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Abstract
We study the solvability of certain linear nonhomogeneous equations containing
the logarithm of the sum of the two Schrödinger operators in higher dimensions
and demonstrate that under the reasonable technical assumptions the convergence
in L2(Rd) of the right sides yields the existence and the convergence in L2(Rd) of the
solutions. The equations involve the operators without the Fredholm property and we
use the methods of the spectral and scattering theory for the Schrödinger type opera-
tors to generalize the results of our preceding work Efendiev and Vougalter(Monatsh.
Math., 2023). As distinct from the many previous articles on the subject, for the
operators contained in our equations the essential spectra fill the whole real line.
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1 Introduction

Consider the equation

− �u + V (x)u − au = f , (1.1)
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where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential function V (x) tends to 0 at infinity. For a ≥ 0, the essential spectrum
of the operator A : E → F , corresponding to the left side of problem (1.1) contains
the origin. As a consequence, such operator does not satisfy the Fredholm property.
Its image is not closed, for d > 1 the dimension of its kernel and the codimension
of its image are not finite. The present article is devoted to the studies of the certain
properties of the operators of this kind.We recall that there was a significant amount of
work accomplished on the elliptic equations containing the non-Fredholm operators in
recent years (see [14], [15], [16], [17], [18], [30], [31], [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41], also [4]) alongwith their potential applications to the theory of the
reaction-diffusion problems (see [9], [10]). Fredholm structures, topological invariants
and their applications were covered in [11]. The article [12] is devoted to the finite and
infinite dimensional attractors for the evolution equations of mathematical physics.
The large time behavior of the solutions of a class of fourth-order parabolic equations
defined on unbounded domains using the Kolmogorov ε-entropy as a measure was
considered in [13]. The attractor for a nonlinear reaction- diffusion system in an
unbounded domain in the space of three dimensions was studied in [20]. The works
[21] and [27] are important for the understanding of the Fredholm and properness
properties of the quasilinear elliptic systems of the second order and of the operators
of this kind onRN . The exponential decay and Fredholmproperties in the second-order
quasilinear elliptic systems of equations were discussed in [22]. The articles [32] and
[38] deal with the solvability conditions for the linearized Cahn-Hilliard equations.
The work [37] is devoted to the studies of the Laplacian with transport from the point
of view of the non-Fredholm operators. Standing lattice solitons in the discrete NLS
equation with saturation were covered in [1]. Particularly, when the constant a = 0,
our operator A satisfies the Fredholm property in certain properly chosen weighted
spaces (see [2], [3], [4], [5], [6]). However, the situation of a nontrivial is significantly
different and the approach developed in these articles cannot be used.
One of the important issues concerning the problems with non-Fredholm operators is
their solvability. Let us address it in the following setting. Let fn be a sequence of
functions in the image of the operator A, so that fn → f in L2(Rd) as n → ∞. We
designate by un a sequence of functions from H2(Rd), so that

Aun = fn, n ∈ N.

Since the operator A fails to satisfy the Fredholm property, the sequence un may not
be convergent. Let us call a sequence un , so that Aun → f a solution in the sense
of sequences of equation Au = f (see [30]). If this sequence converges to a function
u0 in the norm of the space E , then u0 is a solution of this equation. The solution in
the sense of sequences is equivalent in this sense to the usual solution. However, in
the case of the non-Fredholm operators, this convergence may not hold or it can occur
in some weaker sense. In this situation, the solution in the sense of sequences may
not imply the existence of the usual solution. In the present article we will find the
sufficient conditions of equivalence of the solutions in the sense of sequences and the
usual solutions. In the other words, we will find the conditions on the sequences fn
underwhich the corresponding sequences un are strongly convergent. Solvability in the
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sense of sequences for a linear nonhomogeneous equation involving the logarithmic
Laplacian with and without a shallow, short-range scalar potential was covered in [19].
The present work is our modest attempt to generalize these results. In the first part of
the article we study the equation

[1
2
ln{−�x + V (x) − �y +U (y)}

]
u − au = f (x, y), x, y ∈ R

3, a ∈ R(1.2)

with a square integrable right side. The operator in the left side of problem (1.2)

HU , V := 1

2
ln{−�x + V (x) − �y +U (y)} − a (1.3)

is defined by means of the spectral calculus (see formulas (1.10) and (1.12)). Here and
further down the Laplace operators �x and �y are acting on the x and y variables
respectively. The sum of the two Schrödinger type operators contained in the right
side of (1.3) has the physical meaning of the cumulative hamiltonian of the two non
interacting three dimensional quantum particles in external potentials. The logarithmic
Laplacian ln(−�) is the operator with the Fourier symbol 2ln|p|. It arises as the formal
derivative ∂s |s=0(−�)s of the fractional Laplacians at s = 0. The operator (−�)s is
extensively used, for instance in the studies of the anomalous diffusion problems (see
e.g. [41] and the references therein). Spectral properties of the logarithmic Laplacian
in an open set of finite measure with Dirichlet boundary conditions were discussed in
[25] (see also [7]). The studies of ln(−�) are important for the understanding of the
asymptotic spectral properties of the family of the fractional Laplacians in the limit
s → 0+. In [23] it was demonstrated that such operator allows to characterize the s-
dependence of solution to fractional Poisson equations for the full range of exponents
s ∈ (0, 1). The scalar potential functions involved in operator HU , V are assumed to
be shallow and short-range, satisfying the assumptions analogous to the ones of [34]
and [35].

