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ARTICLE HIGHLIGHTS

• This study was undertaken to elucidate mechanisms underlying a diet with high glycemic index (GI) and glycemic
load (GL) during childhood and increased cardiometabolic risk.

• We wanted to determine if dietary GI and GL are associated with DNA methylation at metabolic genes and if epi-
genetic patterns are altered in people with overweight.

• Dietary GI and GL were associated with 537 DNA methylation sites, especially in people with overweight. DNA
methylation was related to expression of genes known to affect metabolism.

• A high GI and GL diet may influence epigenetic regulation in young people.
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OBJECTIVE

Dietary glycemic index (GI) and glycemic load (GL) are associated with cardiome-
tabolic health in children and adolescents, with potential distinct effects in peo-
ple with increased BMI. DNA methylation (DNAm) may mediate these effects.
Thus, we conducted meta-analyses of epigenome-wide association studies (EWAS)
between dietary GI and GL and blood DNAm of children and adolescents.

RESEARCH DESIGN AND METHODS

We calculated dietary GI and GL and performed EWAS in children and adolescents
(age range: 4.5–17 years) from six cohorts (N = 1,187).We performed stratified analy-
ses of participants with normal weight (n = 801) or overweight or obesity (n = 386).
We performed look-ups for the identified cytosine–phosphate–guanine (CpG) sites
(false discovery rate [FDR] <0.05) with tissue-specific gene expression of 832 blood
and 223 subcutaneous adipose tissue samples from children and adolescents.

RESULTS

Dietary GL was positively associated with DNAm of cg20274553 (FDR <0.05), anno-
tated to WDR27. Several CpGs were identified in the normal-weight (GI: 85; GL: 17)
and overweight or obese (GI: 136; GL: 298; FDR <0.05) strata, and none overlapped
between strata. In participants with overweight or obesity, identified CpGs were
related to RNA expression of genes associated with impaired metabolism (e.g.,
FRAT1, CSF3).

CONCLUSIONS

We identified 537 associations between dietary GI and GL and blood DNAm, mainly
in children and adolescents with overweight or obesity. High-GI and/or -GL diets may
influence epigenetic gene regulation and thereby promote metabolic derangements
in young people with increased BMI.

Over the past decades, the prevalence of obesity has increased worldwide, leading to
increased morbidity and mortality (1), mainly due to emergence of obesity-related,
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noncommunicable diseases (NCDs) (2).
There is strong evidence that obesity and
obesity-related adverse health consequen-
ces have their origins in early life. Early
childhood is a vulnerable phase when sus-
tained obesity manifests (3). Aside from
the prenatal and early childhood periods,
late childhood and adolescence have been
proposed as a second window of opportu-
nity for establishing lasting lifestyle behav-
iors that affect the development of obesity
and related NCDs (4). This is supported by
findings from a large population-based
study indicating that an increase in BMI
between 7 years of age and early adult-
hood predicts an increased risk of type 2
diabetes (T2D) in adulthood (5). Growth
during childhood and adolescence is af-
fected by a variety of genetic and environ-
mental factors, especially diet.

Diets high in glycemic index (GI) and gly-
cemic load (GL) are associated with cardio-
vascular risk factors (6), hyperinsulinemia,
and markers of insulin resistance (7) and
obesity (8) in children, and with T2D, coro-
nary heart disease, andmetabolic syndrome
in adults (9). The underlying (molecular)
mechanisms remain largely unexplored, al-
though they may help explain the known
health benefits of a low GI and/or GL diet.
DNA methylation (DNAm) is a key epige-
netic mechanism involved in the regulation
of gene activity. Accumulating evidence sug-
gests that dietary factors, such as folate and
resveratrol, can influence DNAm and may
thus contribute to the effects of diet on
long-term health (10). Recently, maternal di-
etary GI and GL in pregnancy have been as-
sociated with DNAm in cord blood (11). In
that study, the findings differed between
mothers with normal weight and those

with overweight or obesity (hereafter, over-
weight/obesity), and most associations were
observed in the offspring of mothers with
overweight/obesity, potentially indicating
modification by body size (11). Consistent
with these findings, some of the observed
associations between GI and, particularly,
GL and cardiometabolic health were more
pronounced in participants with an in-
creased BMI (9).

