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We adopt a maximum-likelihood framework to estimate parameters of a sto-
chastic susceptible–infected–recovered (SIR) model with contact tracing on a
rooted random tree. Given the number of detectees per index case, our esti-
mator allows to determine the degree distribution of the random tree as well
as the tracing probability. Since we do not discover all infectees via contact
tracing, this estimation is non-trivial. To keep things simple and stable, we
develop an approximation suited for realistic situations (contract tracing
probability small, or the probability for the detection of index cases small).
In this approximation, the only epidemiological parameter entering the esti-
mator is R0. The estimator is tested in a simulation study and is furthermore
applied to COVID-19 contact tracing data from India. The simulation study
underlines the efficiency of the method. For the empirical COVID-19 data,
we compare different degree distributions and perform a sensitivity analysis.
We find that particularly a power-law and a negative binomial degree distri-
bution fit the data well and that the tracing probability is rather large. The
sensitivity analysis shows no strong dependency of the estimates on the
reproduction number. Finally, we discuss the relevance of our findings.
1. Introduction
Infectious disease models have been instrumental in the study of many infectious
diseases. Usually, these models are dependent on several biological parameters
which can be epidemiological such as transmission, recovery, etc., or intervention
parameters such as contact tracing, screening, vaccination and others. However,
most of these parameters are not or only partially known and may cause predic-
tions from these models to lack robustness [1] if not chosen appropriately.
Missing data poses a major quantification challenge in epidemiology due to
unobserved or partially observed events [2]. This makes parameter estimation
essential in modelling disease spread. Often, the likelihood of parameters is maxi-
mized following the model predictions on sets of parameter values. In order to
achieve parameter estimation, the model system property must be identifiable,
i.e. estimating its parameters uniquely from the given data [3–5]. Several esti-
mation methods, e.g. statistically based techniques such as approximate
Bayesian computation (ABC) [6], Markov chain Monte Carlo (MCMC) inte-
gration [7], optimal control theory approach [8], classical least-squares method
[9] and others (also see the review article [10]) have been instrumental in estimat-
ing parameters and making inferences in epidemic models. With respect to
parameter estimation, contact tracing is particularly challenging as we somehow
need to estimate the fraction of contacts we miss to identify: We need to estimate
something that is per definitionem unobserved.

Several estimation techniques have been proposed for estimating important
intervention parameters in modelling the recent COVID-19 pandemic. For
instance, Manou-Abi et al. [11] obtained a best-fit model by proposing statistical
methods for the underlying serial interval probability distribution for the
COVID-19 virus in Mayotte from March 2020 to January 2022. Their method
was then used to estimate time-varying reproduction numbers and trans-
mission rates observed from the collected data.
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Only a few attempts have been made to identify par-
ameters specific to contact tracing: Müller & Hösel [12]
proposed a branching process approach for contact tracing
in randomly mixing populations to estimate tracing prob-
ability from contact history at the onset of an epidemic,
based on the theory introduced in Müller et al. [13]. The
derived estimator was then applied to data from contact
tracing for tuberculosis and chlamydia. Blum & Tran [6]
use a Bayesian framework to estimate parameters for rates
of contact tracing and detection by random screening,
and the method of Dyson et al. [14] is based on fitting
a yaws and trachoma contact tracing survey data to a
stochastic household model. Tanaka et al. [15] took up the
branching process approach to estimate the percentage
of undiagnosed persons in the COVID-19 pandemic with
recursive full tracing.

In this paper, we propose methods for estimating
parameters in graph-based models [16]. A stochastic suscep-
tible–infected–recovered (SIR) model on a tree-shaped contact
graph is modelled such that the underlying contact structure
is given by a fixed or random graph. Due to the nature of the
problem, we adapt the branching process theory results for
contact tracing on random trees [16] to formulate a likelihood
estimator for estimating the tracing probability and expected
number of contacts. We first performed a simulation study
with a Poisson degree distribution to check the performance
of the maximum-likelihood estimator. Thereafter, we applied
the model to contact tracing data collected during the
COVID-19 pandemic in Karnataka, India. Overall, we show
that our estimator based on the branching process theory
for contact tracing is well suited for estimating tracing prob-
abilities and degree distribution of the underlying contact
structure in tree-based models.

The remaining part of the paper is structured as follows:
§2 outlines the tree model and model assumptions. Section 3
presents the distribution of ages since infection, while §4 dis-
cusses the distribution of detected cases from one index case.
We set up a likelihood estimator for estimating the tracing
probability and underlying contact structure using these
results and simulated data in §5 followed by a sensitivity
analysis in §6. Last, we discuss our findings in §7.
1.1. Related works on SARS-CoV-2 epidemic models
Over the past few years, there has been a growing body of
research on the mathematical modelling of infectious dis-
eases, particularly the SARS-CoV-2 virus. Bertacchini et al.
[17] provided insights into the temporal spreading of the
virus, examining key parameters that influence the rate of
spread. The work of Chondros et al. [18] presented an inte-
grated simulation framework for both the prevention and
mitigation of pandemics caused by airborne pathogens, pro-
viding a comprehensive approach towards understanding the
dynamics of airborne diseases.

Furthermore, Cuevas-Maraver et al. [19] studied lockdown
measures and assessed their impact on the COVID-19 out-
break in Mexico using both single- and two-age-structured
epidemic models. Kovacevic et al. [20], on the other hand,
employed a distributed optimal control epidemiological
model for understanding the COVID-19 pandemic, emphasiz-
ing the importance of coordinated control efforts in disease
mitigation. Modi et al. [21] focused on the spread of COVID-
19 in India using the susceptible–exposed–infected–recovered
(SEIR) model, providing crucial insights into the potential
dynamics of the virus in dense populations. Kevrekidis et al.
[22] added a spatial dimension to the modelling of COVID-
19, studying the outbreak in Greece and Andalusia using
reaction–diffusion models.

