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ARTICLE

Loci for insulin processing and secretion
provide insight into type 2 diabetes risk
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Summary
Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic

islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of

genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 indepen-

dent signals at 30 loci (p value< 53 10�8), which validated 12 previously reported loci for proinsulin and ten additional loci previously

identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on

glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell

dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin

signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and

SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3

eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the

MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predis-

pose one to disease.
Introduction

Proinsulin is a precursor to insulin that is formed in

pancreatic beta cells. Some proinsulin is secreted into the

plasma during insulin biosynthesis and secretion, and
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circulating levels of proinsulin relative to insulin are

increased in individuals with type 2 diabetes (T2D) and

pre-diabetes.1–3 Elevated proinsulin relative to insulin in

individuals with pre-diabetes and T2D may be caused by

increased demand on beta cells to release insulin, thereby
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encouraging the premature release of granules that contain

a higher ratio of proinsulin to mature insulin.3 Conversely,

reduced proinsulin-to-insulin levels could result from de-

fects in proinsulin processing and folding prior to cleavage

into insulin, early defects in vesicular processing, or altered

proinsulin versus insulin degredation.4

Proinsulin can serve as a valuable intermediate pheno-

type to aid identification of genetic variations influencing

hyperglycemia and T2D.5 Additionally, the allelic effect di-

rections on glucose versus proinsulin can help differentiate

known T2D loci into those involved in beta-cell stress

versus defects in proinsulin processing and secretion.3,4,6–9

Previous proinsulin genome-wide association studies

(GWASs) reported 16 signals at 13 genomic loci. These

studies included a meta-analysis of 10,700 discovery par-

ticipants that reported ten loci,5 a subsequent exome array

study of Finnish individuals that identified two more loci

with low-frequency (minor allele frequency [MAF] < 5%)

variants,10 and a genetic study of participants with high

risk for cardiovascular diseases (CVDs) that identified

another locus.11 To provide a comprehensive genetic anal-

ysis of proinsulin and gain insight into glycemic trait

dysregulation, we performed a large meta-analysis of

proinsulin GWASs. This study quadrupled the sample

size of the largest previous meta-analysis and doubled the

number of proinsulin association signals, implicating
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candidate genes that regulate insulin processing and

glucose regulation.
Subjects and methods

Cohort/study description
As part of the Meta-Analysis of Glycemic and Insulin traits Con-

sortium (MAGIC), we conducted a meta-analysis of GWAS results

for fasting proinsulin levels from 16 European-ancestry cohorts in

up to 45,861 individuals (Table S1). Each of the 16 cohorts ob-

tained institutional review board approval, collected trait and ge-

notype data, assessed quality, and performed association analyses

(Table S1). Each cohort performed imputation and reported all var-

iants to Genome Reference Consortium Human Build 37/hg19.12

Study participants who had diabetes, were on a diabetes treat-

ment, or had fasting glucose R 7 mmol/L, 2-h glucose R

11.1 mmol/L, or hemoglobin A1c (HbA1c) R 6.5% (48 mmol/

mol) were excluded. Fasting proinsulin values (pmol/L) were nat-

ural logarithm transformed and analyses adjusted for age, sex,

population structure, and natural logarithm of fasting insulin

(study-level details of fasting requirements, sample collection,

and population structure adjustments are in Table S1). Study ana-

lysts ran models adjusted and unadjusted for body mass index

(BMI). To control for type I error rate of low-frequency variants

and to fully remove trait-covariate correlations, covariate adjust-

ment was performed in two steps.13 Analysts first modeled natural

logarithm of fasting proinsulin on all covariates and then inverse
r Medicine, Karolinska Institutet, Stockholm, Sweden; 39Oxford Biomedical

, Oxford, UK; 40Institute of Health and Wellbeing, Mental Health and Well-

gy, Helsinki University Hospital, Helsinki, Finland; 42Genetics of Complex

artment of Geriatrics, Uppsala University, Uppsala, Sweden; 44Department

i Milano, Milan, Italy; 45Cardiovascular Prevention Area, Centro Cardiolo-

rimary Health Care, Faculty of Medicine, University of Helsinki, Helsinki,

tetrics and Gynecology, Yong Loo Lin School of Medicine, National Univer-

Medicine, Massachusetts General Hospital, Boston, MA, USA; 50Programs in

A, USA; 51Department of Medicine, Harvard Medical School, Boston, MA,
3Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center

nit, Finnish Institute for Health and Welfare, Helsinki, Finland; 55PEDEGO

ulu, Finland; 56Department of Clinical and Molecular Medicine, Norwegian

spital, Helsinki University Hospital and University of Helsinki, Helsinki,

, BW, Germany; 59Department of Medicine, Division of General Internal

dical and Population Genetics, Broad Institute, Cambridge, MA, USA; 61Fac-

ealth Data Research UK, Gibbs Building, London, UK; 63Division of Cardio-

xford, UK; 64Exeter Centre of Excellence for Diabetes Research, Genetics of

ter, UK; 65MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research

K; 66Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty

ark; 67Department of HumanGenetics, University of Michigan, Ann Arbor,
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normal transformed the residuals. Analysts then modeled the in-

verse normally transformed residuals on the covariates again and

used these residuals in the final regression analysis. Analysts

used an additive model in a linear/linear mixed-model framework

with software including EPACTS, rvtests, and PLINK.14–16
Study-level quality control (QC)
Central analysts assessed each cohort input file for QC by using

EasyQC.17 We excluded variants with low minor allele count

(<3) or low minor allele frequency (MAF < 0.005), low call rate

(<95%), deviation from Hardy-Weinberg equilibrium (HWE) (p

value < 0.00001), low imputation quality (r2 < 0.3), or exception-

ally large effect standard errors (SE > 10). We also examined

quantile-quantile (QQ) plots by frequency bins, assessed trends

in standard errors relative to sample size, and checked allele fre-

quencies relative to their frequency in the Haplotype Reference

Consortium (HRC). Systematic QC issues for a study were resolved

prior to inclusion in the meta-analyses.
GWAS meta-analysis
We performed a fixed-effects inverse-variance-weighted meta-

analysis by using METAL18 with effect size estimates and SE. We

applied genomic control (GC) on summary statistics for each

study and also following the meta-analysis. Post-meta-analysis in-

clusion criteria required that variants were represented by at least

one-quarter of the maximum sample size, in at least two studies,

and had an overall MAF > 0.005; we analyzed 9,533,557 variants.

We defined a locus as a lead variant p value < 53 10�8 and all var-

iants within 500 kb. We used SWISS (https://github.com/statgen/

swiss) to identify the lead variant for each locus and combined

adjacent loci whose lead variants exhibited linkage disequilibrium

(LD) (r2 > 0.4) to form an extended locus region. All LD calcula-

tions are based on 1000 Genomes Europeans unless otherwise

noted. We estimated the proportion of variance explained by

each variant as 2b2f(1 � f), where b is the effect size from METAL

and f is the average effect allele frequency in the meta-analysis.

