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Abstract
Integration of single cell mRNA sequencing data from millions of cells revealed a high diversity of cell
types in the healthy and diseased human lung. In a large and complex organ, which is also constantly
exposed to external agents, it is crucial to understand the in�uence of lung tissue topography or external
factors on gene expression variability within each cell type. Here, we applied three spatial
transcriptomics approaches, to: (i) localize the majority of lung cell types, including rare epithelial cells
within the tissue topography, (ii) describe consistent anatomical and regional variability in gene
expression within and across cell types, and (iii) reveal distinct cellular neighborhoods for speci�c
anatomical regions and examine gene expression variations in them. We thus provide a spatially
resolving tissue reference atlas including cell type composition and gene expression variations in three
representative regions of the healthy human lung. We further demonstrate its utility by de�ning
previously unknown imbalances of epithelial cell type compositions in diseased tissue from patients
with stage II COPD. Our topographic atlas enables a precise description of characteristic regional cellular
responses upon experimental perturbations or during disease progression.

Introduction
Recent advances in single cell-omics have led to extensive reference datasets of cell types from various
human organs, including the lung, harboring the respiratory system with its multitude of cell types and
states [1–5]. Single cell mRNA sequencing (scRNA-seq) unveiled previously unknown cell types in
healthy human lung, such as ionocytes, hillock-like and tuft cells, neuroendocrine (NE) cell states and
aerocytes [3, 4, 6–8]. Multiple subtypes of �broblasts, immune and endothelial cells were also
characterized based on their gene expression programs and inferred tissue distribution [4]. A limitation
of these datasets deriving from dissociated tissue is that cell types and their annotation often lack the
information about cellular location relative to tissue landmarks or along relevant axes in the tissue such
as the proximo-distal axis in lung with gradients in for instance oxygen tension or airway diameter that
are likely to impact on cell type variation. Moreover local intercellular interactions can only be predicted
based on selectivity of ligand/receptor pair expression at the mRNA level in cell-type pairs, but lack
information about spatial proximity which is especially relevant at higher resolutions of cell subset
annotation. On the other hand, creation of spatially resolved gene expression maps can highlight
physical proximity of cells and establish consistent cellular neighborhoods allowing focused analysis of
cell-cell interactions. Such topographic atlases of healthy tissues in comparison to corresponding maps
of diseased tissues can reveal potentially causative alterations in the cellular landscape in diseased
organs.

The large size of the adult human lung precludes in-scale mapping of the full tissue. Instead, available
atlases of the adult human lung rely on sampling of distinct anatomic regions from different donors [1–
4, 6, 9–14]. For example, extensive proximal airway epithelial sampling allowed identi�cation of nasal
cell types, including nasal-speci�c serous, goblet and club cells [3]. Another thorough characterization of
distal airways focused on bronchial secretory cell populations, and de�ned the AT0 intermediate cell
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state, characterized by the co-expression of bronchial secretory and alveolar epithelial Type 2 (AT2)
markers [9]. A recent integration of scRNA-seq data has created a comprehensive cellular catalog of the
healthy human lung, counting a total of 61 major cell clusters, 58 of those from the trachea and the lung.
This de�ned 35 major cell types with 51 subtypes and seven cell states [2]. Most subtypes were
annotated by sampling location and others by differential expression of single or few distinguishing
markers. Cell states of different cell types were further classi�ed as resting, proliferating, activated, or
intermediate, suggesting the presence of cells in distinct steps of differentiation progression. The
potentially distinct cellular environments of such transition states remain unknown.

Here, we generated a representative topographic atlas of the healthy adult lung by combining sections
from distinct anatomic locations of the respiratory system from four donors of different age and gender.
We used three different, multiplexed spatially-resolved transcriptomic (SRT) approaches with high
resolution to obtain complementary results. We con�rmed and deeply characterized consistent, location-
related gene expression variability within and across cell types. Finally, we used the topographic atlas as
a reference to de�ne changes in cell-type and cell-state abundance and their distribution in distal lung
samples from three stage-II COPD patients revealing distinct cellular niches at an early stage of disease
progression.

