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Abstract

Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart
from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-
analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in
#21,679 additional individuals. Seven loci (six new regions) in association with serum calcium were identified and
replicated. Rs1570669 near CYP24A1 (P = 9.1E-12), rs10491003 upstream of GATA3 (P = 4.8E-09) and rs7481584 in CARS
(P = 1.2E-10) implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11), also associated
with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10) are near genes that encode distinct isoforms of
diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and
demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on
the genetics of calcium homeostasis.
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Introduction

Normal calcium homeostasis is regulated by three major

hormones acting on their corresponding receptors in gut, kidney,

and bone: parathyroid hormone (PTH) release governed by the

calcium-sensing receptor (CASR), calcitonin, and the active

metabolite of vitamin D, 1,25(OH)2-D. Despite heritability

estimates of 33–78%, the genetic determinants of serum calcium

are poorly understood [1,2,3]. We have previously reported a

variant in CASR associated with calcium concentrations in

European-ancestry individuals [4,5]. To detect additional loci,

we conducted a two-stage genome-wide association meta-analysis

Serum Calcium Genomewide Association Meta-Analysis
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of serum calcium and studied expression of identified genes in key

calcium homeostatic organs in the mouse under various calcium

diets.

Results

Genome-wide association meta-analysis in Europeans
The discovery analysis consisted of 39,400 individuals from 17

population-based cohorts of European descent (Table 1 and

Table S1). There was little evidence for population stratification

at study level (median genomic inflation factor, l= 1.006) or meta-

analysis level (l= 1.03), and we detected an excess of association

signals beyond those expected by chance (Figure S1).

The CASR locus, previously identified in Europeans, was

confirmed in our meta-analysis (P = 6.5E-59, Figure S2) [4,5].

In addition, SNPs from five independent regions reached genome-

wide significance (P,5E-08) in the overall discovery meta-analysis

(Figure 1, Table 1, Table S2): rs1550532 (in DGKD, P = 4.60E-

08), rs780094 (in GCKR; P = 3.69E-11), rs17711722 (near

VKORC1L1, P = 2.78E-11), rs7481584 (in CARS, P = 9.21E-10)

and rs1570669 (near CYP24A1; P = 3.98E-08).

Fourteen SNPs from Stage 1 were sent for Stage 2 validation in

#21,679 additional Europeans: the twelve independent ($1 Mb

apart) SNPs with lowest P values (6.5E-59 to 8.1E-06) in

Europeans and two additional genome-wide significant loci

(rs9447004 and rs10491003) from a combined sample including

8318 Indian-Asians (Table 1). Of the fourteen SNPs, seven were

considered successfully replicated (i.e. were in the same direction

of effect as the discovery meta-analysis, had a one-side replication

P,0.05 and were genome-wide significant (P,5E-8) in combined

meta-analysis of discovery and replication sets). These were

rs1801725 in CASR, rs1550532 in DGKD, rs780094 in GCKR,

rs7336933 near KIAA0564 and DGKH, rs10491003 (closest gene

GATA3), rs7481584 in CARS and rs1570669 near CYP24A1

(Table 1). Regional association plots are presented in Figure
S3. Details on the seven SNPs that did not replicate are presented

in Table S2. Association results for serum calcium in Caucasians

for all SNPs with P value,5*E-5 are listed in Table S3. In a

secondary analysis, all SNPs identified in the primary analysis

showed consistent and significant association with serum calcium

adjusted for serum albumin (Table S4, Figure S4), as well as an

excess of association signals beyond those expected by chance

(Figure S5); no additional locus was identified using albumin-

corrected serum calcium (Table S5).

Copy number variations (CNVs) and eQTL analyses
We found no significant association of the 7 replicated SNPs

known to provide reliable tags for copy number variations (CNVs)

in people of European-descent from the Hypergene dataset. For all

the SNPs, the calculated correlation was below 0.002. We also

explored a list of SNPs tagging CNVs from the GIANT

consortium. Out the 7 SNPs tested, only the rs1570669 was in

slight linkage disequilibrium (r2 = 0.54) with one SNP of the

WTCCC2 list (rs927651). The corresponding SNP tags the

CNVR7875.1 CNV located 455b from the SNP of interest.

For each of the 7 replicated SNPs, we identified all proxy SNPs

with r2.0.8 in HapMap CEU (releases 21, 22, and HapMap 3

version 2) using the online SNAP database (http://www.

broadinstitute.org/mpg/snap/). This led to the identification of

40 SNPs. We then queried each of these SNPs in the eQTL

database of the University of Chicago (http://eqtl.uchicago.edu/

cgi-bin/gbrowse/eqtl/). Three of the seven SNPs are in strong

linkage disequilibrium with an eQTL, as illustrated in Table S6.

Information on genes mapping into the replicated
genomic regions

Proposed functions of the genes mapping into the associated

intervals (6250 kb) are in Box 1 and in Table S7 for the gene-

rich GCKR region. We report in Table S8 the mechanism and/or

location of all available biological processes, cellular components

and molecular functions related to the genes mapping into the

associated intervals from the AmiGo 1.8 gene ontology database.

We also queried the OMIM database for each genes located

within 6250 kb of the replicated loci (Table S9)

Validation across ethnicities
In Indian-Asians, all 7 replicated SNPs had beta-coefficients

that were direction-consistent with the primary analysis and 3

were statistically significant (P,0.05): rs1801725 (CASR, P = 1.4E-

31), rs1550532 (DGKD, P = 0.002) and rs10491003 (GATA3,

P = 0.009) (Table S10). In Japanese, 3 SNPs had betas that were

direction-consistent with the primary analysis, but only rs1801725

(CASR) was associated with serum calcium (P = 0.001) (Table
S10).