These works, while providing valuable insights into the
dynamics and control of the SARS-CoV-2 virus, largely
emphasize temporal, spatial, or control aspects. Our contri-
bution, in contrast, focuses on the intricacies of contact
tracing in the context of a stochastic SIR model implemented
on a rooted random tree. We emphasize the challenge posed
by undetected cases and the non-trivial nature of parameter
estimation in such models. By offering a unique perspective
on parameter estimation and contact tracing, we aim to add
depth to the existing literature and contribute to a more com-
prehensive understanding of disease spread dynamics as
observed in the COVID-19 outbreak.
2. Model assumptions
For the convenience of the reader, we will first sketch the
motivation and idea of the branching theory process for con-
tact tracing on rooted random trees (tree model) in Okolie &
Müller [16] for our estimation analysis. A contact network in
most applications represents individuals as nodes and inter-
action links via edges. Interaction links are channels where
individuals can have direct or indirect contact, e.g. family,
school, work, etc. These contact networks are applicable
and useful in analysing contact tracing because they hold
information about individuals and their neighbours [23,24].
However, applying contact networks to infectious disease
dynamics is not straightforward as it requires a detailed
understanding of the underlying network structure, e.g. the
degree distribution and correlation, clustering coefficients,
and properties defined by the network topology.

Once we have a defined contact network with predefined
nodes and interacting links, we have a contact graph. The
basic idea is to describe an epidemic by constructing a
simple contact graph that is a rooted tree where only the
root node is infected at the onset of the epidemic. The choice
of this tree contact graph is for mathematical convenience as
trees are not appropriate to describe more complex interactions
for natural contact graphs. However, from a microscopic level,
we can gain a better understanding of the overall mechanism
and functioning of larger and more complex graphs, as many
graph models as the configuration model resemble locally a
tree [25]. Then we assign independently on each edge connect-
ing one infected and one uninfected node a probability of
transmitting the disease. If we focus on edges that transmit
the disease, then we have only the infection graph, which is
a subgraph of the contact graph. Contact tracing is also ana-
lysed on this infection graph such that upon recovery of an
index case, direct neighbours of this index case are also
removed with some tracing probability. From the number of
detected cases by an index case via contact tracing, it is poss-
ible to estimate the degree distribution of the underlying
contact network and also the tracing probability.

On the rooted random tree (figure 1), the infection starts
from the root node R and spreads downwards through the
directed edges. Individual C which is a direct contact of the
root node is infected and spreads the disease to the focal indi-
vidual A. Furthermore, A also spreads the infection to B and
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Figure 1. Schematic of the infection graph, illustrating the dynamics and
interconnections in the process of disease transmission, and both forward
and backward tracing. The root node is individual R. Focal individual A,
infected by individual C (infector), subsequently infects individuals B and
D (infectees). In a forward tracing scenario starting from individual A, individ-
uals B and D can be traced. By contrast, in a backward tracing scenario from
A, individual C can be traced. The tracing probability is denoted in green.
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D. Individuals B and D are the ‘downstreams’ (infectees) of A
while C is an ‘upstream’ (infector) of A. We define K a
random variable denoting the number of downstream
edges of an individual with expectation E½K�, where we
assume that the downstream degree of each node is an inde-
pendent and identically distributed (i.i.d.) realization of K.
We note that the root node R is special as it has no infector,
or equivalently, it has no upstream edge. It follows that the
degree of the root node coincides with K, while all other
nodes have a degree of K + 1 (infectees plus infector). At the
onset of the epidemic, only the root is infected while other
individuals are susceptible. We consider a SIR model such
that a recovered individual remains immune and does not
get re-infected. Contact on one edge (between a susceptible
and infected) will lead to infection. On a given edge, contacts
happen at exponentially distributed waiting times at rate β.
An infected individual recovers either unobserved at rate α,
or observed and diagnosed at rate σ. Diagnosed individuals
are immediately isolated or treated and classified as
recovered. With probability pobs = σ/(α + σ), an infected
individual eventually is observed.

An observed/diagnosed infected individual not only
becomes isolated but also is an index case that triggers
contact tracing. That is, every adjacent edge has an indepen-
dent probability p to be traced and consequently isolated if
infected. In accordance with the data analysis we aim at,
we focus here on one-step tracing, that is, traced individuals
do not trigger further tracing events. We do, however, take
into account forward and backward tracing as described in
Okolie & Müller [16]. We do note this fact, as quite often,
theoretical work solely focuses on forward tracing.

All in all, an infected individual can lose his or her infec-
tivity in three possible ways; an unobserved recovery α,
observed recovery σ and a successful tracing event. It turns
out that the central ingredient for the analysis is the prob-
ability for an infected individual to still be infectious at age
a. Please note that ‘age’ in the present paper always refers
to the age of (or time since) infection, and never to
chronological age. We define

kðaÞ ¼ Pða randomly chosen infected node of generation

is infectious at age of infection aÞ,
ð2:1Þ

which satisfies the following differential equation:

d
da

kðaÞ ¼ �kðaÞ(aþ sþ tracing(aÞ),

where κ(0) = 1. Without contact tracing, k̂ðaÞ :¼ e�ðaþsÞa. With
contact tracing, this probability κ(a) is decreased and thus

kðaÞ ¼ k̂ðaÞ½1� p� tracing in the interval ½0, aÞ�: ð2:2Þ
In [16], expressions for κ(a) are derived. As we do not use
these results in the current paper, we only indicate the overall
structure and refer the interested reader to that paper for the
details.
3. Distribution of ages since infection
In order to work out the distribution of the number of detec-
tees per index case, the age since infection of the index case at
its diagnosis is required. Thereto, we consider the case with-
out contact tracing, p = 0 (such that index cases are diagnosed
but do not trigger contact tracing). This assumption simplifies
the arguments and yields an approximation for the age distri-
bution in the case of p > 0, which is still appropriate if p≪ 1 or
if pobs≪ 1. It turns out, that the resulting approximation is
sufficient for practical purposes.

Since the recovery rate α and the screening rate σ are con-
stant, we have a Markovian model, and the age distribution
of index cases coincides with the age distribution in the
population.