We summed the variants’ proportion of variance to estimate total

fasting proinsulin variance explained.
Approximate conditional analysis
To identify conditionally distinct signals within a locus, we per-

formed approximate conditional analysis by using GCTA.19,20 To

reduce collinearity, we excluded any variant from designation as

part of a distinct signal if its multiple regression r2 on the other

selected variants was greater than 0.8. Since no lead proinsulin

variant was within 1 Mb of another, and we noted regions of

extended LD surrounding at least one lead proinsulin variant,

we analyzed all variants within 1 Mb of each lead variant or the

extended locus region, whichever was larger. Given that GCTA de-

pends on use of a large representative LD reference panel, we

compared results from three genotype-level reference panels:

METSIM (n ¼ 10,070)21 and Fenland (n ¼ 8,925)22 are the two

largest studies in the meta-analysis that combined represent 38%

of the total sample size and Electronic MEdical Records and

GEnomics (eMERGE, dbGaP: phs000888.v1.p1) (n ¼ 6,795) is a

European-only general research subset.23 We defined a signal as

conditionally distinct if a variant from GCTA representing the

signal was identified with at least two of the three reference panels

and the variants were proxies of each other (r2> 0.8).We addition-

ally required variants to have consistent MAF across the summary

data and the reference panels; the MAF of rs181143493 near
286 The American Journal of Human Genetics 110, 284–299, Februar
ARAP1 was 0.12 in the proinsulin summary results and <0.01 in

both the METSIM and eMERGE reference panels and therefore

was excluded. Because of limitations in approximate conditional

analysis with an external LD reference panel, we report at most

three signals within a locus.
Colocalization with glycemic traits
We assessed signal overlap, or colocalization, between the 36 pri-

mary and secondary proinsulin signals and the conditionally

distinct signals reported by three T2D studies: the European-

ancestry component of DIAbetes Meta-ANalysis of Trans-Ethnic

association studies (DIAMANTE EUR),24 the full multi-ancestry

DIAMANTE analysis (DIAMANTE TA),25 Asian Genetic Epidemi-

ology Network (AGEN)/East Asian ancestry (EAS) DIAMANTE,26

and four European-ancestry Meta-Analysis of Glucose and Insu-

lin-related traits Consortium (MAGIC) glycemic traits: fasting

glucose, fasting insulin, HbA1c, and glucose 2 h after a glucose

challenge.27 We tested for colocalization by using two strategies:

colocalization based on pairwise LD (r2 > 0.8) between the lead

proinsulin variant and the lead variant for another trait and a

Bayesian multi-trait colocalization approach, either HyPrColoc28

or coloc.29 Because of differences in ancestry across proinsulin

versus AGEN and DIAMANTE TA, we ran HyPrColoc with proinsu-

lin, DIAMANTE EUR, and the four MAGIC traits. We observed

some issues with sensitivity when using HyPrColoc, including un-

stable trait clusters and deflated posterior probability for colocali-

zation (PPFC) values when multiple signals in the cluster are

marginally significant. While multi-trait HyPrColoc provided a

beneficial first-pass assessment for colocalization, sensitivity ana-

lyses using pairwise colocalization helped fine-tune the specific

studies that colocalized with our proinsulin data. Therefore, we

compared HyPrColoc’s multi-trait performance against a series of

two-trait colocalization analyses (i.e., proinsulin and results for

only one of the other five traits).

We performed HyPrColoc analyses by using predefined, approx-

imately independent LD blocks and included all traits that had at

least one variant with a p value < 10�4 within the LD block.30 We

selected the default HyPrColoc settings (prior.1¼ 0.0001, prior.2¼
0.98). We then ran sensitivity analyses, varying the regional align-

ment thresholds from 0.6 to 0.9, the alignment thresholds from

0.6 to 0.9, and the prior.2 from 0.98 to 0.995. Since Bayesian coloc-

alization methods may be sensitive to differences in ancestry

across studies, we separately performed two-trait coloc analyses be-

tween proinsulin signals and genome-wide significant DIAMANTE

TA signals and then proinsulin and AGEN T2D signals.We selected

coloc’s default prior probability of colocalization of 1 3 10�5 and

ran sensitivity analyses varying the priors across 100 values. The

cumulative sensitivity score for HyprColoc and coloc was the pro-

portion of scores that identified a colocalization and ranged from

0 (no sensitivity tests identify colocalization) to 1 (all sensitivity

tests identify colocalization). Given limitations in colocalization

approaches, we considered both Bayesian methods and LD; we

considered the signals colocalized if the Bayesian posterior proba-

bility of colocalization was >0.6 and either the sensitivity score

was >0.4 or LD r2 > 0.8 between lead variants.
Characterization of proinsulin locus effect directions to

other glycemic traits
To assess the direction of effect of proinsulin signals on T2D

and common glycemic traits, we looked up associations for pro-

insulin lead variants in the summary results for T2D in the
y 2, 2023

https://github.com/statgen/swiss
https://github.com/statgen/swiss


aforementioned three studies and the four glycemic traits in

MAGIC studies.24–27 If a proinsulin lead signal was associated

with T2D or fasting glucose (p value < 10�4) or at least two out-

comes in the same direction at a more lenient p value threshold

(p value < 0.01), we reported the consensus direction of effect.

To evaluate proinsulin variant association with additional glyce-

mic traits, we performed similar look ups in the summary results

for 34 glycemic traits analyzed in the METSIM study

(Table S2);10 briefly, these traits included proinsulin, glucose,

and insulin levels at fasting and after an oral glucose tolerance

test (30–120 min) and calculated areas under the curve measures

as well as C-peptide, HbA1c, insulinogenic index, Matsuda index,

and T2D. We analyzed the 34 traits as a subset of a total of 1,076

baseline traits for association with variants imputed via a reference

panel from a subset of METSIMwith whole-genome sequencing.31

For glucose and insulin metabolic traits, we excluded individuals

known to be diabetic at baseline. For each quantitative trait, we in-

verse normalized the trait, regressed on covariates (see Table S2 for

covariates per trait), and inverse normalized the residuals. We car-

ried out single-variant association tests by using a linear mixed

model in SAIGE v.0.39 (https://github.com/weizhouUMICH/

SAIGE) on the normalized residual trait values.

We additionally looked up proinsulin lead variants for loci not

identified in T2D or glycemic trait association results. We used

genetics.opentargets.org to find significant associations (p value

< 5 3 10�4) with the lead variants at these loci.32,33 The online

resource identifies associations from the GWAS Catalog,34 Neale

lab UK Biobank summary statistics (http://www.nealelab.is/

uk-biobank/), SAIGE UK Biobank summary statistics,35 and

FinnGen Summary statistics.36
Candidate genes
We obtained nearby genes’ islet expression specificity index (iESI)

deciles.37 iESI deciles indicate the extent to which genes are both

highly expressed in islets as well as the specificity for islet expres-

sion versus ubiquitous expression across other tissues; values near

zero represent genes that have low islet specificity or low expres-

sion in islets and values near 10 represent genes whose expression

is highly specific to islets.We define high iESI genes as those with a

decile above 7.We consolidated gene labels across sources by using

Entrez gene symbols.

