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Abstract

Background: Although the associations between genetic variations and lung cancer risk have
been explored, the epigenetic consequences of DNA methylation in lung cancer development

are largely unknown. Here, the genetically predicted DNA methylation markers associated with
non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated.

Methods: The genetic prediction models for methylation levels based on genetic and methylation
data of 1595 subjects from the Framingham Heart Study were established. The prediction

models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC
cases and 27,355 controls to identify the methylation markers, which were then replicated in
independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a
multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics,
and transcriptomics and investigation of the potential regulation pathways.

Results: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC
risk (Bonferroni-corrected p < 1.67 x 1075) were originally identified. Of these, 16 CpGs remained
significant in the validation stage (Bonferroni-corrected p < 1.28 x 1073), including four novel
CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional
biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be
involved in regulatory pathways of NSCLC risk were identified.

Conclusions: Sixteen promising DNA methylation markers associated with NSCLC were
identified. Changes of the methylation level at these CpGs might influence the development of
NSCLC by regulating the expression of genes nearby.

. The epigenetic consequences of DNA methylation in lung cancer development are still
largely unknown.

. This study used summary data of large-scale genome-wide association studies to
investigate the associations between genetically predicted levels of methylation
biomarkers and non—small cell lung cancer risk at the first time.

. This study looked at how well larotrectinib worked in adult patients with sarcomas
caused by TRK fusion proteins.

. These findings will provide a unique insight into the epigenetic susceptibility
mechanisms of lung cancer.

Keywords

association study; DNA methylation; gene expression; genetic prediction; non-small cell lung
cancer risk

INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer and the top cause of cancer
death worldwide.! It is estimated that nearly 2.21 million new lung cancer cases and 1.80
million new lung cancer deaths occurred in 2020, accounting for 11.4% and 18.0% of total
cancer, respectively. In China, lung cancer is the leading type of cancer, with the highest
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morbidity and mortality.2 Non—-small cell lung cancer (NSCLC) accounts for approximately
85% of total lung cancer cases and mainly includes adenocarcinoma (LUAD) and squamous
cell carcinoma as subtypes.3 The development of lung cancer involves the interplay between
environmental and genetic risk factors. Over the past decade, more than 45 genetic loci were
identified for lung cancer risk by genome-wide association studies (GWASs).46 Epigenetics
including DNA methylation has also been found to play a critical role in lung cancer
pathogenesis.

Based on candidate strategy, early studies have identified some methylation markers
potentially associated with lung cancer risk, such as hypermethylation at promoters

of RASSF1, CDKN2A, MGMT, APC, and DAPK." Recent emerging epigenome-wide
association studies also revealed several new methylation markers (e.g., cg05575921-
AHRR, cg03636183-F2RL.3); however, more new findings were hindered by the limited
sample size.8-10 Furthermore, because of selection bias, potential confounding, and reverse
causation, the causal association of DNA methylation may be inconsistent with results from
observational studies.!!

DNA methylation is impacted by both environmental factors and genetic factors. Previous
studies have identified multiple DNA methylation quantitative trait loci (meQTL),12.13
suggesting DNA methylation at some CpGs could be predicted by genetic variants. This
strategy is based on the random assortment of alleles during gamete formation and

thus could avoid the effects of biases and reverse causation commonly encountered in
conventional epidemiological studies. Yang et al developed new statistical models to predict
DNA methylation via multiple genetic variants in a reference data set and applied them to
the summary data of GWASSs to investigate the association between genetically predicted
DNA methylation and disease risk.14-17

Here, we will adopt the prediction method to identify new lung cancer-associated
methylation markers based on 34,964 cases and 448,579 controls. The findings will
contribute to reveal the epigenetic susceptibility mechanisms of NSCLC.