Assumption 1.1 The potential functions V (x),U (y) : R3 → R satisfy the estimates

|V (x)| ≤ C

1 + |x |3.5+ε
, |U (y)| ≤ C

1 + |y|3.5+ε

with a certain ε > 0 and x, y ∈ R
3 a.e. so that

4
1
9
9

8
(4π)−

2
3 ‖V ‖

1
9
L∞(R3)

‖V ‖
8
9

L
4
3 (R3)

< 1, (1.4)

4
1
9
9

8
(4π)−

2
3 ‖U‖

1
9
L∞(R3)

‖U‖
8
9

L
4
3 (R3)

< 1 (1.5)

and

√
cHLS‖V ‖

L
3
2 (R3)

< 4π,
√
cHLS‖U‖

L
3
2 (R3)

< 4π.
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Here and below C will stand for a finite positive constant and cHLS given on p.98 of
[26] is the constant in the Hardy-Littlewood-Sobolev inequality

∣∣∣∣
∫

R3

∫

R3

f1(x) f1(y)

|x − y|2 dxdy

∣∣∣∣ ≤ cHLS‖ f1‖2
L

3
2 (R3)

, f1 ∈ L
3
2 (R3).

The norm of a function f1 ∈ L p(Rd), 1 ≤ p ≤ ∞, d ∈ N is denoted as ‖ f1‖L p(Rd ).
By virtue of Lemma 2.3 of [35], under Assumption 1.1 above on the scalar potentials,
the operator

−�x + V (x) − �y +U (y)

on L2(R6) is self-adjoint and is unitarily equivalent to −�x − �y via the product of
the wave operators (see [24], [29])

�±
V := s − limt→∓∞eit(−�x+V (x))eit�x , �±

U := s − limt→∓∞eit(−�y+U (y))eit�y ,

where the limits are understood in the strong L2 sense (see e.g. [28] p.34, [8] p.90).
Therefore, operator (1.3) has only the essential spectrum, which fills the whole real
line and no nontrivial L2(R6) eigenfunctions. Thus, operator (1.3) fails to satisfy the
Fredholm property. Note, that in most of the works dealing with the non-Fredholm
operators mentioned above except [19] the essential spectra filled only semi-axes. The
functions of the continuos spectrum of the first differential operator involved in (1.3)
are the solutions to the Schrödinger equation

[−�x + V (x)]ϕk(x) = k2ϕk(x), k ∈ R
3,

in the integral form the Lippmann-Schwinger equation (see e.g. [28] p.98)

ϕk(x) = eikx

(2π)
3
2

− 1

4π

∫

R3

ei |k||x−y|

|x − y| (Vϕk)(y)dy (1.6)

and the orthogonality relations

(ϕk(x), ϕk1(x))L2(R3) = δ(k − k1), k, k1 ∈ R
3

hold. The integral operator contained in (1.6)

(Qϕ)(x) := − 1

4π

∫

R3

ei |k||x−y|

|x − y| (Vϕ)(y)dy, ϕ(x) ∈ L∞(R3).

We consider Q : L∞(R3) → L∞(R3) and its norm ‖Q‖∞ < 1 under our Assumption
1.1 via Lemma 2.1 of [35]. Note that this norm is bounded above by the k-independent
quantity I (V ), which is the left side of inequality (1.4). By virtue of Corollary 2.2 of



Solvability in the sense of sequences for some logarithmic… Page 5 of 19 32

[35] (see also [34]), under the given conditions for k ∈ R
3 we have ϕk(x) ∈ L∞(R3),

so that

‖ϕk(x)‖L∞(R3) ≤ 1

1 − I (V )

1

(2π)
3
2

. (1.7)

Similarly, for the second differential operator contained in (1.3) the functions of its
continuous spectrum solve

[−�y +U (y)]ηq(y) = q2ηq(y), q ∈ R
3,

in the integral formulation

ηq(y) = eiqy

(2π)
3
2

− 1

4π

∫

R3

ei |q||y−z|

|y − z| (Uηq)(z)dz, (1.8)

such that the orthogonality conditions

(ηq(y), ηq1(y))L2(R3) = δ(q − q1), q, q1 ∈ R
3

are valid. The integral operator involved in (1.8) is

(Pη)(y) := − 1

4π

∫

R3

ei |q||y−z|

|y − z| (Uη)(z)dz, η(y) ∈ L∞(R3).

