chromatin associated andwhether their function depends

on their chromatin association.
.
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A substantial portion of lncRNAs are enriched in the chromatin

fraction, presumably tethered at their sites of transcription

through elongating (transcriptionally engaged) RNA polymerase

II (RNA Pol II), and are involved in regulation of proximal gene

expression in cis.2,33,34 In some cases, lncRNAs may function

solely through the act of their transcription or splicing.2,3 It is

plausible that lncRNAs that spend more time on chromatin un-

derlie epigenetic functions by being involved in the regulation

of three-dimensional genomic architecture and chromosomal

organization, interacting with and recruiting chromatin modifiers

and remodelers. Thus, the rate at which nascent RNA transcripts

are released from chromatin impacts chromatin and gene func-

tion by determining the dynamic pool of lncRNAs that remains

chromatin associated tomediate epigenetic functions. However,

lncRNAs transcribed from the anchor points of chromosomal

loops and enhancer-like regions show lower chromatin-to-NP

enrichment at steady state.35 This may indicate that the process

of chromatin dissociation, which relies on co-transcriptional RNA

maturation steps, could be important for the function of many

enhancer-transcribed lncRNAs, acting in cis and within the

spatial proximity of pre-established chromosomal loops.36 In

this line, we previously showed that the lncRNA A-ROD tran-

scribed from an active enhancer at the anchor point of a chromo-

somal loop in MCF-7 cells enhances the expression of its target

gene DKK1, upon its post-transcriptional chromatin dissociation

and within a pre-established chromosomal proximity.35 Enforc-

ing A-ROD chromatin retention, by splice-inhibiting morpholinos

or blocking 30 end formation, suppressed target gene expres-

sion, suggesting that chromatin dissociation is crucial for

lncRNA-mediated gene expression regulation in cis.35 Additional

reports have shown that co-transcriptional splicing regulates the

nuclear dynamics of nascent RNA transcripts.37–40 For instance,

improperly processed transcripts susceptible to intron retention

are subject to NP turnover.41,42 Compared with other lncRNAs

that are not enhancer associated, elncRNAs display conserved

splice sites and higher splicing density, which is associated

with local changes in chromatin states and positively impacts

their cognate enhancer activity.21,25 However, a link between

elncRNA splicing and chromatin association (or dissociation)

has not been clarified. Moreover, although recent bioinformatics

analyses infer an impact of elncRNA processing on enhancer

activity,21,25,26 the role of elncRNA chromatin (dis-) association

has not been systematically examined.

Most of the existing models for predicting subcellular RNA

localization43–46 (from either primary sequence or other genomic

features) are based on steady-state expression levels, which

ignore RNA processing dynamics that determine RNA fate.

Although a fewmodels focus on lncRNAs,17,47 they still rely solely

on steady-state compartment-specificRNA-seq data. To fully un-

derstand lncRNA localization and its implication for functional po-

tential, it is essential to model transcriptome-widemeasurements

of compartment-specific dynamics. In this study, we set out to

understand how the rate at which nascent RNA transcripts are

released from chromatin is regulated genome wide for both cod-

ing and non-coding transcripts. In particular, we aim at compre-

hensively characterizing, for the first time, the dynamic pool of

lncRNAs that remain chromatin associated or are fast released

from chromatin, their distinctive features compared with mRNAs,

and their potential impact on gene regulation. To achieve this
goal, we have combined pulse-chase metabolic labeling with

chromatin fractionation and transient transcriptome sequencing

(TT-seq48,49) to follow nascent RNAs from the point of their tran-

scription to their chromatin release. This new method, termed

chromatin-associated TT-seq (chrTT-seq), allows assessing co-

and post-transcriptional RNA processing and quantitatively esti-

mating chromatin dissociation rates of newly transcribed RNA

transcripts. Using these data, we generate a first transcriptome-

wide catalog of chromatin retention and dissociation dynamics

for both mRNAs and lncRNAs in MCF-7 cells. Predictive models

of chromatin (dis-) association rates, as measured by chrTT-seq,

unravel the interplay among genomic, transcriptomic, and epige-

netic features and RNA-binding protein (RBP) interactions that

regulate chromatin dissociation dynamics and the subnuclear

localization of all transcripts in general and of lncRNAs in partic-

ular. Our study identifies rules of lncRNA chromatin-association

dynamics and unravels mechanistic aspects of a subgroup of

lncRNAs, whose increased chromatin dissociation is linked to

their regulatory functions genome wide, by shaping their cognate

enhancer activity on target gene expression.

RESULTS

Modeling chromatin (dis-)association of nascent RNA
transcripts
To quantify chromatin dissociation dynamics of coding and

ncRNAs genome wide, we designed an experimental assay to

follow nascent RNA transcripts from their synthesis to their

post-transcriptional chromatindissociationbyemployingnascent

RNA-seq of both the chromatin-associated and chromatin-

released (aka, NP) fractions. We performed 4-thiouridine (4-SU)

metabolic labeling of MCF-7 cells for an 8-min pulse, followed

by 5, 10, 15, and 20min uridine chase (Figure 1A; STARMethods).

To additionally capture nascent RNA Pol II transcription in a high

resolution and follow transcription dynamics, we fragmented

RNA prior to the isolation of nascent RNA. Thus, in essence, we

employed TT-seq48 by coupling it for the first timewith chromatin

fractionation and pulse-chasemetabolic labeling. We refer to this

modified assay as chrTT-seq.

To model chromatin dissociation, we extracted read coverage

from the last exon of each gene, selecting the longest transcript

in the case of overlapping transcript isoforms (STAR Methods).

Since we did not block new transcription initiation events during

the pulse-chase experiment, extracting signal from the last exon

minimizes readcoveragedue tonew transcription initiation events

during the pulse-chase timeperiod. Thus, read coverage closer to

the transcript 30 end better quantifies the dynamics of full-length

transcripts (see also discussion). After spike-in normalization of

read coverage for each library (STAR Methods), we observe that

chromatin-associated read coverage decreases over time,

whereas NP read coverage increases (Figure S1A). To quantify

chromatin dissociation, we computed, for each transcript and

each time point, the fraction of reads coming from the RNA-seq

of chromatin-associated fraction versus the total number of reads

(‘‘CHR/(CHR + NP)’’). As expected, we see an overall decrease in

the transcript chromatin association over pulse-chase time (Fig-

ure 1B), indicating that the experiment captures the chromatin

dissociation dynamics of nascent RNA transcripts. For each

transcript, we fitted an exponential decay function to the
Cell Systems 14, 906–922, October 18, 2023 907
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Figure 1. Measuring chromatin association of nascent RNA transcripts

(A) Schematic representation of chrTT-seq. Cells were labeled with 4-SU for 8 min, followed by chase with an excess of uridine for zero to 20 min. At each pulse-

chase time point, isolated nuclei were lysed at 0.5 M urea, and TT-seq was performed from the chromatin-associated (‘‘CHR’’) and soluble chromatin-released

(�nucleoplasmic [‘‘NP’’]) RNA fraction.

(B) Distribution of chromatin-association ratios (spike-in normalized CHR/(CHR + NP) read coverage) for all transcripts at different pulse-chase time points.

(C) Fit of an exponential decay curve to the chromatin-association ratios and estimation of chromatin-association halftime.

(D) Same as in (B) after split in fast-, medium-, and slow-released transcripts.

(E) Density distribution of chromatin-association halftimes for fast-, medium-, and slow-released transcripts.

(F) Loess curves of average chromatin association over time for the different transcript groups after fitting on an exponential decay curve.

(G) Exponential decay fit of the chromatin association over time of two representative lncRNAs, A-ROD (fast released), and PVT1 (slow released/chromatin

retained).
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CHR/(CHR + NP) ratios and extracted a ‘‘chromatin-association

halftime,’’ that is, the time point when the chromatin-association

read coverage ratio is reduced by 50% compared with the zero
908 Cell Systems 14, 906–922, October 18, 2023
timepoint (Figure1C).Bykeepingonly entries that fit theexponen-

tial decay curve at a p < 0.05, we estimated reliable chromatin-as-

sociation halftimes for 2,077 lncRNAs and 10,314 mRNAs (STAR
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Methods). Based on the calculated chromatin-association half-

time, we split the whole dataset into three equal-size quantiles

corresponding to ‘‘fast,’’ ‘‘medium,’’ and ‘‘slow’’ chromatin-

released transcripts (Figures 1D, 1E, and S1B). Transcripts were

also clustered into three groups by k-means, which rendered a

similar subgrouping (Figures S1C and S1D). Of note, during this

short pulse-chase time frame (Figure 1A), only 222 transcripts

showed a reduction in NP read coverage at the 20 min chase

time point compared with the 0 min chase time point, indicating

that the vastmajority of transcripts are not being rapidly degraded

or exported. Thus, our measurements of chromatin dissociation

dynamics are not likely to be confounded by mechanisms of

nuclear turnover, i.e., RNA degradation and export. Among the

compared subgroups, chromatin fast-released mRNAs accumu-

lated fewer NP reads, probably due to their efficient nuclear

export (Figure S1E). This analysis suggests that transcripts with

computed higher chromatin-association halftimes are not merely

characterized as slow released due to a greater NP turnover

(Figure S1E; supplemental information). Chromatin-association

halftimes extracted with chrTT-seq reflect the chromatin-associ-

ation ratios at steady state (Figures S1F and S1G), implying that

the longer it takes for a transcript to be released from chromatin,

the higher the chance for it to beenriched in the chromatin fraction

at steady state. Albeit shorter in transcript length and with a

smaller number of exons (Figures S1H and S1I; Derrien et al.50),

lncRNAs show, on average, slower chromatin dissociation (t test

p = 2.1e�5; Figure S1J), mainly contributed by the slow-released

subgroup (Figures 1F, S1D, and S1F). We identified A-ROD as a

fast-released lncRNA, consistent with its efficient chromatin

dissociation,35 and PVT151 as a slow-released lncRNA, in agree-

ment with its observed chromatin retention at steady state

(Figure 1G).