Associations with related phenotypic traits
We conducted analyses of related bone mineral and endocrine

phenotypic traits for the 7 replicated loci (Table 2). Several SNPs

were associated (P,0.05) with bone mineral density (BMD) in the

GEFOS consortium [6]: rs1801725 at CASR (P = 0.025; previously

reported [4,5]) and rs780094 (GCKR) at the lumbar spine

(P = 0.006), rs1570669 at CYP24A1 at the femoral neck

(P = 0.04), and rs1550532 at DGKD at both the lumbar spine

(P = 0.003) and the femoral neck (P = 0.003). For endocrine

phenotypes, rs1570669 at CYP24A1 was associated with higher

PTH concentrations (P = 0.0005) and rs1801725 at CASR with

higher serum PTH concentrations (P = 0.028) and lower serum

phosphate concentrations, as previously reported [4,5]. No SNP

was associated significantly with circulating 25-OH vitamin D

concentrations (all P.0.05) in the SUNLIGHT consortium [7].

Animal studies
We selected biologically plausible gene(s) at each locus for in vivo

studies in a mouse model as described in Methods’ section. We

Author Summary

Calcium is vital to many biological processes and its serum
concentration is tightly regulated. Family studies have
shown that serum calcium is under strong genetic control.
Apart from CASR, the genes associated with serum calcium
are largely unknown. We conducted a genome-wide
association meta-analysis of 39,400 individuals from 17
population-based cohorts and investigated the 14 most
strongly associated loci in #21,679 additional individuals.
We identified seven loci (six new regions) as being robustly
associated with serum calcium. Three loci implicate
regions involved in rare monogenic diseases including
disturbances of serum calcium levels. Several of the newly
identified loci harbor genes linked to the hormonal control
of serum calcium. In mice experiments, we characterized
the expression of these genes in gut, kidney, and bone,
and explored the influence of dietary calcium intake on the
expression of these genes in these organs. Our results shed
new light on the genetics of calcium homeostasis and
suggest a role for dietary calcium intake in bone-specific
gene expression.

Serum Calcium Genomewide Association Meta-Analysis
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first analyzed gene expression in the three primary calcium-

handling organs: duodenum, kidney and bone (tibia). CASR for the

rs1801725 locus, DGKD for the rs1550532 locus, GATA3 for the

rs10491003 locus, CARS, NAP1L4 and CDKN1C for the rs7481584

locus, DGKH and KIAA0564 for the rs7336933 locus, were

expressed in all organs, whereas CYP24A1 (rs1570669 locus) was

solely, and PHLDA2 (rs7481584 locus) mainly, expressed in the

kidney (Figure 2). No significant expression of GCKR (rs780094

locus) was observed in any organ tested, which is of interest

considering the strong attenuation of the association of rs780094

with serum calcium after adjustment for albumin (Table S4). In

micro-dissection of nephron segments [8,9], DGKD, DGKH, CARS,

KIAA0564 and CYP24A1 were primarily transcribed in the

proximal tubule, CASR in the thick ascending limb, and GATA3

predominantly in the distal nephron and collecting duct

(Figure 3).

In order to determine regulation of gene expression by calcium

intake, we measured gene expression levels in mice fed low and

high calcium diets (0.17% vs. 1.69% calcium) for one week, with

normal diet as control (0.82%) (Figure 4 and Table S11). In the

kidney, both DGKD and DGKH were upregulated in response to

low calcium diet (P#0.05; Figure 4). In the tibia, CASR was

markedly upregulated in response to low calcium diet (2.5-fold

increased expression), as were GATA3, KIAA0564 and CARS

(P#0.05 for all; Figure 4), findings that suggest regulation by

1,25(OH)2-D. DGKD and DGKH were upregulated in the tibia in

response to high and low calcium diet (P#0.05 for all; Figure 4).

The expression in duodenum of the majority of genes was not

modified by dietary calcium, with the exception of NAP1L4 and

CDKN1C.

Discussion

We have identified and replicated one known and six new loci

for serum calcium near genes linked to bone metabolism and

endocrine control of calcium. Of these, 4 loci (DGKD, GCKR,

CASR, and CYP24A1) were nominally associated with BMD in the

general population. In supporting mouse studies, we demonstrate

expression of several of these genes in tibia, and show regulation of

gene expression in response to dietary calcium intake. We also

demonstrate expression in nephron segments known to regulate

calcium homeostasis. Taken together, these results shed new light

on the genetics of calcium balance.

The vast majority of total body calcium is bound in the skeleton

as hydroxyapatite and other calcium-phosphate complexes [10].

Apart from providing skeletal strength, bone serves as a calcium

reservoir to maintain tightly controlled circulating concentrations

vital to cellular signaling, muscle contraction and coagulation [10].

However, the genetic basis of the dynamic cross talk that occurs

between these compartments is poorly understood. Our results

advance our understanding in this area. Eight genes identified in

the GWAS are constitutively expressed in bone and are regulated

in response to dietary calcium, in particular low calcium diet,

whereas no clear change was observed in kidney or duodenum.

This bone reactivity in response to dietary calcium intake is

consistent with what was recently reported for CASR [11]. Further,

of the eight genes expressed in bone and regulated in response to

dietary calcium, we show that rs1550532 (DGKD) and rs1801725

(CASR) are associated with BMD in humans, the primary

determinant of fracture risk.