MATERIALS AND METHODS

Study design and participants

The overall design is exhibited in Figure 1. First, we trained the DNA methylation
prediction models by using data from 1595 Framingham Heart Study (FHS) participants
and then refined in 883 subjects of Women’s Health Initiative (WHI). After that, we
selected the prediction models with qualified performance to assess the association
between genetically predicted methylation markers and NSCLC risk, based on summary
data of GWASs including 27,120 NSCLC cases and 27,355 controls (13,327 cases and
13,328 controls of Chinese descent as well as 13,793 cases and 14,027 controls of
European descent).® For those identified methylation markers, we validated in external
data sets with 7844 lung cancer cases and 421,224 controls from the UK Biobank (https://
pan.ukbb.broadinstitute.org) and Female Lung Cancer Consortium in Asia (FLCCA).18
Basic information and clinical features of participants for these data sets are shown in
Table S1. The Biobank Japan summary data (4050 lung cancer cases and 208,403 controls)

Cancer. Author manuscript; available in PMC 2024 August 16.
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was used as an independent replication. Besides, we conducted a multi-omics functional
annotation for the identified CpG sites by integrative analyses of epigenomics, genomics,
and transcriptomics data obtained from a previous study® or The Cancer Genome Atlas, and
finally investigated the potential regulatory pathways.

DNA methylation prediction models training and refining

Association

Here, 1595 unrelated European subjects with matched genetic and DNA methylation data
in the FHS were used to construct DNA methylation prediction models (dbGaP: phs000342
and phs000724). The detailed information about data sets and data process have been
described elsewherel4-17 and are shown in Supporting Information S1. For each CpG site,
we used genetic variants flanking a 2-Mb window to build a statistical model by the elastic
net method (a = 0.5) in the “glmnet” package of R20 to predict DNA methylation residuals.
An internal validation for each model was performed using 10-fold cross-validation.

The R, values, the square of correlation coefficient between measured and predicted
methylation levels, were calculated to estimate the prediction performance of models.

Using the data from 883 genetically unrelated female participants of European descent
derived from the WHI (dbGaP: phs001335, phs000675, and phs000315), we performed

an external validation for the built methylation predictive models. The pipeline of data
process was the same as that for the FHS data. The Ry i values were calculated

by Spearman’s correlation test. Furthermore, we selected the models with satisfactory
prediction performance according to these criteria: (1) with @ R,..s> > 0.01 (210% correlation
between predicted and measured methylation levels) in FHS; (2) with a Ry, ,,,> > 0.01

in WHI; and (3) probes with no single-nucleotide polymorphism (SNPs) overlapped,
considering that SNPs on the probes might have a potential impact on the methylation

level estimation.?!

analyses between predicted methylation and NSCLC risk

We used S-PrediXcan?? to evaluate the associations between genetically predicted
methylation levels and NSCLC risk. In brief, the association indicator Z-score was estimated
by this formula:

Z,~ Wy =
c
s € Model,, " Se(ﬁ‘)

In the formula, w,, is the weight of SNPg in the prediction of the CpG ,. 5, and G,

are the estimated variances of SNPg and CpG ,,, . B and se(B,) are the GWAS regression
coefficients and standard error of .. We used summary data from 2 GWASs that had

been generated from 27,820 European individuals and 26,655 Chinese individuals® to
estimate the associations between genetically predicted methylation levels with NSCLC
risk. Considering the population heterogeneity, we conducted a fixed-effect meta-analysis of
two populations using META v1.7 to identify the shared methylation markers; p< .05 for
Cochran’s Q statistic indicated a high degree of heterogeneity. We further filtered out those

Cancer. Author manuscript; available in PMC 2024 August 16.
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CpGs with heterogeneity or inconsistent directions of effect size in two populations. Finally,
we used a Bonferroni-corrected test to screen the statistically significant CpG sites (p< 1.67
x 1075; 0.05/29,894). At the validation stage, we replicated the 39 CpGs by summary data
of Pan-UK Biobank and FLCCA. The same strategy of meta-analysis was performed, and
the Bonferroni-corrected test was again used to determine the passing CpG sites (p< 1.28 x
1073; 0.05/39).