Results

A HybISS-based cell type map reveals speci�c cellular
neighborhoods
We collected tissue samples from six donors targeting �ve discrete anatomical regions, congruent to the
previously described locations of cells in scRNA-seq datasets [1, 15], and grouped them into three major
anatomical regions: trachea (ventral side of the airway with surrounding mesenchyme), proximal lung
(generation 2–3 intralobar bronchus with surrounding mesenchyme and occasionally alveoli) and distal
lung (distal/terminal bronchioli and alveolar tissue close to the edge of the lobes). After histology-based
assessment, two out of six donors were excluded due to multiple signs of pathology, including �brosis or
large immune in�ltrations. Samples from the remaining four donors (Suppl. Table 1) were subjected to
mRNA quality controls to reject the samples with low or diffuse RNA signal (Methods, Suppl. Figure 1A).
We selected high-quality samples from different locations and applied three different complementary
SRT technologies (Fig. 1A, Suppl. Table 2). First, we used RNA-rescue Spatial Transcriptomics (RRST) for
unbiased mapping of gene expression on the tissue sections. This broad regional mapping was
complemented by SCRINSHOT and HybISS [16, 17], aimed to simultaneously detect either 23 cell types
with additional intra-population gene expression variability (SCRINSHOT), or all 35 cell types (HybISS) at
cellular resolution. We classi�ed cells based on previously published scRNA-seq data (Suppl. Figure 1B)
[1, 3] and generated probe panels for targeted methods using Spapros, as previously described, and
partially validated using SCRINSHOT [18]. Cross-validation between methods, including the unbiased SRT
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method (Visium/RRST) on serial tissue sections, demonstrated consistent cell type marker gene
expression patterns, and therefore the accuracy of probe selection (Suppl. Figure 1C).

First, we identi�ed cell types and their spatial distribution by pro�ling 14 sections from four donors by
HybISS using a gene panel consisting of 162 genes (Suppl. Table 3). After decoding, cells were
segmented based on DAPI-stained nuclei using an AI-based deep neural network for segmentation in the
BIAS software (Methods). Fluorescent signals were assigned to cells (regions of interest, ROIs) using
Baysor (Methods) [18, 19]. We excluded cells with low transcript counts and �nally processed a total of
260,398 cells for further analysis and clustering based on their expression pro�les. This separated the
cells into six major classes, assigned according to marker gene expression: airway epithelial, immune,
alveolar epithelial, endothelial, stromal, and submucosal gland (SMG) (Suppl. Tables 3, 4). The cells in
these classes mapped to their expected histological locations (Suppl. Figure 2A). By further
subclustering of each class, we revealed and annotated 28 cell types (Fig. 1B, Suppl. Table 4),
corresponding to the majority of the adult lung cell types, described in previous scRNA-seq studies [2, 4].
Based on positivity for corresponding cell type marker genes in the RNA-seq atlases [1–3], we manually
annotated seven additional cell types that could not be assigned by the unsupervised sub-clustering of
the HybISS data either due to their low abundance or sparse gene expression (T lymphocytes, NK cells, a
mixed group of T and NK cells, ionocytes, tuft cells, rare tuft-like cells, squamous-like cells and aerocytes;
Suppl. Figure 2B, Suppl. Table 5). Therefore, our analysis resulted in identi�cation of a total of 35 cell
types that were mapped onto the tissue topography in situ (Fig. 1B, Suppl. Figure 2C-D). All data are
deposited in an open access searchable browser that visualizes primary signals, cell type annotation,
gene expression levels and histological stainings (see Data Availability in viewers for HybISS Atlas).