For P : L∞(R3) → L∞(R3) its norm ‖P‖∞ < 1 under Assumption 1.1 by means
of Lemma 2.1 of [35]. As above, this norm can be bounded from above by the q-
independent quantity I (U ), which is the left side of (1.5). For q ∈ R

3, we have
ηq(y) ∈ L∞(R3) and

‖ηq(y)‖L∞(R3) ≤ 1

1 − I (U )

1

(2π)
3
2

. (1.9)

By means of the spectral theorem,

HU , Vϕk(x)ηq(y) = [ln(
√
k2 + q2) − a]ϕk(x)ηq(y). (1.10)

We designate by the double tilde sign the generalized Fourier transform with the
product of these functions of the continuous spectrum

˜̃f (k, q) := ( f (x, y), ϕk(x)ηq(y))L2(R6), k, q ∈ R
3. (1.11)

(1.11) is a unitary transform on L2(R6) and

HU , V f (x, y) =
∫

R6
[ln(

√
k2 + q2) − a] ˜̃f (k, q)ϕk(x)ηq(y)dkdq. (1.12)
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The inner product of two functions is denoted as

( f (x), g(x))L2(Rd ) :=
∫

Rd
f (x)ḡ(x)dx, d ∈ N, (1.13)

with a slight abuse of notations when the functions involved in (1.13) are not square
integrable. Indeed, if f (x) ∈ L1(Rd) and g(x) ∈ L∞(Rd), then the integral in the
right side of formula (1.13) makes sense. Let us recall the Fact 2 of [34]. Clearly, under
the conditions of Theorem 1.2 below, we have f (x, y) ∈ L1(R6). The functions of
the continuous spectra of our Schrödinger operators ϕk(x) and ηq(y) are bounded by
virtue of the Corollary 2.2 of [35]. Therefore, the left side of formula (1.14) below
is well defined. The sphere of radius r in R

d , d ∈ N centered at the origin is being
designated as Sdr . Our first main proposition is as follows.

Theorem 1.2 Let Assumption 1.1 hold, for the function

f (x, y) ∈ L2(R6), |x | f (x, y) ∈ L1(R6), |y| f (x, y) ∈ L1(R6).

Then problem (1.2) possesses a unique solution u(x, y) ∈ L2(R6) if and only if the
orthogonality relations

( f (x, y), ϕk(x)ηq(y))L2(R6) = 0 f or (k, q) ∈ S6ea (1.14)

are valid.

Let us turn our attention to the issue of the solvability in the sense of sequences for
our problem. The corresponding sequence of approximate equations with n ∈ N is
given by

[1
2
ln{−�x + V (x) − �y +U (y)}

]
un − aun = fn(x, y), x, y ∈ R

3 (1.15)

with a ∈ R. The square integrable right sides of (1.15) are converging to the right side
of (1.2) in L2(R6) as n → ∞. Our second main result is as follows.

Theorem 1.3 Let Assumption 1.1 hold, n ∈ N, for the functions

fn(x, y) ∈ L2(R6), |x | fn(x, y) ∈ L1(R6), |y| fn(x, y) ∈ L1(R6),

we have

fn(x, y) → f (x, y) in L2(R6), |x | fn(x, y) → |x | f (x, y) in L1(R6)

and

|y| fn(x, y) → |y| f (x, y) in L1(R6)
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as n → ∞. Moreover, the orthogonality conditions

( fn(x, y), ϕk(x)ηq(y))L2(R6) = 0 f or (k, q) ∈ S6ea (1.16)

hold for all n ∈ N. Then equations (1.2) and (1.15) have unique solutions u(x, y) ∈
L2(R6) and un(x, y) ∈ L2(R6) respectively, so that un(x, y) → u(x, y) in L2(R6)

as n → ∞.
The second part of the work deals with the studies of the equation

[1
2
ln{−�x − �y +U (y)}

]
u − au = φ(x, y), x ∈ R

d , y ∈ R
3 (1.17)

with d ∈ N, a ∈ R. The scalar potential function contained in (1.17) is shallow and
short-range under our Assumption 1.1 and the right side of (1.17) is square integrable.
The operator

LU := 1

2
ln{−�x − �y +U (y)} − a (1.18)

here is defined by virtue of the spectral calculus (see formulas (1.19) and (1.21)). The
sum of the free negative Laplacian and the Schrödinger type operator involved in the
right side of (1.18) has the physical meaning of the cumulative hamiltonian of a free d
dimensional particle and a three dimensional particle in an external potential. These
particles do not interact. As above, the operator

−�x − �y +U (y)

on L2(Rd+3) is self-adjoint and is unitarily equivalent to −�x − �y . Thus, operator
(1.18) has only the essential spectrum, which fills the whole real line similarly to the
two potential case and no nontrvial L2(Rd+3) eigenfunctions. Therefore, operator
(1.18) does not satisfy the Fredholm property. By virtue of the spectral theorem, we
have

LU
eikx

(2π)
d
2

ηq(y) = [ln(
√
k2 + q2) − a] eikx

(2π)
d
2

ηq(y). (1.19)

We consider another useful generalized Fourier transform with the standard Fourier
harmonics and the perturbed plane waves, namely

˜̂
φ(k, q) :=

(
φ(x, y),

eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

, k ∈ R
d , q ∈ R

3. (1.20)

(1.20) is a unitary transform on L2(Rd+3) and

LUφ(x, y) =
∫

Rd+3
[ln(

√
k2 + q2) − a] ˜̂φ(k, q)

eikx

(2π)
d
2

ηq(y)dkdq. (1.21)
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We have the following proposition.