Next, we performed colocalization of proinsulin signals with

two eQTL datasets. First, a human islet RNA sequencing (RNA-

seq)-based eQTL study from the InsPIRE consortium (n ¼ 420),38

which reported significant eQTLs for 4,312 genes (false discovery

rate [FDR] < 1%), and second, a subcutaneous adipose tissue

RNA-seq study from 434 Finnish men in the METSIM study,39

which reported at least one significant eQTL at 9,687 genes

(FDR < 1%). We used LD and HyPrColoc to test for colocalizations

with genes within 1 Mb of each lead proinsulin variant; as

described in the previous section, we used a multi-study frame-

work with proinsulin, European-ancestry DIAMANTE,24 MAGIC

glycemic traits,27 and one eQTL gene at a time, as well as testing

with only proinsulin and each gene. We considered the signals co-

localized if HyPrColoc PPFC scores were >0.6 and either the sensi-

tivity score was >0.4 or LD r2 > 0.8. We plotted signals by using

LocusZoom.40 Additionally, we performed summary Mendelian

randomization (SMR)41 to begin assessing potential causal rela-

tionships by using the genetic variants as an instrumental variable

to test for the causative effect of gene expression on proinsulin. To

account for multiple hypothesis testing, we used a Bonferroni-cor-
The America
rected significance threshold. To evaluate evidence of pleiotropy

from linkage between two distinct causal variants, we ran hetero-

geneity in dependent instruments (HEIDI) as part of the SMR

analysis.
Identification of extended credible set variants
We determined 99% credible sets by using regions 5500 kb

around each lead variant, using the following equation for Bayes

factors:

lnðBFÞf0:5
b2

SE2

where b and SE are the effect sizes and standard errors from the

meta-analysis.42 For loci with multiple significant signals, we

used the approximate conditional analysis option in GCTA, using

eMERGE as the reference panel, to define credible sets. Variants

with a low posterior probability are less likely to be causal; howev-

er, variants that are not represented or poorly represented in the

meta-analysis may erroneously be excluded from consideration

as a putative causal variant. We therefore extended the credible

set to include all variants in high LD (r2 > 0.8 in 1000 Genomes

European) with the lead variant. This approach recognizes variants

that are not included in the meta-analysis as a result of analytic or

technical factors (e.g., insertions or deletions [indels] are not

imputed byHRC and variants withMAF< 0.5%) as well as variants

that are poorly represented in our meta-analysis as a result of fac-

tors such as low sample size.
Coding and regulatory elements
To identify potential candidate genes for each signal, we consid-

ered protein-coding genes within �100 kb of the signal’s lead

variant,43 with special attention to genes for which a coding

variant is included in a signal’s extended credible set and those

that are highly and specifically expressed in islets. To identify

genes through coding effects, we obtained annotation for all var-

iants in our extended credible set by using Variant Effect Predictor

(VEP),44 Sorting Intolerant from Tolerant (SIFT),45 PolyPhen-2,46

Combined Annotation-Dependent Depletion (CADD),47,48 and

MutationAssessor.49 For all functional predication tools, we

selected default thresholds.

We tested proinsulin signals for regulatory element enrichment

by using the following epigenomic annotations: chromatin states

in islets, adipose, and skeletal muscle;50 bulk assay for transposase-

accessible chromatin with high-throughput sequencing (ATAC-

seq) peaks;38,51 islet single-nucleus ATAC-seq (sn-ATAC) cluster

peaks;52 and other islet chromatin annotations.53 We used the

genomic regulatory elements and GWAS overlap algorithm

(GREGOR) to evaluate global enrichment of proinsulin-associated

variants in epigenomic regulatory features.54 GREGOR observes

the signal overlap in annotated regulatory data among lead

GWAS variants or their LD proxies (r2 > 0.8) relative to expected

overlap-based control variants matched to index variants for num-

ber of variants in LD, minor allele frequency, and distance to near-

est gene.
Transcriptional activity assays
Cell culture

We cultured INS1-derived rat insulinoma pancreatic beta-islet 832/

13 cells (provided by C. Newgard, Duke University, Durham, NC)

in RPMI 1640 medium (Corning, NY) supplemented with 10%

FBS, 10 mM HEPES, 2 mM L-glutamine, 1 mM sodium pyruvate,
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and 50 mM 2-mercaptoethanol, and we cultured murine insuli-

noma MIN6 cells (provided by C. Rhodes, Joslin Diabetes Center,

Boston, MA) in high-glucose DMEM (Sigma-Aldrich, St. Louis,

MO) supplemented with 10% FBS, 1 mM sodium pyruvate, and

100 mM 2-mercaptoethanol. All cells were maintained in a humid-

ified incubator at 37�C with 5% CO2, and prior to transfection,

both cell lines tested negative for Mycoplasma contamination in

accordance with the MycoAlert Mycoplasma Detection Kit (Lonza,

Morristown, NJ).

Transcriptional reporter assays

To test for allelic differences in transcriptional activity, we per-

formed dual-luciferase reporter assays as previously described.55

We used genomic DNA of individuals homozygous for the refer-

ence or alternate alleles to amplify fragments surrounding

rs10501320, cloned amplicons into the firefly luciferase reporter

vector pgL4.23 (Promega, Madison, WI), and sequence-confirmed

five purified clones for each allele, in each orientation (Azenta,

Research Triangle Park, NC); alleles at additional variants within

each amplicon were kept consistent (Table S3). 24 h prior to trans-

fection, we seeded 832/13 and MIN6 cells in 24-well plates

(200,000 cells per well). Upon reaching 90% confluence, we trans-

fected 832/13 cells in duplicate with 500 ng of plasmid DNA and

1 mL of Lipofectamine 3000 (Thermo Fisher Scientific, Waltham,

MA) per well, and we transfected MIN6 cells in duplicate with

250 ng of plasmid DNA and 1 mL Lipofectamine LTX (Thermo

Fisher Scientific) per well; we co-transfected both 832/13 and

MIN6 cells with 80 ng of phRL-TK Renilla (Promega) per well.

We used two independent preparations of empty vector pgL4.23

as negative controls. After 48 h, we performed dual-luciferase re-

porter assays (Promega), normalized luciferase to Renilla, and

calculated fold-change relative to empty vector controls by using

two-sided t tests assuming equal variance (a ¼ 0.05). We indepen-

dently repeated transfections on different days and observed

consistent results. Results show ten biological replicates (separate

transfections) and two averaged technical replicates (luciferase

and Renilla readings).
Results

Identification of proinsulin association signals

We identified 28 loci associated at genome-wide significance

(p value < 5 3 10�8) with proinsulin adjusted for BMI,

including 16 loci >500 kb away from a previously reported

proinsulin association (Tables 1 and S4, Figures S1 and S2).