So far, the effects of dietary GI and GL
on the epigenomes of children and adoles-
cents remain unknown. We hypothesized
that dietary GI and GL are associated with
blood DNAm in children and adolescents
and, therefore, could serve as markers of
dietary exposure.We further hypothesized
that BMI subgroup analysis reveals a dif-
ferent epigenetic pattern in participants
with normal weight than those with over-
weight/obesity, and we explored its poten-
tial role in the development of NCDs by
investigating metabolism-related gene ex-
pression in blood and subcutaneous adi-
pose tissue.

RESEARCH DESIGN AND METHODS

Participants
Six cohorts that contribute to the Pregnancy
and Childhood Epigenetics (PACE) consor-
tium (12) participated in this cross-sectional
meta-analysis (N = 1,187) (for cohort-
specific information, see Supplementary
Material). With the exception of the
Raine Study Gen2 (Raine) in Australia, all
cohorts were from Europe (Spain: Infan-
cia y Medio Ambiente [INMA]; Germany:
The LIFE Child Study [LIFE Child]; Leipzig
Atherobesity Childhood Cohort [Athero-
besity]; the Study in Teens of the Natural
Course of Type 1 Diabetes [TEENDIAB];

and Finland: the Northern Finland Birth
Cohort 1986 [NFBC1986]). The analysis
only included children and adolescents
(age range: 4.5–17.0 years). There were no
participants with diabetes in the analysis.
To avoid the potential underlying genetic
effects, only one participant per family was
included, based on the completeness of
the data, and by equal completeness, the
selection was done randomly. Participants
with a GI or GL above or below 5 times the
SD of the individual cohort mean were also
excluded (NFBC1986: GI, n = 2 and GL, n =
11; LIFE Child: GL, n = 1). Further descrip-
tions of the cohorts are provided in the
Supplementary Material. Ethical approval
and informed consent were obtained from
each cohort according to national and
international standards (Supplementary
Material).

Dietary GI and GL Calculations
A food’s GI is defined as the 2-hour incre-
mental area under the curve of blood
glucose after consumption of a defined
portion, typically 50 g of available carbo-
hydrate, expressed as percentage to the
glycemic response of a reference food,
usually glucose or white bread (13). Thus,
a food’s GI ranges between 0 and 100.
The GL is defined as the food-specific GI
multiplied by the amount of carbohy-
drates in that food item (13). We used a
harmonized method across cohorts to
calculate the dietary GI and GL from food
frequency questionnaires (FFQs) or die-
tary records (for cohort-specific informa-
tion, including validation of assessment
methods, see Supplementary Material),
as described previously (11). Briefly, the
carbohydrate content and GI (using glucose
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as the reference) of food items were re-
trieved from country-specific reference data
(European countries: Diabetes, Obesity,
and Genes [DIOGENES] [14]; Australia:
Atkinson et al. [15]). The food-specific in-
formation was linked to individual food
items consumed, based on the FFQ or die-
tary record data. If food items were miss-
ing from the country-specific reference
data, the information was taken from
those of other countries. All food items
with carbohydrate contents <1 g/100 g
were excluded. The individual dietary GI
and GL values were calculated as the
weighted average of all foods consumed
according to common formulas (11).