The A allele of rs1570669 (CYP24A1 locus) was associated with

reduced BMD at the femoral neck although CYP24A1 was not

found to be expressed in bone in mice experiment, which suggests

an indirect role in bone mineralization. This may occur via its
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documented role in vitamin D metabolism, discussed below, and/

or its association with higher PTH concentrations identified in the

present analysis.

We observed specific expression patterns of several genes in

the mouse nephron: DGKD, DGKH, CARS, KIAA0564 and

CYP24A1 were primarily transcribed in the proximal tubule,

CASR expression was mostly localized to the thick ascending

limb, whereas GATA3 was predominantly found in the distal

part of the nephron and the collecting duct. This pattern of

expression in segments known to be involved in calcium

reabsorption suggests a role in renal calcium handling and is

consistent with previous exploratory transcriptome analyses in

humans and mice [12,13]. Both DGKD and DGKH were

significantly upregulated in the kidney in response to low

calcium diet, suggesting specific involvement of these genes in

renal calcium handling.

Several of the newly identified loci harbor genes linked to the

hormonal control of serum calcium. First, the association of CASR

with PTH concentrations is consistent with its known role in PTH

signaling. Second, several lines of evidence implicate rs1570669

(CYP24A1) in the vitamin D pathway: its association with serum

calcium and PTH concentrations, its selective expression in the

proximal tubule where 1,25(OH)2-D metabolism occurs, and that

loss-of-function CYP24A1 mutations cause vitamin D-induced

hypercalcemia in children (idiopathic infantile hypercalcemia).

Third, we identified variants linked to 2 chromosomally distinct

isoforms of diacylglycerol kinase, part of the phosphoinositol

second messenger system, that may interact with each other at the

protein level [14,15].

Strengths of this study are the large sample size and consistent

mouse studies to support the statistical associations and advance

our knowledge of the biology at these loci. Human and mice

largely share physiological processes linked to calcium metabolism,

including tissue-specific gene expression. Limitations include the

lack of a direct marker of bone remodeling and the potential for

bias in gene selection for experimental follow-up. Mice may

display subtle differences in the regulation of the genes tested

compared to humans.

We have identified and replicated one known and six new loci

for serum calcium near genes linked to bone metabolism and

endocrine control of serum calcium. Supporting experimental

mouse studies suggest a role for dietary calcium in bone-specific

gene expression. Further work is needed to identify the causal

variants and to understand how they influence calcium homeo-

stasis.

Materials and Methods

Ethics statement
In each human study, the local institutional review board

approved the study and participants signed written informed

consent, including for DNA analyses. The experimental protocol

in mice was approved by the local veterinarian authorities and

fulfilled Swiss federal regulations for experiences with animals.

Participating studies (human data)
Discovery and replication cohorts. A list of all discovery

and replication studies, their sample size, mean serum calcium

levels, age and serum albumin as well as proportion of women can

be found in Table S1. We replicated findings using de novo

genotyping in the Bus Santé Study and in silico data in all other

cohorts. In most studies, serum calcium was measured using a

colorimetric assay. The size of discovery tables varied from 488 to

9,049 for a total of 39,400 participants. A detailed description of

the characteristics of discovery and replication cohorts, including

laboratory method for serum calcium measurement, can be found

in Table S12.

Genotyping
Detailed information on the genotyping plateforms and data

cleaning procedures for each discovery and replication cohort can

be found in Table S13. De novo replication genotyping was

perfomed in 4670 participants to the Bus Santé Study using

KASPar v4.0 after whole genome amplification by primer

extension pre-amplification (PEP) using thermostable DNA

polymerases.

Figure 1. Genome-wide association for serum calcium in discovery analysis in Europeans. Manhattan plot showing 2log10(P values) for
all SNPs in the discovery GWAS for uncorrected serum calcium in Europeans (N = 39,400), ordered by chromosomal position. The plot is truncated at
2log10 P values of 10 (truncated 2log10P values for GCKR and CASR). The values correspond to the association of uncorrected serum calcium,
including age and sex as covariates in the model as well as study-specific covariates if needed. The gene closest to the SNP with the lowest P value is
listed at each locus. Six loci reached genome-wide significance (P,5E-08) at discovery analysis (GCKR, DGKD, CASR, VKORC1L1 (in grey on
chromosome 7), CARS and CYP24A1. The seven loci that reached genome-wide significance at the combined analysis following replication are
highlighted in red (GCKR, DGKD, CASR, GATA3, CARS, DGKH-KIAA0564 and CYP24A1).
doi:10.1371/journal.pgen.1003796.g001
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Statistical analyses for the genome-wide association
meta-analysis