Let i(t, a) denote the age since infection-structured popu-
lation size of infected individuals. As derived in Okolie &
Müller [16], the age-structured model reads

ð@t þ @aÞiðt, aÞ ¼ �ðaþ sÞiðt, aÞ ð3:1Þ
and

iðt, 0Þ ¼
ð1
0
uðaÞ iðt, aÞda, ð3:2Þ

where

uðaÞ ¼ E½K�b e�ba

is the age-dependent rate at which an infected average indi-
vidual produces (downstream) infected. At this point, it is
crucial that the contact graph is a tree, and the downstream
degree distribution of each node/individual is an i.i.d. realiz-
ation of the degree distribution K. If we count the number of
nodes with a certain distance to the root, this number of
nodes is exponentially increasing (for E½K� . 1), unless the
tree is finite in a given realization. We can exclude the case
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Figure 2. Theoretical age distribution w(a) (solid line) vs. simulated
age distribution (bars). Parameters: β = 1.5, α = 0.5, σ = 0.5, p = 0.6
and E½K � ¼ 4.
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of finite trees since these realizations imply that we have a
minor outbreak, and we are not interested in these minor out-
breaks. As usual, the age-structured model will tend to an
exponential growing solution with a stable age structure,

iðt, aÞ ¼ I0 elt iðaÞ,
with i(a) = e−(λ+α+σ)a the probability to be infectious at age a.
The exponent λ is the unique real root of

1 ¼
ð1
0
uðaÞ e�ðlþaþsÞa da ¼ E½K�b

ð1
0

e�ðlþaþsþbÞa da ) l

¼ bðE½K� � 1Þ � a� s:

The asymptotic age distribution of index cases (which are
detected at rate σ) tends to

wðaÞ ¼ lim
t!1

s iðt, aÞÐ1
0 s iðt, bÞdb ¼ b(E½K� � 1) e�b(E½K��1)a: ð3:3Þ

As a side remark, we also obtain the reproduction number
from these considerations by

R0 ¼
ð1
0
uðaÞ e�ðaþsÞa da ¼ E½K�b

aþ sþ b
:

As shown in figure 2, the agreement of the age distribution
with simulated data is still excellent, though we have in the
simulation p = 0.6 and pobs = 1/2. Furthermore, we have a
higher density of lower age groups in the population. For
any randomly chosen individual given by age since infection,
it is not surprising to have a younger dominating age class.
Due to the exponentially fast-growing population, this
asymptotic age distribution is expected.
4. Distribution of detected cases
In this section, we derive the distribution of the number of
detected cases per index case. That is the fraction of contacts
of an index case who are detected via a tracing event trig-
gered by the index case. We start with forward tracing.
We then combine this result with backward tracing to
yield full tracing.
Note that a central ingredient is the age distribution
derived in the last section. We did not include contact tracing
there. That is, all results in the present section are only a valid
approximation if contact tracing does not crucially affect this
age distribution. This is the case if either p or pobs is small. All
results are only valid under this assumption. However, the
simulation study discussed below shows that this assumption
is not too restrictive for practical purposes.

Proposition 4.1. Let p̂ðaÞ be the probability that an infected down-
stream node is successfully traced given that the focal individual
becomes an index case at age since infection a.

p̂ðaÞ ¼ p
b

aþ s� b

�
e�ba � e�ðaþsÞa�: ð4:1Þ

Proof. Note that an individual is only able to become an index
case at the transition from I to R, that is, our focal individual
is infectious in [0, a). We consider one downstream individ-
ual. Let s1(c) represent the probability for this downstream
individual to still be susceptible at age c∈ [0, a], s2(c) the
probability to be infected, and s3(c) the probability for the
downstream node to be removed (see figure 3). We have
the following ordinary differential equations (ODEs):

_s1 ¼ �b s1 s1ð0Þ ¼ 1
_s2 ¼ bs1 � ðaþ sÞ s2 s2ð0Þ ¼ 0
_s3 ¼ ðaþ sÞ s2 s3ð0Þ ¼ 0:

The probability for the downstream node to be infectious
at the time the infector has age since infection a given by s2(a),

s2 ¼ b

aþ s� b

�
e�ba � e�ðaþsÞa�,

and p̂ðaÞ ¼ ps2ðaÞ establishes the result. ▪

With this proposition and the age distribution w(a), we are
able to find the distribution of the number of detected down-
stream individuals. For simplicity, we first consider a fixed
degree distribution K = k for some k [ N, and then address
the case of a random tree, where K is a random variable.
4.1. Fixed degree
In the present section, assume that the downstream degree of
a node in the tree always is a deterministic number
K ¼ k [ N. Particularly, E½K� ¼ K.

Proposition 4.2. Let T be the random variable for the total number
of successfully traced individuals by one index case and forward
tracing only. The asymptotic probability distribution of T under
forward tracing reads

PðT ¼ iÞ

¼
ð1
0

k
i

� �
p̂ðaÞi (1� p̂ðaÞ)k�ib(k � 1) e�b

�
k�1

�
a da: ð4:2Þ

Proof. As we assume that a tracing event acts independently
on different edges, the random variable T, conditioned on
the age of the index case at diagnosis a, follows a binomial
distribution with parameters k and an age-dependent tracing
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Figure 3. Transition states for a single edge in the infection process. These states represent the probabilities s1(c), s2(c) and s3(c) of an individual downstream from
the index case to remain susceptible, infected and be removed at age c∈ [0, a].
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probability on one edge p̂ðaÞ, T � Binomðk, p̂ðaÞÞ. Thus, the
probability of i downstream detectees given age a and k
total downstream nodes is given as

PðT ¼ i j aÞ ¼ k
i

� �
p̂ðaÞi(1� p̂ðaÞ)k�i: ð4:3Þ

Last we remove the condition a by integrating over all
possible age of index cases w(a) (equation (3.3)),

PðT ¼ iÞ ¼
ð1
0
PðT ¼ i j aÞwðaÞda

¼
ð1
0

k
i

� �
p̂ðaÞi (1� p̂ðaÞ)k�ib(k � 1) e�b

�
k�1

�
a da:

ð4:4Þ

▪

Now we turn to full tracing. Thereto, we introduce the
random characteristic Ia, which assumes the value 1 if the
upstream individual of the index case (its infector) is
still infected when the index case is identified (where the
index case has age since infection a), and 0 else. Note that
Ia is a Bernoulli random variable with

PðIa ¼ 1Þ ¼ e�ðaþsÞa þOðpÞ:

As before, in what follows we use the approximation

PðIa ¼ 1Þ ¼ e�ðaþsÞa,

and drop the OðpÞ correction terms.