For replicated CpG sites, we assessed whether the observed associations were independent
of lung cancer susceptibility variants identified in previous GWASs.#-6 Briefly, we used
genome-wide complex trait analysis-conditional and joint analysis23 to reevaluate the

betas and standard errors of lung cancer by adjusting the closest GWAS-identified risk
variants, and then reran the S-PrediXcan analyses. Additionally, we conducted the subgroup
analyses by histological type (squamous cell carcinoma and adenocarcinoma), smoking
status (smoker and nonsmoker), and gender to explore the difference between subgroups.
Heterogeneity across subgroups was estimated by Cochran’s Q test and p < .05 was
statistical threshold. Finally, given the potential ethnicity heterogeneity of model application,
an external replication was conducted for those shared CpGs of combined populations and
Asian-specific CpGs by GWAS summary data from the Biobank Japan.2

Systematic multi-omics functional annotation

We performed multi-omics functional annotations based on epigenomics, genomics, and
transcriptomics data for the CpGs passing the validation. The types and sources of

related annotation information are described in Table S2. For the epigenomics level, we
used ANNOVAR to annotate the closest genes and regions of the identified CpGs; an
extended annotation obtained from the Illumina 450K platform (GEO: GPL18809) was

as a supplement. Moreover, the chromatin interactions, topologically associated domains,
transcription factor binding sites, and histone mark were further annotated. For the
genomics level, we assessed whether the corresponding cis-meQTL was overlapped with
the expression quantitative trait loci (eQTL) in the Genotype-Tissue Expression. Six
bioinformatic-predictive algorithms (Supporting Information S1) were used for evaluation
of detrimental missense variants among these cis-meQTL.2° For transcriptomics level, we
identified the methylation-related protein-encoding genes within a 1-Mb range of each CpG
site by Spearman correlation coefficients (false-discovery-rate [FDR] corrected p < .05). We
assessed these methylation-related genes were of lung cancer—driver genes,2° lung cancer—
associated genes, or consistent with findings from transcriptome-wide association studies in
lung cancer.26:27

To estimate the functional importance of these identified CpGs with NSCLC risk, a
functional score system was constructed. One score was given if CpG met the corresponding
criterion of each indicator (Table S3, Supporting Information S1). Altogether, functional
score ranged from 0 to 10 in the epigenomics level (1 omics score given if score = 5), from
0 to 3 in the genomics level (1 omics score given if score = 2), and from 0 to 7 in the
transcriptomics level (1 omics score given if score = 4). We classified the CpGs into three
levels based on the omics scores: level A (3 scores), level B (2 scores), and level C (0 or 1
score), indicating the functional importance from high to low.

Cancer. Author manuscript; available in PMC 2024 August 16.
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Integrative analysis for potential regulatory pathways

RESULTS

Based on gene expression of 108 tumor-adjacent tissues pairs from lung cancer in

The Cancer Genome Atlas, we conducted the differential expression analyses for those
methylation-related genes. The number and percentage of upregulation pairs were calculated
by log2-transformed data of tumor and adjacent tissues. A Wilcoxon rank-sum test was

used and FDR-corrected threshold of p < .05 was statistically significant. Finally, we
integrated the association between genetically predicted methylation and NSCLC risk,

the correlation between DNA methylation and gene expression, and the relationship of
differential expression between lung cancer tissues and adjacent normal tissues to elucidate
the putative pathways through which DNA methylation affects the development of NSCLC.

This study was approved by the institutional review board of Nanjing Medical University.
All data in this study were derived from previous studies, which were approved by the local
internal review board or ethics committee.

DNA methylation prediction models

Based on individual-level genotyping and DNA methylation data from the FHS cohort, DNA
methylation prediction models for 223,959 CpG were established, of which 81,352 models
with a predictive performance (R, ,s>) of at least 0.01 were retained. Among these, 70,330
models (86.45%) with good repeatability were observed in the WHI cohort (R, ,,,% > 0.01),
suggesting a high correlation between two cohorts (Pearson’s correlation 7= 0.95, p< .0001;
Figure S1). Besides, methylation probes of 7284 had SNPs within the binding site, which
were excluded. Totally, there were 63,046 CpGs remaining for the downstream analyses.

Association of genetically predicted methylation with NSCLC risk

At the screening stage, we did a fixed-effects meta-analysis for predicted associations of
62,981 CpGs available in 27,120 NSCLC cases and 27,355 controls. After removing the
CpGs with heterogeneity p< .05 (n= 7626) and those without consistent effect directions
(n=25,371), a total of 29,894 CpGs remained. We observed that 39 CpGs located in 10
loci were significantly associated with NSCLC risk (Bonferroni correction p< 1.67 x 1075,
0.05/29,894) (Figure 2 and Table S4).