Combined, the 28 lead variants explained an estimated

8.9% of the total proinsulin variance in the meta-analysis,

and the estimated percent of trait variance explained by

eachvariant ranged from2.1%(STARD10) to0.07%(JARID2).

Association results for fasting proinsulin without BMI

adjustment yielded results similar to those obtained in

the BMI-adjusted analysis (Pearson correlation of effect

estimates ¼ 0.97; Figure S3 and Table S5). Variants at two

additional loci, SLC2A10 and BCL11A, which narrowly

missed the significance threshold in the analysis with

BMI adjustment (p value ¼ 6 3 10�8 and 1.5 3 10�7,

respectively) attained genome-wide significance in the

analysis without BMI adjustment (Table 1).

We performed subsequent approximate conditional

analysis and identified six additional signals at genome-
288 The American Journal of Human Genetics 110, 284–299, Februar
wide significance located within 500 kb of the lead variant

of five known proinsulin loci near STARD10, MADD,

PCSK1, SGSM2, and DDX31 (Tables 2 and S6, Figures S4

and S5). We identified three previously reported signals

near MADD, including one signal that consists of a proin-

sulin-associated10 nonsense variant (rs35233100) that is

now genome-wide significant after conditioning on the

lead signal (rs10501320). Both the primary and secondary

signals at the SGSM2 locus have been previously re-

ported.5,10,11 We also identify secondary signals located

near STARD10, PCSK1, and DDX31. At DDX31, although

both signals (rs368476 and rs7864386) were within 50 kb

of the previously reported female-specific DDX31 signal

(rs306549),11 neither was in high LD with the previously

reported lead variant (r2 < 0.1, Figure S5),5 validating the

DDX31 locus, but not the previously reported signal. For

subsequent analyses, unless otherwise stated, we included

the 28 primary signals and six conditionally distinct sig-

nals for proinsulin adjusted for BMI, as well as the two sig-

nals for proinsulin not adjusted for BMI, for a total of 36

signals at 30 loci.

This meta-analysis replicated four low-frequency (MAF

< 0.05) proinsulin-associated signals originally identified

in an exome array analysis of Finnish participants in the

METSIM exome study10 (Table S7, Figures S6 and S7). We

validated missense or nonsense lead variants in TBC1D30,

SGSM2, and MADD, all of which were genome-wide signif-

icant in the meta-analysis even after excluding METSIM.

The signal at the KANK1 locus was only genome-wide sig-

nificant in the full meta-analysis (lead variant rs1463

75546, p value ¼ 4.3 3 10�11), as the lead variant is rare

in general European-ancestry populations but enriched in

Finnish-ancestry populations (1000 Genomes MAF ¼
0.003 in 1000 Genomes European-ancestry populations

versus 0.015 in the Finnish population). The replications

of associations at the four low-frequency variants highlight

the utility of exome arrays in finding low-frequency vari-

ants and the challenges in replicating variants that are

not equally represented across populations.
Proinsulin signals and other glycemic traits

We compared all 36 proinsulin signals described above to

up to 568 GWAS signals identified for T2D24–26 and up to

218 signals in four glycemic traits including fasting and

2-h glucose, HbA1c, and fasting insulin27 (Tables S8–S10).

We performed colocalization analysis and identified coloc-

alizations for 15 proinsulin signals with signals for T2D

(N ¼ 12) or glycemic traits (N ¼ 9): six previously known

proinsulin signals near STARD10, MADD, TCF7L2,

SGSM2, SLC30A8, and C2CD4A/B and nine additional pro-

insulin signals near SIX3, TLE1, RNF6, PAM, NKX6-3,

FAM185A, BCL11A, GIPR, and FAM46C. We also identified

colocalizations between an additional ten T2D or glycemic

trait loci that were associated with proinsulin at a less strin-

gent significance threshold (53 10�8< p value< 13 10�4)

(Table S8). Eight proinsulin loci (STX16, DLC1, SLC7A14,
y 2, 2023



Table 1. Thirty loci associated with plasma proinsulin levels

Locus rs ID Chr Position EA/NEA EAF Beta Std Err p value

SIX3 rs12712928 2 45,192,080 C/G 0.16 0.09 0.01 1.5 3 10�21

ELAPOR1 rs74920406 1 109,704,525 C/T 0.96 0.15 0.02 3.7 3 10�16

TLE1 rs2796441 9 84,308,948 G/A 0.59 0.05 0.01 9.6 3 10�14

TPD52 rs1346146 8 81,047,278 T/C 0.45 0.05 0.01 2.0 3 10�13

GIPR rs10423928 19 46,182,304 A/T 0.22 0.06 0.01 7.6 3 10�12

STX16 rs218473 20 57,235,980 C/T 0.32 0.05 0.01 1.5 3 10�10

DLC1 rs2977105 8 12,794,444 C/T 0.82 0.06 0.01 1.0 3 10�9

FAM46C rs826415 1 118,153,977 T/G 0.67 0.04 0.01 1.3 3 10�9

PCSK2 rs111925767 20 17,331,621 T/G 0.23 0.05 0.01 1.6 3 10�9

RNF6 rs10507349 13 26,781,528 G/A 0.78 0.05 0.01 1.9 3 10�9

PAM rs75457267 5 102,658,770 C/T 0.96 0.10 0.02 2.2 3 10�9

SLC7A14 rs56252324 3 170,334,547 A/C 0.87 0.06 0.01 5.4 3 10�9

WIPI1 rs2302783 17 66,447,073 C/T 0.72 0.04 0.01 1.1 3 10�8

NKX6-3/ANK1 rs13266210 8 41,533,514 G/A 0.21 0.05 0.01 2.1 3 10�8

FAM185A rs10228495 7 102,440,184 C/T 0.45 0.04 0.01 2.9 3 10�8

JARID2 rs16876519 6 15,496,122 A/G 0.85 0.05 0.01 3.5 3 10�8

Previously reported loci

STARD10 rs77464186 11 72,460,398 C/A 0.19 0.26 0.01 3.7 3 10�202

MADD rs10501320 11 47,293,799 G/C 0.76 0.21 0.01 1.3 3 10�165

PCSK1 rs13169290 5 95,729,406 A/G 0.28 0.12 0.01 3.3 3 10�59

CDC4A/B rs11856307 15 62,399,093 A/C 0.54 0.09 0.01 6.4 3 10�40

TCF7L2 rs7903146 10 114,758,349 T/C 0.26 0.10 0.01 1.9 3 10�39

SLC30A8 rs4300038 8 118,217,915 G/A 0.66 0.09 0.01 4.1 3 10�39

LARP6 rs113350503 15 71,111,437 G/A 0.57 0.06 0.01 6.5 3 10�18

DDX31 rs368476 9 135,456,552 A/G 0.65 0.07 0.01 7.6 3 10�21

SNX7 rs6702126 1 99,199,954 G/A 0.65 0.04 0.01 8.7 3 10�10

SGSM2 rs61741902 17 2,282,779 A/G 0.01 0.47 0.03 5.8 3 10�49

TBC1D30 rs150781447 12 65,224,220 T/C 0.02 0.30 0.04 9.1 3 10�17

KANK1 rs146375546 9 727,176 G/A 0.03 0.26 0.04 4.3 3 10�11

Loci in model without BMI adjustment

SLC2A10 rs3091537 20 45,332,200 A/C 0.64 0.04 0.01 3.9 3 10�8

BCL11A rs243018 2 60,586,707 G/C 0.45 0.04 0.01 2.4 3 10�8

Chr, chromosome; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; Std Err, SE of beta. Loci are labeled by one or more nearby candidate genes.
WIPI1, JARID2, SLC2A10, ELAPOR1, and PCSK2) were not

colocalized with T2D or any glycemic trait.

