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Abstract

Background: Although the associations between genetic variations and lung cancer risk have 

been explored, the epigenetic consequences of DNA methylation in lung cancer development 

are largely unknown. Here, the genetically predicted DNA methylation markers associated with 

non–small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated.

Methods: The genetic prediction models for methylation levels based on genetic and methylation 

data of 1595 subjects from the Framingham Heart Study were established. The prediction 

models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC 

cases and 27,355 controls to identify the methylation markers, which were then replicated in 

independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a 

multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, 

and transcriptomics and investigation of the potential regulation pathways.

Results: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC 

risk (Bonferroni-corrected p ≤ 1.67 × 10−6) were originally identified. Of these, 16 CpGs remained 

significant in the validation stage (Bonferroni-corrected p ≤ 1.28 × 10−3), including four novel 

CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional 

biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be 

involved in regulatory pathways of NSCLC risk were identified.

Conclusions: Sixteen promising DNA methylation markers associated with NSCLC were 

identified. Changes of the methylation level at these CpGs might influence the development of 

NSCLC by regulating the expression of genes nearby.

• The epigenetic consequences of DNA methylation in lung cancer development are still 

largely unknown.

• This study used summary data of large-scale genome-wide association studies to 

investigate the associations between genetically predicted levels of methylation 

biomarkers and non–small cell lung cancer risk at the first time.

• This study looked at how well larotrectinib worked in adult patients with sarcomas 

caused by TRK fusion proteins.

• These findings will provide a unique insight into the epigenetic susceptibility 

mechanisms of lung cancer.

Keywords

association study; DNA methylation; gene expression; genetic prediction; non–small cell lung 
cancer risk

INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer and the top cause of cancer 

death worldwide.1 It is estimated that nearly 2.21 million new lung cancer cases and 1.80 

million new lung cancer deaths occurred in 2020, accounting for 11.4% and 18.0% of total 

cancer, respectively.1 In China, lung cancer is the leading type of cancer, with the highest 
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morbidity and mortality.2 Non–small cell lung cancer (NSCLC) accounts for approximately 

85% of total lung cancer cases and mainly includes adenocarcinoma (LUAD) and squamous 

cell carcinoma as subtypes.3 The development of lung cancer involves the interplay between 

environmental and genetic risk factors. Over the past decade, more than 45 genetic loci were 

identified for lung cancer risk by genome-wide association studies (GWASs).4-6 Epigenetics 

including DNA methylation has also been found to play a critical role in lung cancer 

pathogenesis.

Based on candidate strategy, early studies have identified some methylation markers 

potentially associated with lung cancer risk, such as hypermethylation at promoters 

of RASSF1, CDKN2A, MGMT, APC, and DAPK.7 Recent emerging epigenome-wide 

association studies also revealed several new methylation markers (e.g., cg05575921-

AHRR, cg03636183-F2RL3); however, more new findings were hindered by the limited 

sample size.8-10 Furthermore, because of selection bias, potential confounding, and reverse 

causation, the causal association of DNA methylation may be inconsistent with results from 

observational studies.11

DNA methylation is impacted by both environmental factors and genetic factors. Previous 

studies have identified multiple DNA methylation quantitative trait loci (meQTL),12,13 

suggesting DNA methylation at some CpGs could be predicted by genetic variants. This 

strategy is based on the random assortment of alleles during gamete formation and 

thus could avoid the effects of biases and reverse causation commonly encountered in 

conventional epidemiological studies. Yang et al developed new statistical models to predict 

DNA methylation via multiple genetic variants in a reference data set and applied them to 

the summary data of GWASs to investigate the association between genetically predicted 

DNA methylation and disease risk.14-17

Here, we will adopt the prediction method to identify new lung cancer-associated 

methylation markers based on 34,964 cases and 448,579 controls. The findings will 

contribute to reveal the epigenetic susceptibility mechanisms of NSCLC.