Theorem 1.4 Let the potential function U (y) satisfy Assumption 1.1, d ∈ N, for the
function

φ(x, y) ∈ L2(Rd+3), |x |φ(x, y) ∈ L1(Rd+3), |y|φ(x, y) ∈ L1(Rd+3).

Then equation (1.17) admits a unique solution u(x, y) ∈ L2(Rd+3) if and only if the
orthogonality conditions

(
φ(x, y),

eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

= 0 f or (k, q) ∈ Sd+3
ea (1.22)

are valid.

The final statement of the work is devoted to the issue of the solvability in the sense of
sequences for problem (1.17). The corresponding sequence of approximate equations
with n ∈ N, x ∈ R

d , d ∈ N, y ∈ R
3, a ∈ R is given by

[1
2
ln{−�x − �y +U (y)}

]
un − aun = φn(x, y). (1.23)

The right sides of (1.23) are square integrable. They tend to the right side of (1.17) in
L2(Rd+3) as n → ∞.

Theorem 1.5 Let the potential function U (y) satisfy Assumption 1.1, n ∈ N, d ∈ N,
for the functions

φn(x, y) ∈ L2(Rd+3), |x |φn(x, y) ∈ L1(Rd+3), |y|φn(x, y) ∈ L1(Rd+3),

we have

φn(x, y) → φ(x, y) in L2(Rd+3), |x |φn(x, y) → |x |φ(x, y) in L1(Rd+3)

and

|y|φn(x, y) → |y|φ(x, y) in L1(Rd+3)

as n → ∞. Furthermore, the orthogonality relations

(
φn(x, y),

eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

= 0 f or (k, q) ∈ Sd+3
ea (1.24)

hold for all n ∈ N. Then problems (1.17) and (1.23) possess unique solutions u(x, y) ∈
L2(Rd+3) and un(x, y) ∈ L2(Rd+3) respectively, so that un(x, y) → u(x, y) in
L2(Rd+3) as n → ∞.

Let us proceed to the proofs of our propositions.
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2 Solvability in the sense of sequences with two scalar potentials

Proof of Theorem 1.2 First we demonstrate the uniqueness of solutions for problem
(1.2). Suppose it has two solutions u1(x, y), u2(x, y) ∈ L2(R6). Then their difference
w(x, y) := u1(x, y) − u2(x, y) ∈ L2(R6) satisfies the homogeneous equation

HU , Vw = 0.

Because operator (1.3) has no nontrivial square integrable zero modes in the whole
space as mentioned above, w(x, y) ≡ 0 in R6.
We apply the generalized Fourier transform (1.11) to both sides of equation (1.2) and
obtain

˜̃u(k, q) =
˜̃f (k, q)

ln
(√

k2+q2

ea

) , k, q ∈ R
3. (2.1)

For the technical purposes we introduce the spherical layer

Aδ := {(k, q) ∈ R
6 | ea(1 − δ) ≤

√
k2 + q2 ≤ ea(1 + δ)}, 0 < δ < 1, (2.2)

which enables us to express

˜̃u(k, q) =
˜̃f (k, q)

ln
(√

k2+q2

ea

)χAδ +
˜̃f (k, q)

ln
(√

k2+q2

ea

)χAc
δ
. (2.3)

Here and below Ac will denote the complement of a set A ⊆ R
d . The characteristic

function of a set A is being designated as χA and |A| will stand for the Lebesgue
measure of A. Let us define the sets

Ac+
δ := {(k, q) ∈ R

6 |
√
k2 + q2 > ea(1 + δ)}, (2.4)

Ac−
δ := {(k, q) ∈ R

6 |
√
k2 + q2 < ea(1 − δ)}, (2.5)

so that

Ac
δ = Ac+

δ ∪ Ac−
δ .

Clearly, the second term in the right side of (2.3) can be written as

˜̃f (k, q)

ln
(√

k2+q2

ea

)χAc+
δ

+
˜̃f (k, q)

ln
(√

k2+q2

ea

)χAc−
δ

. (2.6)
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We have the elementary upper bounds

| ˜̃f (k, q)|∣∣∣ln
(√

k2+q2

ea

)∣∣∣
χAc+

δ
≤ | ˜̃f (k, q)|

ln(1 + δ)
∈ L2(R6),

| ˜̃f (k, q)|∣∣∣ln
(√

k2+q2

ea

)∣∣∣
χAc−

δ
≤ | ˜̃f (k, q)|

−ln(1 − δ)
∈ L2(R6)

via the one of our assumptions. Obviously, we can write

˜̃f (k, q) = ˜̃f (ea, σ ) +
∫ √

k2+q2

ea

∂
˜̃f (s, σ )

∂s
ds. (2.7)

Here and further down σ will denote the angle variables on the sphere. Hence, we can
express the first term in the right side of (2.3) as

˜̃f (ea, σ )

ln
(√

k2+q2

ea

)χAδ +
∫ √

k2+q2

ea
∂

˜̃f (s,σ )
∂s ds

ln
(√

k2+q2

ea

) χAδ . (2.8)