Complementing the HybISS datasets, we analyzed sequential sections of the same tissue blocks using
the RNA-rescue Spatial Transcriptomics (RRST) modi�cation of the Visium protocol due to the tissue-
speci�c challenges presented in pro�ling lung sections [20]. This technique allows targeting the mRNA
sequences directly instead of their poly-A tails. We used the Stereoscope method to deconvolve the cell
type composition of each spot using the �nest annotation from scRNA-seq dataset from Madissoon et
al [1] as a reference. Lastly, we pro�led sequential sections by a highly sensitive mRNA detection method
(SCRINSHOT) [16], employing a gene panel of 64 marker genes also selected using Spapros to assign
cells to clusters according to marker gene positivity (Suppl. Table 6). The location of assigned cell types
within the tissue was consistent between all three methods (Suppl. Figure 3), con�rming the speci�city
of each of the three technologies and the robustness of the combinatorial approach, which overcomes
limitations of individual spatial mapping protocols, such as resolution or limited gene panel.

We de�ned cell type compositions across tissue locations by calculating the relative frequency of each
cell type within each pro�led region (Fig. 1C). We treated distal regions as a single location due to
similarity in cellular composition. Several cell types exhibited a regional preference, for example AT1 and
AT2 epithelial cells were mostly present in distal lung, whereas B plasma and SMG cells mainly occupied
tracheal regions (Fig. 1C-D). To further dissect the relative spatial distributions of cell types and describe
consistent cellular colocalizations across the mature lung, we performed neighborhood proximity
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enrichment analysis of all datasets. This revealed multiple consistent cellular colocalizations, which
included most cell types, except tuft and lymphatic endothelial cells. These colocalizations were
combined into larger neighborhoods, which were characterized by de�ned histological features (Fig. 1D).
In addition to the SMG and airway epithelial neighborhoods, we also revealed a group of cell types in
proximity to AT1, AT2 and aerocytes, which included stromal, endothelial, monocytes and NK cells
(Fig. 1E). This neighborhood was therefore labeled alveolar parenchyma. A distinct neighborhood
composed of adventitial �broblasts, venous and immune cells, was revealed in both peri-bronchial and
peri-SMG locations (Fig. 1D-E). In summary, our combined data provide an overview of 35 cell types and
their occurrences in the topographic map of healthy adult lung, and de�ne distinct cellular
neighborhoods based on cell type proximity. These neighborhoods as well as their gene expression
pro�les were presented in more detail below.

Multiple cell states with distinct topologies in the airway epithelium
We �rst focused on the topography of cell diversity in the airway epithelium. Among bronchial epithelial
cells, a total of 11 cell types were identi�ed, including basal, suprabasal, ciliated, deuterosomal, and
neuroendocrine cells, as well as manually-assigned ionocytes, tuft (brush), rare tuft-like and squamous-
like cells (Fig. 1B, Suppl. Figure 2B, Suppl. Table 4). The remaining bronchial epithelial cells were split into
two groups. First, secretory cells expressing the AGR2, SFTPB, WFDC2, MUC5AC markers and
comprising 33% of total bronchial epithelial cells and second a smaller group comprising 12% of total
bronchial epithelial cells, which were positive for the general epithelial marker genes SLPI (Suppl.
Table 4). These cells were found spread along the airways, but also occasionally in SMGs and alveoli.
However, they were negative for the characteristic epithelial cell type markers, such as mucins or
secretoglobins and were designated not annotated ‘nan’ cells. They could represent less differentiated
epithelial cells or unknown cell states (Fig. 1B, Suppl. Figure 2B, Suppl. Table 4).