At the validation stage, we replicated the 39 CpGs using summary data of 7844 lung cancer
cases and 421,224 controls. As shown in Table S5, 25 CpGs with the same effect direction
were at p< .05, 16 of which met the Bonferroni correction (p< 1.28 x 1073, 0.05/39).

Four of the replicated 16 CpGs (cg22795331, cg05012158, cg06752398, and cg19720302)
were the first reported methylated loci associated with NSCLC risk and 12 were located

in susceptibility regions reported previously (Figure 2 and Table 1). A positive association
of 3 CpGs with NSCLC risk was detected (cg07493874, ¢g27028750, and cg06752398),
whereas the other 13 CpGs were negatively associated with NSCLC (Table 1). However,
we did not observe any of the 16 valid CpGs remaining significant (p< 1.67 x 107) after
adjusting GWAS-identified lung cancer susceptibility variants (Table S6). Additionally, the
respective results of methylation markers derived from two populations were also exhibited

Cancer. Author manuscript; available in PMC 2024 August 16.
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(Tables S7 and S8). Briefly, methylation markers of European descent were mainly located
in the 5p15.33, 6p22.1, 6p21.33, and 15925.1 regions. Of these, 5p15.33 was shared with
the Chinese population, whereas the other markers in 2p23.1, 6p21.32, 11923.3, 17q24.2,
and 20qg11.23 showed a racial difference. Finally, we observed 19 of 39 shared CpGs of
combined populations (including 10 of 16 valid CpGs mentioned previously) and 12 of 15
Asian-specific CpGs consistent with the Z score direction of the upstream analyses (p < .05),
especially in the 5p15.33 locus (Tables S9 and S10).

In subgroup analyses by histological type, smoking status, and gender (Table S11), we
found that three of 16 valid CpGs (cg07507801, cg22795331, and cg18468235) showed the
stronger associations in lung adenocarcinoma (p-het: 3.08 x 1072; 1.42 x 1074; and 6.73 x
1073). Interestingly, we found the obvious associations of cg08285415 (p= 7.41 x 10713),
905012158 (p = 2.40 x 10713), and cg06752398 (p = 1.90 x 1072%) in smokers, whereas
this was nonsignificant in nonsmokers. Moreover, cg06752398 had a stronger association in
male participants (p-het = 2.26 x 1079).

Systematically multi-omics functional annotation for lung cancer—associated CpG sites

We integrated the evidence of epigenomics, genomics, and transcriptomics and adopted

a scoring strategy to systematically assess the functional importance of the 16 CpGs.

As the heatmap shows, 5 CpGs were at “level A,” including cg11624060, cg26209169,

and ¢g10441424 in 5p15.33, cg18468235 in 11923.3. and ¢g19720302 in 17924.2; four

at “level B”; and seven at “level C” (Figure 3). In detail, the physical locations of

the cg11624060, cg26209169, and cg10441424 were very close and located ~1.8 kb
downstream of CLPTMIL and ~20.9 kb upstream of 7ERT. We observed the predicted
enhancer signals of 7ERT and promotor/enhancer-related histone markers (Table S12). The
meQTL of CpGs in 5p15.33 also overlapped with eQTL of CLPTMI1L or NDUFS6 (Tables
S13 and S14). Besides, two meQTLs of cg18468235 (rs2298831-C and rs17121881-T) were
predicted as the detrimental mutations for JAML (Table S15). Most of the CpGs in 5p15.33
were correlated with the expression of CLPTMIL and TERT, of which TERT is a known
driver gene for cancer (Table S16). Finally, three methylation-related genes of cg18468235,
cg08285415, and cg05012158 (JAML, IREBZ, and PSMA4) were shown the consistent
associations directions across CpG, gene expression, and lung cancer (Table S17).