We obtained the direction of allelic effect of the 30 lead

proinsulin leads on fasting glucose27 and more than 30

other related glycemic traits including proinsulin levels af-

ter an oral glucose challenge10 (Figure 1, Tables S2 and

S10). The allele associated with higher glucose was associ-

ated with higher proinsulin for half the lead variants (15

of 30) and associated with lower proinsulin for the

other half.
The America
Putative candidate genes

To identify potential candidate genes for each signal, we

identified nearby genes, obtained their iESI deciles, and

performed colocalization and SMR analyses with eQTL

data (Tables S11–S14).38,39 Genes with high expression

levels in islets, particularly those that are not highly ex-

pressed in other tissues, represent strong candidate genes

for influencing the proinsulin to insulin processing

pathway. These genes that are highly and specifically ex-

pressed in islets will have high iESI values (defined as iESI
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Table 2. Six conditionally distinct proinsulin signals

Marginal associations Conditional associations
LD with
primary (r2)Locus rs ID EA/NEA EAF Beta Std Err p value bC bC_se pC

STARD10 rs481206 C/T 0.69 0.12 0.01 3.8 3 10�62 0.06 0.01 1.0 3 10�16 0.068

MADD rs35233100 C/T 0.94 0.35 0.02 1.9 3 10�104 0.23 0.02 3.0 3 10�46 0.154

MADD rs1449626 A/C 0.78 0.01 0.01 4.8 3 10�1 0.06 0.01 7.0 3 10�15 0.068

PCSK1 rs2117141 C/T 0.41 0.06 0.01 4.0 3 10�16 0.07 0.01 1.9 3 10�24 0.008

SGSM2 rs2447103 C/A 0.51 0.07 0.01 3.5 3 10�26 0.07 0.01 5.3 3 10�22 0.004

DDX31 rs7864386 G/A 0.56 0.03 0.01 1.6 3 10�6 0.04 0.01 1.8 3 10�10 0.027

Conditionally distinct signals identified with GCTA-COJO and the eMERGE reference panel. EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; Std
Err, SE of beta; bC, conditional beta; bC_se, conditional SE of beta; pC, conditional p value. Results for both MADD signals are from the analyses conditioning on
the other two MADD signals.
decile > 7).37 Most (29/36) proinsulin signals fell within

100 kb of at least one gene with a high iESI (Table S11).

Top iESI genes included well-documented beta-cell genes,

such as MADD, PCSK1, and PCSK2,56–58 as well as genes

at loci not previously described in glycemic trait studies:

ELAPOR1 and SLC7A14.

To identify additional candidate genes underlying the

proinsulin association signals, we colocalized them with

eQTL signals38,39 (Tables S12 and S13).Through colocaliza-

tion with eQTLs in pancreatic islets from the InsPIRE

consortium,38 we identified 11 proinsulin signals that co-

localized with eQTL signals for 17 genes (Table S12); six

proinsulin signals colocalized with eQTLs for more than

one gene. The alleles associated with higher proinsulin

were associated with higher expression of eight genes

(MADD, RNF6, CDK8, SLC2A10, SNX7, ARAP1, STARD10,

and TCF7L2) and lower expression of nine protein-coding

genes or noncoding transcripts (SIX3, SIX2, RP11-89K21.1,

AC012354.6, ARSG, WIPI1, SLC7A14, FAM46C, and LA

RP6). All 17 colocalizations also passed the experiment-

wide significance threshold for SMR (p value< 0.0029). Us-

ing HEIDI, we detected heterogeneity for just one gene at p

value< 0.0029: STARD10. While this may indicate the cor-

relation is due to linkage rather than pleiotropy, the result

may also be due to the complicated structure of this locus,

which may violate the assumption of only one causal

variant in the eQTL region.

Signal colocalization at the NKX6-3/ANK1 locus pro-

vided additional data with which to interpret this complex

locus. The locus includes two T2D signals24,26: one colocal-

ized with the NKX6-3 eQTL in islets24 and the other colo-

calized with an ANK1 eQTL in adipose and muscle.26,59

NKX6-3 is highly and specifically expressed in islets (iESI

decile ¼ 10), while ANK1 is not (iESI decile ¼ 2). The

T2D risk alleles for the two signals were associated with

lower isletNKX6-3 expression and higher ANK1 expression

in adipose and muscle, suggesting that the signals affect

T2D risk in different tissues. We observed only one proin-

sulin association signal at this locus. While we might have

expected it to align with the proposed islet NKX6-3 eQTL

signal, it instead colocalized with the adipose ANK1
290 The American Journal of Human Genetics 110, 284–299, Februar
eQTL signal (Figures 2 and S8, Table S13). The proinsulin

lead variant rs13266210 is in strong LD with the ANK1

eQTL (rs3802315, r2 ¼ 0.84) and the East Asian AGEN

T2D lead variant (rs62508166, r2 ¼ 0.92), and HyPrColoc

shows strong evidence of colocalization across all three

studies (PPFC ¼ 0.92). The A allele of rs13266210 is associ-

ated with increased T2D risk, higher ANK1 expression in

adipose, and lower proinsulin. At this proinsulin signal,

proxy variant rs6989203 (LD r2 ¼ 0.84 with rs13266210)

overlaps with an islet beta-cell single nucleus ATAC

peak52 and is in high LD with the ANK1 eQTL site (r2 ¼
0.93). Of the two T2D signals at the ANK1/NKX6-3 locus

previously proposed to act in different tissues on different

genes, the proinsulin signal colocalizes with the adipose

ANK1 signal rather than the expected colocalization with

islet NKX6-3.

Credible sets and variant annotation and function

We built a credible set of putative causal variants for each

of the 36 signals. These 36 sets together contained 814 var-

iants (Table S15). We extended the credible sets to include

276 additional variants exhibiting LD r2 R 0.8 (1000

Genome European-ancestry reference) with the lead vari-

ants, including 142 variants that were unavailable in the

meta-analysis and therefore could not have been included

in the Bayesian credible set. Three signals had one variant

in the extended credible set (SGSM2, ELAPOR1, and the

second signal inDDX31) and 14 signals (39%) had ten var-

iants or fewer.

