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Aberrant splicing is amajor cause of genetic disorders but its direct

detectionintranscriptomesis limited to clinically accessible tissues such as
skin or body fluids. While DNA-based machine learning models can prioritize
rare variants for affecting splicing, their performancein predicting
tissue-specificaberrant splicing remains unassessed. Here we generated
anaberrant splicing benchmark dataset, spanning over 8.8 million rare
variants in 49 human tissues from the Genotype-Tissue Expression (GTEx)
dataset. At 20% recall, state-of-the-art DNA-based models achieve maximum
12% precision. By mapping and quantifying tissue-specific splice site usage
transcriptome-wide and modeling isoform competition, we increased
precision by threefold at the same recall. Integrating RNA-sequencing data
of clinically accessible tissues into our model, AbSplice, brought precision
to 60%. These results, replicated in two independent cohorts, substantially
contribute to noncoding loss-of-function variant identification and to
genetic diagnostics design and analytics.

Identifying noncoding loss-of-function DNA variants is a major bot-
tleneck of whole genome interpretation, as predicting function out-
side coding regions is difficult'. Variants altering splicing represent
an important class of noncoding loss-of-function variants because
they can lead to drastically altered RNA isoforms, for instance, by
inducing frameshifts or ablations of functionally important protein
domains. If the variant strongly alters splicing isoform choice, the
remaining abundance of functional RNA isoforms can be so reduced
that the function of the gene is lost. Due to the relevance of splicing
for variant interpretation, notably in rare disease diagnostics and
in oncology, algorithms have been developed to predict whether
variants affect splicing”°. However, only recently, aberrant splicing
events, that is, rare large alterations of splice isoform usage, have
been called in human tissues'® 2, While a method to a posteriori pri-
oritize candidate causal rare variants for observed aberrant splicing
events has been proposed?, the forward problem, that is, predicting

among rare variants which ones will resultin aberrant splicing, has not
been addressed.

Here, we set out to establish models predicting whether arare vari-
ant associates with aberrant splicing in any given human tissue. First,
we assumed only DNA to be available and later on further considered
complementary RNA-sequencing (RNA-seq) data of clinically acces-
sible tissues (CATs) (Fig.1).

Results

Abenchmark dataset for aberrant splicing predictions

We created abenchmark using the aberrant splicing caller FRASER
(Find RAre Splicing Eventsin RNA-seq)'° on 16,213 RNA-seq samples of
the Genotype-Tissue Expression (GTEx) dataset, spanning 49 tissues
and 946 individuals. Compared with other splicing outlier detection
methods"", FRASER consistently showed the highest agreement with
sequence-based predictors and was therefore subsequently used for
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Fig.1|Study design and main findings. We set out to predict whether rare
variants associate with aberrant splicing across 49 human tissues. a, We
established acomprehensive benchmark for aberrant splicing by processing
GTEx samples witharecently published aberrant splicing caller'® based on which
we could assess and develop predictors that could take as input DNA sequence
and, optionally, RNA-seq data of CATs. b, Benchmarking revealed modest
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performance of currently used algorithms based on DNA only, a substantial
performance improvement when integrating these models with SpliceMap,
aquantitative map of tissue-specific splicing we developed in this study, and
furtherimprovements when also including direct measures of aberrant splicing
inaccessible tissues.

our evaluations (Extended Data Fig. 1). For every individual, we consid-
ered every protein coding gene carrying at least one rare variant (minor
allele frequency (MAF) less than 0.1% based on the Genome Aggregation
Database (gnomAD)" and found in no more than two individuals across
GTEXx) and set out to predict in which tissue, if any, is this gene aber-
rantly spliced. We defined a gene to be aberrantly spliced in asample
ifitwas called asatranscriptome-wide significant splicing outlier and
with a sufficient amplitude (differential percent spliced-in (¥) larger
than 0.3; Methods, and see Extended Data Fig. 1 for results with alter-
native cutoffs). Previous studies had reported that as many as 75% of
aberrant splicing events in GTEx RNA-seq samples are not replicated
across tissues'>? and thus may reflect technical artifacts or aberrant
splicing that is not genetically driven. We quantified the enrichment
of replicated splicing outliers across tissues of the same individual
withrespect to the distance to the closest rare variant and found them
to be enriched up to a distance of 250 base pairs (bp) (Extended Data
Fig.2). Therefore, we also required arare variant to be lessthan 250 bp
away from the boundaries of any intron associated with the aberrantly
spliced splicesite (Methods and Extended DataFig. 3). Thisfilter yielded
similar results as filtering for replicated aberrant events with the extra
advantage of being applicable toindependent cohorts that have asingle
sample per individual (Extended Data Fig. 4).

State-of-the art sequence-based models poorly predict
tissue-specific aberrant splicing

We then assessed the performance of two complementary
state-of-the-art sequence-based deep learning models: modular
modeling of splicing (MMSplice)?, which predicts quantitative usage
changes of predefined splice sites within a100-bp window of a vari-
ant, and SpliceAl’, whichisindependent of gene annotations and pre-
dicts creation or loss of splice sites within a 50-bp window of a variant

(Extended DataFig. 5). Using larger prediction window sizes for SpliceAl
did notimprove the results (Supplementary Fig.1). For individuals with
multiplerare variantsonagene, we retained the highest score of each
model. Out-of-the-box application of MMSplice and SpliceAl showed a
modest performance, with an overall precision of 8% for MMSplice and
of12% for SpliceAl at 20% recall, and an area under the precision-recall
curve (auPRC) of 4% + 1 percentage point across tissues for MMSplice
and 5% + 2 percentage points for SpliceAl.

Tissue-specific splicing annotations improve aberrant
splicing predictions

We observed that many false predictions originated from inaccurate
genome annotations. On the one hand, standard genome annota-
tions are not tissue-specific, leading to false positive predictions.
This includes predictions for genes that are not expressed in the tis-
sue of interest, as for the gene TRPC6 in the brain (Fig. 2a), and, among
expressed genes, predictions for exons that are not canonically used
in the tissue, as for exon 2 of C2orf74 in the tibial nerve (Fig. 2b). On
the other hand, many splice sites are missing from standard genome
annotations'". These nonannotated splice sites are often spliced at
alow level, yet can be strongly enhanced by variants (see Fig. 2c for
an example) and are suspected to be a major cause of aberrant splic-
ing'®”. Toaddress all these issues, we created a tissue-specific splice site
map, whichwe named SpliceMap, using GTEx RNA-seq data. SpliceMap
excludes untranscribed splice sites and introns for each tissue and
includes nonannotated splice sites and introns reproducibly observed
among samples of the same tissue (Methods). The standard genome
annotation GENCODE (release 38 of hg38) contains 244,189 donor
sitesand 235,654 acceptor sites, of which 93% were detected atleastin
one GTEx tissue (Fig. 2d). SpliceMap contains 168,004 + 9,288 donor
sitesand 164,702 + 8,950 acceptor sites per tissue (Extended DataFig. 6).
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From this total, 7,060 + 3,706 donor sites and 8,222 + 3,740 acceptor
sites were unannotated, with testis containing the maximum number
of nonannotated donor and acceptor sites (29,673 and 29,911 respec-
tively), inline with the unique transcriptional and splicing patterns of
testis'>*°. SpliceMap is robust to variations in sample size and to differ-
entsplit-read counting tools*** (Supplementary Fig. 2). Moreover, we
found that currently available long-read RNA-seq data in GTEx* were
not yet sensitive enough?® to reliably identify nonannotated splice
sites (Supplementary Fig. 2). Applying MMSplice on the tissue-specific
splicesites defined by SpliceMap increased the precision of MMSplice
to13%at20% recall (Fig. 2e), with asignificantly higher auPRC consist-
ently acrosstissues (Fig. 2f). Similarly, applying SpliceMap on SpliceAl
increased precision to 22% at 20% recall.