Integrative analyses of multi-omics for CpG gene—NSCLC regulatory pathways

To estimate the effect direction of methylation-related genes, we performed a differential
expression analysis for 75 unduplicated genes. The expression levels of 55 genes were
significantly differential between lung tumor and adjacent normal tissues (FDR-corrected
p<.05) (Table S18). Then, we integrated all associations to estimate whether the DNA
methylation at CpGs could affect the development of NSCLC through regulating the gene
expression. There were 12 CpGs and 34 genes having the potential CpG gene—-NSCLC
regulatory pathways (Table S19). For example, cg11624060 (5p15.33) with a decreased
NSCLC risk (Z score = —12.20, p= 3.01 x 10734) was negatively associated with expression
of TERT (Rho = —0.34, p=1.05 x 10722), TRIP13(Rho = -0.34, p= 4.24 x 10723),

and MRPL36 (Rho = —0.36, p= 3.89 x 10726). Meanwhile, these genes were respectively
upregulated in 93.52% (p = 8.47 x 10731), 93.52% (p = 4.83 x 10727), and 90.74% (p =

Cancer. Author manuscript; available in PMC 2024 August 16.
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2.71 x 10723) tumor-adjacent tissues pairs, constructing a potential closed loop of regulatory
pathway. The results of cg26209169 and cg10441424 were similar. Additionally, CpG sites
and the genes nearby, such as cg18468235 with JAML and /L 10RA, cg05012158 with
CHRNAS and PSMA4, and 919720302 with KPNAZand AMZ2, were also showing the
CpG gene-NSCLC regulatory pathways (Table 2).

DISCUSSION

In this study, we initially observed 39 statistically significant CpGs and 16 of them,

which were mainly located in six lung cancer susceptibility loci from previous GWASs*6
except for cg08285415 (15g24.3), passed the downstream validation. Given that predictive
associations were calculated from GWAS summary data, it is rational that the methylation
loci we identified are highly overlapped with loci reported by genetics studies. The ethnic
characteristics of the distribution of methylation markers in two populations were consistent
with the differences in genetics as well. Moreover, the results of two populations hinted

the CpGs in 5p15.33 might be shared markers between European and Asian populations.
We then retrieved 16 replicated CpGs in lung cancer risk—related publications from the
EWAS Atlas,8 and found cg22795331 in 6¢22.1, cg05012158 and cg06752398 in 15¢25.1,
and ¢g19720302 in 17g24.2 are located in novel methylation regions not reported by
previous methylation studies. Besides, hypomethylation at cg22795331 and cg18468235
was observed in colorectal cancer?? and papillary thyroid carcinoma,30 indicating a potential
methylation phenomenon of multi-cancer risk.

By integrating the multi-omics results across DNA methylation, gene expression, and
NSCLC, we revealed some pathways with consistent directions of association, which might
be useful to expound the potential regulation mechanism. In 5p15.33 locus, TERT, one

of the components of human telomerase, plays an important role in maintaining telomere
length and activity. Nearly 90% of types of cancer have been found an upregulation of
telomerase, contributing to cancer initiation.3 The 7R/P13gene promotes proliferation and
invasion of lung cancer cells through AKT/mTORC1/c-Myc signaling,32 Wnt signaling,
and epithelial-mesenchymal transition pathways.33 Some researchers observed silencing
NDUFS6 significantly decreased reactive oxygen species levels in breast cancer, inhibiting
the cancer-associated inflammation response.3# Furthermore, mitochondrial ribosomal
protein L36 (MRPL36) is essential for maintaining mitochondrial functions and significantly
increases in lung squamous cell carcinoma compared with normal lung tissue,3° playing a
crucial role in energy metabolism for human cancer.36

For genes in 11g23.3, JAML (junction adhesion molecule like, alias AM/CAI) expression
was positively associated with infiltrating levels of diverse immune cells in LUAD.37

As a crucial component of epithelial gammadelta T-cell biology, JAML also has broader
implications in tissue homeostasis and repair.38 Protein encoding by /L Z0RA is a receptor
for interleukin-10 and has been shown to mediate the immunosuppressive signal of
interleukin-10, and inhibits the synthesis of proinflammatory cytokines, which may restrain
lung adenocarcinoma aggressiveness.3? In 17g24.2, overexpression of KPNAZ flanking
919720302 was observed in various cancers, including lung cancer.%0 It has been shown

to participate in cell differentiation, proliferation, apoptosis, and immune response, and thus

Cancer. Author manuscript; available in PMC 2024 August 16.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Zhao et al.

Page 11

promote tumor formation and progression.4? Although most of the evidence from previous
functional experimental studies supported the regulation pathways we identified, there still
were some inconsistencies without results. For example, LPCAT1 (5p15.33) was reported
upregulated in LUAD tissues and cell lines and promoted brain metastasis.*!