MATERIALS AND METHODS

Study design and participants

The overall design is exhibited in Figure 1. First, we trained the DNA methylation 

prediction models by using data from 1595 Framingham Heart Study (FHS) participants 

and then refined in 883 subjects of Women’s Health Initiative (WHI). After that, we 

selected the prediction models with qualified performance to assess the association 

between genetically predicted methylation markers and NSCLC risk, based on summary 

data of GWASs including 27,120 NSCLC cases and 27,355 controls (13,327 cases and 

13,328 controls of Chinese descent as well as 13,793 cases and 14,027 controls of 

European descent).6 For those identified methylation markers, we validated in external 

data sets with 7844 lung cancer cases and 421,224 controls from the UK Biobank (https://

pan.ukbb.broadinstitute.org) and Female Lung Cancer Consortium in Asia (FLCCA).18 

Basic information and clinical features of participants for these data sets are shown in 

Table S1. The Biobank Japan summary data (4050 lung cancer cases and 208,403 controls) 
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was used as an independent replication. Besides, we conducted a multi-omics functional 

annotation for the identified CpG sites by integrative analyses of epigenomics, genomics, 

and transcriptomics data obtained from a previous study19 or The Cancer Genome Atlas, and 

finally investigated the potential regulatory pathways.

DNA methylation prediction models training and refining

Here, 1595 unrelated European subjects with matched genetic and DNA methylation data 

in the FHS were used to construct DNA methylation prediction models (dbGaP: phs000342 

and phs000724). The detailed information about data sets and data process have been 

described elsewhere14-17 and are shown in Supporting Information S1. For each CpG site, 

we used genetic variants flanking a 2-Mb window to build a statistical model by the elastic 

net method (α = 0.5) in the “glmnet” package of R20 to predict DNA methylation residuals. 

An internal validation for each model was performed using 10-fold cross-validation. 

The RFHS
2 values, the square of correlation coefficient between measured and predicted 

methylation levels, were calculated to estimate the prediction performance of models.

Using the data from 883 genetically unrelated female participants of European descent 

derived from the WHI (dbGaP: phs001335, phs000675, and phs000315), we performed 

an external validation for the built methylation predictive models. The pipeline of data 

process was the same as that for the FHS data. The RW HI
2 values were calculated 

by Spearman’s correlation test. Furthermore, we selected the models with satisfactory 

prediction performance according to these criteria: (1) with a RFHS
2 ≥ 0.01 (≥10% correlation 

between predicted and measured methylation levels) in FHS; (2) with a RW HI
2 ≥ 0.01

in WHI; and (3) probes with no single-nucleotide polymorphism (SNPs) overlapped, 

considering that SNPs on the probes might have a potential impact on the methylation 

level estimation.21

Association analyses between predicted methylation and NSCLC risk

We used S-PrediXcan22 to evaluate the associations between genetically predicted 

methylation levels and NSCLC risk. In brief, the association indicator Z-score was estimated 

by this formula:

Zm ≈ ∑
s ∈ Modelm

wsm
σs
σm

β s

se β s

In the formula, wsm is the weight of SNPs in the prediction of the CpG σsm ⋅  and σm

are the estimated variances of SNPs and CpG βsm ⋅  and se(βs) are the GWAS regression 

coefficients and standard error of βs. We used summary data from 2 GWASs that had 

been generated from 27,820 European individuals and 26,655 Chinese individuals6 to 

estimate the associations between genetically predicted methylation levels with NSCLC 

risk. Considering the population heterogeneity, we conducted a fixed-effect meta-analysis of 

two populations using META v1.7 to identify the shared methylation markers; p ≤ .05 for 

Cochran’s Q statistic indicated a high degree of heterogeneity. We further filtered out those 
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CpGs with heterogeneity or inconsistent directions of effect size in two populations. Finally, 

we used a Bonferroni-corrected test to screen the statistically significant CpG sites (p ≤ 1.67 

× 10−6; 0.05/29,894). At the validation stage, we replicated the 39 CpGs by summary data 

of Pan-UK Biobank and FLCCA. The same strategy of meta-analysis was performed, and 

the Bonferroni-corrected test was again used to determine the passing CpG sites (p ≤ 1.28 × 

10−3; 0.05/39).

For replicated CpG sites, we assessed whether the observed associations were independent 

of lung cancer susceptibility variants identified in previous GWASs.4-6 Briefly, we used 

genome-wide complex trait analysis-conditional and joint analysis23 to reevaluate the 

betas and standard errors of lung cancer by adjusting the closest GWAS-identified risk 

variants, and then reran the S-PrediXcan analyses. Additionally, we conducted the subgroup 

analyses by histological type (squamous cell carcinoma and adenocarcinoma), smoking 

status (smoker and nonsmoker), and gender to explore the difference between subgroups. 