Let us recall the result of Lemma 11 of [34]. Thus, under the stated assumptions we

have (∇k + ∇q)
˜̃f (k, q) ∈ L∞(R6). We estimate the second term in sum (2.8) from

above in the absolute value as

∣∣∣∣
∫ √

k2+q2

ea
∂

˜̃f (s,σ )
∂s ds

ln
(√

k2+q2

ea

) χAδ

∣∣∣∣ ≤ ‖(∇k + ∇q)
˜̃f (k, q)‖L∞(R6)

∣∣∣∣
√
k2 + q2 − ea

ln
(√

k2+q2

ea

)
∣∣∣∣χAδ ≤

≤ C‖(∇k + ∇q)
˜̃f (k, q)‖L∞(R6)χAδ ∈ L2(R6).

Therefore, it remains to consider the term

˜̃f (ea, σ )

ln
(√

k2+q2

ea

)χAδ . (2.9)

It can be easily verified that (2.9) belongs to L2(R6) if and only if ˜̃f (ea, σ ) is trivial.
This is equivalent to orthogonality conditions (1.14). �

We turn our attention to the establishing of the solvability in the sense of sequences
for our problem in the situation with two scalar potentials.
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Proof of Theorem 1.3 Evidently, each equation (1.15) admits a unique solution
un(x, y) ∈ L2(R6), n ∈ N by means of the result of Theorem 1.2 above. Let us
verify that the limiting orthogonality conditions

( f (x, y), ϕk(x)ηq(y))L2(R6) = 0 f or (k, q) ∈ S6ea (2.10)

are valid. Recall the Fact 2 of [34] and the proof of Theorem 2 of [40]. Hence, under
the stated assumptions we have fn(x, y) ∈ L1(R6), n ∈ N, so that

fn(x, y) → f (x, y) in L1(R6) as n → ∞. (2.11)

Using (1.16), (1.7), (1.9) and (2.11), we derive for (k, q) ∈ S6ea that

|( f (x, y), ϕk(x)ηq(y))L2(R6)| = |( f (x, y) − fn(x, y), ϕk(x)ηq(y))L2(R6)| ≤
≤ 1

(2π)3

1

1 − I (V )

1

1 − I (U )
‖ fn(x, y) − f (x, y)‖L1(R6) → 0, n → ∞,

such that formula (2.10) holds. By virtue of the result of Theorem 1.2, equation (1.2)
has a unique solution u(x, y) ∈ L2(R6).
Let us apply the generalized Fourier transform (1.11) to both sides of problems (1.2)
and (1.15). This gives us

˜̃u(k, q) =
˜̃f (k, q)

ln
(√

k2+q2

ea

) , ˜̃un(k, q) =
˜̃fn(k, q)

ln
(√

k2+q2

ea

)

with k, q ∈ R
3 and n ∈ N. Hence, ˜̃un(k, q) − ˜̃u(k, q) can be expressed as

˜̃fn(k, q) − ˜̃f (k, q)

ln
(√

k2+q2

ea

) χAδ +
˜̃fn(k, q) − ˜̃f (k, q)

ln
(√

k2+q2

ea

) χAc
δ
. (2.12)

Obviously, the second term in (2.12) is given by

˜̃fn(k, q) − ˜̃f (k, q)

ln
(√

k2+q2

ea

) χAc+
δ

+
˜̃fn(k, q) − ˜̃f (k, q)

ln
(√

k2+q2

ea

) χAc−
δ

. (2.13)

We have the trivial estimates from above

| ˜̃fn(k, q) − ˜̃f (k, q)|∣∣∣ln
(√

k2+q2

ea

)∣∣∣
χAc+

δ
≤ | ˜̃fn(k, q) − ˜̃f (k, q)|

ln(1 + δ)
,
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| ˜̃fn(k, q) − ˜̃f (k, q)|∣∣∣ln
(√

k2+q2

ea

)∣∣∣
χAc−

δ
≤ | ˜̃fn(k, q) − ˜̃f (k, q)|

−ln(1 − δ)
,

so that

∥∥∥∥
˜̃fn(k, q) − ˜̃f (k, q)

ln
(√

k2+q2

ea

) χAc+
δ

∥∥∥∥
L2(R6)

≤ ‖ fn(x, y) − f (x, y)‖L2(R6)

ln(1 + δ)
→ 0, n → ∞,

∥∥∥∥
˜̃fn(k, q) − ˜̃f (k, q)

ln
(√

k2+q2

ea

) χAc−
δ

∥∥∥∥
L2(R6)

≤ ‖ fn(x, y) − f (x, y)‖L2(R6)

−ln(1 − δ)
→ 0, n → ∞

as assumed. Let us recall orthogonality conditions (2.10) and (1.16). They yield that

˜̃f (ea, σ ) = 0, ˜̃fn(ea, σ ) = 0, n ∈ N,

such that

˜̃f (k, q) =
∫ √

k2+q2

ea

∂
˜̃f (s, σ )

∂s
ds, ˜̃fn(k, q) =

∫ √
k2+q2

ea

∂
˜̃fn(s, σ )

∂s
ds, n ∈ N.