In each discovery study, genotyping was performed using a

genome-wide chip and nearly 2.5 million SNPs were genotyped

or imputed using the HapMap CEU panels release 22 or 21 as

the reference. Each study applied quality control before

imputation. Detailed imputation information is provided in

Table S13. Each SNP was modeled using an additive genetic

effect (allele dosage for imputed SNPs), including age and sex as

covariates in the model as well as study-specific covariates if

needed (e.g. principal components, study center). The primary

dependent variable in each discovery study was untransformed

and uncorrected serum calcium expressed in mg/dL. Beta

regression coefficients and standard errors were used with at

least 5 decimal places. For secondary analyses, albumin-

corrected serum calcium was computed using the following

formula: ([4-plasma albumin in g/dL]60.8+serum calcium in

mg/dL) and the same model as for the primary analyses was

used. Each file of genome-wide summary statistics underwent

extensive quality control prior to meta-analysis both for primary

and secondary analyses, including (1) boxplots of all beta

coefficients, as well as all standard errors multiplied by the

square-root of the sample size, for each study separately; (2) the

range of P values, MAF, imputation qualities, call rates and

Hardy-Weinberg equilibrium P values and (3) QQ plots. In

addition, we checked the direction and magnitude of effect at

the previously reported rs1801725 CASR variant. Genome-wide

meta-analyses were conducted in duplicate by two independent

analysts. For each SNP, we used a fixed effect meta-analysis

using inverse-variance weights as implemented in the meta-

analysis utility Metal [16]. Results were confirmed by a z-score

based meta-analysis. Data were available for 2,612,817 geno-

typed or imputed autosomal SNPs for the primary and

secondary analyses. After the meta-analysis, genomic control

correction was applied (lGC was 1.03 for both uncorrected and

corrected serum calcium). Our pre-specified criterion to declare

genome-wide significance was P value,5E-8 to account for 1

million independent tests according to the Bonferroni correc-

tion. We choose to move forward for replication all SNPs with

discovery P value,1E-7 in the European sample or genome-

wide significant SNP in the overall sample that included Indian

Asians. To choose a single SNP per genome-wide associated

region for replication, we merged all SNPs within 1 Mb region

and selected the lowest P value for each region. Altogether,

fourteen SNPs were moved forward for replication. Up to

17,205 participants contributed information to the replication

analyses in silico and 4,670 participants provided data for de novo

genotyping. We used fixed-effects inverse-variance weighted

meta-analysis to combine discovery and replication meta-

analysis results. Replication was considered as present whenever

a combined P value,5E-8 together with an effect-concordant

one-sided replication P value,0.05 were obtained.

Data for look-ups of serum calcium loci with related
phenotypes

We conducted look-ups for femoral and lumbar bone density in

the GEnetic Factors of OSteoporosis (GEFOS) dataset [17]. Bone

mineral density (BMD) is used in clinical practice for the diagnosis

of osteoporosis and bone density at different skeletal sites is

predictive of fracture risk. BMD was measured in all cohorts at the

lumbar spine (either at L1–L4 or L2–L4) and femoral neck using

dual-energy X-ray absorptiometry following standard manufac-

turer protocols [17]. Serum phosphorus was looked up from a
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previously published GWAS meta-analysis, including 16,264

participants of European ancestry [18]. Serum phosphorus

concentrations were quantified using an automated platform in

which inorganic phosphorus reacts with ammonium molybdate

in an acidic solution to form a colored phosphomolybdate

complex [18]. The 25-hydroxyvitamin D was looked-up in the

SUNLIGHT consortium [7], which includes data from 33,996

individuals of European descent from 15 cohorts. 25-hydro-

xyvitamin D concentrations were measured by radioimmuno-

assay, chemiluminescent assay, ELISA, or mass spectrometry

Figure 2. Relative mRNA expression of replicated genes in three calcium-transporting tissues (kidney, duodenum, tibia). The
expression (based on delta CT [cycle threshold] normalized to actin) of the selected genes is compared to the expression of the CASR gene in the
duodenum, thereby providing a relative expression. Cut-off was set at delta CT#15. Data are means 6 standard error of the mean (SEM) of values
obtained from 5 mice fed a normal diet. GCKR was not expressed.
doi:10.1371/journal.pgen.1003796.g002

Figure 3. Relative mRNA expression of identified genes in kidney tubule segments. The renal tubular segments analyzed were the
proximal tubule (PROX), the thick ascending limb of the loop of Henle (TAL), the distal convoluted tubule and connecting tubule (DCT-CNT), and the
cortical collecting duct (CCD). The expression (based on the delta CT [cycle threshold]) of the selected genes is compared to the expression of the
CASR gene in the PROX, thereby providing a relative expression. Data are means of values obtained from 3 mice fed a normal diet. GCKR was not
expressed.
doi:10.1371/journal.pgen.1003796.g003
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[7]. PTH was looked-up in the SHIP and SHIP-Trend studies.

The serum parathyroid hormone concentration was measured

on the IDS-iSYS Multi-Discipline Automated Analyser with the

IDS-iSYS Intact PTH assay (Immunodiagnostic Systems Lim-

ited, Frankfurt am Main, Germany) according to the instruc-

tions for use. This chemiluminescence immunoassay detects the

full-length parathyroid hormone (amino acids 1–84) and the

large parathyroid hormone fragment (amino acids 7–84). The

measurement range of the assay was 5–5000 pg/mL. The limits

of blank, detection and quantitation were 1.3 pg/mL, 1.4 pg/

mL, and 3.6 pg/mL, respectively. As recommended by the

manufacturer, three levels of control material were measured in

order to verify a decent working mode. During the course of the

study, the coefficients of variation were 14.02% at low, 6.64% at

medium, and 6.84% at high serum parathyroid hormone

concentrations in the control material in SHIP and the

corresponding percentages were 16.8% at low, 10.7% at

medium, and 9.0% at high serum parathyroid hormone

concentrations in the control material in SHIP-Trend.