Heterogeneity across subgroups was estimated by Cochran’s Q test and p ≤ .05 was 

statistical threshold. Finally, given the potential ethnicity heterogeneity of model application, 

an external replication was conducted for those shared CpGs of combined populations and 

Asian-specific CpGs by GWAS summary data from the Biobank Japan.24

Systematic multi-omics functional annotation

We performed multi-omics functional annotations based on epigenomics, genomics, and 

transcriptomics data for the CpGs passing the validation. The types and sources of 

related annotation information are described in Table S2. For the epigenomics level, we 

used ANNOVAR to annotate the closest genes and regions of the identified CpGs; an 

extended annotation obtained from the Illumina 450K platform (GEO: GPL18809) was 

as a supplement. Moreover, the chromatin interactions, topologically associated domains, 

transcription factor binding sites, and histone mark were further annotated. For the 

genomics level, we assessed whether the corresponding cis-meQTL was overlapped with 

the expression quantitative trait loci (eQTL) in the Genotype-Tissue Expression. Six 

bioinformatic-predictive algorithms (Supporting Information S1) were used for evaluation 

of detrimental missense variants among these cis-meQTL.25 For transcriptomics level, we 

identified the methylation-related protein-encoding genes within a 1-Mb range of each CpG 

site by Spearman correlation coefficients (false-discovery-rate [FDR] corrected p ≤ .05). We 

assessed these methylation-related genes were of lung cancer–driver genes,25 lung cancer–

associated genes, or consistent with findings from transcriptome-wide association studies in 

lung cancer.26,27

To estimate the functional importance of these identified CpGs with NSCLC risk, a 

functional score system was constructed. One score was given if CpG met the corresponding 

criterion of each indicator (Table S3, Supporting Information S1). Altogether, functional 

score ranged from 0 to 10 in the epigenomics level (1 omics score given if score ≥ 5), from 

0 to 3 in the genomics level (1 omics score given if score ≥ 2), and from 0 to 7 in the 

transcriptomics level (1 omics score given if score ≥ 4). We classified the CpGs into three 

levels based on the omics scores: level A (3 scores), level B (2 scores), and level C (0 or 1 

score), indicating the functional importance from high to low.
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Integrative analysis for potential regulatory pathways

Based on gene expression of 108 tumor-adjacent tissues pairs from lung cancer in 

The Cancer Genome Atlas, we conducted the differential expression analyses for those 

methylation-related genes. The number and percentage of upregulation pairs were calculated 

by log2-transformed data of tumor and adjacent tissues. A Wilcoxon rank-sum test was 

used and FDR-corrected threshold of p ≤ .05 was statistically significant. Finally, we 

integrated the association between genetically predicted methylation and NSCLC risk, 

the correlation between DNA methylation and gene expression, and the relationship of 

differential expression between lung cancer tissues and adjacent normal tissues to elucidate 

the putative pathways through which DNA methylation affects the development of NSCLC.

This study was approved by the institutional review board of Nanjing Medical University. 

All data in this study were derived from previous studies, which were approved by the local 

internal review board or ethics committee.

RESULTS

DNA methylation prediction models

Based on individual-level genotyping and DNA methylation data from the FHS cohort, DNA 

methylation prediction models for 223,959 CpG were established, of which 81,352 models 

with a predictive performance (RFHS
2) of at least 0.01 were retained. Among these, 70,330 

models (86.45%) with good repeatability were observed in the WHI cohort (RW HI
2 ≥ 0.01), 

suggesting a high correlation between two cohorts (Pearson’s correlation r = 0.95, p ≤ .0001; 

Figure S1). Besides, methylation probes of 7284 had SNPs within the binding site, which 

were excluded. Totally, there were 63,046 CpGs remaining for the downstream analyses.

Association of genetically predicted methylation with NSCLC risk

At the screening stage, we did a fixed-effects meta-analysis for predicted associations of 

62,981 CpGs available in 27,120 NSCLC cases and 27,355 controls. After removing the 

CpGs with heterogeneity p ≤ .05 (n = 7626) and those without consistent effect directions 

(n = 25,371), a total of 29,894 CpGs remained. We observed that 39 CpGs located in 10 

loci were significantly associated with NSCLC risk (Bonferroni correction p ≤ 1.67 × 10−6, 

0.05/29,894) (Figure 2 and Table S4).

At the validation stage, we replicated the 39 CpGs using summary data of 7844 lung cancer 

cases and 421,224 controls. As shown in Table S5, 25 CpGs with the same effect direction 

were at p < .05, 16 of which met the Bonferroni correction (p ≤ 1.28 × 10−3, 0.05/39). 