chrTT-seq captures transcriptional profiles and reveals
major co-transcriptional RNA processing
chrTT-seq combines nascent RNA-seq with chromatin fraction-

ation to track RNA Pol II transcriptional dynamics at high resolu-

tion. The application of a short metabolic pulse and RNA frag-

mentation prior to nascent RNA purification, as in the original

TT-seq protocol,48 combined with chromatin fractionation,

further enriches nascent RNA reads.52 Nascent RNA-seq also

captures promoter-associated divergent transcription produc-

ing short unstable antisense transcripts (PROMPTs).53,54 We

noted that lncRNA loci produce higher upstream antisense

transcription, compared with mRNAs, which extends beyond

the typical PROMPT length (�200–600 nt) (Figure S2A). This is

most probably because many lncRNAs arise upstream and anti-

sense of protein-coding genes. Fast-released lncRNAs display

stronger upstream antisense transcriptional signal, suggesting

that they originatemore often divergent to protein-coding genes.

Indeed, fast-released lncRNAs display, on average, significantly

smaller interdistance to the closest antisense protein-coding

gene transcript start site (TSS) (t test p < 2.2e�16, Figure S2B).

We observe that about half of the fast-released lncRNAs origi-

nate within less than 1 kb antisense to mRNA TSS (either up-

stream or internal antisense) (Figure S2C). An example is the

fast-released lncRNA GATA3-AS1 transcribed upstream and

antisense of GATA3 (Figure S2D). In agreement, lncRNAs anno-

tated in ENCODE with the biotype ‘‘antisense’’ are enriched in
fast-released transcripts (odds ratio 1.47, p = 4.2e�6, Fisher’s

exact test), whereas de-novo-assembled lncRNA transcripts

from chromatin-associated RNA-seq data not overlapping

ENCODE annotations (STAR Methods) are enriched in slow-

released/chromatin-retained transcripts (odds ratio 2.07, p =

1.9e�11, Fisher’s exact test).

Nascent RNA-seq from the chromatin-associated and chro-

matin-released (aka, NP) fractions at different pulse-chase time

points also allows for tracking the progress of co- and post-tran-

scriptional splicing. To measure splicing, we used high-confi-

dence introns (STAR Methods) and extracted splicing efficiency

(SE) by calculating the ratio of split to non-split reads at the 30

splice site (as in Schlackow et al.55). By plotting the cumulative

fraction of intron SEs from all time points and samples, we

observe that most of the introns undergo extensive splicing co-

transcriptionally while at chromatin within the first 10–15 min of

transcription (Figures S2E and S2F). Moreover, co-transcrip-

tional SE dynamics (SED) values of introns56 (STAR Methods)

were significantly higher compared with post-transcriptional

SED (t test p < 2.2e�16, Figure S2G). These results are in agree-

ment with recent reports that the majority of splicing occurs

co-transcriptionally.57 We also observe that introns of fast-

released transcripts undergo the least additional post-transcrip-

tional splicing upon chromatin dissociation (calculated as in

STAR Methods and Figure S2H, left and middle), suggesting

that most of their processing has been concluded co-transcrip-

tionally while at chromatin. We observe that mRNAs show, over-

all, a higher degree of post-transcriptional processing than

lncRNAs (t test p = 1.8e�6; Figure S2H, right). This is in agree-

ment with recent findings that some post-transcriptional splicing

can occur upon chromatin dissociation; after transcription is

completed; and, potentially, while nascent RNA transcripts

localize to speckles.12

Accurate prediction of transcript chromatin
dissociation with machine learning models
We first set out to uncover factors that determine transcript chro-

matindissociationdynamics in anRNA-biotype-agnosticmanner

by building a statistical model to predict chromatin dissociation

dynamicsbasedongenomic, transcriptomic, andepigenetic fea-

tures (Table S1). We collected publicly available high-throughput

datasets measuring chromatin modifications (histone marks),

CTCF and YY1 binding, RNA Pol II occupancy, transcriptional

pausing index (PI), and chromatin looping in MCF-7 cells (chro-

matin immunoprecipitation sequencing [ChIP-seq], GRO-seq,

andChIA-PET) (Figure2A).Wecomputed theenrichmentof these

features at promoters or gene body regions as appropriate

(Table S1; STAR Methods). We also extracted the average and

minimum splicing efficiency (SE) index per transcript (STAR

Methods). We applied regularized logistic regression (elastic

nets58) to predict, from a total of 18 features, whether a transcript

would be fast or slow released from chromatin (Figure 2A),

yielding an average 10-fold misclassification error (MCE) of

26.9% (Figure 2B, left). We assessed the individual contribution

of each feature to the classification accuracy by inspecting the

values and signs of the regression coefficients (Figure 2B, right),

where positive high values indicate features predictive of slow-

released transcripts, whereas negative values correspond to fea-

tures associated with fast-released transcripts (Figure 2B, right).
Cell Systems 14, 906–922, October 18, 2023 909
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Figure 2. Contribution of distinct features to modeling chromatin (dis-)association of nascent RNA transcripts
(A) Schematic representation of the extracted features and modeling approach. Epigenetic and genomic input data for the model are collected, and feature

matrices are computed for all transcripts (mRNAs and lncRNAs) with estimated chromatin-association half-lives. In the case of classification, a regularized logistic

regression model (elastic net) model is trained to predict fast (class ‘‘0’’) versus slow-released (class ‘‘1’’) transcripts.

(B) Left: model performance for the regularized logistic regression model (elastic net misclassification error [MCE]) for all-transcript, lncRNA-, andmRNA-specific

models. Right: feature average coefficient values (over 103 cross-validation) for the regularized logistic regression model (elastic nets) of all transcripts. Co-

efficient values >0 are associated with slow chromatin release and values <0 with fast chromatin release.

(C) Feature average coefficient values for lncRNA (left) and mRNA model (right). Highlighted with stars are features with non-zero coefficient values, which were

important for either the lncRNA model only (red) or the mRNA model only (blue). Features with positive coefficient values contribute to chromatin tethering (slow

chromatin release), whereas negative values contribute to efficient chromatin dissociation (fast chromatin release).
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Our model corrects for transcripts length by using it as one of the

predicting covariates in the elastic net. As expected, transcript

length influences the dynamics of release from chromatin, since

longer transcripts might take longer to conclude transcription;

thus, they reside longer on chromatin, associated with their tran-

scriptional template (Figure 2B). Besides transcript length, high

small nuclear ribonucleoprotein 70 kDa (SNRNP70) enrichment

over the transcription unit and RNA Pol II transcriptional read-

through are the main determinants of slow-released transcripts.

When it comes to fast-released transcripts, besides the exon

density (which reflects overall splicing activity21), the H3K4me1

histone mark, RNA Pol II occupancy at the gene body, and a

higher SE of the worst spliced intron (SE min) are among the

most important predictive features. However, as 11%of the tran-

scripts in our dataset are mono-exonic, by definition, a minimum

and mean transcript SE (mean SE) could not be computed for

those transcripts and were, therefore, imputed (STAR Methods).

To better understand the impact of splicing-related features on

chromatin dissociation dynamics, we excluded 870 transcripts

with imputed values for those features from our dataset and re-

built the model with multi-exonic transcripts only (Figure S3A).

Although the most important predictive features of a model that

excludes mono-exonic transcripts did not change, we found

that a higher SE mean, in addition to high SE minimum, is impor-

tant for predicting fast-released transcripts (Figure S3A), indi-

cating that efficiently spliced transcripts have shorter chro-

matin-association halftimes.

In a second step, we investigated whether modeling lncRNA

and mRNA chromatin-association dynamics separately yields

more accurate predictions and reveals biotype-distinctive fea-

tures. Although the average 25.6% MCE of a mRNA-specific

elastic netmodel was comparable to that of the biotype-agnostic

model (Figure 2B, left), a lncRNA-specific model of fast- versus

slow-released transcripts yielded an average MCE of 16%,

improving by more than 10% over the accuracy of a biotype-

agnostic model (Figure 2B, left). This hints at the possibility

that lncRNA chromatin dissociation dynamics are partly dictated

by a set of unique genomic and functional features, which are

less important for the chromatin dissociation of mRNAs. Our

results were generally confirmed by a regularized linear regres-

sion model of the chromatin-association halftime (as a contin-

uous value, Figures S3B–S3D) and by a two-class random forest

(RF) model (Figure S4). We note that some outliers in the regular-

ized linear regression models, with a computed halftime 1.5-fold

higher than the predicted value, do not accumulate less nascent

NP read coverage over time (Figure S3E), confirming that slow

chromatin-released transcripts (either lncRNAs or mRNAs) with

greater chromatin-association halftimes are not seemingly char-

acterized as such due to faster NP losses (Figure S1E). In

addition, RF feature importance analysis largely confirmed the

important features identified by the logistic regression models

in determining chromatin dissociation dynamics (Figure S4). All

in all, our analysis confidently predicts chromatin dissociation

dynamics for both lncRNAs and mRNAs.