Quantified reference isoform proportions improve aberrant
splicing predictions

Variants affecting splicing typically associate with abundance ratio
fold-changes of competing splicing isoforms, which result in nonlin-
ear effects on isoform proportions according to the so-called scaling
law of splicing™?”°. For instance, starting from a 1:1ratio between one
splicing isoform and its alternative in a major allele background, a
tenfold decrease leads to a1:10 ratio, which amounts to around 40
percentage points decrease (from 50% to approximately 10%). However,
the same ratio fold-change starting from a 1:10 ratio amounts to less
than 1 percentage point decrease (Extended Data Fig. 7). Hence, the
scaling law of splicing implies that the variation of isoform abundance
between tissues in major allele background alone can explain some
of the tissue-specific effects of variants on isoform proportion®, as
exemplified withexon 7 of the gene TRPC6 (Fig. 3a). We estimated major
allele background levels of alternative donor and acceptor splice site
usage proportions for allintrons and all tissues of SpliceMap (Extended
Data Fig. 7). Integrating these reference levels further improved the
MMSplice predictions by 1.6-fold consistently across tissues, and toa
lesser extent the SpliceAl predictions (Fig.3b,c and Methods). We sus-
pectthat MMSplice showed stronger relative improvement compared
with SpliceAlbecause it models percent spliced-in of predefined splice
sites and can integrate in a principled fashion reference levels using
the scaling law. In contrast, SpliceAl models creation or loss of splice
sites. We integrated reference levels with SpliceAl by applying filters
(Methods). However, predicted activations of annotated splice sites
and predicted deactivations of unannotated splice sites are already
masked in SpliceAl, thereby qualitatively capturing the effect of using
reference level filters for alarge number of splice sites.

AbSplice-DNA predicts the probability that a variant causes
aberrant splicinginagiven tissue

Next, to leverage the complementarity of MMSplice and SpliceAl pre-
dictions’, we trained a generalized additive model using the scores
from both deep learning models as well as annotation features from
tissue-specific SpliceMaps (Methods). This model, which we call
AbSplice-DNA, achieved an additional 1.5-fold improvement (Fig. 3b,c).
The AbSplice-DNA scores are probability estimates which we found to
be well calibrated on GTEx (Extended Data Fig. 8). AbSplice predicts

for each variant how likely aberrant splicing of some sort takes placein
agiventissue and reports the splice site with the strongest effect (see
Supplementary Table 1for an example). To ease downstream applica-
tions we suggest three cutoffs (high: 0.2, medium: 0.05, low: 0.01),
which have approximately the same recalls as the high, medium and
low cutoffs of SpliceAl (Fig. 3b).

Wealso tested integration of other predictorsinto AbSplice-DNA
by including scores from Combined Annotation Dependent
Depletion-Splice (CADD-Splice)’, Multi-tissue Splicing (MTSplice)’
and Super Quick Information-content Random-forest Learning of
Splice variants (SQUIRLS)® (Methods). However, those models only led
to minorimprovements (Extended DataFig.9). We decided toincorpo-
rate only MMSplice and SpliceAlinto the finalmodel soas not tohavea
model confounded by conservationinformation (used by CADD-Splice
and SQUIRLS), and to keep the possibility to easily integrate new tissues
whichwould not be the case with MTSplice. Nevertheless, the code of
AbSplice can easily be modified to incorporate new features. We also
tried random forest and logistic regression as alternative machine
learning models, which gave similar performances to the generalized
additive model (Methods and Extended Data Fig. 9).

We evaluated the model performances in more detail by strati-
fying the results on two different scenarios. First, we stratified by
variant categories. As expected, the precision was the best on vari-
ants affecting the donor and acceptor dinucleotides on all models,
followed by variants in the splice region (within 1-3 bases of the exon
or3-8bases of theintron), thenin the exonic, and lastly in the intronic
regions (Methods and Fig. 3d). AbSplice-DNA outperformed all models
throughout all variant categories, including intronic variants, whose
effects are notoriously more difficult to predict. Second, we analyzed
the model performance for five nonexclusive aberrant splicing out-
comes: exon elongation, exon truncation, exon skipping, any alter-
native donor or acceptor choice outlier, and any splicing efficiency
outlier. AbSplice-DNA performed better for exon skipping than for
exon elongation and truncation, as well as better for alternative donor
or acceptor choice than for splicing efficiency outliers. Moreover,
AbSplice-DNA outperformed all other models throughout all investi-
gated outlier outcome categories (Fig. 3e).

AbSplice-DNA performanceis confirmed onindependent data
Having established our model on GTEX, we next assessed how well
the performance replicated in independent cohorts. We first evalu-
ated a dataset consisting of RNA-seq samples from skin fibroblasts of
303individuals withasuspected rare mitochondriopathy”. We found
thatthere was alarge overlap (86%) of splice sitesin SpliceMaps gener-
ated from GTEXx fibroblasts and from this cohort (Fig. 4a and Supple-
mentary Fig. 3). Moreover, we observed consistent reference levels of
splicing between the two datasets (Fig. 4b, Pearson correlation 0.87).
We applied AbSplice-DNA trained on GTEXx using the SpliceMap from
GTEXx fibroblasts on the subset of this data for which whole genome
sequencing (WGS) was available (n = 20) and used aberrant splicing
calls performed onthe RNA-seq samplesto assess the predictions. The
relativeimprovements between the baseline models and AbSplice-DNA
replicated. AbSplice-DNA achieved 13.2 + 1.5% auPRC, 2.5-fold higher

Fig. 2| Tissue-specific splice site map improves prediction performance.

a-c, Sashimi plots showing RNA-seq read coverage (y axis) and the numbers

of split reads spanning an intron indicated on the exon-connecting line (using
pysashimi*®) for instances illustrating the benefits of the SpliceMap annotation.
For eachinstance, two individuals are displayed. The individual with the rare
genetic variant (located at the dashed black line) is shown in the lower track
(darker color). SpliceMap catalogs expressed genes and splice sites in each tissue
and can thus help inidentifying cases for which there is no variant effect in tissues
not expressing the whole gene (a) or the exon (b) in proximity of the variant.
Moreover, SpliceMap includes weak splice sites, which are spliced at alow level,
but canbeactivated and create novel exons in the presence of a variant (c).

d, Venn diagram comparing annotated splice sites in standard genome
annotation (GENCODE release 38) and SpliceMap aggregating all GTEx tissues.
e, Precision-recall curves comparing the overall prediction performance across
all GTEx tissues (n = 49) of MMSplice applied to GENCODE splice sites, MMSplice
applied to tissue-specific splice sites according to SpliceMap, SpliceAl and
SpliceAl using tissue-specific SpliceMaps. f, Distribution of the auPRC across all
GTEXx tissues of the models in e. Center line, median; box limits, first and third
quartiles; whiskers span all data within 1.5 interquartile ranges of the lower and
upper quartiles. Pvalues were computed using the paired one-sided Wilcoxon
test. Alt, alternative; Ind, individual; Ref, reference.
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than SpliceAl or MMSplice alone (Fig. 4c). From a rare variant pri-
oritization standpoint, AbSplice-DNA typically gave about twofold
fewer candidate predictions at the same level of recall than SpliceAl,
itself comparing favorably over MMSplice (Supplementary Fig. 4).
Hence, AbSplice-DNA can help rare disease diagnostics by providing
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substantially shorter lists of predicted candidate variants to investigate
compared with state-of-the-art sequence-based models.