Four of the replicated 16 CpGs (cg22795331, cg05012158, cg06752398, and cg19720302) 

were the first reported methylated loci associated with NSCLC risk and 12 were located 

in susceptibility regions reported previously (Figure 2 and Table 1). A positive association 

of 3 CpGs with NSCLC risk was detected (cg07493874, cg27028750, and cg06752398), 

whereas the other 13 CpGs were negatively associated with NSCLC (Table 1). However, 

we did not observe any of the 16 valid CpGs remaining significant (p ≤ 1.67 × 10−6) after 

adjusting GWAS-identified lung cancer susceptibility variants (Table S6). Additionally, the 

respective results of methylation markers derived from two populations were also exhibited 

Zhao et al. Page 8

Cancer. Author manuscript; available in PMC 2024 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Tables S7 and S8). Briefly, methylation markers of European descent were mainly located 

in the 5p15.33, 6p22.1, 6p21.33, and 15q25.1 regions. Of these, 5p15.33 was shared with 

the Chinese population, whereas the other markers in 2p23.1, 6p21.32, 11q23.3, 17q24.2, 

and 20q11.23 showed a racial difference. Finally, we observed 19 of 39 shared CpGs of 

combined populations (including 10 of 16 valid CpGs mentioned previously) and 12 of 15 

Asian-specific CpGs consistent with the Z score direction of the upstream analyses (p ≤ .05), 

especially in the 5p15.33 locus (Tables S9 and S10).

In subgroup analyses by histological type, smoking status, and gender (Table S11), we 

found that three of 16 valid CpGs (cg07507801, cg22795331, and cg18468235) showed the 

stronger associations in lung adenocarcinoma (p-het: 3.08 × 10−2; 1.42 × 10−4; and 6.73 × 

10−3). Interestingly, we found the obvious associations of cg08285415 (p = 7.41 × 10−13), 

cg05012158 (p = 2.40 × 10−13), and cg06752398 (p = 1.90 × 10−20) in smokers, whereas 

this was nonsignificant in nonsmokers. Moreover, cg06752398 had a stronger association in 

male participants (p-het = 2.26 × 10−9).

Systematically multi-omics functional annotation for lung cancer–associated CpG sites

We integrated the evidence of epigenomics, genomics, and transcriptomics and adopted 

a scoring strategy to systematically assess the functional importance of the 16 CpGs. 

As the heatmap shows, 5 CpGs were at “level A,” including cg11624060, cg26209169, 

and cg10441424 in 5p15.33, cg18468235 in 11q23.3. and cg19720302 in 17q24.2; four 

at “level B”; and seven at “level C” (Figure 3). In detail, the physical locations of 

the cg11624060, cg26209169, and cg10441424 were very close and located ~1.8 kb 

downstream of CLPTM1L and ~20.9 kb upstream of TERT. We observed the predicted 

enhancer signals of TERT and promotor/enhancer-related histone markers (Table S12). The 

meQTL of CpGs in 5p15.33 also overlapped with eQTL of CLPTM1L or NDUFS6 (Tables 

S13 and S14). Besides, two meQTLs of cg18468235 (rs2298831-C and rs17121881-T) were 

predicted as the detrimental mutations for JAML (Table S15). Most of the CpGs in 5p15.33 

were correlated with the expression of CLPTM1L and TERT, of which TERT is a known 

driver gene for cancer (Table S16). Finally, three methylation-related genes of cg18468235, 

cg08285415, and cg05012158 (JAML, IREB2, and PSMA4) were shown the consistent 

associations directions across CpG, gene expression, and lung cancer (Table S17).

Integrative analyses of multi-omics for CpG gene–NSCLC regulatory pathways

To estimate the effect direction of methylation-related genes, we performed a differential 

expression analysis for 75 unduplicated genes. The expression levels of 55 genes were 

significantly differential between lung tumor and adjacent normal tissues (FDR-corrected 

p ≤ .05) (Table S18). Then, we integrated all associations to estimate whether the DNA 

methylation at CpGs could affect the development of NSCLC through regulating the gene 

expression. There were 12 CpGs and 34 genes having the potential CpG gene–NSCLC 

regulatory pathways (Table S19). For example, cg11624060 (5p15.33) with a decreased 

NSCLC risk (Z score = −12.20, p = 3.01 × 10−34) was negatively associated with expression 

of TERT (Rho = −0.34, p = 1.05 × 10−22), TRIP13 (Rho = −0.34, p = 4.24 × 10−23), 

and MRPL36 (Rho = −0.36, p = 3.89 × 10−26). Meanwhile, these genes were respectively 

upregulated in 93.52% (p = 8.47 × 10−31), 93.52% (p = 4.83 × 10−27), and 90.74% (p = 
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2.71 × 10−23) tumor-adjacent tissues pairs, constructing a potential closed loop of regulatory 

pathway. The results of cg26209169 and cg10441424 were similar. Additionally, CpG sites 

and the genes nearby, such as cg18468235 with JAML and IL10RA, cg05012158 with 

CHRNA5 and PSMA4, and cg19720302 with KPNA2 and AMZ2, were also showing the 

CpG gene–NSCLC regulatory pathways (Table 2).