Proposition 4.3. Let Ttot be the random variable for the total
number of successfully traced individuals by one index case,
under full tracing (forward and backward tracing). With w(a)
and Ia as introduced above, the probability distribution of Ttot reads

PðTtot ¼ iÞ ¼
ð1
0

�
pPðIa ¼ 1ÞPðT ¼ i� 1 j aÞ

þ �
1� pPðIa ¼ 1Þ�PðT ¼ i j aÞ

�
wðaÞda: ð4:5Þ

Proof. If the infector already is recovered (Ia = 0), then (con-
ditioning on the age/time of infection of the index case a)

PðTtot ¼ ija, Ia ¼ 0Þ ¼ PðT ¼ ijaÞ:

If the infector is still infectious, also the infector might be
traced, such that one of the k detectees might be the upstream
individual (probability p), or not (probability 1− p),

PðTtot ¼ ija, Ia ¼ 1Þ ¼ p PðT ¼ i� 1jaÞ þ ð1� pÞPðT ¼ ijaÞ:
Taking these two cases together, we have

PðTtot ¼ ijaÞ ¼PðIa ¼ 0ÞPðT ¼ ijaÞ þ PðIa ¼ 1Þ

�
�
p PðT ¼ i� 1jaÞ þ ð1� pÞPðT ¼ ijaÞ

�

¼ pPðIa ¼ 1ÞPðT ¼ i� 1 j aÞ
þ �

1� pPðIa ¼ 1Þ�PðT ¼ i j aÞ:

Integrating by w(a) da removed the condition on a and yields
the result. ▪
4.2. Random degree
So far, the model is formulated for a fixed degree. In most
applications, we do not always know individual contacts k
due to randomness in contact structure. We now assume an
arbitrary degree distribution such that the distribution of
the contacts of a random node is defined by some probability
distribution P(K = k). The model for fixed case in equation
(4.3) is adapted; we only have to take the expectation by sum-
ming over all possible numbers of contacts k multiplied by
the corresponding probabilities. Thus,

PðTtot ¼ iÞ ¼
X1
k¼i

ð1
0

�
pPðIa ¼ 1ÞPðT ¼ i� 1 j a, K ¼ kÞ

þ �
1� pPðIa ¼ 1Þ�PðT ¼ i j a, K ¼ kÞ

�
wðaÞda PðK ¼ kÞ:

ð4:6Þ

As illustrated in figure 4, we have the distribution of the
number of detected secondary cases via contact tracing. For
the parameters chosen in our study (figure 5), we find a
good agreement between our theory results and simulation.
We again emphasize that the age structure entering our
estimation is only an approximation, as contact tracing is
neglected. Nevertheless, the results are more than acceptable,
even for p = 0.6 and pobs = 0.5.

We note that our estimator is independent of time t. The
only ‘time’ that appears is the age since infection a. The prob-
ability P(Ttot = i) consists of integrals as

Ð1
0 gðaÞwðaÞda. Here,

we are allowed to choose the time unit, resp. to define a = ζb
for ζ > 0,

ð1
0
gðaÞwðaÞda ¼

ð1
0
gðb zÞ zwðb zÞdb:

If we choose one time unit to be 1/(α + σ), which is ζ = 1/(α +
σ), then in P(Ttot = i) the epidemiological parameters β, α and
σ can always be replaced by an expression of R0 and E[K ].
That is, the epidemiological parameters enter the estimator
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solely via R0. We only check that fact for one of the terms, as
the argument is similar for the other terms.

ð1
0
PðIa ¼ 1Þ PðT ¼ i j a, K ¼ kÞwðaÞda

¼ k
i

� �ð1
0
e�ðaþsÞa p̂ðaÞi (1� p̂ðaÞ)k�i b(E½K� � 1) e�b(E½K��1)a da

¼ k
i

� �ð1
0

e�b p̂
b

ðaþ sÞ
� �i

1� p̂
a

ðaþ sÞ
� �� �k�i

� b(E½K� � 1)
aþ s

e�ðb(E½K��1)=ðaþsÞÞ b db:

With R0 ¼ b E½K�=ðaþ sþ bÞ we have (note that always
E½K� . R0, as we have—on average—only E½K� downstream
individuals who can get infected)

b

mþ s
¼ R0

E½K� � R0
,

and hence

b ðE½K� � 1Þ
aþ s

¼ ðE½K� � 1ÞR0

E½K� � R0
,

p̂
b

ðaþ sÞ
� �

¼ b=ðaþ sÞ
ðb=ðaþ sÞÞ � 1

ðe�b � e�ðb=ðaþsÞÞ bÞ

¼ R0

2R0 � E½K�
�
e�b � e�ðR0=ðE½K��R0ÞÞ b

�
:

That is, all expressions only depend on R0, K and p.

Corollary 4.4. P(Ttot = i) and P(T = i) only depend on the epide-
miological parameters via R0 and depends furthermore on the
degree distribution given by K and on the tracing probability p.

We can use the formulae from above, where we pragma-
tically set α + σ to 1, and—given R0 and E½K�—define
b ¼ R0=ðE½K� � R0Þ.
5. Estimation by maximum-likelihood method
In this section, we will set up the likelihood estimator for our
model. We assume that we have n observations of index
cases, and where i‘ [ N0, ‘ ¼ 1, . . . , n denote the total
number of detectees per index case (one-step tracing only).
5.1. Likelihood estimator
We are able to set an estimator via PðTtot ¼ iÞ ¼ PðTtot ¼ i j mÞ
for these data points where m are the parameters of the model
we wish to estimate (tracing probability and parameters of
the random variable K, e.g. m ¼ ðp, E½K�Þ in the case of a Pois-
son distribution for K). The likelihood for the data reads

L(m j i‘, ‘ ¼ 1, . . . , n) ¼
Yn
‘¼1

ð1
0

�
pPðIa ¼ 1ÞPðT ¼ il � 1 j aÞ

þ �
1� pPðIa ¼ 1Þ�PðT ¼ il j aÞ

�
wðaÞda,



0.05 0.10 0.15 0.20 0.25
0

0.2

0.4

0.6

0.8

1.0
(a) (b) (c)

fract. outside infections

es
tim

at
ed

 p

es
tim

at
ed

 p

1.2 1.4 1.6 1.8 2.0
0

0.2

0.4

0.6

0.8

1.0

T

1.2 1.4 1.6 1.8 2.0
0

0.1

0.2

0.3

0.4

T

fr
ac

t. 
ou

ts
id

e 
in

fe
ct

io
ns

Figure 6. Results of the simulation study for the performance of the estimator for the generalized configuration model (orange: fixed excess degree, blue: Poisson
excess degree). (a) Estimated p over the fraction of index cases with outside infections, induced by forcing the configuration graph to have triangles. For the fixed
degree, index cases from the time interval [0, 2] are used, for the Poisson degree distribution, we use the time interval [0, 1.2]. (b,c) We consider the index cases
identified in the time interval [0, T ], where T is on the x-axis. The standard configuration model is used to produce the graph, without forcing for additional
triangles. (b) Estimation of p. (c) Fraction of index cases with outside infections. Parameters: β = 1.5, α = σ = 0.5, p = 0.6, EðKÞ ¼ 4, only forward tracing.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230409