We next considered a cohort of WGS samples paired with RNA-seq
and proteomics data of induced pluripotent stem cell (iPSC)-derived
spinal motor neurons from 245 amyotrophic lateral sclerosis

b

Testis

Nerve tibial

auPRC

o 420 - C2orf74
O. e = O,
25 W,=100%
©T o
gL R
<
<@
o~ 420 7 ; N
c ! 65 <
2.8 20 |
22 A W, =36%
297 '
-~ 420
c 8
SE 210
238
=2 I mumy AN
\__/69
NP 420 i
[ 1
28 5o+ i
22 i v —
—————|
35
T T T T ]
61,162,389 61,162,627 61,162,865 61,163,103 61,163,341
Genomic coordinate (chr2), '+ strand
Ref: GT TTTTTTATATAAATGGT  chr2:61,162,594:T > G
Alt: GGTTTTTTATATAAATGGT
GENCODE .
SpliceMap
33,656 (6%) 446,049 (75%) (all GTEX tissues)
114,181 (19%)
Across tissues
0.25
P=57x10"°
020 4 P=6.0x10"
L]
0.15
0.10
o
T T T T
MMSplice MMSplice SpliceAl SpliceAl
+ SpliceMap + SpliceMap

Nature Genetics | Volume 55 | May 2023 | 861-870

864


http://www.nature.com/naturegenetics

Technical Report

https://doi.org/10.1038/s41588-023-01373-3

a TRPC6
1,254 All tissues
-= i -® AbSplice-DNA
o 0.4
8 = 627 @ MMSplice + SpliceMap + W,
Re] S v, =70% -® MMSplice + SpliceMap
£ " 03 MMSplice
o o : - SpliceAl + SpliceMap + ¥,
% ‘? g ® SpliceAl + SpliceMap
- 474 I & i
o s g 02 SpliceAl
g‘é 237 &) Cutoff
FE W,=37% o1 ® High
== ’ A Medium
\%_‘ u Low
3,588 0
‘_%\ T T T T T T
3= 0 0.2 0.4 0.6 0.8 1.0
cE 1,794 L X . X .
2\8 =M% Recall
c .
£ = c Across tissues R
& T 0.3 P=13x10
~ 1,188 1 P 5.7x10710
2 S P 7.3x107°
Og <
c-= 594
oa -
2z w=10% %7 . .
oz
o
>
@
T T T 0.1 4
25,981,937 25,987,015 25,997,359
Genomic coordinate (chr21), '-' strand $
O -
T T
SpllceAI Spl.lceAI Spl.lceAI MMSpllce MMSpllce MMSpllce AbSplice-DNA
chr21:25,097,362: TTAACA > T Ref: ACGTTIAACAGE + SpliceMap + Sallli,ee’;ﬂap + SpliceMap + S[illqclreel;/lap
Alt: ACGTT————— GG
d Splice acceptor Splice donor Splice region Exon Intron All
0.5 1 n=1768 0.5 + n=2,432 0.5 1 n=2,868 0.5 4 n=5,660 0.5 o n=8,225 0.5 1 n=24,159
0.4 4 0.4 4 0.4 0.4 4 0.4 4
5 0.3 - 0.3 0.3 0.3
2 )
@ 0.2 ! 02+ 0.2 0.2
o
0.1 0.1 jL 0.1 0.1+ -
0 0 0 - = 0
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
0 02 0.4 06 0810 0O 0.2 04 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 02 0.4 06 0.8 10 0 02 0.4 06 0.8 10
Recall
e Exon elongation Exon truncation Exon skipping ‘W Sp“Cing. Any alternative dgnor All
n=3547 n=2733 n=5,188 efficiency outlier or acceptor choice n=24,59
0.5 0.5 0.5 0.5 n=4,698 0.5 n=20,219 0.5
0.4 1 0.4 4 0.4 1 0.4 1 0.4 1
=
% 0.3 0.3 0.3 1 0.3 0.3
©
o 0.2 0.2 4 0.2 0.2 4 0.2
o
0.1 0.1+ 0.1 0.1 0.1 -~
0 oL o&’_\ 0 0

T T T T T T T T T T T T T T T T T
0 0.2 0.4 06 08 1.0 0 0.2 0.4 06 0.8 1.0

— AbSplice-DNA SpliceAl MMSplice — CADD-Splice — SQUIRLS

Fig.3|Quantitative splicinglevels further improve prediction performance.
a, Sashimi plot of TRPC6 around exon 7 in lung and brain for two individuals, one
carrying no rare variant in this region (control, upper tracks), and one carrying
anexonic rare deletion (dashed line and lower tracks) associated with reduced
splicing of exon 7. The donor sites of exon 6 and exon 7 compete against each
other for splicing with the acceptor site of exon 8. For the control individual, the
donor site of exon 7 is used 70% of the time in the lung, and only 11% of the time
inthe brain. The variant associates with a stronger difference (33 percentage
points) in the lung thanin the brain (1 percentage point). b, Precision-recall
curve comparing the overall prediction performance on all GTEx tissues

of SpliceAl, SpliceAl using SpliceMap, SpliceAl using SpliceMap along with
quantitative reference levels of splicing, MMSplice using GENCODE annotation,
MMSplice using SpliceMap annotation, MMSplice using SpliceMap annotation
along with quantitative reference levels of splicing and the integrative model
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AbSplice-DNA. Different cutoffs are shown (SpliceAl, high: 0.8, medium:

0.5, low: 0.2; MMSplice (score absolute value), high: 2, medium: 1.5, low: 1;
AbSplice-DNA, high: 0.2, medium: 0.05, low: 0.01). ¢, Distribution of the auPRC
of the models in b across tissues (n = 49). Center line, median; box limits, first
and third quartiles; whiskers span all data within 1.5 interquartile ranges of the
lower and upper quartiles. P values were computed using the paired one-sided
Wilcoxon test.d, Model performance across different VEP*' variant categories.
Categories are ordered from left to right by decreasing severity. Each annotated
variantis labeled by its most severe category. The ‘Exon’ category consists of
the VEP categories stop gained, stop lost, missense and synonymous. e, Model
performance across nonexclusive outlier outcome categories (Methods). For
panels d and e, the ‘All’ category contains all unique variants (independent of the
VEP annotation and outlier outcome categories) and n is the number of variants
associated with outliers.
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cutoff. Error bars represent 95% Cls from the binomial test. f, Genome-wide
depletion of high-impact variants among rare SNVs (gnomAD MAF < 0.1%) within
agene (n=19,534) as afunction of LOEUF score deciles. High-impact variants

are defined by a SpliceAl score > 0.8, MMSplice score > 2 (absolute score)

and an AbSplice-DNA score > 0.2 in at least one tissue. Asterisks mark significance
levels of two-sided Fisher tests of AbSplice-DNA compared with SpliceAl
(*<0.05,**<10™*,**<107%). NS, not significant.
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(ALS)-affected and 45 healthy individuals from the Answer ALS project
(Methods). AsiPSC-derived spinal motor neurons were not profiled in
GTEX, we considered two approaches. On the one hand, we used the
Answer ALS healthy controls to generate aSpliceMap for iPSC-derived
spinal motor neurons. On the other hand, we used the SpliceMap of
GTExbraintissues asa proxy whichshowed the highest overlap fromall
GTExtissues (Supplementary Fig.5). We found that the GTEx SpliceMap
from brain tissues agreed reasonably well with the one derived from
this cohort both qualitatively (76% shared splice sites) and quantita-
tively (Pearson correlation 0.86; Supplementary Fig. 5). Here, too,
AbSplice-DNA outperformed SpliceAl and MMSplice. Interestingly,
AbSplice-DNA achieved similar performances using the SpliceMap
from GTEx brain tissues or using the SpliceMap from iPSC-derived
spinal motor neurons, suggesting that AbSplice-DNA can be applied
robustly in absence of control samples using SpliceMaps from proxy
tissues (Supplementary Fig. 6). Moreover, AbSplice-DNA predictions
were enriched for genes associated with ALS*** (threefold enrichment;
Fig. 4d), which was less so for MMSplice predictions and not the case
for SpliceAl predictions. We further validated AbSplice-DNA using
proteomics data available for this cohort. At our recommended cutoff,
AbSplice-DNA predicted 58 genes to be aberrantly spliced, of which
31% (18 of 58; 95% confidence interval (95% CI), 20-45%) of the corre-
sponding proteins showed significantly low abundance (Z-score < -2;
Methods), consistent with RNA degradation via nonsense-mediated
decay or protein isoforms resulting from aberrant splicing events
that are more poorly translated or less stable. Similarly, independent
confirmation by proteomics led to validation rates of MMSplice (26 of
183;95% Cl, 9-20%) and SpliceAl (17 of 80; 95% CI,13-32%) consistent
with the validation rates we originally observed at those cutoffs using
the GTEx RNA-seq benchmark (Fig. 3b). Altogether, the proteomics
analyses confirm the relative improvements of the different models
and are overall consistent with our precision estimates.