To investigate cell type composition diversity along the airway proximal-distal axis, we further
characterized the composition of the airway epithelium in tracheal, proximal and distal airway sections
from individual donor samples by HybISS. In the trachea, the epithelium was dominated by suprabasal
cells, whereas in the intralobar airways the epithelium mainly composed of secretory and ciliated cells.
Gene expression comparison across the regions con�rmed this distribution, with basal (KRT5, KRT15),
squamous (SPRR3/1B) and suprabasal (S100A2) genes expressed predominantly in the trachea. In
addition, this analysis revealed further variability across the regions, including, for example, mesothelin
(MSLN) expression in trachea, trefoil factor 3 (TFF3) and SLPI in the proximal lung, and surfactant
protein B genes (SFTPB) in the distal lung (Fig. 2A, B). These variable genes could mainly be attributed to
distinct secretory cell populations or regional variations in the secretory cell transcriptomes. Statistical
analysis of all four donors con�rmed a signi�cant dominance of AGR2-positive populations in the
trachea compared to other regions, and the higher abundance of SFTPB-positive populations in distal
lung, compared to the trachea (Suppl. Figure 4A). This analysis identi�es consistent differences in
epithelial composition between three anatomical regions along the proximo-distal axis of the airway tree.
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To further de�ne the location of the major secretory cell types, we quanti�ed gene expression by
SCRINSHOT, targeting characteristic cell type markers for goblet, club and pre-terminal bronchiole
epithelial cells (pre-TB or TASC or RAS) [10, 13, 21] in three different locations (Suppl. Tables 6, 7). We
found club cells in all three anatomical regions but localized goblet cells in trachea and proximal lung
and pre-TB cells only in distal lung [10, 22] (Suppl. Figure 4B). Interestingly, some of the club cells in
proximal regions co-expressed low levels of mucins, and some of the distally-located ones expressed
SCGB3A2. Moreover, in contrast to pre-TB cells, the distally-located club cells expressed genes encoding
antimicrobial proteins (LTF, LCN2, and BPIFB1, see online atlas for SCRINSHOT), suggesting a
specialized role in epithelial immunity. Both distal club and pre-TB cells were located in small clusters
along distal bronchi and respiratory bronchioles (Fig. 2C). We also detected terminal respiratory
bronchiolar (TRB) secretory and alveolar type 0 (AT0) cells in peri-bronchial and alveolar regions
respectively (Fig. 2C). AT0 cells were de�ned by co-expression of the alveolar type II cell marker NAPSA,
and low but evident levels of either SCGB3A2 [9], or SCGB3A1 or LCN2, suggesting additional
heterogeneity in this cell type (Fig. 2C).

The analysis so far revealed large gene expression heterogeneity in the thin distal airway epithelium and
a dominant abundance of suprabasal epithelial cells in the thicker tracheal epithelium (Suppl. Figure 4B-
C). To investigate the suprabasal cell type further and de�ne its topological relationships within the
pseudostrati�ed tracheal epithelium, we investigated its distribution and gene expression in relation to
the distance from the basal membrane to the lumen. In the HybISS dataset, basal and suprabasal cells
were enriched close to the epithelial basement membrane. In contrast, secretory and ciliated cells were
enriched in more apical positions, ciliated cells being closest to the airway lumen (Fig. 2D).
Quanti�cation of the mRNA signals along the distance from the basal membrane to the lumen de�ned
basally-enriched (KRT15, IFITM1 and IFITM2), and apically-enriched mRNAs (AGR2, BPIFB1, CAPS), as
well as an intermediately located gene expression program (SERPINB3, SPRR1B, SPRR3, and HSPB1)
[10, 23] (Fig. 2E, Suppl. Figure 4D). To explore the cellular co-expression of these genes, we performed
basal and suprabasal cell subclustering of the HybISS dataset, and identi�ed KRT5 and KRT15 double
positive and KRT5 single-positive basal cells, S100A2 and KRT5 double positive suprabasal cells, and
three intermediately located cell clusters, which expressed low levels of the apically-enriched gene AGR2
together with one of the following: KRT5 or SERPINB3 or S100A8. Among these three groups of cells, the
KRT5 and SERPINB3 positive ones were commonly observed in the intermediate layer of tracheal
epithelium, whereas the S100A8 expressing cells were found dispersed in both intermediate and luminal
epithelial layers. The frequency of S100A8 cells was highly variable among donors (Suppl. Figure 4E-F),
possibly due to local responses of the airway epithelium involving S100A8 and S100A9 transcription
[24]. SCRINSHOT analysis of consecutive tracheal sections from two donors supported this suggestion
as S100A9 expression was similarly observed in the intermediate and apical layers. A subset of S100A9
cells also expressed KRT13, which was mainly found in the intermediate layer of the tracheal epithelium
as either patches of cells or solitary cells (Fig. 2F). This supports that the KRT13 positive cells might be
Hillock cells, a distinct tracheal cell state, in line with recent observations [25]. SCRINSHOT analysis also
con�rmed the distinct distributions of KRT15 and S100A2 expressed in the basal, SERPINB3 in the
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intermediate, LCN2, SCGB1A1 and SCGB3A1 in subluminal, and MUC5AC, MUC5B and CAPS in the
luminal layer of tracheal epithelium (Fig. 2F, Suppl. Figure 4C and Data viewer for SCRINSHOT Atlas).
This suggests that the characteristic gene expression programs in intermediate layers re�ect
progressive differentiation states of the tracheal epithelial cells with the most differentiated cells
(ciliated and secretory cells) facing the lumen. Our spatial analysis reveals multiple cell states located in
distinct layers of the pseudostrati�ed tracheal epithelium. Overall, there is a strong correspondence
between gene expression and cellular localization along the proximal-distal and apical-basal axis of the
airway epithelium (Suppl. Figure 4G).