DISCUSSION

In this study, we initially observed 39 statistically significant CpGs and 16 of them, 

which were mainly located in six lung cancer susceptibility loci from previous GWASs4,6 

except for cg08285415 (15q24.3), passed the downstream validation. Given that predictive 

associations were calculated from GWAS summary data, it is rational that the methylation 

loci we identified are highly overlapped with loci reported by genetics studies. The ethnic 

characteristics of the distribution of methylation markers in two populations were consistent 

with the differences in genetics as well. Moreover, the results of two populations hinted 

the CpGs in 5p15.33 might be shared markers between European and Asian populations. 

We then retrieved 16 replicated CpGs in lung cancer risk–related publications from the 

EWAS Atlas,28 and found cg22795331 in 6q22.1, cg05012158 and cg06752398 in 15q25.1, 

and cg19720302 in 17q24.2 are located in novel methylation regions not reported by 

previous methylation studies. Besides, hypomethylation at cg22795331 and cg18468235 

was observed in colorectal cancer29 and papillary thyroid carcinoma,30 indicating a potential 

methylation phenomenon of multi-cancer risk.

By integrating the multi-omics results across DNA methylation, gene expression, and 

NSCLC, we revealed some pathways with consistent directions of association, which might 

be useful to expound the potential regulation mechanism. In 5p15.33 locus, TERT, one 

of the components of human telomerase, plays an important role in maintaining telomere 

length and activity. Nearly 90% of types of cancer have been found an upregulation of 

telomerase, contributing to cancer initiation.31 The TRIP13 gene promotes proliferation and 

invasion of lung cancer cells through AKT/mTORC1/c-Myc signaling,32 Wnt signaling, 

and epithelial-mesenchymal transition pathways.33 Some researchers observed silencing 

NDUFS6 significantly decreased reactive oxygen species levels in breast cancer, inhibiting 

the cancer-associated inflammation response.34 Furthermore, mitochondrial ribosomal 

protein L36 (MRPL36) is essential for maintaining mitochondrial functions and significantly 

increases in lung squamous cell carcinoma compared with normal lung tissue,35 playing a 

crucial role in energy metabolism for human cancer.36

For genes in 11q23.3, JAML (junction adhesion molecule like, alias AMICA1) expression 

was positively associated with infiltrating levels of diverse immune cells in LUAD.37 

As a crucial component of epithelial gammadelta T-cell biology, JAML also has broader 

implications in tissue homeostasis and repair.38 Protein encoding by IL10RA is a receptor 

for interleukin-10 and has been shown to mediate the immunosuppressive signal of 

interleukin-10, and inhibits the synthesis of proinflammatory cytokines, which may restrain 

lung adenocarcinoma aggressiveness.39 In 17q24.2, overexpression of KPNA2 flanking 

cg19720302 was observed in various cancers, including lung cancer.40 It has been shown 

to participate in cell differentiation, proliferation, apoptosis, and immune response, and thus 

Zhao et al. Page 10

Cancer. Author manuscript; available in PMC 2024 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



promote tumor formation and progression.40 Although most of the evidence from previous 

functional experimental studies supported the regulation pathways we identified, there still 

were some inconsistencies without results. For example, LPCAT1 (5p15.33) was reported 

upregulated in LUAD tissues and cell lines and promoted brain metastasis.41

In subgroup analyses by smoking status, we observed a significant association heterogeneity 

between smokers and nonsmokers at cg08285415, cg05012158, and cg06752398. 