Furthermore, we applied AbSplice-DNA t0203,306,868 rare vari-
ants (MAF < 0.1%) from the gnomAD dataset using SpliceMaps from all
GTEx tissues. In highly constrained genes, defined as the 10% of genes
most strongly depleted for loss-of-function variants ingnomAD?", rare
variants were more strongly depleted for high AbSplice-DNA scoresin
at least one tissue (3.4-fold depletion), than for high SpliceAl scores
(2.9-fold depletion, P <107%; Fig. 4f) or high MMSplice scores (2.2-fold
depletion). A stronger depletion than with SpliceAl or MMSplice also
held when relaxing the AbSplice-DNA cutoffto match the total number
of predictions of SpliceAl (Supplementary Fig. 7).

Collectively, these results onindependent data demonstrate the
robustness and the applicability of AbSplice-DNA and suggest its utility
for rare disease diagnostics and rare variant interpretation.

AbSplice-RNA incorporates RNA-seq from CATs

Sequencing transcriptomes of CATs such as skin or body fluids is of
increasinginterestinrare disease research asitallows direct detection
of aberrant splicing for those splice sites used both in the CAT and in
tissues of suspected disease relevance'®** >, The GTEx dataset consists
of post-mortem-collected RNA-seq samples across a vast variety of
tissues and thereby offers the unique opportunity to evaluate to what
extentaberrantsplicinginanaccessible tissue reflects aberrant splicing
ofanother tissue of interest. One positive example in GTExis aberrant
splicing of DDX27inthe heart which can also be observed in skin fibro-
blasts (Fig. 5a). Consistent with a previous study® based on the Ensembl
gene annotation®, we found that among the CATs, fibroblasts have
the highest overlap of transcribed splice sites according to SpliceMap
with nonaccessible tissues, followed by lymphocytes and whole blood
(Fig.5b). Topredict aberrant splicing innonaccessible tissues, we con-
sidered ranking genes of an individual first for showing significant
and large aberrant splicing in a CAT (false discovery rate (FDR) < 0.1
and |AW| > 0.3) and then by significance level. This simple method
yielded amarkedly increased precision compared with the DNA-based

models, up to nearly 40% recall (Fig. 5c and Extended Data Fig. 10a).
However, RNA-based predictions remain limited to those splice sites
expressed and spliced in the CAT. Therefore, we next trained models
integrating AbSplice-DNA features together with RNA-seq-based fea-
tures from CATs, including differential splicing amplitude estimates to
leverage the splicing scaling law and the SpliceMaps (Methods). These
models, which we call AbSplice-RNA, outperformed all other models
(Fig. 5c and Extended Data Fig. 10a). We found that using fibroblasts
only led to the same performance as using all CATs, reaching around
60% precisionat20% recalland amounting to a twofold improvement
over AbSplice-DNA (Fig. 5c and Extended Data Fig.10b). Those improve-
ments were consistent across target tissues (Fig. 5d). As expected,
AbSplice-RNA outperformed AbSplice-DNA for genes expressed in
CATs and remained on par with it otherwise (Extended Data Fig.10c).
Altogether, these results establish a formal way to integrate direct
measurements of aberrant splicing along with sequence-based models
to predict aberrant splicing in a tissue of interest.

Discussion

Weestablished acomprehensive benchmark for predicting variants lead-
ingtoaberrantsplicinginhuman tissues, revealing limited performance
of state-of-the-art sequence-based models. We created a tissue-specific
splicing annotation (SpliceMap) based on GTEx which maps acceptor
and donor splice sites and quantifies their usage in 49 human tissues. We
showed thatintegrating SpliceMap with DNA-based prediction models
leadstoathreefoldincrease of precision at the same recall. Additionally,
we found that RNA-seq from CATs complements DNA-based splicing
predictions whenincorporated into an integrative model.

The prediction of splicing-perturbing variants has along history
of over 20 years’ work? ****"**_ This includes tissue-specific models
for mouse*** and more recently human®*'. Those models showed
successes in various splicing prediction tasks, such as quantitative
change of percent spliced-in, splice site usage or splicing efficiency.
This study mainly focuses on the prediction of extreme splicing effects
(outliers), which has not yet been assessed. This modeling task could be
investigated only now, after the development of aberrant splicing call-
ers'“>which enabled the establishment of aground truth for splicing
outlier prediction. We foresee that the paradigm of predicting extreme
effectsin splicing from DNA could be aninspiration for future research
and further be extended to aberrant expression or protein abundance
prediction. Furthermore, the large multi-tissue cohorts provided
by GTEx allowed us to assess and develop tissue-specific predictors.
Using aberrant splicing predictions for tissues that are mechanistically
related to the disease of interest may prove to be helpful to identify
the effector gene, just as tissue-specific predictions areimportant for
transcriptome-wide association studies®.

Some splicing variant effect prediction models leverage conserva-
tionas further evidence of the functional relevance of a variant”®, Even
though conservationis astrongindicator of function, we decided not
to include conservation in our final model, as variants causing aber-
rant splicing do not necessarily have to reside on conserved regions.
Moreover, conservation depends on the functional importance of
the gene. A nucleotide strongly affecting splicing of a nonconserved
gene may be less conserved than a nucleotide with a milder effect on
splicing located in a highly conserved gene. Also, a nucleotide can
be conserved due to its other potential roles besides splicing. For
example, exonic regions near splice sites might be conserved due to
their role in protein function. Altogether, even though conservation
could still marginally yet significantly improve our model (Extended
DataFig.9), we opted to provide to the community amodel predicting
aberrant splicing per se by integrating models solely trained on DNA
sequence and splicing metrics measured from RNA-seq or massively
parallel reporter assays (MPRAs) (SpliceAl and MMSplice). AbSplice
users can still benefit from conservation evidence in post-processing
stepsto further prioritize variants.
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Fig. 5| Integrating RNA-seq data of CATs to predict aberrant splicing in
nonaccessible tissues. a, Sashimi plot of DDX27 around exon 10 for two
individuals in heart and fibroblasts. One individual carries no rare variant
inthis region (control, upper tracks), and one carries an exonic rare variant
(dashed line, lower tracks) associated with increased splicing of exon 10. This
exon shows a similar usage in fibroblasts and in the heart (reference donor
site percent spliced-in, ¥, = 8%, according to SpliceMap in both tissues, in line
with the measured values for the displayed controlindividual: ¥, = 6% in heart
and ¥, = 5% in fibroblasts). The effect associated with the variantin fibroblasts
approximates well the one in heart (difference of donor site usage, AW, = 50%
inheartand 37% in fibroblasts). In this case, aberrant splicing can be directly
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We constructed SpliceMaps and detected aberrant splicing from
short-read RNA-seq. We found that current long-read RNA-seq data
available for GTEx* did not provide sufficient coverage to detect unan-
notated splice sites (Supplementary Fig. 2). Since split short reads
reveal splice sites, we foresee that the major added value of long-read
over short-read sequencing is not about calling splice sites but identi-
fying the complete RNA isoforms. This could be used in the future to
develop models predicting the exact splicing outcome (for example,
exact elongated or truncated exon boundaries, exon combinations
andsoon) caused by the variant, whichisbeyond the scope of current
models trained primarily on short-read data.