Copy Number Variation (CNV) analysis
The Hypergene dataset (a 4206 samples case-control study

concerning hypertension genotyped using the Illumina 1M chip)

has been used to call CNVs and to check their correlation with the

SNPs of interest. The CNVs calls have been done using pennCNV

software [19]. A SNP by sample matrix with the copy number

status was created. Then the square correlation (Pearson

correlation) between value of each SNP of interest and the SNPs

copy number status in a +/22 Mb region was calculated. The

SNPs of interest for which no correspondence has been found in

the Hypergene dataset have been replaced by the closest SNPs in

high linkage disequilibrium (LD) and present in the Hypergene

dataset. LD between the SNPs of interest and a list of SNPs

tagging CNVs from the GIANT consortium has also been

calculated. The SNPs from the GIANT list are in LD higher

than 0.8 with their corresponding CNV.

Gene ontology classification analysis
We queried the AmiGo 1.8 gene ontology database for each

gene located within 6250 kb of the seven replicated SNPs,

including rs1801725 (CASR). (http://amigo.geneontology.org/cgi-

bin/amigo/go.cgi, last accessed November 6, 2012). We used

Homo sapiens as a filter for species.

Expression quantitative trait locus (eQTL) Analyses
For each of the 7 replicated SNPs, we identified all proxy SNPs

with r2.0.8 in HapMap CEU (releases 21, 22, and HapMap 3

vers. 2) using the online SNAP database (http://www.

broadinstitute.org/mpg/snap/). We then queried each of these

40 SNPs in the eQTL database of the University of Chicago

(http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/).

Rationale for gene selection for experimental analyses in
mouse

The rs1801725 SNP encodes a missense variant in exon 7 of

the CASR gene leading to an alanine to serine substitution

(A986S). Given the key physiological role of CASR in calcium

homeostasis (monogenic disorders of calcium balance), this gene

was the logical candidate for analysis in mouse at this previously

identified locus.

For the 6 newly identified loci, the precise rationale for gene

selection varied from one locus to the other, but the main

criteria was to focus on the most biologically relevant gene.

Rs1550532 on chromosome 2 is an intronic SNP of DGKD,

which was the most likely biological candidate for this locus and

was therefore selected for analysis in mouse. None of the other

genes located in this region (6250 Kb) has a known link with

calcium homeostasis (Box 1) and rs1550532 is not in strong

linkage disequilibrium with an eQTL (Table S6). We also took

into account the fact that another member of the DGK family,

namely DGKH was located near one of the other replicated

loci, on chromosome 13.

Rs780094, on chromosome 2, is located in intro 16 of GCKR

and is in strong linkage disequilibrium (r2 = 0.93) in Caucasians

[20], with a common non-synonymous SNP (P446L, rs1260326)

associated with glucokinase activity in vitro [20,21]. This SNP has

been associated with multiple other phenotypes in previous GWAS

and it is in strong linkage disequilibrium with an eQTL (Table
S6). Previous fine mapping analysis of this locus has attributed the

signal from rs780094 to the functional rs1260326 variant [20]. The

GCKR locus may indirectly influence calcium concentrations via its

association with albumin levels [22]. In line with this, we observed

an attenuation of the association of rs780094 with albumin-

corrected serum calcium compared to the association with

uncorrected serum calcium and we found GCKR not to be

expressed in any of the key organs involved in calcium homeostasis

that we tested in mice. We selected GCKR for analysis in mouse at

this locus.

Rs10491003 on chromosome 10 is located within a long non-

coding RNA. For this locus, we selected GATA3, the nearest and

only gene located within this region, for analysis in mouse.

GATA3 is implicated in monogenic disorders of calcium balance.

Rs7481584 is located within CARS (intronic SNP) in an

imprinted region known to play a role in multiple cancers, which

makes this locus a plausible candidate for malignancy-related

hypercalcemia. Other plausible biological candidates in this locus

are NAP1L4, PHLDA2 and CKDN1C (Box 1). Rs7481584 is in

strong LD with 2 eQTLs, one associated with the expression of

NAP1L4 (rs2583435) and the other one associated with the

expressions of SLC22A18 and SLC22A18AS. We selected CARS,

NAP1L4, PHLDA2 and CKDN1C for analyses in mouse.

For rs7336933, we selected the two only genes (DGKH and

KIAA0564) located under this association peak on chromosome 13

for analyses in mouse.

Finally, rs1570669 is an intronic SNP of CYP24A1, a strong

biological candidate implicated in monogenic disorders of calcium

balance. The two other genes of this region (BCAS1 and PFDN4)

have no known link with calcium homeostasis. Furthermore,

rs1570669 and PFDN4 are separated by a recombination hot spot.

We selected CYP24A1 for analysis in mouse.

As animal experiments started while the replication process was

underway, we had also initially selected the following genes for

analysis in mouse: RSG14 and SLC34A1 at locus rs4074995

(discovery P value = 2.4E-07), VKORC1L1 at locus rs17711722

(discovery P value = 2.8E-11), PYGB at locus rs2281558 (discovery

Figure 4. Relative mRNA expression of identified genes from mice fed a low (0.17%) and high (1.69%) calcium diet compared to
mice fed a normal calcium diet (0.82%). Data are means6 SEM of values obtained from 5 mice for each diet group. Expression levels were
normalized to actin. Statistical significance of the difference between diets was calculated using unpaired t-test. *: P#0.05 (low compared to high); 1:
P#0.05 (low compared to normal); # P#0.05 (high compared to normal).
doi:10.1371/journal.pgen.1003796.g004
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Box 1. Genes Located within Replicated Loci for Serum Calcium

We here summarize the information on genes located within
6250 kb from the top SNP at each locus. Because it is a gene
dense region, details of genes located in the GCKR genomic
region are presented in Table S4.