7

and the log-likelihood is given by

LL(m j i‘, ‘ ¼ 1, , . . . , n)

¼
Xn
‘¼1

ln
�ð1

0

�
pPðIa ¼ 1ÞPðT ¼ il � 1 j aÞ

þ �
1� pPðIa ¼ 1Þ�PðT ¼ il j aÞ

�
wðaÞda

�
: ð5:1Þ

5.2. Simulated data
An agent-based stochastic model is used to simulate the data.
To maximize the likelihood in equation (5.1), we plug into the
likelihood function all independent observed data points and
determine the arg max. As shown in figure 5, in our esti-
mation we find back the true values we used in the
simulation, namely the tracing probability p = 0.6 and the
expected number of edges E½K� ¼ 4. The blue circle region
contains a global maximum for the true parameter value of
the estimated Poisson degree distribution. Other parameters
β, α, σ are known and fixed. For the simulated data, we
find a satisfying result based on our theory assumption.

5.2.1. Stability of the estimator against non-tree typologies in
the contact graph

Real-world networks are, of course, no trees. We investigate
the stability of our estimators against the violation of this
prerequisite. Our estimator is particularly based on two
assumptions: we know the distribution of the index cases’
time since infection, and all downstream nodes are
susceptible when a node becomes infected.

The notion of downstream nodes as introduced above
depends on the tree topology. We generalize this notion in
calling all neighbours of a focal infected node ‘downstream
nodes’ apart from the infector of this focal node. Circles
and clusters in a contact graph might lead to infections of
downstream nodes from outside (which we call ‘outside
infections’).

The deviation from a tree can be measured on the topolo-
gical level or on an immunological level. Speaking about
topology, particularly the appearance of triangles is well
known to affect theory which is based on a tree topology:
the message-passing method [26,27] is an exact version of
the pair approximation on trees. Pair approximation, in
turn, requires correction terms if considered on more general
networks [24]. We thus expect that triangles might challenge
our estimator. We use the configuration model [25] in an
adapted version which allows to control the fraction of
nodes in triangles (see electronic supplementary material).

The second level where the deviation from trees becomes
visible is the epidemiological process: the fraction of outside
infections is an alternative characterization for non-tree
graphs. It turns out (see electronic supplementary material)
that this epidemiological characterization better predicts the
performance of the estimator than the density of triangles:
outside infections slow down the spread of an epidemic,
and in that, the time-since-infection structure of index cases
is shifted to longer infectious periods. In that, index cases
have more time to infect their downstream nodes. Moreover,
outside infections produce potentially even more infected
downstream nodes as we expected from tree-based models.
Both effects point in the same direction, such that p tends
to be overestimated to explain the additional detectees
which are induced by the epidemiological consequences of
the graph topology.

If we inspect the simulation study (figure 6a), we find that
indeed the estimates of p increase over the fraction of index
cases which possess outside infections, which are introduced
by triangles. However, up to a fraction of 10–20%, this effect
is not too severe.

The next, interesting question is the influence of the excess
degree distribution instead of the influence of triangles on the
fraction of outside infections. If we compare a configuration
model with a fixed excess degree and a Poisson excess
degree over a first time interval [0, T ], we find in the Poisson
graph a much faster increase of these outside infections in T.
The difference between fixed and Poisson excess degree is
much more important than the number of triangles (see elec-
tronic supplementary material). Indeed, for the Poisson
excess degree, the estimator becomes biased even during
the late exponential growing phase, while in the fixed
degree model, the estimations are acceptable basically
during the complete exponential growing phase (figure 6b);
the reason is the striking difference in the number of index
cases with outside infections (figure 6c). The explanation is
well known: configuration models locally look like trees.
However, as it is known from the celebrated friendship para-
dox [28–30], the preferential mixing of the configuration
model lets nodes connect to nodes with a high degree. There-
fore, we find in the case of the Poisson excess degree a



Table 1. Total number and frequencies of detected cases.

no.
detectees 0 1 2 3 4 5 6 7 8 10 11 12 13 15 16 19 22 28 29

frequency 766 87 34 19 16 12 3 4 3 2 1 1 1 1 1 2 1 1 1

Table 2. Examples of standard random graph models.

network model
degree distribution for large
population size N

full graph/random

mixinga
K = N− 1→∞, β→ 0, R0 constant

Erdös–Rényi K∼ Poisson

configuration model choice: K∼ geometric

scale-free network power-law, P(K = k) = ck−γ, γ > 1

standard degree

distribution

negative binomial

aSee appendices A and B for further detail on full graph/random mixing
and the optimization process, respectively.
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relatively clustered, small subgroup of nodes, where the
infection will take place first. We have a kind of well-
connected core group, which is distinctly smaller than the
population size. Thus, outside infections are likely to take
place after the infection moves into this core group. In the
fixed degree, we of course cannot have such a core group,
which explains the stability of the estimations in the fixed
degree model.

In the long run, however, the assumptions of an exponen-
tially growing prevalence will not be given any more,
independent of the excess degree distribution. The prerequi-
sites of our estimator are not valid any more. In section S4
of electronic supplementary material, we indicate a possi-
bility of extending the basic ideas developed for trees, in
order to also cover the long-term behaviour of an epidemic.
However, this question is not the focus of this present work.

A central question now is the applicability of the theory to
real-world data on the background of these simulation
results. This might depend on the transmission mechanisms.
Sexually transmitted diseases (STDs) are known to depend
on core groups, and the contact network is less dynamic as
in respiratory diseases. That is, we should be careful in apply-
ing our estimator to STDs. The infectious contacts of
respiratory infections are known to exhibit over-dispersion
[31]. However, as many of the contacts are rather casual,
the infection network is not static and we will not find a
fixed core group. In that, we expect that the tree-based esti-
mators will work fine for respiratory infections.
5.3. COVID-19 data
In the previous section, we used the maximum-likelihood esti-
mator with contact tracing on simulated data to estimate the
tracing probability and expected number of edges. In the simu-
lated dataset we analysed, we have information about the total
number of contacts of index cases and also the number of
infected contacts identified via contact tracing. In this section,
we would like to see how this method works with empirical
data. We wish to estimate the tracing probability p and
expected number of edges E½K� from a dataset collected
during the COVID-19 pandemic. We obtained a published
dataset on contact tracing conducted in 2020 from a remark-
able extensive and nice study in Karnataka, India where 956
cases with confirmed forward contact tracing were reported
between the 9 March and the 20 May 2020 [32]. A comprehen-
sive description of the dataset including the data source, data
handling and ethics approval can be found in Gupta et al. [32].
A summary of the number of detectees per index case from the
reported dataset is shown in table 1.