We showed how RNA-seq of CATs effectively complements
DNA-based predictions. An alternative to this approach is to repro-
gram or transdifferentiate cells into the suspected mechanistically
involved cell type and perform RNA-seq on them*®. This approach has,
however, important caveats. First, itisnot ensured that the suspected
mechanistically involved cell type is the correct one, as symptoms may
manifest more strongly in downstream affected tissues. Second, this
approachis cost, timeandlaborintensive. Third, cell reprogramming
caninduce and select mutations which may lead to falseidentifications.
Therefore, predictive models that can leverage RNA-seq of CATs will
probably remainrelevantin practice”. Furthermore, RNA-seq reveals
the consequence of the splicing defect on the resulting transcript
isoform (for example, frameshift or exon truncation), whichis crucial
for diagnostics.

By increasing the precision at 20% recall from about 10% to 60%,
the cumulative improvements of our models are substantial. Still,
a majority of the aberrant splicing events are not recalled and there
remains a majority of false positives. An unknown and potentially
large fraction of events that are not recalled might be aberrant splic-
ing calling artifacts, as suggested by the high number of singleton
calls. In this study, we implemented strategies aiming at improving
the proportion of genuine genetically driven aberrant splicing events
in the ground truth while not introducing biases favoring particular
models (Extended Data Figs. 2-4). However, every classification task
isfounded onareliable ground truth. As splicing is acomplex process
andnotallaberrant events canbereliably called by state-of-the art aber-
rant splicing callers, the ground truth in the prediction task remains
aproxy. Progress in aberrant splicing calling or better understanding
ofthetechnical reasons could reduce the number of incorrectly called
aberrant splicing events and improve the recall. Moreover, some of
the apparent false positive predictions may be actually correct. This
is the case when the aberrant splicing isoform contains a premature
termination codonand, often, though not systematically*®, gets rapidly
degraded by nonsense-mediated decay. Rapidly degraded isoforms
barely have any reads in RNA-seq data and hence are typically not
detected by aberrant splicing callers. In diagnostic applications, those
variants remain relevant. Moreover, dedicated experiments can be
done to test whether aberrant splicing is taking place, for instance,
using the translation inhibitor cycloheximide.

AsWGSbecomes more readily availablein research and healthcare,
thereisagrowing need for accurate annotation of noncoding variants
with strong deleterious effects for establishing genetic diagnostics
of rare disorders, identifying effector genes of common diseases and
more precisely stratifying patients with cancer based on their tumor
genetic alterations. Variants causing aberrant splicing are not only
amajor class of such noncoding loss-of-function variants, but their
mechanisms of actionalso now become targetable for anincreasingly
rich therapeutic arsenal®. Hence, because of its high precision and its
focus on extreme events, we foresee AbSplice to be instrumental for
genome-based diagnostics and therapy design.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Ethics statement

No primary datawere generated for this study. Person-related datawere
obtained through authorized access from primary data controllers.
The study adheres to the ethical and research agreements between
the Technical University of Munich and the primary data controllers.
All participant informed consents were collected by and remain with
the primary data controllers.

Statistics and reproducibility

Nostatistical method was used to predetermine sample size. We did not
use any study design that required randomization or blinding. In the
GTEx data we excluded tissues with fewer than 50 samples. Inthe ALS
and mitochondrial disease datasets we did not exclude any samples.

Datasets

GTEx. We downloaded the RNA-seqread alignment files (BAM files) and
the variant callingfiles (VCF files) from WGS from GTEx v8p (hg38) from
the database of Genotypes and Phenotypes (dbGaP) (study accession:
phs000424.v8.p2). We used data from 946 individuals with paired WGS
and RNA-seq measurements (n =16,213) in at least one tissue. For the
long-read RNA-seq data, we downloaded the transcript annotation
(GTF) generated by FLAIR*? based on 88 Nanopore samples from the
GTEx portal.

Mitochondrial disease dataset. The dataset consists of 303 patients
with mitochondriopathy described by Yépez et al.?, all of which have
RNA-seq fromskin-derived fibroblasts. For 20 individuals, WGS is also
available.

ALS dataset. The dataset consists of WGS, RNA-seq and proteomics
datafrom245individuals diagnosed with ALS and 45 control samples.
RNA-seq datawere obtained from iPSC-derived spinal motor neurons.
We downloaded the data from the Answer ALS portal (dataportal.
answerals.org). Genes known to be involved in ALS disease develop-
ment were manually curated from literature®>2,

Data preprocessing

Rare variants. Variants had to be supported by at least ten reads and
had to pass the conservative genotype-quality filter of GQ > 99. These
criteria were used for single nucleotide variants (SNVs) and indels in
the same way. We considered avarianttoberareifithad an MAF inthe
general population <0.001 based on gnomAD (v.3.1.2) and was found
inat most two individuals within each cohort.

Splicing outlier detection. Splicing outliers were called using
FRASER' (v.1.6.0) asimplemented in the Detection of RNA-seq Outli-
ers Pipeline®® (v.1.1.2). FRASER was used to detect introns (including
de novo introns) and to count split reads for each intron. Based on
the split-read counts, three intron-centric metrics were calculated:
alternative acceptor usage with the ¢); metric, alternative donor usage
with the ¢, metric, and splicing efficiencies as defined with the 6;and
6, metrics™:

__nbA _k
Ws(D,A) = —ZArn(D’A/) = N
__nDA)  _ k
B AT R
6, > nD,A")

= nD)+y,, n(D,A")

3, (D', A)

05 = nA)+ ., nD',A)

where kis the number of split reads supporting the intron from donor
Dto acceptor A. The sum in the denominator of ¢5(D,A) goes over all
possible acceptors A’ for donor D, and the sumin the denominator of
5(D,A) goes over all possible donors D’ for acceptor A. Inthe splicing
efficiencies, the denominator contains n(D) or n(A) whichare the num-
bers of nonsplit reads spanning the exon-intron boundary of donor
D or acceptor A, respectively. The advantage of these intron-centric
metrics over the exon-centric metric percent spliced-in () is that they
do not require exons to be mapped, which is anill-defined task when
starting from short-read RNA-seq data.

FRASER models these metrics while controlling for latent con-
founders and reports both splice-site-level and gene-level FDRs. We
called aberrantspliced genes using the gene-level FDR < 0.1asin Mertes
et al.'” Furthermore, we requested the gene to contain at least one
significant splice site (FDR < 0.05, FRASER default) supported by 20
reads and withan absolute deviation of s  from the FRASER-modeled
expected valuelarger than 0.3 (denoted |Ag; ;| > 0.3). The same filters
were applied to the splicing efficiency metrics.

To discard aberrant splicing calls that probably have no genetic
basis'®, we additionally applied and compared different filtering
methods (Extended Data Fig. 4). In the GTEx dataset, where multiple
RNA-seq samples from the same individual are available, we investi-
gatedincludingsplicing outliers from at least two tissues from the same
individual (Filter 2; Extended Data Fig. 4b). Here, a gene-level outlier
was considered to be replicated if the same splice-site-level outlier
was detected in multiple tissues. As this strategy cannot be applied
to other single-tissue datasets, we alternatively filtered for splicing
outliers containing a rare variant in the vicinity of +250 bp of every
splice site based on RNA-seq from the sample (Filter 3; Extended Data
Fig.4c).Importantly, this filter was applied to all splice sites identified
by FRASER, whichincludes both annotated splice sites as well as cryptic
splicesites (Extended DataFig.3). For consistency, all reported results
arebased on Filter 3.

Aberrant splicing prediction benchmark

Aberrant splicing prediction task. The task is to predict whether a
protein coding gene with one or more rare variants within the gene
bodyis aberrantly spliced in a given tissue of an individual.

Performance evaluation metric. Due to the large class imbalance
in the splicing outlier prediction benchmarking dataset, we chose to
evaluate models using precision-recall curves. As evaluation metric
we used the auPRC, computed using the average precision (AP) score®
(whichrepresents the mean of precisions for each threshold weighted
by the recall difference):

AP = Z Ry —Rp_1) Py
n

where P,and R, are the precision and recall at the nth threshold.