Rare cell type mapping reveals region-speci�c neuroendocrine cells
The variability of gene expression patterns in the apical epithelial cells along the proximo-distal axis
could partly be explained by differential exposure to external factors. Certain environmental factors are
sensed by specialized rare cells located in the airways. Ionocytes and tuft cells have been identi�ed in
the nasal epithelium and distal airways, whereas neuroendocrine cells were predominantly located in
trachea and intermediate airways [3]. Our HybISS-based analysis allowed mapping most of these cell
types. Yet, the expression levels of their markers were low, making it di�cult to extract safe conclusions
regarding their differential distribution. To explore the potential variation and location of rare cells, we
developed a marker panel targeting pulmonary ionocytes, tuft cells and neuroendocrine (NE) cells, based
on the previously integrated human lung cell atlas from scRNA-seq [2], as well as speci�c airway
epithelial cell types [3] and embryonic single cell atlas studies [26, 27]. Since neuroendocrine cells of
adult lung are diverse, a precise selection of markers was performed to uncover potential heterogeneity
in neuroendocrine cell phenotypes, targeting the four most abundant adult NE genes, as well as two
genes marking a NE population discovered predominantly in the developing embryonic lung [8, 26]. We
used these markers in SCRINSHOT and located rare epithelial cell types manually by positivity for the
expected markers. We visually analyzed samples from three regions of four donors and selected
samples with large parts of the airway (covering a continuous airway length of at least 2 mm per
section) for further quanti�cation. We assessed gene expression in 158 rare epithelial cells, and
clustered these cells, identifying at least four groups of neuroendocrine cells: (1) NE-GRP, expressing
GRP and low levels of ASCL1, (2) NE-ASCL1 expressing ASCL1 and low levels of GRP, (3) NE-GHRL
positive for GHRL and CFC1, and (4) NE-PCSK1N expressing variable levels of PCSK1N, GRP and ASCL1
(Fig. 3A-C). All NE groups sparsely expressed variable levels of CHGB and were represented in each
donor. ASCL3 expression de�ned ionocytes, and cells expressing variable levels of POU2F3, RGS13 and
CRYM were annotated as tuft cells, the latter including a rare tuft-like cell population expressing
previously published markers NREP and HES6 [3] (Fig. 3A-C). In order to create a uniform regional
annotation of their positions disregarding the variable epithelial thickness, we quanti�ed rare cell types
per length of basal membrane from the selected samples from at least two donors per region (Fig. 3D).
Ionocytes were observed in all anatomical locations, preferentially in trachea and proximal bronchi
(Fig. 3A, D). Tuft and rare tuft-like cells were mostly located in proximal bronchi, but were observed in
other locations along the airway, occasionally in close proximity to other rare cells, but also solitary
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(Fig. 3A, C, D). The three neuroendocrine cell identities were observed across locations, but interestingly,
GHRL-positive NE cells only appeared in distal bronchioles of three donors, and were not observed in
trachea or proximal lung (Fig. 3A, D). GHRL-positive NE cells have previously been detected in embryonic
and pediatric datasets and these cells were hypothesized to gradually disappear in adulthood [27, 28].
Our results indicate that targeted spatially-resolved methods allow the detection of low abundant or very
rare cell populations with high e�ciency, enabling the re-evaluation of the roles of these cells in the lung.