Cohort-Specific Epigenome-Wide
Association Studies Analyses
We used blood DNAm as the outcome
measure, determined with either Infinium
HumanMethylation450 (450 K) or Methyl-
ationEPIC (EPIC) Bead-Chip arrays (Illu-
mina Inc., San Diego, CA). Cohorts with
the 450 K array were INMA, NFBC1986, and
Raine; cohorts with the EPIC array were LIFE
Child, Atherobesity, and TEENDIAB. Each
cohort performed their own quality
control and normalization procedures
(Supplementary Table 1). For all analyses,
we used normalized, untransformed
b values, where 0 indicated no methyla-
tion and 1 indicated complete (100%)
methylation. For better interpretation,
effect estimates were thus multiplied by
100 to express the change in percentage
of methylation. A common prespecified
analysis plan with R script for performing
the epigenome-wide association studies
(EWAS) was provided to all cohorts. We
excluded extreme DNAm values, using
the Tukey method, as described previ-
ously (11). The cohort-specific analyses
between dietary GI or GL and epigenome-
wide DNAm were performed using ro-
bust linear regression (R package Limma)
and were adjusted for age, sex, parental
education (cohort-specific definition, see
Supplementary Material), smoking, total en-
ergy intake, blood cell type estimates, and
technical variables. The analyses were addi-
tionally adjusted for cohort-specific covari-
ables, if needed (Supplementary Material).
Total energy intake was unavailable in
NFBC1986 and was not included in these
analyses. Blood cell types were predicted
using the Housemanmethod, implemented
in the R package minfi (16). Because we
considered BMI as a potential moderator,
we analyzed the same models in the BMI

stratum normal weight, as defined by the
BMI SD score (SDS) (�2 # BMI SDS #1)
and overweight/obese (1< BMI SDS), based
on World Health Organization age- and sex-
specific reference charts (17,18). All EWAS re-
sults were successfully checked for quality,
using the R packageQCEWAS (19).

Meta-analyses
Before running the meta-analyses, we
excluded probes on sex chromosomes,
known cross-reactive probes, and probes
with sequence polymorphism (20,21). All
remaining probes were meta-analyzed if
they were contained in at least two co-
horts. Given that the 450 K and EPIC arrays
differ in terms of probe numbers, the sam-
ple size for array-specific probes varied.
The EPIC array probes covered 91.9% of
probes on the 450 K array. To correct for
potential deflation or inflation and bias in
the individual-cohort EWAS results, we
applied the R package bacon with the
following modifications: niter = 100,000,
nburnin = 25,000 (22) (Supplementary
Table 2). We then performed fixed-effects
invariance-weighted meta-analyses with
the bacon-corrected data using the R pack-
agemetafor (23).

After each meta-analysis, we used
Cochrane Q tests to evaluate the heteroge-
neity of the model. The cohorts Raine and
Atherobesity introduced notable heteroge-
neity in the GL model (Supplementary
Fig. 1), and these cohorts, therefore, were
excluded from the GL analysis (remaining
n = 693) to reduce the possibility of spuri-
ous findings. Because the models of the
NFBC1986 cohort did not include the to-
tal energy intake, we checked the hetero-
geneity with and without this cohort.
Because the heterogeneity did not change
after inclusion of NFBC1986 (Supplementary
Fig. 2), we performed all meta-analyses in-
cluding NFBC1986.We report the I2 value to
indicate potential heterogeneity. To avoid
possible human error, the meta-analyses
were independently repeated by another
analyst using the software METAL (24), and
all results were confirmed. The final meta-
analysesmodels showed no sign of deflation/
inflation (l) and bias (m) (Supplementary
Table 3). We used the false discovery rate
(FDR) to correct formultiple testing, and PFDR
values < 0.05 were considered statistically
significant. Annotation to genomic locations
(reference genome hg19) was done with
Illumina’s annotation files (450K: Illumina-
HumanMethylation450kanno.ilmn12.hg19;

EPIC: IlluminaHumanMethylationEPICanno.
ilm10b4.hg19). The results of the meta-
analyses have been uploaded to the public
EWAS catalog (Zenodo; https://doi.org/10
.5281/zenodo.7220349).

Look-ups of Findings
We checked whether our findings over-
lappedwith significant DNAm sites inmeta-
EWAS of related traits: maternal dietary GI
and GL (11) or glycemia (25) in pregnancy
and cord-blood DNAm, and childhood BMI
and blood DNAm (26).We performed look-
ups within the EWAS catalog (27) and the
Accessible Resource for Integrative Epige-
nomic Studies (ARIES) methylation quanti-
tative trait loci (mQTL) database of blood
from children aged 7 years (450 K array
only) (28). For the overlapping mQTLs, we
searched whether the genetic variants
are linked to the following traits: child-
hood obesity, obesity, T2D, and cardiovas-
cular disease. We performed mendelian
randomization (MR) analysis (two-sample),
using the R package TwoSampleMR, for
the identified risk variant using the Wald
ratio. We used the ARIES mQTL data as
the exposure set and genome-wide associ-
ation studies catalog data of these traits as
the outcome set to explore potential causal
effects of the mQTL–CpGs on obesity and
disease risk (SupplementaryMaterial).