Tissue-specific SpliceMap

For each tissue separately, we created a SpliceMap that lists all active
introns along with aggregate statistics about acceptor and donor site
usage useful for aberrant splicing prediction purposes.

Active introns. We started from all introns reported by FRASER. We
filtered out untranscribed splice sites and background noise by filter-
ing outintrons not supported by any split-read in more than 95% of the
samples. For this and other operations involving genomic ranges we
used PyRanges*® (v.0.0.115).

Aggregate statistics. Aggregate statistics were calculated on donor
andacceptor sitesindependently. For donor site usage, the SpliceMap
aggregate statistics are (1) the total number of split reads across
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samples (s) supporting the intron (£), (2) the total number of split
reads across samples sharing the same acceptor site (X,N;), (3) the
median number of split reads per sample sharing the same acceptor
site and (4) the reference isoform proportion (¢f), defined as

Pt = ZZ_/C Aggregate statistics were computed analogously for
s V3

acceptor site usage.

Exclusion of rare variant data in aggregate statistics. To prevent
information leakage, the aggregate statistics were computed so that
they do not contain information about splicing events associated
with rare variants (specifically, we excluded from the computations
ofthe aggregate statistics datafrom samples with arare variant within
+250 bp of any donor or acceptor site).

SpliceMap generation using alternative counting tools. Splice-
Maps were also created from split-read (introns) counts using Reg-
tools* (v.0.5.2) and STAR? (v.2.5.3) for the ‘Skin - Not Sun Exposed
(Suprapubic)’ tissue. We ran Regtools using BAM files. Regtools per-
forms annotation-free counting; thus, it also calls unannotated introns
and splicesites. We downloaded STAR split-read counts from the GTEx
portal. The GTEx pipeline filters unannotated splice sites, although
the STAR two-pass approach could call unannotated splice sites and
introns. During SpliceMap generation, active introns and aggregate
statistics were computed as described above.

Aberrant splicing prediction models

SpliceAl. SpliceAl” (v.1.3.1) is a deep learning model that predicts
splice site alteration for acceptor and donor sites from sequence.
SpliceAlis annotation free and can therefore score all variants includ-
ing cryptic splice sites created by deep intronic variants. SpliceAl
provides precomputed scores for all SNVs and indels up to the length
of 4 nucleotides. These variant scores were computed with 50 bp as the
maximum distance between the variant and gained/lost splice sites.
We downloaded precomputed variant scores from Illumina BaseSpace
and stored them in a RocksDB* (v.6.10.2) key-value database for fast
lookup. We ran SpliceAl to obtain variant scores for long indels not
available in the database. Also, we used masked scores of SpliceAl as
recommended by the authors for variantinterpretation. This masking
sets Delta scores to zero if SpliceAl predicts activation for annotated
splice sites and deactivation for unannotated splice sites.

SpliceAl+SpliceMap. We used tissue-specific splice site annotations
from SpliceMap together with SpliceAl predictions. For each tissue, we
retained those variant scores that contained an annotated splice site
withina100-bp window.

SpliceAl+SpliceMap+y,... As SpliceAlwas trained to predict creation or
loss of splice sites and not ¢, thereisno principled way to apply the splic-
ingscalinglaw toinclude reference levels. Therefore, we used reference
levels only to filter predictions. Analogously to the masking of scores
representingannotated acceptor/donor gainand unannotated acceptor/
donorloss performed by the authors of SpliceAl, we used tissue-specific
Y.svaluesfor filtering. Specifically, variant scores associated with accep-
tor/donor gain and a splice site with ¢ > 0.95 as well as with acceptor/
donorloss and a splice site with ¢, < 0.05 were filtered out.

MMSplice. MMsplice® (v.2.3.0) is a deep learning model that predicts
the impact of a variant (in a100-bp window of annotated splice sites)
on alternative usage of a nearby donor or acceptor site. MMSplice
predicts the effect of a variant in log-odds ratios (denoted Alogity,
or Alogity,). MMSplice requires a splice site annotation. We used the
GENCODE (release 38 of hg38) annotation.

MMSplice +SpliceMap. We ran MMSplice on tissue-specific splice site
annotations from SpliceMap.

MMSplice +SpliceMap+¢,... MMSplice is a quantitative model pre-
dicting percent spliced-in for which the splicing scaling law can be
leveraged to integrate reference levels. For conversion of the variant
effectintonaturalscale, reference levels of donor site and acceptor site
usages are required. For the sake of shorter notations, we write in the
following g instead of ¢s and ¢;. We used MMSplice to predict Alogit(¢)
values. Alogit(¢) values were then combined with the corresponding
reference ¢ value (¢,¢) inSpliceMap: first inlogit scale to adjust the pre-
dicted variant effect by MMSplice to the correct reference level; then
innatural scale by using the sigmoid function (Extended Data Fig. 7a):

Alogit(¥) = logit(¥,,) — logit(¥,er)
o = 0 (Alogit () + logit (Prer))
AV = By — Wi

o~ = logit

Variants further away than 100 bp from any SpliceMap splice site
were scored O (no effect).

MTSplice. MTSplice’ (v.2.3.0) is a tissue-specific version of MMSplice.
The model scores each exon-variant pair for 56 tissues. With respect
toeachannotated exonboundary, the model takes asinput asequence
of 100 bp in the exon and 300 bp in the intron. MTSplice predicts the
tissue-specific effect of avariantinlog-odds ratios (denoted Alogit(y)).
MTSplice requires a splice site annotation. We used the GENCODE
(release 38 of hg38) annotation.

CADD-Splice. CADD-Splice’ is an ensemble model that combines
CADD scores (contains conservation scores) together with splicing
predictions from SpliceAl and MMSplice. We ran CADD-Splice v.1.6.
CADD-Splice provides raw and PHRED-scaled scores. We used the
PHRED score.

SQUIRLS. SQUIRLS? is based on engineered splicing features for
donor and acceptor sites that are extracted from a genome annota-
tion. SQUIRLS predicts the probability of a variant to alter the splic-
ing pattern. We downloaded the SQUIRLS database v.2203 and ran
SQUIRLS v.2.0.0.

AbSplice-DNA. AbSplice-DNA is a generalized additive model,
namely the ExplainableBoostingClassifier from the python package
interpretml*®. Similar performance was achieved using a random for-
est or logistic regression model from scikit-learn®. The features of
AbSplice-DNA were the prediction score from MMSplice + SpliceMap,
MMSplice + SpliceMap + .., the SpliceAl Deltascore and abinary feature
from SpliceMap indicating if the splice site is expressed in the target
tissue (using a cutoff of 10 reads for the median number of split reads
sharingthe splicesite). The modelincludesinteractionterms, thereby de
facto capturingthe effect of combining SpliceMap with SpliceAl scores.
The model was trained on a variant level using outliers within 250-bp
distance of rare variants as ground truth (Extended Data Fig. 4c before
aggregationtogene level). Themodel was trained with fivefold-stratified
cross-validation, grouped by individuals to avoid information leakage,
and suchthat the proportions of the negative (variantis associated with
nooutlier onthe gene) and positive (variantis associated with an outlier
onthe gene) classes were preserved in each fold.

Predictors using RNA-seq from CATs. We used different features from
RNA-seq of three CATs from GTEx (Whole blood, Cells transformed
fibroblasts, and Cells Epstein-Barr virus (EBV)-transformed lympho-
cytes) to predict aberrant splicing in nonaccessible target tissues.
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Asone predictive feature we used the -log,, nominal gene-level P
values obtained using FRASER. In the benchmark, we ranked all splic-
ing outlier genes (FDR < 0.1 and |Ag| > 0.3) lower than the remaining
genes, and further ranked genes within each of these two groups by
increasing Pvalue.