Then the first term in (2.12) can be written as

∫ √
k2+q2

ea

[
∂

˜̃fn(s,σ )
∂s − ∂

˜̃f (s,σ )
∂s

]
ds

ln
(√

k2+q2

ea

) χAδ . (2.14)

Clearly, (2.14) can be bounded from above in the absolute value by

‖(∇k + ∇q)[ ˜̃fn(k, q) − ˜̃f (k, q)]‖L∞(R6)

∣∣∣∣
√
k2 + q2 − ea

ln
(√

k2+q2

ea

)
∣∣∣∣χAδ ≤

≤ C‖(∇k + ∇q)[ ˜̃fn(k, q) − ˜̃f (k, q)]‖L∞(R6)χAδ .

Note that under the given conditions, by means of Lemma 11 of [34], we have (∇k +
∇q)

˜̃fn(k, q), (∇k + ∇q)
˜̃f (k, q) ∈ L∞(R6). By virtue of Lemma 5 of [40],

‖(∇k + ∇q)[ ˜̃fn(k, q) − ˜̃f (k, q)]‖L∞(R6) → 0, n → ∞. (2.15)
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Evidently, we have the estimate for the norm

∥∥∥∥
∫ √

k2+q2

ea

[
∂

˜̃fn(s,σ )
∂s − ∂

˜̃f (s,σ )
∂s

]
ds

ln
(√

k2+q2

ea

) χAδ

∥∥∥∥
L2(R6)

≤

≤ C‖(∇k + ∇q)[ ˜̃fn(k, q) − ˜̃f (k, q)]‖L∞(R6)|Aδ| 12 → 0, n → ∞

due to (2.15). Therefore, un(x, y) → u(x, y) in L2(R6) as n → ∞, which completes
the proof of the theorem. �

In the final section of our article we consider the case of the logarithmic Schrödinger
operator involving the free Laplacian added to the three dimensional Schrödinger
operator.

3 Solvability in the sense of sequences with Laplacian and a single
potential

Proof of Theorem 1.4 To establish the uniqueness of solutions for our problem, we
suppose that (1.17) possesses two solutions u1(x, y), u2(x, y) ∈ L2(Rd+3). Then
their differencew(x, y) := u1(x, y)−u2(x, y) ∈ L2(Rd+3) solves the homogeneous
equation

LUw = 0.

Since operator (1.18) considered in the whole space does not have any nontrivial
square integrable zero modes as stated above, w(x, y) ≡ 0 in Rd+3.
Let us apply the generalized Fourier transform (1.20) to both sides of problem (1.17).
This gives us

˜̂u(k, q) =
˜̂
φ(k, q)

ln
(√

k2+q2

ea

) , k ∈ R
d , q ∈ R

3. (3.1)

We use the spherical layer

Bδ := {(k, q) ∈ R
d+3 | ea(1 − δ) ≤

√
k2 + q2 ≤ ea(1 + δ)}, 0 < δ < 1. (3.2)

This allows us to write

˜̂u(k, q) =
˜̂
φ(k, q)

ln
(√

k2+q2

ea

)χBδ +
˜̂
φ(k, q)

ln
(√

k2+q2

ea

)χBc
δ
. (3.3)
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Let us introduce the sets

Bc+
δ := {(k, q) ∈ R

d+3 |
√
k2 + q2 > ea(1 + δ)}, (3.4)

Bc−
δ := {(k, q) ∈ R

d+3 |
√
k2 + q2 < ea(1 − δ)}, (3.5)

such that

Bc
δ = Bc+

δ ∪ Bc−
δ .

Obviously, the second term in the right side of (3.3) can be expressed as

˜̂
φ(k, q)

ln
(√

k2+q2

ea

)χBc+
δ

+
˜̂
φ(k, q)

ln
(√

k2+q2

ea

)χBc−
δ

. (3.6)

We have the trivial estimates from above

| ˜̂φ(k, q)|∣∣∣ln
(√

k2+q2

ea

)∣∣∣
χBc+

δ
≤ | ˜̂φ(k, q)|

ln(1 + δ)
∈ L2(Rd+3),

| ˜̂φ(k, q)|∣∣∣ln
(√

k2+q2

ea

)∣∣∣
χBc−

δ
≤ | ˜̂φ(k, q)|

−ln(1 − δ)
∈ L2(Rd+3)

due to the one of our assumptions. Evidently, we have the formula

˜̂
φ(k, q) = ˜̂

φ(ea, σ ) +
∫ √

k2+q2

ea

∂
˜̂
φ(s, σ )

∂s
ds (3.7)

Thus, the first term in the right side of (3.3) can be written as

˜̂
φ(ea, σ )

ln
(√

k2+q2

ea

)χBδ +
∫ √

k2+q2

ea
∂

˜̂
φ(s,σ )

∂s ds

ln
(√

k2+q2

ea

) χBδ . (3.8)

We recall the result of Lemma 12 of [34]. Hence, under the given conditions we have