The extended credible sets for 17 proinsulin signals con-

tained coding variants (Table S16). Across all credible sets,

we observed one nonsense, 18 missense, and 31 synony-

mous variants. The credible sets for 13 proinsulin signals

contained at least one missense variant: seven signals in

previously identified proinsulin loci (TBC1D30, PCSK1,

KANK1, FAM185A, the first and second signals at SGSM2,

and the third signal inMADD), four in loci known in other

glycemic trait GWASs (SLC30A8,GIPR, FAM46C, and PAM),

and two that are not known proinsulin or glycemic trait

genes (ELAPOR1 and WIPI1). The lead variant rs749

20406 at the ELAPOR1 locus, a missense variant of low
y 2, 2023
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Figure 1. Direction of allelic effect of fast-
ing glucose versus fasting proinsulin
Standardized effect sizes for lead variants are
shown from this study compared to fasting
glucose from Chen et al. (2021).27 Left of
the vertical line, alleles associated with
higher fasting glucose and lower proinsulin;
right of the vertical line, alleles associated
with higher fasting glucose and higher
proinsulin.
frequency (p.His55Tyr, MAF ¼ 0.04), was not previously

associated with proinsulin or other glycemic traits but

was associated with low-density lipoprotein (LDL)

(Table S17).60 This variant is conserved across spe-

cies48,61,62 and has a probably damaging effect on the pro-

tein.46 ELAPOR1 encodes endosome-lysosome associated

apoptosis and autophagy regulator 1 and inhibits beta-

cell insulin signaling by accelerating endocytosis of the in-

sulin receptor and insulin-like growth factor receptors.63

The credible set for WIPI1 contained a coding missense

variant (p.Thr31Ile; rs883541). WIPI1 is a phosphatidyli-

nositol-2-phosphate effector gene, which encodes a

component of the autophagy machinery; skeletal muscle

from severely insulin-resistant individuals with T2D dis-

played decreased expression of autophagy-related genes,

including WIPI1.64

Among the 1,090 variants in the extended credible sets

for all signals, 62 overlapped with an active enhancer in is-

lets and 76 overlapped with an islet cell type single-nucleus

ATAC-seq peak (Table S18). We thus examined regulatory

annotations of proinsulin-associated credible sets. The var-

iants were enriched in islet active enhancers (Figure 3, fold

enrichment ¼ 8.8, p value ¼ 4.63 10�12). Among islet sin-

gle-nucleus ATAC-seq peaks, beta-cell peaks were most en-

riched (fold enrichment ¼ 2.9, p value ¼ 5.1 3 10�10).

To further investigate plausible allelic effects of one

variant located in an annotated ATAC-seq peak, we exam-

ined the regulatory function of lead variant rs10501320, at

MADD, in transcriptional reporter assays. MADD is a well-

documented proinsulin locus associated with proinsulin-

to-insulin conversion.65 Compared to a negative control,

a genomic fragment spanning rs10501320 and the sur-

rounding ATAC-seq peak showed �3-fold increased tran-

scriptional activity in rat insulinoma 832/13 cells and a
The American Journal of Human Ge
�4-fold increase in transcriptional ac-

tivity in mouse insulinoma MIN6 cells,

consistent with a role as an enhancer

(Figures 3 and S9). The rs10501320-G

allele showed 1.3- to 1.6-fold greater

transcriptional activity than the C

allele (p value < 0.0001); the G allele

was associated with higher proinsulin

in this GWAS meta-analysis and higher

fasting glucose previously.27 The dir-

ection of effect was consistent with

the MADD nonsense mutation rs35
233100, which has been predicted to cause a loss of func-

tion and was associated with decreased proinsulin (Figure

S9). These data suggest that rs10501320 may contribute

to allele-specific differences inMADD transcriptional activ-

ity in islets. The direction of effect was consistent with the

MADD nonsense mutation rs35233100, which has been

predicted to cause a loss of function and was associated

with decreased proinsulin (Figure S9).10 These data suggest

that rs10501320 may contribute to allele-specific differ-

ences inMADD transcriptional activity in islets and further

suggest that MADD is a causal transcript at this multi-gene

locus.10,66
Discussion

These genetic analyses of circulating proinsulin levels,

based on large GWAS meta-analyses, identified 36 signals

at 30 loci. We identified 12 previously reported proinsulin

loci and 18 additional proinsulin loci. We replicate associ-

ations with low-frequency variants at TBC1D30, SGSM2,

and MADD, loci that had previously been reported in an

exome array analysis in a single cohort.10 The only previ-

ously described proinsulin locus that our study did not

replicate was one reported as a cohort-specific signal near

SV2B (p value ¼ 0.17).11 Characterization of these loci

through eQTL colocalization, coding and regulatory

annotation, and nearby gene function (Tables S11–S14)

provided candidate genes that may influence insulin pro-

cessing and secretion.

Understanding how glycemic trait signals influence pro-

insulin can help elucidate potential pathways by which the

variants may ultimately influence T2D. We identified five

plausible broad groups of encoded proteins: prohormone
netics 110, 284–299, February 2, 2023 291
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Figure 2. The ANK1/NKX6-3 locus associations with proinsulin, T2D, and adipose ANK1 expression
The proinsulin signal at this locus colocalizes with the second AGEN T2D signal and theMETSIM adipose ANK1 eQTL signal (HyPrColoc
PPFC ¼ 0.92). We used approximate conditional analysis results for the AGEN second signal in HyPrColoc as well as for the plot shown
above. AGEN results colored by ASN 1000 Genomes LD reference.
convertases, beta-cell transcription, G-protein modulators,

regulation of cytoskeleton dynamics, and lysosomal matu-

ration/endosome recycling (Tables S11 and S14). In the first
292 The American Journal of Human Genetics 110, 284–299, Februar
group, we include genes PCSK1 and PCSK2, encoding the

prohormone convertases PCSK1/3 and PSCK2 that are

respectively responsible for cleaving the B-chain and
y 2, 2023



Figure 3. Candidate variants may influence regulatory activity
(A) Regulatory element enrichment analyses using enhancers, accessible chromatin, and other data from islets, skeletal muscle, and ad-
ipose. Proinsulin variants are enriched in islet active enhancers and accessible chromatin, especially in beta cells.
(B) The MADD locus in proinsulin, lead variant rs10501320. The MADD region is an area of extensive LD—the full locus is shown in
Figure S4.
(C) The lead variant of the primaryMADD signal is located in an intron ofMADD and is in accessible chromatin in islets and an enhancer
state and a region conserved across species.
(D) A 411-bp genomic element spanning the lead variant rs10501320 showed strong enhancer activity in a transcriptional reporter assay
in two beta cell lines:MIN6 and 832/13. EV, empty vector; G/C, alleles at the lead variant rs10501320. In the eQTL andGWAS data, the G
allele at rs10501320 that showed higher transcriptional activity showed higher MADD expression levels in islets and is associated with
higher proinsulin. Bars show standard errors; p values correspond to two-sided t tests.
A-chain from the C-peptide during proinsulin processing