Additionally, we used SpliceMaps from the accessible and the
nonaccessible tissues together with ¢y measurements from RNA-seq
and applied the splicing scaling law to infer Ay values in the nonac-
cessible target tissue:

Alogit (#) = logit (#°AT) — logit (#<AT)
whareet = g (Alogit (#) + logit (#775%))

Aytarget — yytarget _ q.ltarget
ref

where Y""is the splicing level in the CAT and AT is the reference
level of splicing obtained from SpliceMap, and the difference of these
two values provides the tissue unspecific variant effect, Alogit(¥).
Then, adding Alogit(¥) withthe reference level of splicing of the target
tissue logit (#5*") in logit scale and converting back to natural scale
provides ¥ in the target tissue. Subtracting the reference level of
splicing of the target tissue, ¥ .=, provides the predicted splicing
changeinthetargettissue, AW®*, using RNA-seq measurementsin CAT.

All precision-recall curves involving CATs have been computed
on a subset of the data, excluding CATs from the target tissues and
only containing individuals that have RNA-seq measurements from

multiple tissues (including the CAT).

AbSplice-RNA. We trained integrative models using the two predic-
tors from RNA-seq data from CATs described above in addition to
DNA-based features used in AbSplice-DNA.

We trained AbSplice-RNA models using a single CAT and all
CATs together. For the model using all CATs together we trained
AbSplice-RNAin a CAT-agnostic manner such that the model predicts
outliers regardless of the CAT source. This might be helpful in a diag-
nosticsetting as it might be that the available CAT differs from the CATs
that AbSplice-RNA was trained on.

Gene-level aggregation. For genes with multiple variants, we retained
the largest score per model.

Model performance per variant and outlier category

Variant categories were annotated with the Ensembl Variant Effect
Predictor (VEP)’.. For each variant, the most severe VEP annotation
was considered. For the ‘Exon’ category, the following VEP catego-
ries were grouped together: synonymous_variant, missense_variant,
stop_lost, stop_gained. For the nonexclusive splicing outlier catego-
ries, we defined ‘exon elongation’, ‘exon truncation’, ‘exon skipping’
using FRASER’s branch: https://github.com/c-mertes/FRASER/tree/
junction_annotation ref. 59. We defined the category ‘Any alternative
donor oracceptor choice’as any s or ¢, outlier, and the category ‘Any
splicing efficiency outlier’ as any @ outlier.

Enrichmentin known ALS genes

The enrichment of 165 manually curated genesinvolved in ALS***'was
computed as the proportion of high-splicing-impact variants within
those genes, divided by all the high-score predictions of the respective
models. Depletion was computed as 1/enrichment.

Proteomicsin ALS

We downloaded the protein intensities matrix from the ALS cohort
consisting of 4,442 proteins and 204 samples from the Answer ALS por-
tal. We considered the 178 affected individuals. Proteins with missing

values in more than 30% of the samples were filtered out, with 3,329
remaining. We thenran PROTRIDER®’, a denoising autoencoder-based
method to detect outliers on proteomics data. The encoding dimen-
sionwas optimized by injecting outliers. No covariates were provided.
Z-scores were extracted from the results table.

Depletion inloss-of-function intolerant genes

Forall possible rare SNVs (gnomAD MAF < 0.1%) in 19,534 protein cod-
inggenes, we computed AbSplice-DNA scores and obtained the SpliceAl
precomputed scores from Illumina BaseSpace. The loss-of-function
observed/expected upper bound fraction (LOEUF) scores were down-
loaded from https://gnomad.broadinstitute.org/downloads. Foreach
LOEUF decile we computed the proportion of high-splicing-impact
variants to the total sum of high-impact variants and divided it by the
proportion of rare variants in each decile.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

No primary data were generated for this study. Rare variants from gno-
mADv.3.1.2are publicly available at https://gnomad.broadinstitute.org.
The GTEx v8 dataset is available at (under dbGaP protection) https://
gtexportal.org/home. The ALS datasetis available at http://dataportal.
answerals.orgafter aregistrationand approval process. The mitochon-
drial datasetis described by Yépez et al.”’. Precomputed SpliceAl scores
are publicly available at Illumina Basespace, https://basespace.illu-
mina.com/s/otSPW8hnhaZR, after registration. SpliceMaps for all 49
GTExtissues and iPSC-derived spinal motor neurons from ALS (hg38)
are available at Zenodo, https://doi.org/10.5281/zenodo0.6387937.
Precomputed AbSplice-DNA scores (hg38) in all 49 GTEX tissues are
available at Zenodo, https://doi.org/10.5281/zenodo.6408331. Due
to potential donor re-identification when revealing rare variants, the
benchmark dataset cannot be shared without restrictions. Users with
accesstothe GTEx data canreproduce the benchmark using the code
repository below.

Code availability

SpliceMaps can be generated using the custom-written python pack-
age ‘splicemap’ (publicly available at: https://github.com/gagneurlab/
splicemap ref. 61). AbSplice predictions using the enhanced SpliceMap
annotation can be performed with the custom-written python pack-
age ‘absplice’ (publicly available at: https://github.com/gagneurlab/
absplice ref. 62). We also provide a fast implementation of comput-
ing SpliceAl predictions using a wrapper based on fast lookup from
a database of precomputed scores for existing variants and running
SpliceAlfor not precomputed variants at https://github.com/gagneur-
lab/spliceai_rocksdb ref. 63. Fast lookup of allgnomAD variants can be
performed with https://github.com/gagneurlab/gnomad_rocksdbref.
64. The analyses are available under https://github.com/gagneurlab/
AbSplice_analysis ref. 65.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Performance comparison with different outlier
detection methods and different differential splicing cutoffs. a, Distribution
ofthe area under the precision-recall curve across GTEx tissues (n = 49) of
different prediction methods (SpliceAl, SpliceAl using SpliceMap annotation,
SpliceAl using SpliceMap annotation along with quantitative reference levels

of splicing, MMSplice using GENCODE annotation, MMSplice using SpliceMap
annotation, MMSplice using SpliceMap annotation along with quantitative
reference levels of splicing, and the integrative model AbSplice-DNA) taking
asground truth 3 different aberrant splicing callers: FRASER, LeafcutterMD

and SPOT. A gene was considered aberrantly spliced if it contained at least one

significant splicing outlier reported by the aberrant splicing caller without
applying any additional replication or rare variant filter (Extended Data Fig. 4a
for FRASER). Center line, median; box limits, first and third quartiles; whiskers
spanall datawithin 1.5interquartile ranges of the lower and upper quartiles. P
values were computed using the paired one-sided Wilcoxon test. b, Precision-
recall curves comparing the overall prediction performance on all GTEx tissues
of thesame models asin a, using FRASER as the outlier caller and the rare variant
filter in Extended Data Fig. 4c with 250 bp together with different differential
splicing cutoffs, namely |A¥|=0.1,0.2,0.3.
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Extended Data Fig. 2| Splicing outliers with a rare variantin the vicinity are variant reduces the amount of singletons probably by filtering out technical
enriched for replicated events. a, Enrichment of replicated splicing outliers artifacts. Center line, median; box limits, first and third quartiles; whiskers
across tissues with respect to the distance to the nearest rare variant. Note that span all data within 1.5 interquartile ranges of the lower and upper quartiles.
thereis an enrichment up to adistance of 250 bp. ‘Number of tissues’ denotes ¢, Percentage of singletons (aberrant splicing events that are observed only in

the minimum number of tissues from an individual with a shared splicing outlier onetissue) among all outliers (in red) and among outliers with a rare variant
suchthat the outlier is considered to be replicated. b, Replication rate of aberrant ~ (inblue) for each tissue. There are nearly no replicated RNA-seq samples in the