To determine whether our findings were
significantly related to tissue-specific gene
expression, we queried the Human Early
Life Exposome (HELIX) cis-expression quan-
titative trait methylation (cis-eQTM) data-
base (adjusted for blood cell type) of blood
from 832 children (mean age: 8.1 years;
450 K array only) (29), and checked for as-
sociations with cis-eQTMs in subcutaneous
adipose tissue samples from223participants
(mean age:10.5 years) in the Leipzig Child-
hood Adipose Tissue Cohort (ClinicalTrials
.gov identifier NCT02208141; EPIC array;
Supplementary Material).

Functional Enrichment
We queried the Locus Overlap Analysis
(LOLA) Core database to search for enrich-
ments of chromosomal markers, enhancer
or repressor regions, and transcription-
factor binding sites (30).

RESULTS

Cohort Summary
This analysis included a total of 1,187 chil-
dren and adolescents (Table 1). Across
the cohorts, the mean dietary GI ranged
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from 50.8 to 61.9, and GL ranged from
99.6 to 161.6. Similar frequencies of sex
and smoking and similar ranges of GI and
GL were observed after stratification into
the normal weight (n = 801) and over-
weight/obese (n = 386) categories (Table 1).

Meta-analysis of the Whole Sample Set
In the analysis of all available samples,
dietary GI showed no association with
blood DNAm after FDR correction. The
top five CpGs based on Pnominal are pre-
sented in Supplementary Table 4. Among

these, the association with the smallest
SE was observed between dietary GI and
cg01578632 (b = �2.5 × 10�2; SE = 5.1 ×
10�3; I2 = 0; Pnominal = 8.7 × 10�7), anno-
tated to WW domain containing E3 ubiq-
uitin protein ligase 2 (WWP2).

Dietary GL was positively associated with
blood DNAm at cg20274553 (b = 2.3 ×
10�3; SE = 4.2 × 10�4; I2 = 0; PFDR = 2.2 ×
10�2) located in intron 13 of theWD repeat
domain 27 (WDR27) gene (see Table 2 and
Supplementary Table 5 for the top five
CpGs based on Pnominal).

Meta-analysis of BMI Strata
In the normal-weight stratum, the DNAm
of 85 CpGs was significantly associated
with GI and the DNAm of 17 CpGs with
GL (Fig. 1A and B, Supplementary Tables 6
and 7). There was considerable hetero-
geneity (I2 > 75) in 36 CpGs of the GI
analysis and six CpGs of the GL analysis
(Supplementary Figs. 3 and 4).

In the overweight/obese stratum, the
DNAm of 136 CpGs was significantly re-
lated to GI and the DNAm of 298 CpGs
to GL (Fig. 1C and D, Supplementary

Table 1—Characteristics of the populations by participating cohorts

INMA TEENDIAB LIFE Child Atherobesity NFBC1986 Raine Study

N 177 181 105 109 227 388

Country Spain Germany Germany Germany Finland Australia

Age, mean (SD), years 4.5 (0.2) 10.8 (1.3) 11.6 (2.6) 13.2 (2.7) 16.1 (0.4) 17.0 (0.3)

Female sex, % 53.7 48.9 49.5 56.9 57.7 45.9

Parental education level, %

Low 24.9 3.7 19.0 29.4 10.6 44.8
Medium 42.9 12.6 61.9 42.2 73.1 35.5
High 32.2 84.7 19.0 28.4 16.3 19.5

Current smoker, % 0 0 0 9.2 50.2 26.5

BMI, mean (SD), kg/m2 16.2 (1.4) 17.9 (3.2) 23.8 (6.6) 24.7 (7.3) 21.5 (3.2) 21.1 (3.9)

BMI SDS, mean (SD) 0.6 (0.9) 0.2 (1.2) 1.6 (1.6) 1.3 (1.6) 0.2 (1.0) 0.5 (1.2)