In subgroup analyses by smoking status, we observed a significant association heterogeneity
between smokers and nonsmokers at cg08285415, cg05012158, and cg06752398.
Interestingly, the nicotinic receptor subunit gene CHRNAS5 and tobacco addiction—related
gene PSMA4 were located nearby and showed a putative regulatory pathway in our

study. Previous studies detected an upregulation of the CHRNAS5 gene in NSCLC tumor
tissue*243 and low levels of CHRNA5 mRNA were associated with lower risk for

nicotine dependence and lung cancer,* in agreement with our findings. However, some
researchers found that lower expression of CHRNAS5 was causally linked to increased

lung cancer risk using genetic instruments.26:45 PSAMA4is an important component

of the 20S core proteasome complex and related to tobacco addiction (recorded in
GeneCards: https://www.genecards.org/). To our knowledge, chemicals in tobacco smoke,
such as Benzo[a]pyrene and N-nitrosamines, lead to DNA damage, oxidative stress, and
inflammation, and increase the likelihood of lung cancer.#6:47 Therefore, it is reasonable

to hypothesize that these genes may affect nicotine dependence and propensity to smoke
and thus promote the initiation and growth of lung tumors indirectly.® In addition, PSMA4
has been also considered as a strong candidate mediator of lung cancer cell growth and
directly affects lung cancer susceptibility through its modulation of cell proliferation and
apoptosis.*8

Considering that DNA methylation changes usually occur in the early stages of the disease
and precedes pathological or imaging detection, methylation markers, as a noninvasive
diagnostic tool, have a promising potential in clinical translation of lung cancer. For
example, previous study observed an 8% improvement in discrimination of lung cancer

by adding 6 CpGs into conventional risk prediction models.? Similarly, methylation changes
at candidate genes could initially identify the highest risk smokers for computed tomography
screening for early detection of lung cancer,® as well as help the detection of lung cancer
and differentiation of nonmalignant diseases.? These evidence hint that by integrating
traditional risk factors, genetic variation, methylation changes, and other biomarkers of
multi-omics, prediction models with high performance will be developed to identify
potential high-risk populations and for early detection. Additionally, the methylation-related
genes that we identified are also worthy of further investigation to search the potentially
druggable targets and develop a novel targeted therapy.

This is the first study to identify the genetically predicted DNA methylation markers
associated with NSCLC risk. To some degree, predicted models constructed by genetic
instruments can control the selection bias, potential confounding, and reverse causation in
traditional observational studies. Moreover, this approach has proved that the results were
improved, compared with the single-meQTL SNP approach.1* However, some limitations
must be acknowledged. Through meta-analysis, we identified the shared CpGs in the two
populations, but the ethnic heterogeneity of model application could not be completely
ignored in this study. Although we adopted a strategy of upstream filter plus downstream
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multi-validation to control the effect of racial bias, we still should carefully draw that
conclusion, and a further ethnicity-specific study is necessary to validate our findings.
Second, the subjects used in the validation stage from FLCCA were only nonsmoker
females, lacking the necessary samples of smokers and males. Furthermore, although
most of the potential regulatory pathways can be supported by experimental or biological
evidence, the findings are only data-driven evidence and still be affected by unknown
confounding factors and reverse causality. Therefore, further mechanism studies are
warranted to test the authenticity behind it.

In conclusion, we systematically assessed the associations of genetically predicted DNA
methylation CpGs with NSCLC risk, and a total of 16 CpG sites were identified, including
four novel CpGs. Our findings indicated that these CpGs are likely to affect the NSCLC
risk via regulating the flanking genes related to cancer formation and development. The
findings of this study may contribute to the understanding of the epigenetic susceptibility
mechanisms of NSCLC risk, especially for the interplay of genetics and epigenetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Prediction Model Training
DNA methylation ~ DNA genotype

Prediction Model Refining
DNA methylation ~ DNA genotype

Stage 1: Screening Stage
27,120 NSCLC cases vs. 27,355 controls

4
39 CpGs achieved Bonferroni-corrected
threshold (P < 1.67x10°%, 0.05/29,894)

v
Stage 2: Validation Stage
7,844 lung cancer cases vs. 421,224 controls

A 4

the validation (P < 1.28 x 10, 0.05/39)