Common features characterizing lncRNA and mRNA
chromatin dissociation dynamics
Following the values of the coefficients from the logistic regres-

sion, which pinpoint the positive and negative feature contribu-
tions to the prediction of fast- versus slow- chromatin-released

transcripts, we examined the identified important features more

in detail from a mechanistic perspective.

Splicing activity affects the chromatin dissociation of

both mRNAs and lncRNAs

lncRNAs show, on average, significantly lower co-transcriptional

SE than mRNAs (t test p < 2.2e�16, Figure S5A, left), which is in

agreement with previous studies using either steady-state or

nascent RNA-seq data.55,59 Our biotype-agnosticmodel identifies

theminimumSEper transcript (minimumSE)as themostpredictive

feature of fast chromatin dissociation (Figure 2B). This is almost

entirely driven by the mRNA class (Figure 2C, right). To unravel

whether a similar linkage between minimum SE and chromatin

dissociation dynamics holds for lncRNAs, we assessed the rela-

tionship for multi-exonic lncRNAs, with a minimum of three exons

(STAR Methods). Similar to mRNAs, we find that multi-exonic

fast-released lncRNAsareassociatedwithhighervaluesofSEmin-

imum, compared with their slow-released counterparts (Fig-

ure S5B). Togetherwith exon density, which reflects splicing activ-

ity, these results imply that the splicing of a slowly or inefficiently

processed intron, which is potentially a rate-limiting step for full

transcript maturation,17 could act as a kinetic ‘‘bottleneck’’ for

both nascentmRNA andmulti-exonic lncRNA chromatin dissocia-

tion.Wealsofind that lncRNAsshow,onaverage,higheralternative

splicing thanmRNAs (FigureS5C), in agreementwithpreviousfind-

ings.59 In addition, chromatin-retained lncRNAs undergo signifi-

cantly higher alternative splicingcomparedwith fast-released tran-

scripts, suggesting that extended times of chromatin association

and/or suboptimal constitutive intron splicing could create space

for stochastic splice site selection (Figure S5C).

Transcriptional activity affects chromatin dissociation

dynamics

We then examined how chromatin dissociation dynamics is

affected by transcriptional activity per se. For this purpose, we

had included in the model several features relevant to transcrip-

tional activity, such as total RNA Pol II occupancy at the gene

body (‘‘Pol2RA genebody’’), transcriptionally engaged RNA Pol

II (phosphorylated at Ser2 [P-Ser2] RNA Pol II), and promoter-

proximal PI measured by P-Ser2 RNA Pol II and GRO-seq

(STARMethods). That total RNA Pol II occupancy (Pol2RA gene-

body) is a feature contributing to the fast release of both mRNAs

and lncRNAs indicates that fast-released transcripts are pro-

duced from loci that are overall more transcriptionally active. It

was also shown before that promoters of lncRNAs show distinct

transcriptional burst kinetics compared with mRNAs (lower burst

frequencies13) and that mRNAs display higher promoter-prox-

imal RNA Pol II pausing than lncRNAs.17,55 Although RNA Pol II

PI was not among the most important predictors of chromatin

dissociation (Figure 2B), metagene profiles at promoters show

an association between the fast release of lncRNAs, but not

mRNAs, and PI (Figures S5D–S5F). In agreement, we find signif-

icantly higher levels of transcriptionally engaged RNA Pol II over

the first kb downstream of TSS for fast- versus slow-released

lncRNAs, but not mRNAs (Figures S5G and S5H). Thus, within

lncRNAs, promoters of fast-released transcripts are more tran-

scriptionally active and display a higher degree of RNA Pol II

pausing compared with chromatin-retained lncRNA transcripts,

suggesting that fast-released lncRNAs employ mRNA-like tran-

scriptional characteristics.
Cell Systems 14, 906–922, October 18, 2023 911



ll
Article
Chromatin-retained transcripts exhibit higher U1 snRNP

binding

Our model recovered the U1 SNRNP70 as enriched at loci asso-

ciated with chromatin slow-released mRNAs and lncRNAs. This

is in agreement with Yin et al.60 suggesting U1-mediated chro-

matin retention of inefficiently processed transcripts, most prob-

ably due to unresolved spliceosomes.60 That P-Ser2 RNA Pol II

over gene body is also a strong predictor of slow-released

lncRNAs (Figure 2B) points to slow-released lncRNAs being teth-

ered to chromatin through transcriptionally engaged RNA Pol II,

as previously suggested,33 and shows that transcriptional activ-

ity could contribute to U1 snRNP-mediated tethering of ineffi-

ciently processed transcripts.60 A similar SNRNP70 enrichment

at slow-released mRNAs suggests that their chromatin associa-

tion could be partly achieved through persistent U1 snRNP bind-

ing to inefficiently processed transcripts.

Readthrough beyond TESs is associated with

chromatin-retained transcripts

Chromatin dissociation of nascent RNA transcripts is coupled

with transcription termination and 30 end formation.37,61 We per-

formedmetagene analysis around the transcript 30 end site (TES)

using ChIP-seq signal from transcriptionally engaged P-Ser2

RNA Pol II or strand-specific GRO-seq read coverage (STAR

Methods). P-Ser2 RNA Pol II metagene profiles around TES

resemble the ones obtained by mNET-seq,55 revealing polyade-

nylation-associated RNA Pol II pausing in a 2 kb window down-

stream of the TES of mRNAs, but not lncRNAs (Figure S5I). In

conjunction, mRNAs display significantly higher transcription

termination index than lncRNAs, as previously reported55

(Figures S5I–S5K). By measuring transcriptional readthrough

and extracting an RNA Pol II travel index (STAR Methods), we

note that RNA Pol II of slow-released transcripts tends to travel

further beyond the polyadenylation-associated pausing site

(Figures S5L and S5M), suggesting that ongoing transcription

may contribute to chromatin tethering and slow release of

nascent RNA transcript. Taken together with the observed low

splicing activity (�exon density) at the loci of slow-released tran-

scripts (Figures 2B andS1I), these results are in agreement with a

cross talk among splicing, transcription, and transcription termi-

nation61,62 and with recent findings that inefficient splicing asso-

ciates with readthrough transcription.57

Distinctive features of lncRNA chromatin dissociation
dynamics
Fast-released lncRNAs display significantly higher

antisense (divergent) transcription

Ourmodel highlights bidirectional transcription at promoters as an

important feature for predicting efficiently chromatin-dissociated

lncRNAs (Figure 2B). Extracting the bidirectionality score63 either

from GRO-seq (‘‘txn bidirectionality’’ variable; STAR Methods) or

from the chrTT-seq data at chase time point zero (‘‘CHR0’’)

confirms that fast-released lncRNAs display significantly higher

antisense (divergent) transcription (Figures S6A and S2A), and

this is due to their enrichment in originating near and antisense of

protein-coding gene TSS (Figures S2B and S2C).

Chromatin states demarcate the dissociation dynamics

of fast-released lncRNAs

Our models suggest that distinct degrees of nascent lncRNA

transcript chromatin association relate to distinct chromatin
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states (Figures 2B and S4). Metagene analysis plots of histone

marks associated with transcriptional activity (H3K4me3,

H3K4me1, and H3K27Ac) confirm significant differences in the

promoter regions of fast, medium, and slow-released lncRNAs,

but not mRNAs (Figure S6B). By extracting the ratio H3K4me1

to H3K4me3 around the TSS, we observe that fast-released

lncRNAs resemble mRNAs in terms of promoter activity (Fig-

ure S6C), whereas chromatin-retained lncRNAs display, on

average, a higher H3K4me1 to H3K4me3 ratio (i.e., lower levels

of H3K4me3mark in accordance with themodel; Figure 2B) and,

on average, higher signals of repressive histonemarks H3K9me3

and H3K27me3 (Figure S6D). We observe that fast-released

lncRNAs are transcribed from regions with significantly greater

chromatin accessibility (Figures S6E and S6F) and display signif-

icantly higher CTCF and YY1 binding (Figures S6G and S6H),

which are factors associated with chromatin looping, promoting

enhancer-promoter interactions.64

elncRNAs do not remain chromatin associated

Promoters of fast-released lncRNAs display significantly higher

ChIA-PET scores (Figures 2B and S6I), indicating that they tend

to be transcribed from the anchor points of chromosomal loops.