Type of dietary assessment FFQ DR FFQ DR FFQ DR

GI, mean (SD) 50.8 (2.6) 56.7 (3.9) 56.0 (4.5) 54.0 (4.9) 61.9 (5.8) 58.3 (3.8)

GL, mean (SD) 99.6 (29.5) 161.6 (52.8) 141.6 (61.6) 117.4 (35.4) 124.2 (47.2) 151.9 (23.5)

Total energy intake, mean, kcal/day 1,648 (353) 2,211 (577) 2,147 (860) 1,892 (488) NA 2,306 (588)

Only participants with normal weight

N 131 131 39 49 180 271
Age, mean (SD), years 4.5 (0.2) 10.8 (1.3) 11.6 (2.5) 13.5 (2.6) 16.1 (0.4) 17.0 (0.3)
Female sex, % 50.4 48.1 53.8 63.3 59.4 48.0
Parental education level, %

Low 23.7 3.5 7.7 18.4 10.5 43.9
Medium 43.5 13.0 56.4 34.7 72.3 35.1
High 32.8 82.5 35.9 46.9 17.2 21.1

Current smoker, % 0 0 0 12.2 50.0 25.1
GI, mean (SD) 50.8 (2.6) 56.6 (3.8) 56.6 (3.9) 53.6 (4.2) 62.0 (5.7) 58.3 (3.7)
GL, mean (SD) 100.1 (29.8) 161.2 (53.7) 141.9 (46.1) 130.1 (36.8) 126.3 (46.1) 154.0 (23.0)
Total energy intake, mean (SD), kcal/day 1,654 (353) 2,204 (576) 2,076 (622) 2,043 (517) NA 2,323 (591)

Only participants with overweight/obesity

N 46 50 66 60 47 117
Age, mean (SD), years 4.5 (0.3) 10.6 (1.3) 11.6 (2.7) 13.0 (2.9) 16.0 (0.3) 17.0 (0.2)
Female sex, % 63.0 50.0 47.0 51.7 51.1 41.0
Parental education level, %

Low 28.3 2.0 25.8 38.3 10.7 47.0
Medium 41.3 8.0 65.2 48.3 76.6 36.7
High 30.4 90.0 9.1 13.3 12.8 16.3

Current smoker, % 0 0 0 6.7 51.1 29.9
GI, mean (SD) 50.8 (2.7) 57.0 (4.3) 55.7 (4.9) 54.3 (5.4) 61.1 (6.2) 58.3 (4.1)
GL, mean (SD) 98.1 (29.1) 162.5 (50.9) 141.4 (69.5) 107.0 (30.9) 116.4 (50.9) 147.2 (24.0)
Total energy intake, mean (SD), kcal/day 1,630 (358) 2,228 (580) 2,189 (976) 1,768 (430) NA 2,269 (581)

DR, dietary record; FFQ, food frequency questionnaire; NA, not available.
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Tables 8 and 9). Considerable heteroge-
neity (I2 > 75) was observed in 40 CpGs
of the GI analysis and 47 CpGs of the GL
analysis (Supplementary Figs. 5 and 6).

Among the CpGs with highest hetero-
geneity, mainly one cohort but not always
the same one, had a strong effect. Leave-
one-out analysis did not show one dis-
tinct cohort driving all the associations
(Supplementary Figs. 7–10).

In total, the BMI-stratified analyses
identified 536 significant DNAm sites
(Supplementary Table 10). Of these, 222
were only available in the cohorts with the
EPIC array. We found no overlap of signifi-
cant CpGs across any model (full and BMI-
stratified models). However, approximately
93% of the significant CpGs in the BMI-
stratified analyses (n = 500 of 536) had
the same effect direction as in the whole-
sample meta-analysis, and effect estimates
showed a strong correlation between the
BMI-stratified and whole-sample results
(Spearman r = 0.90; P < 2.2 × 10�16;
Supplementary Table 10). When compar-
ing the effect estimates of CpGs signifi-
cant in one stratum and nonsignificant
in the other, 245 of 536 CpGs had differ-
ent directions of effects (Supplementary
Table 10).