Speci�c cell states in distinct tissue compartments
The neighborhood analysis predicts cell niches based on cell proximities of all cell types in the entire
tissue. A common classi�cation of tissue compartments uses histologic landmarks and cellular
morphology. To complement predicted neighborhoods, we related in the same sections, cellular
morphologies in hematoxylin-eosin (H&E) staining with cell-type annotations and gene expression. We
de�ned (i) the SMG and (ii) peri-SMG mesenchyme by selecting the tubular structures located between
the airway epithelium and the cartilage, and their surrounding connective tissue (usually 50–100 µm
from the basal membrane of the tubular structures, Fig. 4A). The peri-bronchial compartment (iii), which
was thick in the trachea (up to 400 µm) and thinner in distal airways (100–200 µm), was de�ned by
subepithelial mesenchymal cells, smooth muscle �bers and connective tissue. The alveolar
compartments (iv) were de�ned by alveolar structures, which were not in direct contact with large
vessels or airways (Fig. 4A). The remaining histologic regions lacked epithelial structures and were
distinguished either by the presence of large vessels or cartilage structures. Vessel compartments were
divided into (v) peri-venous and (vi) peri-arterial, according to the histology of the surrounding
mesenchyme (including smooth muscle layer or tunica adventitia), which is usually thicker (up to 300
µm) in the arteries than in veins (up to 100 µm). Finally, (vii) the peri-chondrial compartment included
cartilage and its surrounding peri-chondrial connective tissue (extending up to 100 µm). These
histological subdivisions were largely in agreement with the calculated neighborhoods (Fig. 1E) and
covered most of the tissue area. We mapped the 35 cell types and their subtypes in relation to
histologically de�ned tissue compartments, assessing compartment-speci�c gene expression by three
SRT methods.

First, we focused on the epithelial cell types in the submucosal gland structure, which includes a duct
protruding from the airway lumen branching into the tubules and acini composed of mucous and serous
cells [29]. The acini are sheathed by myoepithelial cells enabling mucus ejection into airway lumen. In the
acini and small tubules, we detected SMG mucous and serous cells expressing their corresponding
markers (Suppl. Tables 5 and 6). These cells either intermingled with each other or were found in
continuous patches of either mucous or serous cells (Suppl. Figure 5B). Additionally, BPIFB1 was
expressed in a subset of mucous and serous cells adjacent to each other (Suppl. Figure 5B, Data viewer
for HybISS and SCRINSHOT Atlas), and SCGB3A2 was expressed in a subpopulation of serous cells,
usually located in small tubules and not in the duct [10, 30] (Suppl. Figure 5B). Myoepithelial cells were
sparse and located around the SMG acini and tubules (Data viewer for HybISS and SCRINSHOT Atlas). In
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the ducts, we detected both mucous and serous cells, surrounded by the layer of basal cells. These duct
cells also expressed characteristic airway secretory cell markers (LCN2, ALDH1A3, SCGB3A1) together
with either serous or mucous markers (Fig. 1B, Suppl. Figure 5B), and were therefore called SMG
intermediate (Suppl. Figure 5A; Data viewer for HybISS Atlas). Overall, we located the major SMG cell
types and uncovered additional heterogeneity in the expression of secretory cell markers.