Chromosome 2, locus rs1550532
DGKD rs1550532 is an intronic SNP located near the 59UTR
region of DGKD. DGKD encodes diacylglycerol kinase delta, a
member of the diacylglycerol kinase (DGK) enzyme family.
Alternative splicing of the DGKD gene results in two
isoforms, which differ in their expression profiles and
regulatory mechanisms [24]. DGKs play an important role
in signal transduction by modulating the balance between
the diacylglycerol (DAG) and phosphatidic acid (PA), impor-
tant second messengers in signaling cascades. Recent
findings suggest that DAG is involved in calcium signaling
in parathyroid cells [25]. CASR signaling influences intracel-
lular DAG levels in cardiomyocytes [26].
SAG encodes S-antigen (also called arrestin), a soluble
photoreceptor protein expressed in the retina and pineal
gland. Mutations in this gene are associated with Oguchi
disease (OMIM#258100), a rare autosomal recessive form of
night blindness. Arrestin is a calcium-binding protein that
plays an important role in phototransduction.
ATG16L1 encodes autophagy related 16-like 1 protein, part
of a complex involved in autophagia. Mutations in this gene
are responsible for inflammatory bowel disease 10 (OMIM #
611081). There is no known direct link with calcium
signaling.
SCARNA5 and SCARNA6 encode small Cajal body-specific
RNAs 5 and 6, which are small nuclear RNAs, belonging to
non-coding RNAs involved in the RNA-processing machinery.
There is no known direct link with calcium signaling.
USP40 encodes ubiquitin specific peptidase 40. USP40
functions as a deubiquinating enzyme involved in the
degradation of unwanted intracellular proteins in eukaryo-
cytic cells. There is no known direct link with calcium
signaling.
INPP5D encode inositol polyphosphate-5-phosphatase, ex-
pressed in hematopoietic cells. This protein regulates
myeloid cell proliferation. The presence of a recombination
peak between this gene and rs1550532 makes it an unlikely
candidate for this signal.

Chromosome 10, locus rs10491003
rs10491003, located within a long non-coding RNA with
GATA3 as its nearest gene may influence the expression of
GATA3 [27].
GATA3: GATA3 encodes a GATA transcription factor involved
in T cell lymphopoiesis [28], renal and vestibular morpho-
genesis [29,30], and parathyroid gland development [31].
GATA3 haploinsufficiency causes hypoparathyroidism and
hypocalcemia in the autosomal dominant HDR syndrome
(hypoparathyroidism, sensorineural deafness and renal dys-
plasia) (OMIM#146255) [32,33]. Although GATA3 is the
closest gene to rs10491003, this variant lies 1.2 Mbp
downstream from that gene. However, GATA3 has a very
large flanking regulatory region - greater than 450 kbp - [34]
and mammalian enhancers may lie more than 1 Mbp away
from the gene they regulate [35]. GATA3 may play a role in
preserving high degree of differentiation of parathyroid
gland and of calcium transporting epithelia [36].

Chromosome 11, locus rs7481584
This region is located in the imprinted gene domain of
11p15.5, an important tumor suppressor gene region [37].

CARS: rs7481584 is an intronic SNP of CARS. CARS encodes a
cysteinyl-tRNA synthetase and is located within the imprint-
ed gene domain of 11p15.5. This region is linked to
Beckwith-Wiedemann syndrome, which is associated with
hypocalcemia and hypercalciuria.
NAP1L4 encodes nucleosome assembly protein 1-like 4, a
member of the nucleosome assembly protein, potentially
involved in histone chaperoning and ubiquitously expressed.
NAP1L1 and NAP1L4 have been recently identified as being
involved in the regulation of DGKH nucleocytoplasmic
shuttling [38]. A link with calcium homeostasis could be
possible via the DGKs pathway.
PHLDA2 encodes pleckstrin homology-like domain, family A,
member 2. This gene has been recently highlighted as
potentially relevant for osteoporosis on the basis of a
bioinformatics pathway analysis approach [39]. Imprinting of
this gene appears to play a role in fetal growth, including
fetal bone growth, birth weight and bone mass in
childhood.[40,41,42,43] In cancer, PHLDA2 is activated by
parathyroid hormone-like hormone (PTHLH) [44]. PTHLH is
associated with malignancy-related hypercalcemia [45],
lactation [46], the expression of PHLDA2 is upregulated in
osteosarcoma progression [47].
OSBPL5 encodes oxysterol binding protein-like 5, an
intracellular lipid receptor involved in cholesterol balance.
There is no known direct link with calcium homeostasis.
MRGPRE and MRGPRG encode MAS-related G-protein-
coupled receptors, member E and G. This family of receptors
is expressed in nociceptive sensory neurons. There is no
known direct link with calcium homeostasis.
C11orf36 encodes MRGPRG antisense RNA 1. Little is known
about this gene.
SNORA54 encodes small nucleolar RNA, H/ACA box. The
gene product belongs to non-coding RNAs involved in the
RNA-processing machinery. There is no known direct link
with calcium homeostasis.
SLC22A18 and SLC22A18AS encode solute carrier family 22,
member 1 and solute carrier family 22, member 1 antisense.
SLC22A18 is an organic cation transporter. Mutations in
SLC22A18 have been found in several cancers. There is no
known direct link with calcium homeostasis.
CDKN1C encodes cyclin-dependent kinase inhibitor 1C (p57,
Kip2), a protein involved in cell-cycle progression. This
imprinted gene is responsible for the IMAGe syndrome
(OMIM#300290) characterized by intrauterine growth re-
striction, metaphyseal dysplasia, delayed bone aging, adre-
nal hypoplasia congenital, genital anomalies, and sometimes
hypercalciuria [48].
KCNQ1 encode potassium voltage-gated channel, KQT-like
subfamily, member 1. KCNQ1OT1 represents KCNQ1 oppo-
site strand transcript 1 and is an unspliced long non-coding
RNA, which regulates the transcription of many target genes.
Mutations in KCNQ1 are associated with hereditary long and
short QT syndromes (OMIM#192500 & 609621), Jervell and
Lange-Nielsen syndrome (OMIM#220400), familial atrial
fibrillation (OMIM#607554), type 2 diabetes. KCNQ1 is also
imprinted in a tissue-specific manner. There is no known
direct link with calcium homeostasis.