to insulin. While targeted studies have implicated an asso-

ciation between genetic variants in PCSK2 and glucose ho-

meostasis and T2D,67 the association had not yet reached

significance in a GWAS with T2D or other glycemic traits,

and one study had suggested that PCSK2 did not signifi-

cantly impact the beta cells’ ability to producemature insu-

lin.68 We now demonstrate that the association reaches

genome-wide significance in proinsulin, supporting a sig-

nificant role for PCSK2 in beta cells during the processing

of proinsulin to insulin. The second group includes candi-

date genes implicated in beta-cell differentiation (BARHL1

at the DDX31 locus, JARID2, NKX6-3, SIX2, and SIX3) or

the activation and maintenance of beta-cell transcription

(BCL11A, C2CD4B, TCF7L2, and TLE1). For example,
The America
JARID2 has been shown to play a role in pancreatic and

endocrine cell differentiation and beta-cell mass in mouse

embryos.69–71 The third group consists of genes mediating

vesicle translocation and membrane fusion events by

affecting the activity of small G proteins, such as Rab and

Rho GTPases. DLC1, at the DLC1 locus, encodes a

GTPase-activating protein that promotes actin polymeriza-

tion through regulating the Rho/Rock1 and is modulated

by insulin-responsive pathways.72,73 The three remaining

loci in this group are established proinsulin loci whose

nearby genes have been described previously (MADD,

SGSM2, and TBC1D30).10 The fourth group is comprised

of genes affecting the cytoskeleton, which undergoes dy-

namic changes during the processing and secretion of pro-

insulin at basal and stimulated states: ANK1, KANK1,
n Journal of Human Genetics 110, 284–299, February 2, 2023 293



LRRC49, and RNF6. KANK1 promotes exocytotic events by

mediating actin polymerization;74 LRRC49 at the LARP6 lo-

cus is a member of the tubulin polyglutamylase complex;75

and RNF6 is an E3 ubiquitin-protein ligase that regulates

actin remodeling.76,77 Finally, the fifth group includes

genes (ELAPOR1, SNX7, STX16, TPD52, WIPI1, and

ARSG) implicated in endosome recycling and lysosomal

maturation. In the beta cells, proinsulin is degraded in au-

tophagosome-derived lysosomes via an endocytotic

pathway that contributes to the tight regulation of insulin

secretion and glucose homeostasis.78,79 Both SNX7 (encod-

ing a sorting nexin80) andWIPI1 (encoding aWD40 repeat

protein) play a role in forming autophagosome and transit-

ing autophagosome to early endosome.81,82 STX16 en-

codes a t-SNARE involved in secretory vesicle membrane

fusion and endosome recycling in the Golgi.83,84 These

genes might help further elucidate the mechanisms for in-

sulin synthesis, processing, and secretion.

Previously proposed clusters of T2D loci included two

related to insulin deficiency that differed on the basis of

the direction of effect of the T2D risk allele on circulating

proinsulin levels.6–9 The allele associated with higher

glucose was associated with higher proinsulin for half the

lead variants, including all variants located near genes

involved in beta-cell dysfunction and transcriptional regu-

lation (Tables S10, S11, and S14). For the remaining proin-

sulin loci, the alleles associated with higher glucose were

associated with lower proinsulin; many of these variants

are located near genes involved in cytoskeleton dynamics,

lysosomal maturation, or endosome recycling (e.g.,WIPI1,

ELAPOR1, and RNF6). Thus, the directions of allelic effect

on proinsulin relative to glucose can help distinguish be-

tween clusters of T2D loci.6–9

As another approach to identify potential causal genes,

we integrated GWAS signals with islet eQTLs through co-

localization and SMR analyses. This approach identified

four potential candidate genes at three loci that that

have not previously been reported in proinsulin or any

of the T2D and glycemic studies: SLC2A10, SLC7A14,

WIPI1, and ARSG. Loci that colocalized with eQTL signals

of more than one gene, such as SIX3 and WIPI1, could

correspond to allelic effects on more than one gene,

sequential effects, or effects on both genes for which

only one gene is physiologically relevant to the trait. Our

eQTL colocalization analyses also showed that the proinsu-

lin signal at the NKX6-3/ANK1 locus does not colocalize

with the primary AGEN T2D signal and NKX6-3 in islets

but rather with the secondary AGEN T2D signal and the

ANK1 eQTL in adipose.26,38,39 Larger eQTL datasets and

further characterization of their conditionally distinct sig-

nals may be valuable to better interpret colocalization with

GWAS signals. Together, the several GWAS traits and eQTL

colocalizations at this locus suggest that the underlying

mechanisms are not yet fully understood. While we

attempt to offer plausible candidate genes for all our proin-

sulin signals, the genes identified through physical prox-

imity to the lead variant, coding variants in the credible
294 The American Journal of Human Genetics 110, 284–299, Februar
set, islet expression, and literature searches (Tables S11–

S14) are predictions; functional work is invaluable to eluci-

date genes’ roles in the proinsulin.

The SIX3 proinsulin locus was described previously as a

T2D and glucose signal in East Asians.26,27,85 Both SIX3

and SIX2 are highly and specifically expressed in islets,

with an iESI score of 10 for both genes. SIX3 regulates

beta-cell development coordinately with SIX2, and knock-

down of either gene impairs insulin secretion.86,87 Despite

a common allele frequency (MAF > 0.13 for all 1000 Ge-

nomes ancestries) across ancestries and evidence that the

lead variant affects transcriptional factor binding and tran-

scriptional activity,85 GWAS meta-analyses of T2D and

fasting glucose have failed to date to identify an asso-

ciation at p value < 5 3 10�8 in European-ancestry indi-

viduals.24,27 Our proinsulin results demonstrate that the

glycemic associations at this SIX3 signal are not specific

to East Asians (Figure S10).

The primary STARD10 signal, which colocalized with a

T2D24–26 signal, also colocalized with both the STARD10

and ARAP1 lead islet eQTL signals (Figure S11). The proin-

sulin-decreasing allele at the STARD10 lead variant

(rs77464186) was associated with decreased expression of

both STARD10 and ARAP1. Although the strength of asso-

ciation was stronger with STARD10 expression (eQTL p

value with rs77464186 for STARD10 expression ¼ 5 3

10�34 versus ARAP1 expression ¼ 6 3 10�7), the evidence

for colocalization was stronger with ARAP1 (ARAP1 r2 ¼
0.99, PPFC ¼ 0.9) versus STARD10 (r2 ¼ 0.93, PPFC ¼
0.60). Both STARD10 and ARAP1 are highly expressed in is-

lets, with iESI scores of 9 and 7, respectively. The strength

and direction of association between proinsulin and

STARD10 were consistent with the evidence that STARD10

influences insulin granule biosynthesis and insulin pro-

cessing by binding to phosphatidylinositides; beta-cell

deletion of Stard10 in mice led to impaired insulin secre-

tion while overexpression of Stard10 improved glucose

tolerance in high-fat-fed animals.88,89

Approximate conditional analysis software such as

GCTA requires use of a large LD reference panel representa-

tive of the study participants. Even among single-ancestry

analyses such as this European-only proinsulin meta-anal-

ysis, use of different LD reference panels of the same broad

European ancestry can result in strikingly different signals.