(∇k + ∇q)
˜̂
φ(k, q) ∈ L∞(Rd+3). Let us obtain the upper bound in the absolute value

on the second term in sum (3.8) as

∣∣∣∣
∫ √

k2+q2

ea
∂

˜̂
φ(s,σ )

∂s ds

ln
(√

k2+q2

ea

) χBδ

∣∣∣∣ ≤ ‖(∇k + ∇q)
˜̂
φ(k, q)‖L∞(Rd+3)

∣∣∣∣
√
k2 + q2 − ea

ln
(√

k2+q2

ea

)
∣∣∣∣χBδ ≤
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≤ C‖(∇k + ∇q)
˜̂
φ(k, q)‖L∞(Rd+3)χBδ ∈ L2(Rd+3),

so that it remains to analyze the term

˜̂
φ(ea, σ )

ln
(√

k2+q2

ea

)χBδ . (3.9)

It can be trivially checked that (3.9) is contained in L2(Rd+3) if and only if ˜̂
φ(ea, σ )

vanishes. This is equivalent to orthogonality relations (1.22). �

Let us conclude the article with demonstrating the solvability in the sense of sequences
for our equation containing the logarithmic Schrödinger operator when the free
Laplacian is added to a three dimensional Schrödinger operator.

Proof of Theorem 1.5 Each equation (1.23) has a unique solution un(x, y) ∈
L2(Rd+3), n ∈ N due to the result of Theorem 1.4 above. Let us demonstrate that the
limiting orthogonality relations

(
φ(x, y),

eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

= 0 f or (k, q) ∈ Sd+3
ea (3.10)

hold. By means of Fact 2 of [34], under the given conditions we have φn(x, y) ∈
L1(Rd+3), n ∈ N. We recall the argument of the proof of Theorem 3 of [40]. Hence,

φn(x, y) → φ(x, y) in L1(Rd+3), n → ∞. (3.11)

Let us use formulas (1.24), (1.9), (3.11) to obtain for (k, q) ∈ Sd+3
ea that

∣∣∣∣
(

φ(x, y),
eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

∣∣∣∣ =
∣∣∣∣
(

φ(x, y) − φn(x, y),
eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

∣∣∣∣ ≤

≤ 1

(2π)
d+3
2

1

1 − I (U )
‖φn(x, y) − φ(x, y)‖L1(Rd+3) → 0, n → ∞,

so that (3.10) is valid. By virtue of Theorem 1.4 above, problem (1.17) possesses a
unique solution u(x, y) ∈ L2(Rd+3).
We apply the generalized Fourier transform (1.20) to both sides of equations (1.17)
and (1.23) and obtain that

˜̂u(k, q) =
˜̂
φ(k, q)

ln
(√

k2+q2

ea

) , ˜̂un(k, q) =
˜̂
φn(k, q)

ln
(√

k2+q2

ea

)
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with k ∈ R
d , q ∈ R

3 and n ∈ N. Clearly, ˜̂un(k, q) − ˜̂u(k, q) can be written as

˜̂
φn(k, q) − ˜̂

φ(k, q)

ln
(√

k2+q2

ea

) χBδ +
˜̂
φn(k, q) − ˜̂

φ(k, q)

ln
(√

k2+q2

ea

) χBc
δ
. (3.12)

Evidently, the second term in (3.12) equals to

˜̂
φn(k, q) − ˜̂

φ(k, q)

ln
(√

k2+q2

ea

) χBc+
δ

+
˜̂
φn(k, q) − ˜̂

φ(k, q)

ln
(√

k2+q2

ea

) χBc−
δ

. (3.13)

Obviously, the inequalities

| ˜̂φn(k, q) − ˜̂
φ(k, q)|∣∣∣ln

(√
k2+q2

ea

)∣∣∣
χBc+

δ
≤ | ˜̂φn(k, q) − ˜̂

φ(k, q)|
ln(1 + δ)

,

| ˜̂φn(k, q) − ˜̂
φ(k, q)|∣∣∣ln

(√
k2+q2

ea

)∣∣∣
χBc−

δ
≤ | ˜̂φn(k, q) − ˜̂

φ(k, q)|
−ln(1 − δ)

hold. Hence, by means of the one of our assumptions

∥∥∥∥
˜̂
φn(k, q) − ˜̂

φ(k, q)

ln
(√

k2+q2

ea

) χBc+
δ

∥∥∥∥
L2(Rd+3)

≤ ‖φn(x, y) − φ(x, y)‖L2(Rd+3)

ln(1 + δ)
→ 0,

∥∥∥∥
˜̂
φn(k, q) − ˜̂

φ(k, q)

ln
(√

k2+q2

ea

) χBc−
δ

∥∥∥∥
L2(Rd+3)

≤ ‖φn(x, y) − φ(x, y)‖L2(Rd+3)

−ln(1 − δ)
→ 0

as n → ∞. Let us use orthogonality relations (3.10) and (1.24). Thus,

˜̂
φ(ea, σ ) = 0, ˜̂

φn(e
a, σ ) = 0, n ∈ N,

so that

˜̂
φ(k, q) =

∫ √
k2+q2

ea

∂
˜̂
φ(s, σ )

∂s
ds, ˜̂

φn(k, q) =
∫ √

k2+q2

ea

∂
˜̂
φn(s, σ )

∂s
ds, n ∈ N.