Chromosome 13, locus rs7336933
DGKH encodes diacylglycerol kinase eta, a member of the
diacylglycerol kinase (DGK) enzyme family. See DGKD (above)
for discussion.
KIAA0564: this gene encodes a large uncharacterized protein
containing a putative ATP-ase domain. The sequence of this
gene is conserved across a large array of organisms,
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P value = 6.4E-07), CD109 at locus rs9447004 (discovery P

value = 8.1E-06). No gene was selected for the rs2885836 and

rs11967485 and rs12150338 loci in the absence of obvious

candidate. Results for these unreplicated loci can be found in

Figures S6, S7 and S8. We present these results for quality

control purposes: SLC34A1 (also known as NAPI-3 or NPT2),

which encodes solute carrier family 34 (sodium phosphate),

member 1, was expressed in the kidney, but neither in duodenum

nor in bone, as expected based on current knowledge on this

phosphate transporter. In the kidney SLC34A1 was mainly

expressed proximally and SLC34A1 expression was upregulated

under low calcium diet, which is in line with the known function of

this gene.

Mouse experiments
Five C57bl/6 mice (Janvier) per group were fed, for one week,

three different diets in which the percentage of calcium were

0.17% (low calcium diet), 0.82% (normal calcium diet) and 1.69%

(high calcium diet) and had free access to water. 12:12 hours light/

dark alternance was imposed. At the end of the week of the specific

diet, spot urine were collected and mice were anesthetized. Blood

was collected by retro-orbital puncture. Organs were immediately

harvested and snap frozen. RNA was extracted using Trizol

(Invitrogen) and reversed transcribed with PrimeScriptTM RT

reagent Kit (Takara Bio Inc). Calcium, sodium, phosphate and

creatinine in plasma and urine were analyzed at the central lab of

the Lausanne University hospital using a Cobas-Mira analyzer

(Roche).

Microdissection. A separate set of three mice was kept

under normal calcium diet. Proximal Tubule (Prox), thick

ascending limb of the loop of Henle (TAL), distal convoluted

tubule and connecting tubule (DCT-CNT) and cortical collecting

duct (CCD) were isolated by microdissection of the left kidney

after the mice were perfused with Liberase TM (Roche

Diagnostics) [23]. RNA was extracted from the above mentioned

tubules following TRI Reagent Solution protocol (Applied

Biosystems) and purified with RNeasy Micro Kit (Qiagen).

Reversed transcription was performed with PrimeScriptTM RT

reagent Kit (Takara Bio Inc). Quantitative PCRs were performed

(7500 Software v 2.0.4.) using TaqMan gene expression assays for

the different genes (Applied Biosystems) and comparative CT

method was applied. Expression levels were normalised to beta

actin as endogenous reference gene.

Statistics. Comparison of groups was performed using

unpaired Student’s t-test.

Supporting Information

Figure S1 QQ-plot of uncorrected serum calcium GWAS meta-

analysis. Quantile-quantile plot showing observed p-values of the

uncorrected serum calcium meta-analysis vs. expected p values by

chance. The second genomic control step was applied to correct

for the post meta-analysis of l= 1.03.

(PDF)

Figure S2 Regional association plot for the CASR locus.

Regional association plot showing 2log10 p-values for the

association of all SNPs ordered by their chromosomal position

with uncorrected serum calcium at the CASR loci. The 2log10 P

value for each SNP is colored according to the correlation of the

corresponding SNP with the SNP showing the lowest p-value

(index SNP) within the locus using different colors for selected

levels of linkage disequilibrium (r2). Correlation structures

correspond to HapMap 2 CEU.

(PDF)

Figure S3 Regional association plot for the newly identified loci.

Regional association plot showing 2log10 p-values for the

association of all SNPs ordered by their chromosomal position

with uncorrected serum calcium within the replicated loci. The

2log10 P value for each SNP is colored according to the

correlation of the corresponding SNP with the SNP showing the

lowest p-value (index SNP) within the locus using different colors

for selected levels of linkage disequilibrium (r2). Correlation

structures correspond to HapMap 2 CEU.

(PDF)

Figure S4 Manhattan plot of corrected serum calcium. Man-

hattan plot showing 2log10 (P values) for all SNPs analyzed,

ordered by their chromosomal position. The values correspond to

the association of albumin-corrected serum calcium, including age

and sex as covariates in the model as well as study-specific

covariates if needed.

(PDF)

Figure S5 QQ-plot of corrected serum calcium. Quantile-

quantile plot showing observed p-values of the corrected serum

calcium meta-analysis vs. expected P values by chance in

Europeans at discovery. The second genomic control step was

applied to correct for the post meta-analysis of l= 1.03.