In general, lncRNAs transcribed from enhancer-like regions

display on average higher promoter-associated ChIA-PET

scores.35 Although recent studies have started shedding light on

the biogenesis and co-transcriptional processing mechanisms

of enhancer-transcribed lncRNAs,28,32 the role of their chromatin

dissociation dynamics remains unclear. We, therefore, examined

the association of distinct degrees of lncRNA chromatin dissocia-

tion with enhancer activity in more detail. For this purpose, we

used FANTOM5-20,24 and NET-CAGE22-defined human ‘‘permis-

sive’’ enhancers that are transcriptionally active in MCF-7 cells

(STARMethods), ending up with 10,008 high-confidence bidirec-

tionally transcribed enhancers (Figure 3A). About 2.5% of bidirec-

tionally transcribed enhancers had a lncRNA TSS within a

genomic distance of 2 kb, consistent with previous reports.21,25

Thus, these lncRNAs can be regarded as elncRNAs25 in MCF-7

cells, and their cognate enhancers as ‘‘lncRNA-associated

eRNA-producing centers,’’ (la-EPCs).21 Notably, elncRNAs are

enriched in fast-released lncRNAs (odds ratio �1.86, p =

0.0013, Fisher’s exact test), whereas mRNAs at an interdistance

<2 kb to the closest enhancer midpoint are not enriched in fast-

released mRNAs (odds ratio 0.89, p = 0.38, Fisher’s exact test)

(Figures 3B and S6J). This suggests that transcribed enhancers

are more likely to be associated with a fast-released lncRNA,

rather than a chromatin-retained one. In addition, elncRNAs

(definedatan interdistance<2kb toenhancermidpoint, Figure3C)

show significantly higher association with the anchor points of

chromatin loops (Figure 3D). Although lncRNAs as a class display

higher chromatin-association halftimes than mRNAs, elncRNAs

escape this rule by showing significantly lower chromatin-associ-

ation halftimes (Figure 3E), consistent with elncRNAs being en-

riched in fast-released transcripts. In conclusion, we show that

enhancer-associated or rather enhancer-transcribed lncRNAs

(elncRNAs) show increased degrees of chromatin dissociation,

in addition to increased splicing.21,25,26

Effect of lncRNA chromatin dissociation on the cis-
regulation of target genes

We previously showed that lncRNAs transcribed from the anchor

points of chromosomal loops precede their ChIA-PET-interacting
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Figure 3. Enhancer-associated elncRNAs are chromatin dissociated
(A) Profile of nascent RNA transcription (GRO-seq)65 over bidirectionally transcribed enhancers in MCF-7 (n = 10,008). elncRNAs are defined at an interdistance

less than 2 kb to enhancer midpoint.

(B) Cumulative plots of interdistances of transcript TSS to closest enhancer midpoint. Fast-released lncRNAs (dark red line) are significantly enriched at inter-

distances <2 kb to enhancer midpoint (odds ratio 1.86, Fisher’s exact test p = 0.0013). NS for mRNAs. The vertical dashed linemarks the 2 kb interdistance cutoff.

A zoomed-in version of a predefined portion of themain plot is depicted in the lower panel. Proportion graphs with transcript counts are provided in the right panel.

(C) Distribution of TSS interdistances (log10 bp) to the closest enhancer midpoint for elncRNAs, mRNAs and lncRNAs not associated with active (bidirectionally

transcribed) enhancers (‘‘rest’’ lncRNAs). elnRNAs are defined at <2 kb from enhancer midpoint.

(D) elncRNAs show significantly higher ChIA-PET scores compared with mRNAs (p = 0.0004) and to lncRNAs not associated with active enhancers (p = 0.0003).

(E) elncRNAs show significantly lower chromatin-association halftimes (t test p = 0.02 versus mRNAs and p = 5.1e�6 versus all other [rest] lncRNAs).

(F) Average GRO-seq-measured expression of RNA Pol II ChIA-PET-identified interacting genes, interacting with either fast- or slow- chromatin-released

lncRNAs.

(G) Correlation plots between RNA Pol II ChIA-PET identified interacting genes and their analyzed lncRNAs, of log2 fold changes in expression upon 40 min E2

treatment over control in MCF-7 cells. Left, all interacting gene-lncRNA pairs; middle and left panels, either up- or down-regulated.
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genes in expression changes in response to estradiol (E2) treat-

ment.35 To unveil the role of efficient chromatin dissociation of

elncRNAs and/or lncRNAs transcribed from the anchor points of

chromosomal loops on target gene expression, we measured

the expression of target genes identified by ChIA-PET (as in

Ntini et al.35) in control and 40 min E2 treatment using available

GRO-seq data65,66 in MCF-7 cells. As expected, the interacting

target genes of fast- and slow-released lncRNAs tend to show
only negligible differences in expression in basal condition (con-

trol, EtOH treatment), suggesting that other features and/or lo-

cus-specific factors contribute to the regulation of target gene

expression at steady state (Figure 3F). Although there is a positive

correlation in expression changes between the interacting

lncRNAs and target genes (cor = 0.54), the correlation is higher

for fast- (cor = 0.57) than for slow-released lncRNAs (cor = 0.45)

(Figure 3G), suggesting that lncRNA chromatin dissociation may
Cell Systems 14, 906–922, October 18, 2023 913
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have a positive effect on the regulation of target gene expression

in cis, underlying transcriptional responses.

Distinct RBPs dictate lncRNA and mRNA chromatin
dissociation dynamics
We then asked whether RBPs, which control every aspect of

RNA metabolism, play a role in mRNA and lncRNA chromatin

dissociation dynamics and whether transcripts of different de-

grees of chromatin association would interact with distinct RBP

complexes.

For this purpose, we used the ENCODE-available eCLIP

data67,68 from HepG2 and K562 cells as a proxy dataset. As

most lncRNAs are expressed in a cell-type-specific manner, we

trained the pysster69 algorithm, a convolutional neural network

model for the classification of biological sequence, on transcripts’

RBP binding sequences from the ENCODE eCLIP data. We then

used the trained models, one for each RBP, to predict

sequence-based RBP-binding propensities across full transcripts

in MCF-7 cells (see STARMethods for details and Figures 4A and

S7). Utilizing the predicted RBP-binding probabilities as input fea-

tures, we trained two separate RF models, one for lncRNAs and

one for mRNAs, to classify fast versus slow chromatin-released

transcripts. Because of the high number of training features and

their high correlations (i.e., groups of proteins exhibiting similar

binding patterns67,70), we opted for the usage of a non-linear

model, such as RF, which predicted chromatin dissociation dy-

namics with a 10-fold cross-validation mean accuracy of 0.77

and 0.78 for lncRNAs and mRNAs, respectively (Figure 4B).

Applying the lncRNA-specific RF RBP model to predict fast-

versus slow- chromatin-released mRNAs results in a lower

accuracy of �0.54. Similarly, applying the mRNA-specific RBP

model to predict fast versus slow chromatin-released lncRNAs

results in a lower accuracy of �0.56. This suggests that the per-

formance of the RF models is biotype- (either lncRNA or mRNA)

specific and that a subset of distinct RBPs might be implicated

in defining fast- versus slow- lncRNAs or mRNAs. RBPs with

high binding probabilities, found to be important for chromatin

association of both lncRNAs and mRNAs, include factors with

additional DNA binding activity (localizing to chromatin), similar

to the KH-domain-containing factors KHSRP and KHDRBS1,

FUBP3 and SUGP2 (Figures 4B and S8). These factors display

increased binding probabilities for chromatin-retained tran-

scripts, either lncRNAs or mRNAs (Figure S8B). CSTF2 involved

in 30 end formation74 is enriched in slow-released transcripts,

perhaps reflecting persistent binding and unresolved RNA-pro-

tein complexes in the case of inefficient transcription termina-

tion and 30 end formation. The exosome component EXOSC5

is also enriched in slow-released transcripts, implying chro-

matin-associated clearance of inefficiently processed nascent

RNA transcripts.75 Among biotype-specific RBPs, DROSHA is

a candidate significantly enriched in fast-released lncRNAs (Fig-

ure S8B). DROSHA was found to underlie pA-signal-indepen-

dent transcription termination and 30 end formation of lncRNAs

serving asmiRNA hosts.76 Yet, an increased RNA-binding prob-

ability of DROSHA, specifically in fast-released lncRNAs, could

also suggest their post-transcriptional processing. Although we

do not find any statistically significant enrichment of lncRNA

miRNA hosts in the fast-released lncRNAs, a closer examination

would be required to resolve microprocessor involvement in
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lncRNA transcription termination (and 30 end formation) as an

implicated mechanism. Additional lncRNA-specific factors

with increased RNA-binding probabilities for fast-released

lncRNAs are the nuclear cap-binding protein (NCBP)2, splicing

factor NONO, helicase DDX3X also involved in splicing and

RNA export, and XRN2 and CSTF2T, involved in transcription

termination and 30 end formation.77 Because NONO, XRN2,

andCSTF2T have also DNA binding activity and localize to chro-

matin,78 this suggests that their predicted binding could be co-

transcriptional, and their activity may contribute to promoting

chromatin dissociation of nascent lncRNA transcripts.

XRN2 promotes the chromatin dissociation of nascent
lncRNAs
To examine the role of XRN2 in chromatin dissociation of nascent

lncRNA transcripts,weusednascentRNA-seqdata fromHCT116

cells under normal and XRN2-depleted conditions72 generated

via POINT-seq technology.73 It is established that in Xrn2-depen-

dent transcription termination, upon CPSF3-mediated co-tran-

scriptional endonucleolytic cleavage at polyadenylation sites

(PASs), the 50-30 exonuclease activity of Xrn2 attacks the unpro-

tected 50 end of the 30 RNA flanking fragment and pursues the

transcriptionally engaged RNA Pol II, in the so-called ‘‘torpedo’’

model.79 Overall, mRNAs employ Xrn2-dependent transcription

termination72; thus, it was previously shown that there is a sub-

stantial increase of readthrough transcriptional signal (measured

by the termination index73) upon 2 h of auxin-inducible XRN2

degradation in HCT116 cells.73 To analyze the effect of XRN2 on

lncRNA transcriptional readthrough, a subset of 1,908 (out of

2,077) lncRNAs expressed in HCT116, was analyzed (after

removing lncRNAs overlapping up to 2 kb downstream of TES

with other highly expressed transcription units).