Table 2 shows the overlapping anno-
tated genes of the significant CpGs across
all models. Like the association with GL in
the whole-sample analysis, DNAm at a
CpG (cg25687360) located in intron 8 of
the WDR27 gene was positively associ-
ated with GI in children and adolescents
with overweight/obesity (Table 2). How-
ever, this association was largely driven by
the NFBC1986 cohort, and did not remain
significant without NFBC1986 (Pnominal =
7.4 × 10�1). In participants with over-
weight/obesity, CpGs associated with both
GI and GL were annotated to the genes
karyopherin b1 (KPNB1) and hyaluronan
synthase 3 (HAS3) (Table 2).

Look-ups of Findings in Published
Resources
Across all significant findings (n = 537
CpGs with FDR < 0.05), we found no
overlap with CpGs identified in meta-
EWAS of related traits (see Research De-
sign andMethods).

By querying the EWAS catalog using
all 537 CpGs, we identified overlaps with
1,121 previously published associations
(corresponding to 339 unique CpGs; Supple-
mentary Table 11). Enrichment was found
for the traits age, sex, tissue, and Alzheimer
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disease Braak stage (hypergeometric test,
FDR < 0.05). Because of the large overlap
with age and sex, we evaluated whether
these variables were associated with the
identified CpGs in the TEENDIAB cohort.
Only one CpG was significantly associated
with age, and eight were associated with
sex (Supplementary Table 12). Of 1,121
overlapping associations with the EWAS cat-
alog, 77 were attributed to environmental
exposures, including alcohol consumption,
breastfeeding, and sedentary behavior; 95
were attributed to pregnancy-related expo-
sures (e.g., gestational age, maternal over-
weight/obesity), and seven associations
were attributed to glycemic traits (e.g., ma-
ternal gestational diabetes) (Supplementary
Table 11). Of the 339 unique CpGs, 77 were
related to multiple traits (Supplementary
Table 13), for example, cg10807894, which
has been associated with maternal over-
weight/obesity, nitrogen dioxide exposure,
maternal BMI, eosinophilia, gestational age,
and smoking.

Of all 537 CpGs, 99 showed an overlap
with mQTLs (Supplementary Table 14).
None of the mQTLs overlapped with ge-
netic variants associated with childhood
obesity, obesity, and cardiovascular dis-
ease, but one, rs9560114, has been linked
to T2D. MR analysis showed that the as-
sociation between this single nucleotide
polymorphism and T2D is putatively caused
by DNAm of CpG cg24892433. Higher
DNAm at cg24892433 was associated with
a decreased risk for T2D (b =�6.8 × 10�2;
SE = 1.2 × 10�2; P = 3.6 × 10�8;
Supplementary Table 15). Interestingly, a
higher GL was associated with lower DNAm
at this CpG in participants with overweight/
obesity (Supplementary Table 9).

Look-ups of Tissue-Specific Gene
Expression
For the look-up in the blood eQTM data of
the HELIX project (450 K array), we used 315
CpGs from our findings located on the 450 K
array.We observed overlaps with 76 eQTMs

(corresponding to 39 unique CpGs; Supple-
mentary Table 16). The overlapping eQTMs
were annotated to 35 genes, and the top
five CpG–RNA transcript pairs correspond-
ing to the most significant identified CpGs
in the meta-analyses are shown in Table 3.

For the look-up in subcutaneous adi-
pose tissue eQTMs from the Leipzig Child-
hood Adipose Tissue Cohort (EPIC array),
we used 502 CpGs from our findings
available in the EPIC array. We found an
overlap with 89 eQTMs (corresponding to
48 unique CpGs) associated with 84 unique
RNA transcripts (Supplementary Table 17).
Among these, the top five most significant
CpGs are shown in Table 3.When we com-
pared the overlapping eQTMs from both
tissues, eight CpGswere found in both sour-
ces; however, these were related to differ-
ent genes, apart from PLEK (cg13060970).