A 4
Stage 3: Independent Replication
10 of 16 CpGs remained P less than 0.05

16 of 39 CpGs derived from stage 1 passed s

Part 1: DNA Methylation Predication Models Construction

1,595 participants in Framingham Heart Study (FHS)
DNA Methylation: Illumina HumanMethylation450 BeadChip
DNA Genotype: Affymetrix 500K Array

883 participants in Women’s Health Initiative (WHI)
DNA Methylation: Illumina HumanMethylation450 BeadChip
DNA Genotype: HumanOmnil-Quad_v1-0_B Array and
HumanOmniExpress Array

Part 2: Identification and Validation for NSCLC DNA Methylation Markers

Individuals of European Descent
TRICL-ILCCO OncoArray Project
(13,793 cases and 14,027 controls)

v

Individuals of Chinese Descent

NJMU GSA Project (10,248 cases and 9,298 controls)
NIMU GWAS (2,126 cases and 3,077 controls)

NJMU OncoArray GWAS (953 cases and 953 controls)

Individuals of European Descent
Pan-UK Biobank: Malignant neoplasm of bronchus and lung
(3,048 cases and 417,483 controls)

Individuals of Asian Descent
Female Lung Cancer Consortium in Asia (FLCCA)
(4,796 cases and 3,741 controls)

Individuals of Asian Descent
Biobank Japan: Lung cancer
(4,050 cases and 208,403 controls)

Part 3: Multi-Omics Functional Annotation and Integrative Analyses

G ics: MeQTL data from 4,170 participants in FHS

Multi-Omics Functional Annotation
9 of 16 CpGs showing the higher =~ -~
functional importance

\ 4
Multi-Omics Integrative Analyses

potential regulatory pathways

12 CpGs with 34 genes showing the -~ g

Epigenomics: DNA Methylation data from 907 lung cancer
cases in TCGA

Transcriptomics: Gene expression data from 1,119 lung
cancer cases in TCGA

CpG-NSCLC: Association analyses by prediction models
CpG-Gene: Correlation analyses in TCGA
Gene-NSCLC: Differential analyses of 108 lung tumor-
adjacent tissue pairs in TCGA

FIGURE 1.
Flowchart for the study design.
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FIGURE 2.
Manhattan plot for 39 DNA methylation markers from meta-analysis associated with

NSCLC risk. The green dotted line represents p = 1.67 x 1078 (Bonferroni correction of
29,894 tests, 0.05/29,894). Each dot represents the genetically predicted DNA methylation
of one specific CpG site. The x axis represents the negative logarithm of the association
pvalue, and the y axis represents the chromosome of the CpG site. The red represents
the combined effect of 16 CpG sites passed the independent validation, and the diamond
represents the novel CpG sites in regions not yet reported in previous lung cancer
epigenome-wide association studies. NSCLC indicates non—-small cell lung cancer.

Cancer. Author manuscript; available in PMC 2024 August 16.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Zhao et al.

N © B S @ xS AN N
N A\° ©° .\ AN\ AN
Sl F GC WP PO 5

S 0P
M Q

o

S
S F S >

9
©
SIS

> O
NS

N

O

R

OQ’Q SOOI D

©
q o VNS,
O D

Q

‘é"b
©°
A

—— T T T T L T

ceGistand [N
N

TSS1500
DHS

Promoter Associated
Predicted Enhancer
Chromatin Interaction
TAD

TFBS

Enhancer Histone

Promoter Histone

Nonsynonymous
EQTL (Cloest Gene)
EQTL (Other Gene)

CpG-Closest Gene .

Driver Gene .
Experimental Gene-LC ..
owasdb Gene-LC [
TWAS (Chinese) [

TWAS (European) .
Direction Consistency .

B Yes

FIGURE 3.

No [l LevelA M LevelB

sojwousbidg

SOIWOUSD

sojwoyduosuel |

[ LevelC

Heatmap of multi-omics functional annotation for the identified CpG sites. Here, we
performed the functional annotation for 16 CpGs passed the validation based on evidence of
epigenomics, genomics, and transcriptomics level. DHS indicates DNase | hypersensitivity
sites; LC, lung cancer; TAD, topologically associated domains; TF, transcription factor;
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