Assuming that chromatin dissociation dynamics are similar in

the two cancer cell lines, we used chromatin dissociation rates

calculated in MCF-7 as a proxy for the same transcripts in

HCT116 to examine the relationship between XRN2-mediated

termination and chromatin dissociation dynamics. Of note, there

is a high correlation in expression levels and SEs (R = 0.8 and

R = 0.85, respectively) between the two cell lines motivating

this assumption (Figures S9A and S9B). Fast-released lncRNAs

show significantly higher changes in the termination index upon

XRN2 depletion compared with their slow-released counterparts

(p = 9.5e�6, t test, Figure 4C), whereas there are no significant

differences in XRN2-mediated effect on readthrough transcrip-

tional activity among distinct groups of mRNAs (Figure 4C).

This is in agreement with the RBP RF model suggesting XRN2

asa factorpromotingefficient chromatindissociationof lncRNAs,

with enriched XRN2 binding probabilities among fast-released

lncRNA transcripts (Figure S8B). Metagene analysis, profiling

POINT-seq data73 around the TES of lncRNAs and mRNAs in

HCT116 cells, shows that fast-released lncRNAs have, on

average, higher XRN2 depletion-to-control signal ratio (+auxin

[IAA] 2 to 0 h), suggesting that efficiently chromatin-dissociated

lncRNAs are characterizedby a higher XRN2dependency in tran-

scription termination (Figures 4D andS9C). This is also supported

by the finding that transcriptional readthrough is predictive of

slow-released transcripts (Figures 2B, S4B, and S5L).

Taken together, these results suggest that slow-released

lncRNAs do not utilize Xrn2-dependent transcription termination.
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Figure 4. Modeling chromatin dissociation using RBP-binding probabilities

(A) Schematic representation of extracting RNA-binding probability per transcript per RBP using ENCODE eCLIP data and pysster69; transcript binding prob-

ability for a given RBP is the median of prediction scores from positions above a certain cutoff (STAR Methods). Scheme is modified from Horlacher et al.71

(B) Two-class random forest model run with 103 cross-validation to predict fast- versus slow-released lncRNAs (left, best model accuracy 0.81, mean accuracy

0.77) and mRNA (right, best model accuracy 0.795, mean accuracy 0.78) by incorporating 100 RBP whole transcript binding probabilities (pysster69 predictions).

Mean decrease accuracy values of the top best 25 factors are shown. Factors specifically important for lncRNAs (found in the top 20most important for lncRNAs

and not among the top 30 for mRNAs) are marked with a red star; factors specifically important for mRNAs, respectively, are marked with a blue star.

(C) Boxplot distribution of transcription termination index fold-change upon 2 h IAA-induced Xrn2 depletion72 to control. Termination index was measured using

POINT-seq read coverage as in Sousa-Luı́s et al.73

(D) Metagene analysis depicting average POINT-seq read coverage ratios upon Xrn2 depletion-to-control, per nucleotide position ±2 kb around TES for the

different chromatin dissociation classes of lncRNAs and mRNAs. Read ratios were extracted in 10 bp bins in the interval ±2 kb around TES and averaged across

the analyzed loci.
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We therefore propose a model where Xrn2-dependent degrada-

tion of the 30 flanking RNA at lncRNA loci could promote chro-

matin dissociation of the upstream nascent lncRNA transcript

(Figure 5). In summary, fast-released lncRNAs employ mRNA

processing mechanisms, such as Xrn2-dependent transcription

termination, pointing to their functional regulatory potential.

DISCUSSION

lncRNAs constitute a large heterogeneous classwith broad func-

tional potential in regulation of geneexpression, RNAprocessing,

and chromatin states.2,80 Functional potential of lncRNAs is

shaped by their subcellular localization, where they can form

compartment-specific interactions with distinct RBPs and posit

local specificity. Previous computational work generated predic-

tive models of lncRNA subcellular localization (nuclear versus

cytoplasmic enrichment) using steady-state RNA-seq and

showed that inefficient splicing and intron retention is a major

predictor of nuclear localization.17 However, what determines

the observed lncRNA chromatin enrichment at steady state

(referred to as chromatin retention or chromatin tethering),

whether the same factors dictate localization dynamics of both

lncRNAs and mRNAs, and whether chromatin (dis-) association

dynamics are related to lncRNA functional potential are still

open questions. Previous studies suggest that lncRNAs may

remain tethered to chromatin via ongoing RNA Pol II transcrip-

tion7,33 (because inhibiting RNA Pol II transcription elongation

abolished lncRNA chromatin tethering33), whereas the function

of chromatin-bound lncRNAs acting in cis in regulation of prox-

imal gene expression and local chromatin structure is coupled

to their ongoing transcription.3,34,81 On the other hand, enhanced

processing and chromatin dissociation of enhancer-transcribed

lncRNAs suggests that they could act in cis within pre-estab-

lished chromosomal proximity.32,35,36,82,83

In this studywepresent the firstmachine learning framework to

predict the chromatin (dis-) association dynamics of both

lncRNAs and mRNAs from a large number of genomic features,

aswell as RBPdata. Predictivemodels were trained on transcript

dynamics measured by chrTT-seq, a new method in which we

combine chromatin fractionation with sequencing of nascent

RNA from the chromatin-associated and NP fraction at different

pulse-chase time points. Compared with previous approaches,

this allows us to characterize the dynamics of coding and non-

coding nascent RNA transcripts at a higher resolution compared

with steady state. By employing chrTT-seqwecompute the chro-

matin dissociation ratesof newly synthesized transcripts genome

wide and uncover the most important features that dictate their

retention to chromatin or fast release.

Previous work60 implicated persistent U1 snRNP binding as a

means of lncRNA chromatin tethering, which relies on U1 site

enrichment in lncRNA exons, depletion of 30 splice sites and/

or inefficient splicing, and U1 snRNP70 protein interactions

with transcriptionally engaged RNA Pol II. A previous study indi-

cated that the overall lower SE of lncRNAs (compared with

mRNAs) is not due to defects in the U1-PAS axis, which is

very similar to mRNAs.59 In agreement, we also find U1

SNRNP70 binding as a predictive feature of lncRNA and

mRNA chromatin retention (Figure 2B). In Yin et al.,60 U1 inhibi-

tion dampened the chromatin association of both well and
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poorly spliced lncRNAs, suggesting that a kinetic effect due to

delayed release of unspliced (or inefficiently/poorly spliced)

nascent RNA cannot be the major determinant for lncRNA chro-

matin retention. However, the SE of the worst spliced intron per

transcript is important for chromatin dissociation, suggesting

that, for certain transcripts, inefficient processing of a poorly

spliced intron may act as a bottleneck for chromatin release.

Future experimental examination by modulating splicing at spe-

cific splice sites will help to validate the impact of co-transcrip-

tional splicing on lncRNA chromatin release. Notably, compared

with the transcript’s average SE, the exon density, which re-

flects overall splicing activity, is a strong and high-confidence

predictor of efficient chromatin dissociation of both nascent

lncRNA and mRNA transcripts (Figures 2 and S1I). Thus, we

suggest that it is an increased propensity for splicing events

and splicing signals within a certain transcript length that pro-

motes chromatin dissociation, rather than the efficiency of

splicing per se at the transcript’s intron 30 splice sites. The latter

is measured as the ratio of split to non-split reads spanning

exon junctions, whereas splicing activity, assessed by extract-

ing the transcript’s exon density, may be determined by the

overall interactions of the nascent RNA transcript with RBPs

during co-transcriptional processing.

A finding of this study is that lncRNAs transcribed from active

enhancers display increased degree of chromatin dissociation.

This implies that the commonly termed elncRNAs25 (equivalent

to la-EPCs21) do not remain chromatin associated. Instead,

chromatin dissociation is an important feature, which might

underlie their functional potential and impact cognate enhancer

activity. By using available GRO-seq data66 in MCF-7, we

show that there is a higher correlation in transcriptional re-

sponses to estradiol between fast-released lncRNAs and their

ChIA-PET-identified target genes, compared with slow-released

lncRNAs. Although our analysis is correlative in nature, and no

causal mechanisms can be inferred at this stage, it underpins a

possible role for lncRNA efficient chromatin dissociation in

enhancing gene expression in cis. Ultimately, a future detailed

experimental validation of single-lncRNA loci, aiming at altering

the degree of lncRNA chromatin association, will facilitate the

interpretation of these findings and shed light on the relationship

among lncRNAs, chromatin dissociation dynamics, and its effect

on cognate enhancer activity and target gene expression. So far,

a decrease in lncRNA chromatin tethering was achieved tran-

scriptome wide by inhibiting U1 snRNP60 (without examining

any effected alterations on putative cis targets), but it remains

to be experimentally analyzed what is the effect of enforced

elncRNA chromatin retention on cognate enhancer activity and

target gene expression. For instance, impeding the co-transcrip-

tional splicing of the elncRNA A-ROD with splice-inhibiting mor-

pholinos had a repressive transcriptional effect on its target gene

DKK1.35 Modifying splice sites of other lncRNAs identified in this

study by point mutations can validate the link between splicing

activity and chromatin dissociation dynamics and assess to

which extent efficient chromatin dissociation of elncRNAs re-

sults from increased splicing. It is also critical to disentangle

the effect of elncRNA chromatin dissociation from splicing

activity26,28,32 on cognate enhancer function by modulating the

chromatin dissociation rate of an elncRNA without affecting their

splicing.