We only look at one-step tracing at the moment because
only detected secondary cases of primary (index) cases are
accounted for in the likelihood estimator. Generally, in most
epidemic modelling studies, secondary cases are defined as
close/direct contacts (e.g. household, family, etc.) of index
cases [33]. In the dataset, direct and indirect detected contacts
of index cases were reported. For our study, we would focus
on only the direct contacts, thus we are able to analyse this
scenario with the estimator for only one-step forward tracing.
For the reported reproduction number, we chose R0 = 3 in
accordance with Gupta et al. [32]. An extensive meta-analysis
of COVID-19 data from China encompassing 29 studies
revealed an approximate R0 value of 3.32 (95% CI: 2.81–
3.82) [34]. In order to investigate the influence of R0 on our
estimates, we additionally carried out a sensitivity analysis.

We use standard random graph models (table 2) to get
inspiration on which degree distribution might be appropri-
ate for describing the data [25].

We performed (i) a maximum-likelihood estimation and
(ii) for model comparison, we used the Akaike information
criterion (AIC) and a chi-square (goodness-of-fit) test. The
summary of the point estimates is shown in table 3.

Optimization. We inspected the gradient of the result and
the eigenvalues of the Hessian to ensure that we have (at
least) an approximate local maximum. The estimator con-
verged satisfyingly for all models except for the Poisson
degree model: in that case, the parameter of the distribution
(the expectation) always increased. Seemingly, the optimum
is either very large or even infinite.

Confidence intervals. The approximate 95% confidence
intervals are based on the quadratic approximation of the
log-likelihood at its maximum, respectively, the approxi-
mation of the Fisher information matrix by the inverse of
the negative Hessian. We determined the confidence intervals
for geometric, scale-free and negative binomial distributions,
as the other models turn out to be inappropriate for the data.
In the case of the negative binomial distribution, however, the
log-likelihood attains its maximum close to the theoretical
lower boundary of E½K� which is R0. As this is numerically
a delicate situation, we approximated the confidence interval
for E½K� in that case by the maximum value of E½K� such that



Table 3. Parameter estimates and model comparison for five probability distributions fitted to a dataset, including the probability (p), the expected value
(E½K �), additional information (if available), AIC and p-value from a chi-squared test. Note that the estimator in the case of the Poisson distribution did not
converge, and we simply fixed a large expected value. The interval for r in the negative binomial distribution is 95% CI.

distribution p (95% CI) E½K � (95% CI) add. information AIC p-value (χ2)

random mixing 0.98 — 2443 <10−20

Poisson 0.98 52 (not converged) 2464 <10−20

geometric 0.87 (0.76, 0.97) 16.6 (11.3, 22.0) 1858 <10−20

power-law 0.74 (0.61, 0.88) 11.4 (8.3, 14.5) γ = 1.48 1687 0.003

negative binomial 0.72 (0.59, 0.86) 4.5 (3, 9.5) r = 0.16 (0.12, 0.20) 1675 0.14
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the log-likelihood, given the shape parameter, is larger than
its maximum minus 2 (also see the blue curve in figure 7).

Chi-square (goodness-of-fit) test. We bin the index cases
with five to seven detectees, and all index cases with more
than seven detectees to ensure that at least 10 observations
are in one class.

We find that random mixing graphs and the Erdös–
Renyi graph induce degree distributions with a rather light-
weight tail. Therefore, these distributions do not fit the data
appropriately. In the Poisson distribution, which is the
degree distribution of an Erdösch–Renyi graph, the optimiz-
ation routine even does not obtain a local maximum: it
seems as in this case, the optimum is only assumed for an
expectation E½K� that is unreasonably large or even tends
to infinity.

The geometric distribution has a tail that is heavy enough
to at least allow for a reasonable fit, but AIC as well as the
chi-square (goodness of fit) test indicate that this model is
rejected. The power-law (scale-free graph) is the first model
that is at least weakly in line with the data: the tail of a
power-law distribution may become heavy, and in this,
there is a possibility to handle superspreading events appro-
priately. The AIC is worse but not too far from the winning
model, and the p-value for the chi-square (goodness-of-fit)
test is at least only in the range of 10−3, and not less than
10−20, as in the previous models.

The best model clearly is the negative binomial distri-
bution, which is known to be an appropriate model for the
number of contacts relevant to the transmission of respiratory
infections [35]. The expected number of infectious contacts is
small enough to be in the range of R0, while—as expected—
the over-dispersion is distinct. This model has the best AIC
among all models, and the goodness-of-fit test does not
reject this model.

It is interesting that the point estimate for p decreases if
we choose models that have more mass in the tail. The
reason is that the probability for k detectees scales with pk,
such that k small(er) needs to be balanced with more prob-
ability mass in the tail. A similar reason leads to smaller
values for E½K� if the model distribution has more probability
mass in the tail. However, this point estimate is rather similar
for the power-law and the negative binomial and also does
not heavily depend on the choice of R0 (see ‘sensitivity analy-
sis’). In that, the range of p-estimate seems to be trustworthy.
Moreover, the information in the data is sufficiently strong to
point to a specific degree distribution (negative binomial),
which was not clear from the beginning. As the data are
rather simple, the information content could also have been
too little to allow for distinct conclusions. That the negative
binomial distribution, which is well known to be appropriate
in this situation, is selected, is another sign that the estimates
are trustworthy.

We first draw a contour plot (figure 7) indicating the
point estimates (p and E½K�) and also draw the cumulative
empirical distribution vs. the cumulative theoretical distri-
bution (figure 8), that is, on the x-axis, we plot the number
of infectees, and on the y-axis the percentage of index cases
which is the number of infected contact persons or less.