Then the first term in (3.12) is given by

∫ √
k2+q2

ea

[
∂

˜̂
φn(s,σ )

∂s − ∂
˜̂
φ(s,σ )

∂s

]
ds

ln
(√

k2+q2

ea

) χBδ . (3.14)
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Clearly, (3.14) can be estimated from above in the absolute value by

‖(∇k + ∇q)[ ˜̂φn(k, q) − ˜̂
φ(k, q)]‖L∞(Rd+3)

∣∣∣∣
√
k2 + q2 − ea

ln
(√

k2+q2

ea

)
∣∣∣∣χBδ ≤

≤ C‖(∇k + ∇q)[ ˜̂φn(k, q) − ˜̂
φ(k, q)]‖L∞(Rd+3)χBδ .

Let us recall Lemma 12 of [34]. Hence, under the stated assumptions, we have (∇k +
∇q)

˜̂
φn(k, q), (∇k + ∇q)

˜̂
φ(k, q) ∈ L∞(Rd+3). According to Lemma 5 of [40],

‖(∇k + ∇q)[ ˜̂φn(k, q) − ˜̂
φ(k, q)]‖L∞(Rd+3) → 0, n → ∞. (3.15)

Obviously, we have the upper bound for the norm

∥∥∥∥
∫ √

k2+q2

ea

[
∂

˜̂
φn(s,σ )

∂s − ∂
˜̂
φ(s,σ )

∂s

]
ds

ln
(√

k2+q2

ea

) χBδ

∥∥∥∥
L2(Rd+3)

≤

≤ C‖(∇k + ∇q)[ ˜̂φn(k, q) − ˜̂
φ(k, q)]‖L∞(Rd+3)|Bδ| 12 → 0, n → ∞

via (3.15). This implies that un(x, y) → u(x, y) in L2(Rd+3) as n → ∞, which
completes the proof of the theorem. �

Acknowledgements The authors express their gratitude to the anonymous referee for the useful remarks.

Author Contributions The corresponding author has read the Springer journal policies on author
responsibilities and submits this manuscript in accordance with those policies.

Funding There was no funding received for this article.

Data availibility All data generated or analyzed during this study are included in this published article.

Declarations

Conflict of interest The authors declare that they have no competing interests as defined by Springer, or
other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval The results of the work are applicable for both human and animal studies.

Consent for Publication The authors have read and understood the publishing policy, and submit this
manuscript in accordance with this policy. The results in this manuscript have not been published elsewhere,
nor are they under consideration by another publisher.

References

1. Alfimov, G.L., Korobeinikov, A.S., Lustri, C.J., Pelinovsky, D.E.: Standing lattice solitons in the
discrete NLS equation with saturation. Nonlinearity 32(9), 3445–3484 (2019)



32 Page 18 of 19 M. Efendiev, V. Vougalter

2. Amrouche, C., Girault, V., Giroire, J.: Dirichlet and Neumann exterior problems for the n-dimensional
Laplace operator: an approach in weighted Sobolev spaces. J. Math. Pures Appl. 76(1), 55–81 (1997)

3. Amrouche, C., Bonzom, F.: Mixed exterior Laplace’s problem. J. Math. Anal. Appl. 338(1), 124–140
(2008)

4. Benkirane, N.: Propriétés d’indice en théorie höldérienne pour des opérateurs elliptiques dans Rn , C.
R. Acad. Sci. Paris Sér. I Math., 307 (1988), 11, 577–580

5. Bolley, P., Pham, T.L.: Propriétés d’indice en théorie höldérienne pour des opérateurs différentiels
elliptiques dans Rn . J. Math. Pures Appl. 72(1), 105–119 (1993)

6. Bolley, P., Pham, T.L.: Propriété d’indice en théorie Höldérienne pour le problème extérieur de
Dirichlet. Comm. Partial Differ. Equ. 26(1–2), 315–334 (2001)

7. Chen, H., Weth, T.: The Dirichlet problem for the logarithmic Laplacian. Comm. Partial Diff. Equ.
44(11), 1100–1139 (2019)

8. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quantum
mechanics and global geometry. In: Texts and Monographs in Physics, p. 319. Springer-Verlag, Berlin
(1987)

9. Ducrot, A., Marion, M., Volpert, V.: Systemes de réaction-diffusion sans propriété de Fredholm. C. R.
Math. Acad. Sci. Paris 340(9), 659–664 (2005)

10. Ducrot, A., Marion, M., Volpert, V.: Reaction-diffusion problems with non-Fredholm operators. Adv.
Differ. Equ. 13(11–12), 1151–1192 (2008)

11. Efendiev, M.: Fredholm structures, topological invariants and applications. In: AIMS Series on Dif-
ferential Equations & Dynamical Systems, American Institute of Mathematical Sciences (AIMS).
Springfield, MO (2009)

12. Efendiev, M.: Finite and infinite dimensional attractors for evolution equations of mathemat-
ical physics. In: GAKUTO International Series. Mathematical Sciences and Applications, 33.
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