A

C

B

D

Figure 5. Summary of the mechanistic model

(A–D) Schematic depiction of the modeling, highlighting distinctive features between fast- versus slow-released transcripts, either lncRNAs (A and B) or mRNAs

(C and D), not necessarily class (lncRNA or mRNA)-specific.

(A) Fast-released lncRNA are enriched among lncRNAs transcribed from enhancer-like regions and the anchor points of chromosomal loops, withA-ROD being a

representative example.35 Thus, they show higher ChIA-PET scores, chromatin accessibility (DNase I), CTCF binding, H3K3me3, and H3K27Ac characteristics of

enhancers. Fast-released lncRNAs showing high promoter-associated transcription bidirectionality may also be transcribed upstream antisense of protein-

coding genes, with GATA3-AS1 being a representative example (Figure S2). High splicing activity across the locus, measured by a significantly higher exon

density, underlies efficient chromatin dissociation. For multi-exonic transcripts, splicing efficiency of a poorly processed intron (SEminimum) may act as a kinetic

bottleneck during chromatin release. Analysis of RNA probabilities and incorporation of POINT-seq data72,73 suggests that Xrn2-dependent degradation of 30

RNA flanking fragments, generated by co-transcriptional cleavage at pA sites, promotes chromatin dissociation of the upstream nascent lncRNA transcript. Fast-

released lncRNAs also show high binding probabilities for NCBP4, NONO, and CSTF2T.

(B) Slow-released lncRNAs are defined by lower promoter activity (marked by a lower H3K4me3 and H3K427Ac), increased chromatin-association half-lives due

to extended transcription elongation across longer transcription units, and persistent SNRNP70 binding at U1 sites (presumably unresolved spliceosomes), most

probably due to uneven distribution between 50 and 30 splice sites and/or suboptimal/weak 30 splice sites. The model cannot distinguish with certainty between

slow-released lncRNAs with greater co-transcriptional chromatin-association half-lives and lncRNAs that remain tethered to chromatin post-transcriptionally,

after their transcription has been concluded and at least some degree of splicing and A-tailing has occurred. In that case, interactions with RBPs, such as KHSRP,

HNRNPL, and CSTF2 (which also bind DNA and localize on chromatin), as well as persistent SNRNP70 binding, may contribute to chromatin tethering. In the case

of slow-released/chromatin-retained lncRNAs, cleavage and polyadenylation (CPA)- and Xrn2-independent modes of transcription termination and 30 end
formation may be employed.

(C) Histone marks, chromatin states, and transcriptional activity are not strong distinctive features for fast- versus slow-released mRNAs. In general mRNAs as a

class employ CPA-dependent XRN2-mediated modes of transcription termination and 30 end processing; thus, Xrn2 binding is not a strong predictive feature for

fast-released mRNAs, which are defined by optimal co-transcriptional splicing efficiencies, high splicing activity across the locus measured by high exon density

and show high binding probability of the splicing factor SF3B4.

(D) Same as in (C), also in the case ofmRNAs, themodel cannot distinguish with certainty between slow-releasedmRNAswith greater chromatin-association half-

lives, due to extended transcription elongation times across long transcription units and, to some degree, polyadenylated (and intron-retaining) mRNAs that

remain attached to chromatin post-transcriptionally. Slow-released mRNAs show suboptimal co-transcriptional splicing (lower SE and exon density) and 30 end
processing, leading to transcriptional readthrough. Impeded/suboptimal cross talk between co-transcriptional splicing and 30 end processing was previously

shown to lead to mRNA readthrough transcripts.57 As in (B), high SNRNP70 binding is a predictive feature of slow-released mRNAs as well.
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When it comes to the question of whether lncRNAs and

mRNAs share the same molecular mechanisms of chromatin

dissociation or whether distinct features dictate their dynamics,

our models indicate that slow-released transcripts are retained

by common mechanisms and share common features, such as

longer transcription units, suboptimal co-transcriptional pro-

cessing, transcriptional readthrough, and SNRNP70 binding.

However, it seems that lncRNAs employ molecular features

that will allow their efficient chromatin dissociation. In that

sense, fast-released lncRNAs tend to resemble mRNAs as a

class, by displaying an increased transcriptional activity,

employing mRNA promoter characteristics, such as the

H3K4me3 mark of active transcription, co-transcriptional

splicing and exon density, and mechanisms of transcription

termination and 30 end processing commonly utilized by

mRNAs. Thus, although as a class lncRNAs are processed

less efficiently compared with mRNAs and may depend on pol-

yadenylation-signal-independent modes of 30 end formation

and transcription termination,28,32,84 fast-released lncRNAs

harness mRNA processing mechanisms, such as Xrn2-depen-

dent transcription termination (Figure 5). This indicates potential

regulatory roles and interactions upon chromatin dissociation,

not necessarily in trans or after diffusion in the nucleus, but

most probably on chromatin target sites defined by close

three-dimensional proximity to their transcription sites.35,82,83

In addition, by leveraging predictive models of RBP binding,

we pinpoint at several RBPs with a predicted important role

in chromatin (dis-) association dynamics, some of which with

a class-specific importance, suggesting that RBPs represents

a critical regulatory layer when it comes to RNA cellular flows

and to lncRNA activity. Experimental examination through

RBP knockdown would validate these predictions and indicate

specific candidate involvement in promoting chromatin release

or tethering.

Regarding some technical points, we speculate that irregular

transcriptional bursting at some loci may perplex the estimation

of chromatin dissociation dynamics due to new transcription

initiation events during the pulse-chase experiment. Therefore,

to estimate chromatin-association halftimes, we modeled chro-

matin dissociation dynamics based on the last exon read

coverage to minimize this effect. Of note, estimation of chro-

matin dissociation rates based on full-length transcript exonic

read coverage renders a good correlation in the obtained half-

time values (cor = 0.84, Figure S10A) and similar performance

and feature importance of all elastic net models (Figures

S10B and S10C). However, the feature coefficients of the

lncRNA model for slow-released lncRNAs are dampened and

result in unstable estimations (i.e., high error bars), indicating

that this class of transcripts might be the most affected by

the choice of ‘‘full length’’ over ‘‘last exon’’ modeling (Fig-

ure S10D). Characterizing how transcriptional bursting affects

chromatin dissociation dynamics per se should be addressed

experimentally in future work, for instance, by combining

chrTT-seq with 4-SU-DRB-seq.85 Furthermore, there might be

additional molecular features acting in a cohort to define chro-

matin dissociation dynamics of newly transcribed RNA

transcripts that have not been taken into account in our

models. For instance, co-transcriptionally formed R-loops and

epitranscriptomic marks (such as the N6-methyladenosine
918 Cell Systems 14, 906–922, October 18, 2023
RNA modification) deposited near the nascent transcript 30

end have been reported to underlie transcription termination

efficiency86–88; thus, their effect on chromatin dissociation dy-

namics remains to be determined.

Our chrTT-seq approach, employing short-read sequencing

of fragmented, labeled nascent RNA, allows to measure RNA

Pol II transcription dynamics in high resolution, as in the original

TT-seq48 protocol, while further enriching for nascent RNA mol-

ecules associated to the chromatin-residing transcriptional

template. It therefore allows addressing the question of how

transcriptional activity per se associates with distinct degrees

of chromatin dissociation at given loci. In a recent study, Re-

imer et al. employed long-read sequencing of total chromatin-

associated RNA to demonstrate that inefficient splicing associ-

ates with readthrough transcripts at single-molecule level.57 A

modified version of our approach, coupling nascent RNA-seq

with chromatin fractionation at different pulse-chase time

points, could leverage long-read sequencing of chromatin-

associated and chromatin-released nascent, full-length tran-

scripts to gain deeper mechanistic insights into the cross talk

between co-transcriptional RNA processing/splicing dynamics

of alternative splicing isoforms and their associated chromatin

dissociation dynamics. In summary, the predicted models

and findings of this study will help to enhance our understand-

ing of lncRNA function in both normal and pathological con-

texts. Understanding subcellular and subnuclear lncRNA local-

ization and the factors that determine its dynamic changes

opens new avenues for targeted interference of lncRNA-medi-

ated cellular processes and for designing effective RNA-based

therapeutic strategies.
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Marsico (annalisa.marsico@helmholtz-muenchen.de).

Materials availability
This study did not generate new materials.

Data and code availability
d All RNA-seq raw and processed data from this study have been deposited at GEO and are publicly available as of the date of

publication. Accession number is listed in the key resources table.