(PDF)

Figure S6 Relative expression of genes in non-replicated loci in

kidney, duodenum and tibia. The expression (based on delta CT

normalized to actin) of the selected genes is compared to the

expression of the CASR gene in the duodenum, thereby providing

a relative expression. Cut-off was set at delta CT#15. Data are

means 6 SEM of values obtained from 5 mice fed a normal diet.

(PDF)

Figure S7 Relative expression in segments of kidney tubules of

genes located in non-replication loci. The renal tubular segments

analyzed were the proximal tubule (PROX), the thick ascending

from humans to mouse, zebrafish and to C. elegans,
which suggests an important biological function. Yet,
little is known on the nature of the function of this
gene so far.

Chromosome 20, locus rs1570669
CYP24A1: rs1570669 is an intronic SNP of CYP24A1. CYP24A1
encodes a cytochrome P450 enzyme that hydroxylates 1,25-
(OH)2D, into metabolites targeted for degradation and
appears to be one of the central regulator of 1,25-(OH)2-D
metabolism. CYP24A1 is highly regulated by its own
substrate 1,25(OH)2-D, as well as by PTH [49,50], serum

phosphate and fibroblast growth factor-23 (FGF-23)
[51,52,53]. Sequence variants of CYP24A1 impacting on
1,25(OH)2-D metabolism have been described recently and
explain the strong heritability of 1,25(OH)2-D concentrations.
BCAS1 encodes breast carcinoma amplified sequence 1,
considered as an oncogene. BCAS1 is highly differentially
expressed in some cancers. However, there is no direct link
with calcium homeostasis.
PFDN4 encodes prefoldin subunit4. Prefoldin is a chaperone
complex involved in polypeptide folding. There is no known
link of this gene with calcium homeostasis.
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limb of the loop of Henle (TAL), the distal convoluted tubule and

connecting tubule (DCT-CNT), and the cortical collecting duct

(CCD). The expression (based on the delta CT) of the selected

genes is compared to the expression of the CASR gene in the

PROX. Data are means of values obtained from 3 mice fed a

normal diet. GCKR was not expressed.

(PDF)

Figure S8 Relative expression of genes in non-replicated loci

under various calcium diets. Data are means6 SEM of values

obtained from 5 mice fed a low (0.17%) and high (1.69%) calcium

diet compared to mice fed a normal calcium diet (0.82%).

Expression levels were normalized to actin. Statistical difference

was calculated using unpaired t-test. *: P value#0.05 (low

compared to high); 1: P value#0.05 (low compared to normal);

#: P value#0.05 (high compared to normal).

(PDF)

Table S1 Characteristics of study participants in discovery and

replication cohorts. Data are mean (SD) unless otherwise specified

for each discovery and replication studies.

(DOCX)

Table S2 SNPs brought forward for replication that did not

replicate. Chr, chromosome. A1, effect allele. A2, non-effect allele.

Effect A1, regression coefficient for the A1 allele. SE, standard

error. Freq A1,frequency of allele A1.

(DOCX)

Table S3 SNPs with P value,5*E-05 for uncorrected calcium in

Europeans (discovery). Chr, chromosome. Position, position on

build 36. A1, allele 1 (effect allele). A2, allele 2. Freq A1, frequency

of allele 1. InRefGen, gene symbol if SNP is located within a

specific gene.

(DOCX)

Table S4 Comparison of association with uncorrected versus

corrected serum calcium. Chr, chromosome. Freq A1, frequency

of allele A1. Beta, regression coefficient for the A1 allele. SE,

standard error. A1, allele 1 (effect allele). Only replicated loci are

included in this table.

(DOCX)

Table S5 Genome-wide significant loci for corrected calcium in

Europeans (discovery). Chr, chromosome. Position, position on

build 36. A1, allele 1 (effect allele). A2, allele 2. Freq A1, frequency

of allele 1. InRefGen, gene symbol if SNP is located within a

specific gene.

(DOCX)

Table S6 eQTL analysis for the seven genome-wide replicated

loci for serum calcium. We used the online eQTL database of the

University of Chicago (http://eqtl.uchicago.edu/cgi-bin/

gbrowse/eqtl/., last accessed, November 5, 2012). All eQTL were

acting in cis.

(DOCX)

Table S7 Details on genes located in the GCKR genomic

region.

(DOCX)

Table S8 Gene Ontology classification (AmiGo). Data are GO

numbers, ontology and mechanism/location from the AmiGo

1.8 gene ontology database for each gene located within

6250 kb of the seven replicated SNPs, including rs1801725

(CASR).

(DOCX)

Table S9 OMIM disorders associated with the genes located

within the replicated loci. This table includes all Mendelian

disorders or other types of genetic disorders included in the

OMIM database described for each gene located within 6250 kb

of any of the six new loci and for CASR.

(DOCX)

Table S10 Association of replicated serum calcium loci in other

ethnic groups. Chr, chromosome. Position, position on build 36.

A1, allele 1 (effect allele). A2, allele 2. Freq A1, frequency of allele

1. Effect A1, regression coefficient for the A1 allele. SE, standard

error. NA, not available.

(DOCX)

Table S11 Plasma and Urine electrolytes values by calcium diet

in mice. Data are means 6 SEM of values obtained from 3 to 5

mice. *: P value#0.05 compared to normal or high calcium diet.

(DOCX)

Table S12 Study information.

(DOCX)

Table S13 Genotyping information for each cohort (discovery,

replication and look-ups).

(DOCX)

Text S1 Study specific acknowledgements.

(DOCX)
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