splicing events between tissues (n = 49) of asample for all aberrant splicing GTEx dataset. Therefore, among all singleton events, genuinely tissue-specific
events (red) compared with aberrant splicing events that contain arare variant aberrant splicing events are hard to distinguish from non-reproducible technical
within a250 bp window (blue). Filtering for aberrant splicing events with arare artifacts.
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Extended Data Fig. 3| See next page for caption.
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Extended Data Fig. 3| Outlier filtering. Visualization of different cases for
therare variant outlier filter (corresponds to Filter 3in Extended Data Fig. 4).
a,Exons1,3and4 were annotated in SpliceMap. Exon 2 is a novel exon detected
onanindividual whose splice sites are not in SpliceMap. If there exists arare
variant within 250 bp of any splice site (in SpliceMap or not) that shares ajunction
with either the donor or acceptor site of the outlier event, the outlier passes the
‘rare variant filter’. Cases 1and 2: The individual has a rare variant within 250 bp of
either the donor site of exon 1or the acceptor site of exon 2, which are the splice
sites of the outlier junction. Importantly, exon 2 was not quantified by SpliceMap,
but the outlier filter solely depends on split reads. Case 3: The individual has a
rare variant within 250 bp of the donor site of exon 2. However, this donor site is
not part of the outlier event. Case 4: The individual has a rare variant within 250

bp of the acceptor site of exon 3, which forms a splicing junction with the donor
site of exon 1. Case 5: The individual has two rare variants, one further than 250 bp
ofany splicessite, the other within 250 bp of the acceptor site of exon 4. Notably,
avariant can be far from the outlier junction and still be involved in the outlier
event. b, Exon elongation detected as a splicing efficiency outlier. For splicing
efficiency outliers, only the affected splice-site with altered splicing efficiency

is considered for the variant filter. Case 1: The individual has arare variant within
250 bp of the donor site of exon 1. Case 2: The individual has a rare variant that
overlaps the acceptor site of the elongated exon 3, but is further than 250 bp from
the acceptor site of exon 3. Case 3: The individual has a rare variant within 250 bp
oftheacceptor site of exon 3. Case 4: The individual has a rare variant within 250
bp of the donor site of exon 3, but the donor is not related to the exon elongation.
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Extended Data Fig. 4 | Performance with different filters. Precision-recall
curve comparing the overall prediction performance on all GTEx tissues of
SpliceAl, SpliceAl using SpliceMap annotation, SpliceAl using SpliceMap
annotation along with quantitative reference levels of splicing, MMSplice using
GENCODE annotation, MMSplice using SpliceMap annotation, MMSplice using
SpliceMap annotation along with quantitative reference levels of splicing, and
theintegrative model AbSplice-DNA, using different filters for aberrantly spliced
genes. a, Filter 1: FRASER default cutoffs (|AW| > 0.3, FDR < 0.05,126,308 aberrant
events) b, Filter 2: same as a, but restricting to genes that are aberrantly spliced in
at least two different tissues from the same individual (32,886 aberrant events).
¢, Filter 3:sameas a, but restricting to genes that have a rare variant within 250 bp

of the splice sites (22,766 aberrant events). While the results are best with

Filter 3, the relative improvementsin terms of precision at the same recall
between the methods is the same as with Filter 2. In particular, having restricted
to variants 250 bp away from any detected split read boundary (Filter 3) did not
bias our analysis for the splice-site centric method MMSplice over SpliceAl.

d, After applyingFilter 3, outliers were stratified into ‘replicated’ (14,030
aberrant events), that is appearing in at least two different tissues of the same
individual, and ‘not replicated’ (8,736 aberrant events). Allmodels showed a
significantly higher performance for aberrant splicing events replicated in two or
more samples compared to those reported in asingle sample only.
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Extended Data Fig. 5| Variant scoring of SpliceAl, MMSplice, MMSplice +
SpliceMap and AbSplice-DNA. a, A gene model with 3 annotated exons in the
standard annotation (1,3 and 4) and 3 exons detected by SpliceMap (1,2 and 4).
SpliceAl scores for every bp in a 50 bp window of a variant (shown as red star) and
reports the maximum score independent of the distance to a junction. MMSplice
providesascoreinalO0 bp window around avariant aslong as thereisajunction
inthat window. b, Case with a variant within 100 bp of an annotated junction in
SpliceMap, but further than 100 bp from any exonin the standard annotation.

AbSplice-DNA:

MMSplice +SpliceMap is able to score the variant, while MMSplice is not. ¢, Case
withavariant within100 bp of an annotated exonin the standard annotation,

but further than100 bp from any exon in the SpliceMap. Therefore, MMSplice is
able to score the variant, while MMSplice + SpliceMap is not. d, The variant is not
within100 bp of any annotated junction in the standard annotation or SpliceMap.
Therefore neither MMSplice nor MMSplice + SpliceMap can score the variant.
However, SpliceAlis always able to score a variant. Consequently, AbSplice is
always able to score a variant.
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Extended Data Fig. 7| The variant effect depends on the reference isoform b, Distribution of W .¢in SpliceMap. Most of the introns are not alternatively
proportion. a, ¥ against Alogit(W) showing the non-linear splicing scaling law. spliced, so thereference level of those intronsis either 0 or 1. ¢, Cumulative
The mutation effect of a variant can lead to different changes in Win natural scale,  distribution function of the maximum difference of W, (defined as: max(¥,¢)
depending on the reference splicing level of the intron. For example, the same -min(¥,)) across tissues per intron. d, Heatmap of the W, of the most variable
variant canlead toalarge changein Wif W, isinitially at an intermediate introns (defined as: max(W,s) - min(W ) > 0.3) across tissues.

level and almost no change if W, is initially at an extreme value (here low).
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Extended Data Fig. 9 | Performance analysis of additional state-of-the

art models and AbSplice-DNA trained with different model methods.

a, Precision-recall performance of CADD-Splice, SQUIRLS, MTSplice, MMSplice
and SpliceAl. b, Distribution of the area under the precision-recall curve (auPRC)
across all GTEx tissues (n =49) of the AbSplice-DNA models trained with varying
feature sets using the modelsin a, that is ‘AbSplice-DNA (+ CADD-Splice)’
additionally used CADD-Splice scores during training. Center line, median; box
limits, first and third quartiles; whiskers span all data within 1.5 interquartile
ranges of the lower and upper quartiles. Shown in red is the AbSplice-DNA model

b Across tissues
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used in the manuscript. Models are sorted by auPRC. P-values were computed

using the paired two-sided Wilcoxon test. c-d, AbSplice-DNA was trained using

ageneralized additive model (GAM), random forest and logistic regression.
AbSplice-DNA with GAMis the one used in the manuscript. ¢, Precision-recall
curveacross all GTEx tissues. d, Distribution of the area under the precision-
recall curve of the models in c across tissues (n = 49). Center line, median; box
limits, first and third quartiles; whiskers span all data within 1.5 interquartile
ranges of the lower and upper quartiles.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig.10 | RNA-based predictions from CAT improve DNA-based
scores. a, Precision-recall curves comparing the overall prediction performance
onnon-accessible GTEx tissues using the gene-level FRASER p-values from the
CAT, AbSplice-RNA trained on a single CAT and AbSplice-DNA. Each panel shows
adifferent CAT and the number of matching samples in the non-accessible
tissues. b, Same as a, but for samples having RNA-seq from both blood and
fibroblasts. AbSplice-RNA (all CATs) was trained using RNA-seq data from blood,
fibroblasts and lymphocytes. Note that AbSplice-RNA (fibroblasts) gave a similar

performance as AbSplice-RNA (all CATs). We did not restrict the samples to the
ones also having lymphocytes as this would result in alow number of samples

(N =2,258). ¢, Model performance for genes not expressed or expressed in the
clinically accessible tissue fibroblasts. The cutoff for calling a gene expressed
was TPM > 1 (transcript per million). AbSplice-RNA improves for genes expressed
infibroblasts and remains on par with AbSplice-DNA for genes not expressed in
fibroblasts.
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Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.qg. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.
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Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.
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Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? [] Yes []No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.qg. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.
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Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pame any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.




Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
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Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents

ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)




Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
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used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).




Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.
Field strength Specify in Tesla
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,

slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ]Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ ] Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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