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key re-

sources table.

d All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d All code used for analysis has been deposited at Zenodo https://zenodo.org/record/8274758

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

chrTT-seq
MCF-7 cells were seeded in P10 (6 plates per time point) and grown to�80% confluency in 5%FCS, then labeled for 8min with 1mM

4-thio-Uridine (4-SU). Cells were either immediately harvested (lifted intact in ice-cold PBS) or washed twice in PBS and chase was

applied for 5, 10, 15, 20 min in 10 mM uridine diluted in growth medium. Chromatin fractionation was performed as in ref35. Briefly,

cells were lysed in 400 ul lysis buffer 0.15% NP-40 and lysate was loaded on 800 ul sucrose buffer for brief centrifugation. Pelleted

nuclei were washed in ice-cold PBS, resuspended in 200 ul glycerol buffer and lysed in 0.6 M urea to fractionate chromatin from the

nucleoplasmic fraction. RNA from the chromatin and nucleoplasmic fraction was extracted with acidic phenol (pH 4.5) and acidic

phenol/chloroform. 3 ug of RNA were fragmented with 0.15 M NaOH final concentration for 25 min on ice. Prior to the RNA fragmen-

tation, 0.15 ng of the 4-SU-labeled and unlabeled spike-ins mix (as in the TT-seq protocol48) were added to the 3 ug of RNA. The

fragmentation reaction was stopped in 10 mM Tris pH 7.4, purified with RNeasy MinElute Spin columns and eluted in 45 ul TE buffer

(Tris 10 mM pH 7.4, 1mM EDTA). 5 ul Biotin-HPDP/DMF 1 mg/ml were added (i.e. final concentration 0.1 mg/ml) and incubated for 2

hours at room temperature. Further steps of RNA purification, binding to T1 Dynabeads, washing and elution were done according to

the Rabani et al. protocol93 (using 5 ug T1 Dynabeads for 2 ug 4-SU-biotinylated RNA), leading to library construction for Illumina

sequencing.

Mapping and spike-ins normalization
Reads from each library were aligned to GRCh38 (gencode.v23.primary_assembly.annotation) and to ERCC92 sequences using

STAR92 2.5.4a with default parameters. Only reads mapped to a single genomic location were retained for further analysis (STAR

assigned score 255). Strand-specific reads counts for each transcript were computed with bedtools Version 2.27.0 (coverage

function).

Three labeled (ERCC00043, ERCC00092, ERCC00136) and three unlabeled spike-ins (ERCC00002, ERCC00145, ERCC00170)

had been added to each RNA sample. We computed for each sample j the sequencing depth sj (also so-called ‘size factor’) and

the cross-contamination rate εj based on the spike-in counts. We used a similar approach to the one described in Schwalb

et al.,48 but adapted it to our experimental setting. Briefly, we used a statistical model that describes the observed read counts in

a TT-seq sample by the length of the feature (spike-in / transcript n), ln, and the feature-specific unlabeled and labeled RNA amounts

that we want to estimate, ai and bi.

knj = lnsj

�
anj + εjbnj

�
For labeled samples anj= 0, therefore bnj = knj = lnsjεj
For each sample the size factor sj was computed as follows: each of the three labeled (i˛ L) spike-in read count in sample j (sij) was

normalized to the sum of the respective spike in counts across the ten labeled samples (CHR 0, 5, 10, 15, 20 min and NP 0, 5, 10, 15,

20 min). Then, for each sample j, the median from the the three scaled labeled spike ins was extracted (‘smoothed median’):

sj = medianL

 
sij

, X10
i = 1

sij

!
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For each labeled sample (L) the cross-contamination rate εj was computed as the sum of unlabeled (U) spike in read counts over

the sum of unlabeled (U) and labeled (L) spike in read counts:

εj =
X
keU

skj

,X
keU

skj +
X
ieL

sij

where i is the index over the labeled spike ins and k is the label over the unlabeled spike ins. Labeled samples with minimal or no

contamination will have a value of εj close to zero, while highly contaminated samples will have a value of εj close to one. Normalized

strand-specific read counts over features n˛Nwere then computed, in each sample j, as:

bnj = knj
�
lnsjεj

Transcript dataset
We used GENCODE V29 lncRNA annotation (n = 8,992) supplemented with lncRNA transcripts non-overlapping GENCODE V29

lncRNAs annotation, from de novo transcript assembly on chromatin-associated RNA-seq in MCF-7 (n = 10,606; described in

ref35). Specifically, newly identified lncRNA transcripts are lacking protein-coding potential, are not overlapping protein-coding

genes, and have at least one splice junction. From this initial set we kept 3,671 lncRNAs with non-zero read coverage in all 12

sequenced samples. We also used 15,166 mRNA transcripts with non-zero read coverage in all 12 samples.

Modeling chromatin dissociation
Strand-specific read counts over the last exon of the 18,837 transcripts (15,166 mRNAs and 3,671 lncRNAs) were normalized to

spike-ins and feature length (as described in the STAR Methods section ‘mapping and spike-ins normalization’). For each pulse-

chase time point we extracted the ratio of chromatin (CHR) versus total (chromatin plus nucleoplasmic (NP)) normalized read

coverage (CHR/ (CHR+NP)). For each transcript, we expect this quantity to decay over time, as it dissociates from chromatin and

translocates to the nucleoplasm with dynamics which are different from transcript to transcript. We fit those ratios on an exponential

decay function of the form:

xðtÞ = x0e
� kt

using the R function lm(ln (x) � t), for time-points [0, 8, 13, 18, 23, 28].

We set x0 to 1, as we assume that at time point 0 all transcripts are purely chromatin associated (at time point 0, 4-thio-uridine is

starting to get incorporated into newly transcribed RNA).

This returns intercept, exponent k and p-value of exponential decay fit. We kept 12,391 entries that fit the curve with a p-value

<0.05, of which 2077 were lncRNAs and 10,314 mRNAs. We defined a ‘chromatin association halftime’ as:

t1=2 = � ðintercept + lnð2ÞÞ �k
representing the time required for the decaying quantity (i.e. transcript chromatin-associated ratio) to fall to one half of its initial value

(at t = 0).

Based on the halftime values of the whole transcript dataset, we split the whole transcript dataset (n = 12,391) into three equal-size

quantiles corresponding to ‘fast’, ‘medium’ and ‘slow’ released nascent RNA transcripts.

Nucleoplasmic turnover
We computed the nucleoplasmic ‘turnover’ for each transcript (due to RNA degradation or export) as the ratio (NP20 - NP0) / NP0,

where NP0 and NP20 represent nascent RNA read coverage from a transcript’s last exon in the nucleoplasmic fraction (chromatin-

released), measured at 0 minutes and 20 minutes from the start of chase, respectively. Please note that chase time-point zero, cor-

responds to the end of 8 minutes of 4SU labeling; at this point, 4SU is removed/washed away and chase starts with an excess of

uridine for 0-20 min. Transcripts with a rapid nucleoplasmic turnover are expected to show small or negative values of (NP20-

NP0)/NP0, whereas transcripts subject to lower nucleoplasmic turnover (degradation and/or export), measured during 20 minutes

chase, are expected to show relatively higher positive values of this ratio, as they accumulate more nascent nucleoplasmic reads

from the flow of chromatin release.

Definition of model features
The 18 molecular features used to train predictive models of both lncRNA and mRNA (dis-)association dynamics are listed and

described in detail in Table S1. Briefly, the list includes 10 epigenetic features extracted from publicly available ChIP-seq data in

MCF-7 (histone marks, chromatin factors and Pol II-related features), four transcriptomic features related to either transcription

per se, and extracted by publicly available GRO-seq data in MCF-7, or splicing (i.e. splicing efficiency, average and minimum values

per transcript), extracted from our chrTT-seq raw data, and finally two genomic features including ChIA-PET interactions strength

and exon density, as described in Table S1.
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Splicing efficiency, SED and degree of post-transcriptional splicing
Wemeasured intron splicing efficiency (SE or theta value) as in Schlackow et al.55 by extracting the ratio of split to split plus non-split

reads overlapping 3’ splice sites of introns with at least one split and one non-spit read at the 30 splice site (n = 154,467 high-con-

fidence introns). For monoexonic transcripts, the minimum (SE min) and mean (SE mean) splicing efficiency values were imputed

by applying k-nearest neighbor imputation with k = 5. We measured alternative splicing as in Louloupi et al.56 by extracting the ratio

(psi value) of alternative split to constitutive split reads covering the high-confidence introns. We extracted co- and post-transcrip-

tional splicing efficiency dynamics (SED) as in Louloupi et al.,56 by subtracting the difference of splicing efficiency at 20 min pulse-

chase time point from the splicing efficiency at 0 min and normalizing this to the splicing efficiency at 0 min [SED = (SE_20min +

0.001 – SE_0min) / (SE_0min + 0.001)]. We extracted the extent of post-transcriptional splicing relative to co-transcriptional as

the difference of chromatin-associated splicing efficiency from the nucleoplasmic splicing efficiency, normalized to chromatin.

This was done at intron and transcript level (mean value of the transcript’s high-confidence introns).

Transcriptional indices (TSS-proximal pausing index and termination index)
We assessed transcriptional pausing index by extracting the ratio of strand-specific GRO-seq read coverage or P-Ser2 Pol II ChIP-

seq density in the window 500 nt downstream of TSS to the gene body. Gene body was defined as the middle 50% of the interval

TSS+500 to TES, as in Schlackow et al.55 Transcription termination index was measured as in Schlackow et al.55 by extracting the

length-normalized ratio of strand-specific GRO-seq read coverage (or Pol II ChIP-seq read density) in thewindow 2.5 Kb downstream

of TES to the gene body. Travel indexwas extracted as the ratio of read coverage in the interval [2.5 to 5 Kb] downstream of TES to the

first 2.5 Kb downstream of TES. Transcription bidirectionality score wasmeasured as in Chen et al.63 by extracting the log2 antisense/

sense ratio of GRO-seq read coverage 1 Kb around TSS.