Functional Enrichment
By querying the LOLA database using the sig-
nificant CpGs of each BMI model separately,

Figure 1—Manhattan plots of EWAS with dietary GI and GL in children and adolescents with normal weight or overweight/obesity. Each plot shows the nomi-
nal P values (as negative logarithms) of all meta-analyzed DNAm sites across the autosomal chromosomes (1–22) for their association with either the dietary
GI (A and C) or GL (B and D) in people with normal weight (A and B; maximum n = 801) or overweight/obesity (C and D; maximum n = 386).The blue line indi-
cates the threshold of the nominal P value at an FDR of 0.05 in each model. Dots above the blue line show significant (FDR< 0.05) DNAm sites.
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we found enrichments for various regula-
tory elements, including transcription
factors (e.g., forkhead-box protein A2)
and active (e.g., H3K9K14ac) or repres-
sive (e.g., H3K9me3) histone modifica-
tions (Supplementary Table 18). Contrary
to participants with normal weight, CpG
sites identified in participants with over-
weight/obesity showed enrichments for
the metabolism-related transcription factors
cAMP-responsive element-binding protein 1
and GA-binding protein (Supplementary
Table 18).

CONCLUSIONS

This study is the largest EWAS of dietary
GI and GL and blood DNAm in children
and adolescents to date, to our knowl-
edge. Overall, we found one CpG associ-
ated with GL in the total group and 536
hits in the BMI-stratified models, particu-
larly in the participants with overweight/
obesity. Among these, many CpGs were
significantly related to eQTMs in the blood
and subcutaneous adipose tissue of same-
age children and were located within ge-
netic regions of various regulatory factors.

The CpG positively associated with GL in
the total group (cg20274553) is annotated
toWDR27, which is involved in cellular scaf-
folds for protein–protein interactions. We
also found that a nearby CpG (cg25687360)
in WDR27 was positively associated with
GI in participants with overweight/obesity.
Greater WDR27 gene expression was de-
tected in a model of hepatic steatosis and,
importantly, was linked to higher DNAm in
the intronic region of WDR27 (31). Both of
the identified CpGs are also located in in-
trons ofWDR27, and higher GI or GL expo-
sure was associated with higher DNAm of
these probes. Because therewas no overlap
with eQTM data, confirmation is needed
that these CpGs affect WDR27 expres-
sion. In a study with patients with syn-
dromic obesity, duplicated copy number
variants of WDR27 were observed (32),
potentially indicating a pathogenic role
here. Therefore,WDR27 is an interesting
candidate in the development of obesity
and metabolic disease and may be regu-
lated by intronic DNAm, which, in turn,
may be susceptible to dietary exposure
rich in simple carbohydrates.

Dietary GI and GL were associated with
536 CpGs in participants with normal
weight or overweight/obesity, a pattern
also observed previously (11). In partici-
pants with overweight/obesity, GI and GL
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were related to CpGs located at the genes
KBNP1 and HAS3. Both genes potentially
promote metabolic disorders (33,34).
Greater hepatic KBNP1 expression has
been found in mice fed a high-fat diet,
contributing to enhanced pro-inflamma-
tory cytokine levels and insulin resis-
tance (33). HAS3 has been proposed as a
potential therapeutic target for the acti-
vation of brown adipose tissue (BAT)
thermogenesis. Inhibition of HAS3 in mice
improved BAT’s thermogenic capacity and
thereby prevented diet-induced obesity
(34). However, because the respective
CpGs were unavailable in the eQTM data,
it remains open whether these CpGs, in-
deed, affect KBNP1 and HAS3 expression.