Interestingly, the nicotinic receptor subunit gene CHRNA5 and tobacco addiction–related 

gene PSMA4 were located nearby and showed a putative regulatory pathway in our 

study. Previous studies detected an upregulation of the CHRNA5 gene in NSCLC tumor 

tissue42,43 and low levels of CHRNA5 mRNA were associated with lower risk for 

nicotine dependence and lung cancer,44 in agreement with our findings. However, some 

researchers found that lower expression of CHRNA5 was causally linked to increased 

lung cancer risk using genetic instruments.26,45 PSMA4 is an important component 

of the 20S core proteasome complex and related to tobacco addiction (recorded in 

GeneCards: https://www.genecards.org/). To our knowledge, chemicals in tobacco smoke, 

such as Benzo[a]pyrene and N-nitrosamines, lead to DNA damage, oxidative stress, and 

inflammation, and increase the likelihood of lung cancer.46,47 Therefore, it is reasonable 

to hypothesize that these genes may affect nicotine dependence and propensity to smoke 

and thus promote the initiation and growth of lung tumors indirectly.48 In addition, PSMA4 
has been also considered as a strong candidate mediator of lung cancer cell growth and 

directly affects lung cancer susceptibility through its modulation of cell proliferation and 

apoptosis.48

Considering that DNA methylation changes usually occur in the early stages of the disease 

and precedes pathological or imaging detection, methylation markers, as a noninvasive 

diagnostic tool, have a promising potential in clinical translation of lung cancer. For 

example, previous study observed an 8% improvement in discrimination of lung cancer 

by adding 6 CpGs into conventional risk prediction models.9 Similarly, methylation changes 

at candidate genes could initially identify the highest risk smokers for computed tomography 

screening for early detection of lung cancer,49 as well as help the detection of lung cancer 

and differentiation of nonmalignant diseases.50 These evidence hint that by integrating 

traditional risk factors, genetic variation, methylation changes, and other biomarkers of 

multi-omics, prediction models with high performance will be developed to identify 

potential high-risk populations and for early detection. Additionally, the methylation-related 

genes that we identified are also worthy of further investigation to search the potentially 

druggable targets and develop a novel targeted therapy.

This is the first study to identify the genetically predicted DNA methylation markers 

associated with NSCLC risk. To some degree, predicted models constructed by genetic 

instruments can control the selection bias, potential confounding, and reverse causation in 

traditional observational studies. Moreover, this approach has proved that the results were 

improved, compared with the single-meQTL SNP approach.14 However, some limitations 

must be acknowledged. Through meta-analysis, we identified the shared CpGs in the two 

populations, but the ethnic heterogeneity of model application could not be completely 

ignored in this study. Although we adopted a strategy of upstream filter plus downstream 
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multi-validation to control the effect of racial bias, we still should carefully draw that 

conclusion, and a further ethnicity-specific study is necessary to validate our findings. 

Second, the subjects used in the validation stage from FLCCA were only nonsmoker 

females, lacking the necessary samples of smokers and males. Furthermore, although 

most of the potential regulatory pathways can be supported by experimental or biological 

evidence, the findings are only data-driven evidence and still be affected by unknown 

confounding factors and reverse causality. Therefore, further mechanism studies are 

warranted to test the authenticity behind it.

In conclusion, we systematically assessed the associations of genetically predicted DNA 

methylation CpGs with NSCLC risk, and a total of 16 CpG sites were identified, including 

four novel CpGs. Our findings indicated that these CpGs are likely to affect the NSCLC 

risk via regulating the flanking genes related to cancer formation and development. The 

findings of this study may contribute to the understanding of the epigenetic susceptibility 

mechanisms of NSCLC risk, especially for the interplay of genetics and epigenetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Flowchart for the study design.
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FIGURE 2. 
Manhattan plot for 39 DNA methylation markers from meta-analysis associated with 

NSCLC risk. The green dotted line represents p = 1.67 × 10−6 (Bonferroni correction of 

29,894 tests, 0.05/29,894). Each dot represents the genetically predicted DNA methylation 

of one specific CpG site. The x axis represents the negative logarithm of the association 

p value, and the y axis represents the chromosome of the CpG site. The red represents 

the combined effect of 16 CpG sites passed the independent validation, and the diamond 

represents the novel CpG sites in regions not yet reported in previous lung cancer 

epigenome-wide association studies. NSCLC indicates non–small cell lung cancer.
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FIGURE 3. 
Heatmap of multi-omics functional annotation for the identified CpG sites. Here, we 

performed the functional annotation for 16 CpGs passed the validation based on evidence of 

epigenomics, genomics, and transcriptomics level. DHS indicates DNase I hypersensitivity 

sites; LC, lung cancer; TAD, topologically associated domains; TF, transcription factor; 

TSS1500, transcription start site upstream 1500 bp; TWAS, transcriptome-wide association 

study.
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