SNRNP70 occupancy over transcription units
As a proxy we used SNRNP70 ChIP-seq from HepG2 and by intersecting the intervals corresponding to full-length transcripts with

ChIP-seq narrow peaks (ENCFF346UDN) we extracted a mean binding score per transcription unit, by averaging the signal over

the peaks.

Machine learning models of chromatin (dis-)association based on genomic, transcriptomic and epigenetic features
Regularized logistic regression

Wedeveloped a logistic regressionmodel for predicting dissociation dynamics of transcripts in a biotype-agnostic manner, aswell as

individually for lncRNAs andmRNAs based on genomic and functional features. We used regularized logistic regression to determine

the most important subset of variables for prediction, with soft constraints on non-zero coefficients. This helps assigning similar

weights for correlated variables, which was particularly useful given the presence of few sets of correlated variables in our data

(Figure S4A). We used Elastic Nets58 as implemented in the glmnet94 package for R. The objective function for regularized logistic

regression is the penalized negative binomial log-likelihood:

�
"
1

N

XN
i = 1

yi
�
b0 + xTi b

� � log
�
1 + eðb0+xTi bÞ

�#

subjected to the constraint ð1 �aÞ k b
��j1 +a k b

��j2 % t, where k b k1 =
Pp

i = 1jb1j and k b k2 =
Pp

i = 1b
2
i with p = number of features,

N = number of samples (lncRNAs or mRNAs) and a˛ ½0;1�. The first constraint is based on the L1-norm and forces unimportant co-

efficients to shrink to 0, thereby promoting sparsity (LASSO-type), while the second constraint is based on L2-norm and favors similar

values for the coefficients (Ridge-type). The a parameter specifies the contribution of each constraint. Throughout the paper we

chose a = 0:5 in order to balance the contributions of the two penalizations. The t parameter was optimized for each model by

the cv.glmnet function in a 10-fold cross-validation procedure on the training data, to minimize the misclassification error (MCE).

The model training was repeated 10 times and each time 10% of the data was left out for testing purposes, while the other 90%

was used for model optimization, as described above. The regression coefficients correspond to the average values over the 10

training steps, and the final model’s MCE is the average over 10 test sets.

Regularized linear regression

For comparison, we build regularized linear regression models for all transcripts, as well as lncRNAs and mRNAs separately, to pre-

dict the chromatin-association halftime as a continuous value from the same set of features. A similar procedure, as described for

regularized logistic regression, was employed here, where instead the sum of squared errors (SSE) was minimized and subjected

to the same constraints. In a similar way, the value of t parameter was chosen with the cv.glmnet R function in a 10-fold cross-vali-

dation procedure to minimize the SSE. As a performance measure for linear regression we report the best Pearson correlation

coefficient (R) value over the 10 test sets.

Random Forests

Random Forest (RF) classification models were also built to confirm predictions of fast versus slow-released transcripts with the ran-

domForest R package. The number of trees (ntree parameter) was fixed to 1000, while the number of variables for each tree (mtry

parameter) was optimized using the train() function of the caret R package with a grid search in a ten-fold cross validation on the
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training data. The best mtry was selected, such that it maximizes the model accuracy. Model training was repeated ten times and

each time 10% of the data was left out for testing, while the other 90% was used for model optimization, as described above.

The importance of each feature was computed as ‘mean decrease in Gini index’. Variables with large positive importance values

correspond to features which are crucial for model classification, whereas variables with values close to zero or negative correspond

to unimportant features.

Extraction of transcript 3’ end site (TES)
We ran ContextMap90 v2.7.9 on paired-end MCF-7 nuclear polyA+ data (ENCODE) using Bowtie2 aligner and Bowtie2-build-l

indexer, with parameters -mismatches 3 -seed 30 -maxhits 10 –polyA -t 8 -Xms4000M -Xmx30000M. This generated 39,991

ContextMap scored polyA sites. Nearby polyA sites were clustered with bedtools cluster –s –d 10, keeping the one with maximum

score. Annotated transcript 3’ ends were assigned a ContextMap polyA site by fetching the closest with bedtools closest –s.

Enhancer-associated lncRNAs in MCF-7
From the FANTOM5/NET-CAGE enhancers (n = 85,786) we extracted the ones that show evident bidirectional transcription inMCF-7

using GRO-seq (GSE96859), by calculating average coverage over all bases, with non-covered bases counting as zeroes;

bigWigCoverageOverBed mean0 coverage > 0.1 for both strands, resulting in 10,008 bidirectional actively transcribed enhancers.

We then fetched the closest transcript start site (TSS) to enhancer midpoints using bedtools closest –s and defined lncRNAs with

a distance < 2000 bp from a transcribed enhancer as elncRNAs (n = 247 out of the 2077 analyzed).

Prediction of RBP binding
RBP datasets and data pre-processing

To predict RBP binding patterns on MCF-7 lncRNA and mRNA transcripts, we used the machine learning tool pysster69 as RBP

eCLIP data for MCF-7 is not available in the ENCODE database. We trained pysster models for each RBP using eCLIP data from

HepG2 and K562 and applied them to predict RBP binding on MCF-7 transcripts. We didn’t use HepG2 or K562 RBP binding sites

as proxies as the pool of expressed lncRNAs differs between cell types, resulting in substantial loss of information. When considering

lncRNAs only, the percentage of commonly expressed transcripts between HepG2 and MCF-7 was only 19.5% (405 out of 2077

lncRNAs). As of September 2018, 161 eCLIP ENCODE datasets for RBPs were available. 100 RBPs with good quality scores

were selected for pysster models, as summarized in Table S2. If an RBP was available for both HepG2 and K562, the higher quality

cell line was used, or HepG2 by default. Two bed files containing narrow peaks were downloaded for each RBP, and peaks over-

lapping with the other replicate andwith log-fold enrichment over the input control sample greater than or equal to twowere selected.

The 50 end of each peak was considered the binding site,70 and binding locations were summarized using GENCODE gene annota-

tions version 24 for the GRCh38 human genome assembly to identify transcripts overlapping with RBP binding sites.

Pysster training on ENCODE eCLIP data

We trained a Convolutional Neural Network (CNN) using pysster to classify binding sites specific to an RBP. Themodel was trained in

a three-class classification setting to enable learning sequence preferences specific to the RBP of interest and avoid learning tech-

nical biases. Class 1 contained sequences of length 400 centered at the 5’ end of the RBP’s binding sites extracted from eCLIP

peaks. Class 2 consisted of sequences of length 400 randomly sampled from lncRNAs or mRNA transcripts binding to the RBP

of interest, but not overlapping with the peak sequences in class 1. Class 3 consisted of sequences of length 400 centered at the

5’ end of eCLIP binding sites of any of the 99 RBPs in our dataset, distinct from the RBP of interest. The model also incorporated

the genomic location of a binding site by adding three neurons to the first dense layer of the CNN. Categorical features, such as

exons/introns, were zero/one encoded using as many neurons as the number of categories. Proximity to the TSS/TTS was encoded

as a continuous feature and computed as the distance of the 5’ end of the eCLIP peak to the TSS, normalized by the transcript’s

length. RBP pysster models were trained on imbalanced data in a ratio 1:5:5 between the positive class and the two background

sets. Input sequences were randomly split into 70% training, 15% validation and 15% held-out set. For each RBP model an hyper-

parameter search was performed to optimize the number and lengths of kernels.

Pysster RBP binding site predictions on MCF-7 transcripts

To obtain single-nucleotide binding site probabilities of an RBP along a full transcript we employed a sliding window approach

(window size 400, step-size of one) to scan the model predictions over a full-length lncRNA or mRNA. The predicted probability

of a sequence to belong to the positive class (i.e. to be bound by the RBP of interest) was assigned to the central nucleotide of

each window. All positions with prediction scores higher than 0.66 (twice the value of the random probability to belong to the positive

class) were selected as ‘high confidence predictions’ and their median binding probability was computed.

Modeling chromatin (dis-)association from RBP binding with Random Forests

A random Forest (RF) classification model to predict fast versus slow-released nascent RNA transcripts from RBP binding alone was

implemented separately for both lncRNAs and mRNAs with the randomForest R package. RF models were trained on 100 features,

each representing the median binding strength (median probability) of a single RBP according to pysster. RF Model training, testing

and feature importance analysis were done as described earlier.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses used are indicated in themethod details section; statistical correlations were computed by Spearman correlation

tests unless otherwise indicated, comparisons between groups were computed by two-sided Student’s test unless otherwise

indicated, and comparisons of proportions of between two groups were computed by Fisher’s exact tests. All p values are indicated

in the figures; statistical tests used are indicated in the figure legends. Dots in the boxplots indicate mean (average) values of distri-

butions, and lines represent the median.

ADDITIONAL INFORMATION

Supplemental information is available for this paper. Correspondence and requests for materials should be addressed to evgenia.

ntini@imbb.forth.gr or annalisa.marsico@helmholtz-muenchen.de (lead contact).
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