Also, these graphics clearly indicate that the power-law
and the negative binomial distribution yield the best fit,
where the negative binomial distribution is superior to the
power-law.
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6. Sensitivity analysis
We carried out a sensitivity analysis on how the estimated
parameters depend on R0. As illustrated in figure 9, the sen-
sitivity analysis revealed that the estimated parameters in
the studied models are not highly sensitive to the choice
of R0, at least for the power-law and negative distribution
(the only degree distributions which meet the data satisfy-
ingly). This observation is particularly noteworthy, as it
underscores the robustness of these models in providing
reliable estimates of epidemiological parameters, even
when the initial assumptions about R0 may vary. This
characteristic is crucial in the context of real-world epide-
miological studies, where the precise value of R0 is often
uncertain due to factors such as heterogeneous populations,
changing contact patterns and varying degrees of
intervention measures.
7. Discussion
In this paper, we present a graph-based method for estimating
parameters in infectious disease models, offering valuable
insights into the efficiency of contact tracing programmes and
some information about local contact structures, and their
implications for the spread of infectious diseases. By comparing
various degree distributions and assessing their suitability for
modelling disease spread, our analysis contributes to the
ongoing development of improved parameter estimation tech-
niques in graph-based models. Our findings complement and
expand upon the work of Müller & Hösel [12] who estimated
tracing probability in homogeneous populations by a maxi-
mum likelihood estimator and applied it to tuberculosis and
chlamydia contact tracing data. In contrast to focusing on
homogeneous random mixing populations, our work explores
contact graphs in the form of trees which enables us to capture
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the unique branching structure of infection transmission chains.
This approach provides a more realistic representation of con-
tact patterns at a microscopic level, allowing for a better
understanding of the dynamics of infectious diseases and the
effectiveness of contact tracing strategies.

Our comprehensive analysis of the COVID-19 contact tra-
cing data from Karnataka, India, reveals that both scale-free
network models and negative binomial distribution models
offer a good fit for the data. The negative binomial distribution
emerges as the most fitting model for the data, aligning with
previous epidemiological research that has identified this dis-
tribution as a suitable assumption for the number of contacts
relevant for the transmission of respiratory infections [35]. Fur-
thermore, the observed over-dispersion in the number of
secondary cases caused by individual index cases is accurately
captured by the negative binomial distribution. This distri-
bution is suitable for data where the variance exceeds the
mean, reflective of scenarios where a small proportion of
index cases are responsible for a disproportionate number of
secondary infections. These findings resonate with the work
of Gupta et al. [32] who had previously reported a clear
over-dispersion in the data. Specifically, Gupta et al. [32]
found that among 956 confirmed index cases, just 8.7% of
cases, who had 14.4% of contacts, were responsible for 80%
of all secondary cases. The power-law distribution also offers
a reasonable fit, highlighting the potential relevance of scale-
free networks in modelling infectious disease dynamics. In
line with the principles of scale-free networks, our model high-
lights the role of a relatively small number of ‘super-spreader’
individuals, who have a significantly larger number of
contacts and thus a higher likelihood of transmitting the infec-
tion to a larger pool of people. This also validates the findings
of Gupta et al. [32] who suggested that super-spreaders
may have played a more dominant role in the COVID-19
transmission in Karnataka, India.

Both the scale-free and negative binomial models allow
for a thick or heavy tail, which is created by super-spreader
events, and it is known in the case of airborne infection
such as COVID-19 that super-spreader events and the over-
dispersion of secondary cases have a significant impact on
the effectiveness of contact tracing and surveillance schemes
[31,32]. Regarding contact tracing, our models consistently
indicate a high probability of successful tracing. These figures
indeed raise questions regarding their realism and impli-
cations for epidemic dynamics. High probabilities for
successful contact tracing suggest efficient public health
measures in place, as well as the robustness of contact net-
works to facilitate tracing. However, a high tracing success
probability which is not reflective of the high frequency of
zero and few traced cases in the reported data might also
raise concerns. In particular, regarding the choice of a tree-
network where it is assumed that all infections present in
the data are part of a single transmission tree. In real-world
contact networks where individuals may be part of multiple
overlapping transmission chains, contacts from outside the
assumed tree are counted as part of it, potentially resulting
in a higher number of traced contacts than what might
occur in a non-tree-like network.

However, the high frequency of zero and few traced cases
may have reflected the predominance of cases with a younger
age-since-infection during the first wave due to certain pre-
ventive measures. Karnataka’s contact tracing system was
one of India’s most effective, at least, during the early
epidemic [36]. Considering the large proportion of close posi-
tive asymptomatic contacts at the time of testing, the low
numbers present in the data could be indicative of effective
pre-testing and preventive strategies at play. For instance,
index cases identified and isolated quickly due to effective
social distancing and lockdown measures, may result in
fewer or no infectious secondary contacts, consequently lead-
ing to fewer or no traced cases. This may not necessarily
reflect the efficacy of the contact tracing process itself but
rather successful containment and prevention efforts that
halted the spread from those index cases. This lack of distinc-
tion in the overall pre- and post-control strategies in our
theory may have overestimated the tracing probability.

Furthermore, other epidemiological metric such as the
reproduction number R0 is critical to estimating the number
of contacts to trace [37]. For instance, Hellewell et al. [38],
who used simulations to study the feasibility of controlling
COVID-19 outbreaks through the isolation of cases and con-
tacts, found that to control 90% of outbreaks with a
reproduction number of 2.5, 80% of contacts needed to be
traced and isolated. Their research highlights the subtle role
of reproduction number in contact tracing success, revealing
that the probability of control increases at all levels of contact
tracing when the reproduction number is reduced. Moreover,
the Hellewell et al. [38] study emphasizes the significant
impact of the number of initial cases on the likelihood of
achieving control. Such insights highlight the complexities
of contact tracing and its dependencies on various epidemio-
logical and social factors. Additionally, while the high
probabilities of contact tracing success implied by our
model may raise questions about their realism, these figures
are not unfounded. Our estimator also considers the interplay
between the probability of tracing a contact once an index
case is identified (p) and the probability of an infected indi-
vidual being detected as an index case (pobs). The latter has
to be inherently lower, especially within close-knit contact
networks such as family units.