This issue is particularly noticeable in regions with at least

one strongly significant signal. For example, at the MADD

locus (p¼ 1.43 10�165), GCTA analyses identified nine, 12,

or 22 conditionally distinct signals, depending on which

reference panel we employed (Table S6). The discrepancy

in results led us to report a signal only when we observed

it in at least two of three reference panels, reducing the to-

tal number of signals in the MADD locus to three—all of

which had been previously reported to be associated with

proinsulin, adding further confidence to the validity of

these signals. While identifying conditionally distinct sig-

nals with meta-analysis summary results is invaluable,

caution in interpretation of signals is warranted.
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To identify potential causal variants driving our

observed signals that would have been missed in the regu-

lar credible sets built by the Bayesian fine-mapping

approach from the association results alone, we defined

an extended credible set as the union of variants in the

Bayesian credible set and variants in high LD with the

lead variant (r2 > 0.8 in 1000 Genomes European). This

approach recognizes that standard fine-mapping ap-

proaches may be mis-calibrated when applied to meta-an-

alyses,90 that variants may have been excluded from the

meta-analysis because of analytic or technical factors

(e.g., indels are not imputed by the Haplotype Reference

Consortium or variants with MAF < 0.5%), and that there

were variants that were poorly represented in our meta-

analysis as a result of factors such as low sample size. The

extended credible set approach added 276 variants,

including 142 variants that were not included in the

meta-analysis and therefore could not have been included

in the Bayesian credible set. The extended credible set

identified an additional missense variant in PCSK1

(rs6234), 15 variants that overlap active enhancers in islets,

and 24 variants that overlap islet single-nucleotide ATAC-

seq cluster peaks. The extended credible sets provide a

more comprehensive pool of candidate variants for mech-

anistic studies.

Integration of proinsulin loci with complementary glyce-

mic traits, expression data in trait-relevant tissues, and

functional follow-up provide candidate genes for T2D and

hypotheses on potential avenues of mechanism for known

T2D loci. While these proinsulin meta-analyses include a

large sample size, the difficulty and cost in obtaining proin-

sulin measurements limits the sample size compared to

studies of many other glycemic traits. Future research into

genetic contributors to proinsulin will benefit from more

and more diverse cohorts. Nonetheless, these findings

may help accelerate our understanding of T2D disease pa-

thology and promote translation into new therapeutics.
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38. Viñuela, A., Varshney, A., van de Bunt, M., Prasad, R.B., As-

plund, O., Bennett, A., Boehnke, M., Brown, A.A., Erdos,

M.R., Fadista, J., et al. (2020). Genetic variant effects on gene

expression in human pancreatic islets and their implications

for T2D. Nat. Commun. 11, 4912.

39. Raulerson, C.K., Ko, A., Kidd, J.C., Currin, K.W., Brotman,

S.M., Cannon, M.E., Wu, Y., Spracklen, C.N., Jackson, A.U.,

Stringham, H.M., et al. (2019). Adipose tissue gene expression

associations reveal hundreds of candidate genes for cardiome-

tabolic traits. Am. J. Hum. Genet. 105, 773–787.

40. Pruim, R.J., Welch, R.P., Sanna, S., Teslovich, T.M., Chines,

P.S., Gliedt, T.P., Boehnke, M., Abecasis, G.R., Willer, C.J.,

and Frishman, D. (2010). LocusZoom: Regional visualization

of genome-wide association scan results. Bioinformatics 26,

2336–2337.

41. Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell,

J.E., Montgomery, G.W., Goddard, M.E., Wray, N.R., Visscher,

P.M., and Yang, J. (2016). Integration of summary data from

GWAS and eQTL studies predicts complex trait gene targets.

Nat. Genet. 48, 481–487.

42. Wellcome Trust Case Control Consortium, Maller, J.B.,

McVean, G., Byrnes, J., Vukcevic, D., Palin, K., Su, Z., Howson,

J.M.M., Auton, A., Myers, S., et al. (2012). Bayesian refinement

of association signals for 14 loci in 3 common diseases. Nat.

Genet. 44, 1294–1301.

43. Neph, S., Kuehn, M.S., Reynolds, A.P., Haugen, E., Thurman,

R.E., Johnson, A.K., Rynes, E., Maurano, M.T., Vierstra, J.,
The America
Thomas, S., et al. (2012). BEDOPS: high-performance genomic

feature operations. Bioinformatics 28, 1919–1920.

44. McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P., and

Cunningham, F. (2010). Deriving the consequences of

genomic variants with the Ensembl API and SNP effect predic-

tor. Bioinformatics 26, 2069–2070.

45. Ng, P.C., and Henikoff, S. (2003). SIFT: Predicting amino acid

changes that affect protein function. Nucleic Acids Res. 31,

3812–3814.

46. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gera-

simova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R.

(2010). A method and server for predicting damaging

missense mutations. Nat. Methods 7, 248–249.

47. Rentzsch, P., Schubach, M., Shendure, J., and Kircher, M.

(2021). CADD-Splice-improving genome-wide variant effect

prediction using deep learning-derived splice scores. Genome

Med. 13, 31.

48. Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper, G.M.,

and Shendure, J. (2014). A general framework for estimating

the relative pathogenicity of human genetic variants. Nat.

Genet. 46, 310–315.

49. Reva, B., Antipin, Y., and Sander, C. (2011). Predicting the

functional impact of protein mutations: application to cancer

genomics. Nucleic Acids Res. 39, e118.

50. Varshney, A., Kyono, Y., Elangovan, V.R., Wang, C., Erdos,

M.R., Narisu, N., Albanus, R.D., Orchard, P., Stitzel, M.L.,

Collins, F.S., et al. (2021). A transcription start site map in hu-

man pancreatic islets reveals functional regulatory signatures.

Diabetes 70, 1581–1591.

51. Cannon, M.E., Currin, K.W., Young, K.L., Perrin, H.J., Vadla-

mudi, S., Safi, A., Song, L., Wu, Y., Wabitsch, M., Laakso, M.,

et al. (2019). Open chromatin profiling in adipose tissue

marks genomic regions with functional roles in cardiometa-

bolic traits. G3 (Bethesda) 9, 2521–2533.

52. Rai, V., Quang, D.X., Erdos, M.R., Cusanovich, D.A., Daza,

R.M., Narisu, N., Zou, L.S., Didion, J.P., Guan, Y., Shendure,

J., et al. (2020). Single-cell ATAC-Seq in human pancreatic is-

lets and deep learning upscaling of rare cells reveals cell-spe-

cific type 2 diabetes regulatory signatures. Mol. Metab. 32,

109–121.
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