To shed more light on CpG–gene rela-
tions, we interrogated the overlap with
eQTMs from blood and adipose tissues
from participants of similar ages—an im-
portant aspect because many eQTMs dif-
fer between young people and adults
(29). We observed 165 CpG–transcript
pairs possibly affected by GI or GL expo-
sure, such as FRAT regulator of WNT sig-
naling pathway 1 (FRAT1), which prevents
glycogen–synthase kinase 3 (GSK3) from
inhibiting mammalian target of rapamycin
complex 1 (mTORC1) (35). We found that
higher GI intake was associated with
higher CpG methylation, which was re-
lated to higher gene expression of FRAT1.
This may lead to reduction in GSK3 activ-
ity, allowing increased mTORC1 action
(35). The nutrient-sensor mTORC1 is in-
volved in hepatic lipid metabolism pro-
moting, for example, de novo lipogenesis,
and inhibiting lipophagy (36). Moreover,
mTORC1 stimulation may lead to hyperin-
sulinemia by impeding autophagy in pan-
creatic b-cells (37). Therefore, mTORC1
overactivation may contribute to meta-
bolic disorders. Another gene identified
was colony stimulating factor 3 (CSF3),
which appears to play a role in obesity
and insulin resistance. Patients with mor-
bid obesity had a greater abundance of
CSF3 in their adipose tissues (38), and ex-
posure to higher levels of CSF3 induced
marked insulin desensitization in human
adipocytes and myotubes (39). Pleckstrin
(PLEK) appeared in both eQTM look-ups
and is involved in platelet activation. Al-
though the knowledge about PLEK in the
context of cardiovascular disease is lim-
ited, a potential role has been suggested
in atherosclerosis (40). FRAT1, CSF3, PLEK,
and other eQTMs overlapped with CpGs
identified in the overweight/obese models,

which may indicate that these effects are
present and/or more pronounced in peo-
ple with higher BMI (9).

Although the role of GI and GL on the
pathways discussed above requires fur-
ther investigation, the results of the MR
analysis suggest that in children and ado-
lescents with overweight/obesity, GL af-
fects CpG cg24892433 methylation, which,
in turn, is causally related to T2D risk.

We can only speculate about the nature
of the observation that BMI stratification
revealed a higher number of associations
compared with the whole-sample analysis.
A potential explanation is that certain se-
lection factors (e.g., genetic and/or envi-
ronmental factors) are more enriched in
the stratified groups, leading to (stronger)
associations between dietary GI or GL and
DNAm. Indeed, the vast majority of identi-
fied CpGs had the same direction of ef-
fects in the stratified and the whole-
sample analysis, whereas effect sizes in
the latter were attenuated.

The major limitations of this study in-
clude its modest to low sample size, espe-
cially in the BMI-stratified analysis. We
followed a consortium-wide effort to
maximize the sample sizes, but the stud-
ies were partly limited by the availability
of data on consumed foods, which are
required to fully calculate the dietary in-
dices. Heterogeneity arising from the vari-
ous dietary resources across the cohorts
(e.g., FFQ vs. dietary records, type of FFQ
[non- or semi-quantitative], and/or the
number of collected food itemswith carbo-
hydrate content) may have influenced the
GI and GL scores; we attempted to mini-
mize this by using a harmonized calculation
approach. Misreporting of food consump-
tion is a known concern and may have af-
fected the associations. A larger fraction of
our findings showed considerable hetero-
geneity, which can be expected given the
inherent heterogeneity of methods of the
dietary assessments, the availability of cer-
tain probes across cohorts, the modest to
low sample sizes per cohort, and the age
range from 4.5 to 17 years, because age
can influence DNAm. Last, the possibility
remains that other factors not accounted
for affected the associations.

Themajor strengths of the study include
the harmonized approach to derive the GI
and GL values across cohorts and the use
of eQTM data from similar age groups
to evaluate the functional properties of
DNAm sites in blood and, especially, adi-
pose tissue. Unfortunately, eQTM data for

childhood and adolescence are rare and
omit key metabolic tissues (e.g., the liver).
Because key findings of our analysis in-
volved genes with major roles in the liver, a
look-up in hepatic eQTM data would have
given more insights into tissue-specific
CpG–transcript relations.

In conclusion, this meta-analysis re-
vealed 537 blood DNAm sites associated
with dietary GI and GL in young partici-
pants—the vast majority after BMI stratifi-
cation. These may be considered potential
markers of dietary response. Although the
functional importance of the identified
CpGs needs to be further defined, multi-
ple CpGs appear to play regulatory roles
in the expression of genes involved in the
impairment of metabolism and obesity
development (e.g., FRAT1, CSF3,WDR27).
More analyses with larger sample sizes
and complementary designs are required
to support our observations and to ex-
plore (reverse) causality of these findings
and (tissue-specific) functionality of identi-
fied CpG–gene relations.
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