In such networks, it is improbable for all contacts to
become index cases; instead, tracing often occurs through
one or a few known cases, underscoring why pobs has to be
substantially small. Given the nature of our methodology
and the reported data, which concentrate on tracing only
immediate contacts (one-step tracing), a higher p is plausible
while maintaining lower pobs. This is reflective of an efficient
tracing system where immediate contacts are quickly ident-
ified, but not all are independently confirmed as index
cases due to the close connection and simultaneous discovery
through a single or limited number of initial cases. Despite p
exceeding the ideal range for our approximations, the con-
siderably smaller probability of any particular infected
person becoming an index case ensures that our model’s
overall estimations are well suited. It is also crucial to under-
stand that these probabilities, while informative, also
underline the inherent complexities in predicting real-world
outcomes. Variations in regional practices, public response,
healthcare infrastructure and other socio-cultural factors
play a significant role in the success of contact tracing endea-
vours. Therefore, while our model provides an essential tool
for estimation, the results should be interpreted in conjunc-
tion with the broader epidemiological context and in light
of other research findings for a holistic understanding.

Our modelling study and findings highlight the impor-
tance of selecting appropriate models for estimating tracing
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probabilities and local contact structures in real-world scen-
arios. These estimates demonstrate the effectiveness of our
graph-based method in capturing key epidemic parameters
within heterogeneous and age-structured contact networks.
The estimated degree ranges for the negative binomial and
power-law distributions fall within plausible ranges found
in the literature, supporting the validity of our approach in
comparison with other studies that have examined contact
tracing data [35,39,40]. Furthermore, sensitivity analysis on
the estimated parameters with respect to R0 for the power-
law and negative binomial distribution shows limited sensi-
tivity to the choice of R0. This provides valuable insights
into estimating key epidemiological and intervention par-
ameters with greater confidence, enabling more effective
public health strategies and interventions. All in all, our
research contributes to the ongoing development of
improved parameter estimation techniques in graph-based
models for infectious disease dynamics. By using a graph-
based approach and building upon the methods of previous
studies, we have demonstrated the value of incorporating
contact graph structures, such as trees, for a more accurate
representation of contact patterns and infectious disease
dynamics. The results of our analysis highlight the need to
consider heterogeneity in individual-level contact networks
when designing and evaluating contact tracing strategies.

Future research in this area could explore the incorpor-
ation of additional data sources and model refinements. A
key area of refinement could be incorporating temporal
dynamics or considering other types of contact graphs that
better represent real-world contact patterns. The use of tree-
like graphs in the current study, while mathematically con-
venient, is a simplification of reality. Contact patterns,
particularly within clusters such as households or other
social groups, often exhibit significant clustering and inter-
connectedness that a tree structure may fail to accurately
capture. Our simulation study further highlights these con-
cerns. For instance, the influence of triangles on the fraction
of outside infections and the difference in the estimator’s per-
formance between Poisson and fixed degree models offer key
insights. Such findings suggest a well-connected core group
in certain models that leads to more outside infections, chal-
lenging our estimator’s accuracy. Integrating well-suited
graph structures with modelling techniques such as agent-
based models or compartmental models, could provide a
more comprehensive understanding of infectious disease
dynamics and inform the design of more effective public
health interventions.
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Appendix A. Full graph/random mixing
In the case of a full graph, we start with a fixed degree K =
N− 1, where N is the population size, and take the limit
N→∞ and β→ 0 such that R0 = (N− 1) β/(μ + σ) is constant.
Then,

ðN � 1Þ p̂ðaÞ ¼R0
aþ s

aþ s� b

�
e�ba � e�ðaþsÞa

�

! R0 ð1� e�ðaþsÞ aÞ:

Therefore, the binomial distribution approximates a Poisson
distribution, and equation (4.2) becomes in the limit N→∞

PðT ¼ iÞ

¼
ð1
0

dpoisði, R0 ð1� e�ðaþsÞ aÞÞ R0 ðaþ sÞ e�R0 ðaþsÞa da,

where dpoisði, mÞ ¼ mi e�m=i! is the probability function for
the Poisson distribution.

Appendix B. Optimization process
Given a function f (x), the aim of optimization is to find an x
that either maximizes or minimizes f (x). This process involves
the computation of gradients and the Hessian matrix.

The gradient of a function is a vector that points in the
direction of the greatest increase of that function. It is calcu-
lated as the vector of the first derivatives of the function
with respect to each variable. The gradient of a function
f (x), where x = [x1, x2,…, xn] is

rf ðxÞ ¼ @f
@x1

,
@f
@x2

, . . . ,
@f
@xn

� �
: (B 1Þ

To ensure that the solution found is a local maximum and
not a local minimum or a saddle point, the Hessian matrix is

https://github.com/CovidToday/covid19-karnataka
https://github.com/CovidToday/covid19-karnataka
https://mediatum.ub.tum.de/1661774
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used. The Hessian matrix is the square matrix of second-
order partial derivatives of the function. Each element in
the Hessian matrix is the second derivative of the function
with respect to different variables. The Hessian matrix for
the function f(x) is

Hðf ðxÞÞ ¼

@2f
@x21

@2f
@x1@x2

. . . @2f
@x1@xn

@2f
@x2@x1

@2f
@x22

. . . @2f
@x2@xn

..

. ..
. . .

. ..
.

@2f
@xn@x1

@2f
@xn@x2

. . . @2f
@x2n

2
6666664

3
7777775

(B 2Þ

If the Hessian is positive definite (all eigenvalues are posi-
tive) at a point, then the function attains a local minimum at
that point. If the Hessian is negative definite (all eigenvalues
are negative), then the function attains a local maximum.

In the context of maximizing a likelihood function, we
often convert the problem into a minimization problem by
taking the negative of the likelihood function. This is due to
the fact that many optimization algorithms are developed
for minimization problems. The negative log-likelihood func-
tion becomes

� LL(m j i‘, ‘ ¼ 1, . . . , n): (B 3Þ

The goal now is to minimize this negative log-likelihood
function, and the optimization problem becomes

m� ¼ argmin
m

f�LL(m j i‘; ‘ ¼ 1; . . . ; nÞg: ðB 4Þ

The same principles of gradients and Hessians apply to
this minimization problem. The gradient of the negative
log-likelihood function should point in the direction of great-
est decrease of the function. The Hessian, on the other hand,
should be negative definite at the point of minimum.

In the case of the log-likelihood function, the optimization
problem can be solved using iterative methods such as New-
ton’s method or quasi-Newton methods, which make use of
both the gradient and the Hessian of the function to find
the minimum.
20230409
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