The previously reported description of an SMG immune niche [1], as well as our neighborhood analysis
(Fig. 1E) suggests the location of speci�c cell types around the gland. To extend the description of the
SMG niche, we de�ned all non-epithelial cells of the peri-SMG compartment in the trachea and proximal
lung. In the Visium dataset, these cells were represented with large accumulations of JCHAIN expressing
B plasma cells, intermingled with rare B lymphocyte and T/NK cells and macrophages, as well as
PLA2G2A positive �broblasts (annotated adventitial), but also other �broblasts and venous cells (Suppl.
Figure 5C). Fibroblasts, endothelial cells and macrophages could be further split into subclusters by
gene expression in the SCRINSHOT dataset, and varied in the different anatomical regions. SMGs in the
trachea and proximal bronchi were surrounded by �broblasts expressing FBLN1, as well as smooth
muscle and immune cells, which could not be more precisely annotated (nan), due to the absence of B
plasma cell markers in the panel (Fig. 4A, B). Interestingly, endothelial cells around the tracheal SMG
expressed both SPARCL1 and CLDN5, whereas in the lobes we found either SPARCL1 or CLDN5 positive
cells potentially corresponding to venous or capillary cells, respectively (Fig. 4A, B). As expected from
the neighborhood analysis, the peri-airway compartment contained very similar cell type combinations
as the peri-SMG one (Fig. 4A, B, Suppl. Figure 5C-E). However, the peri-bronchial compartments varied in
different anatomic locations. For example, we only found ganglia with VIM positive cells (annotated
Schwann cells according to their morphology) in proximal peri-bronchial and peri-SMG regions. (Fig. 4B,
Data viewer for SCRINSHOT Atlas). Additionally, smooth muscle cells were most abundant in proximal
bronchi, whereas the distinct populations of endothelial cells expressing either SPARCL1 (aerocyte or
arterial) or CLDN5 (capillary or arterial) were only found around bronchioles together with RGCC
expressing �broblasts and APOE expressing macrophages (Fig. 4A, B).

The alveolar parenchyma was de�ned by the presence of AT1 and AT2 epithelial cells and was
dominated by capillaries (including aerocytes), endothelial cells expressing RAMP2 and non-adventitial
(general) �broblasts, (Suppl. Figure 5E). In comparison to other compartments, the alveolar parenchyma
had the highest proportion of CLDN5 positive endothelial cells (most likely corresponding to alveolar
capillaries), and APOE macrophages (alveolar macrophages (Fig. 4A, B) [1, 2]. Fibroblasts positive for
RGCC (alveolar �broblasts) were dominating in the distal lung. In the HybISS dataset, �broblasts in the
distal lung also expressed higher FN1 and RGCC, and lower PLA2G2A and C3, compared to the
�broblasts in the other regions (Suppl. Figure 5F). This suggests that gene expression patterns reveal the
existence of multiple �broblast subtypes located in different peri-epithelial tissue compartments.

Large vessels and cartilage, were surrounded by endothelial cells expressing both CLDN5 and SPARCL1,
and FBLN1 positive �broblasts. The peri-arterial compartment was distinguished by the increased
proportion of smooth muscle cells (Fig. 4A, C). The peri-venous compartment was contained small
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proportions of all mesenchymal cell types. Chondrocytes only were detected in the Visium dataset
(Suppl. Figure 3A). The peri-chondrial regions were composed of FBLN1 and PLA2G2A positive
�broblasts, and occasionally capillaries, pericytes, and mast cells (Data viewer for HybISS Atlas).

Location-speci�c distributions of cell types and cell states with distinct gene expression patterns in
different compartments de�ne cell type niches and inform on potential cell-to-cell signaling domains.
Our data reveal an enrichment of APOE macrophages and endothelial cells highly expressing CLDN5 in
alveoli. Peri-bronchial and peri-SMG regions on the other hand, were composed of FBLN1 �broblasts, and
JCHAIN plasma cells, with PLA2G2A �broblasts enriched around the gland and cartilage (Suppl.
Figure 5G), which were also con�rmed by our Visium dataset (Suppl. Figure 6). The de�nition of regional
gene expression variation in non-epithelial cell types, such as �broblasts, immune and endothelial cells in
the healthy lung provides a basis for the precise comparison of the same regions in the diseased states.
This may distinguish the regional gene expression variations from the disease-associated ones.

Spatial analysis of early-stage COPD patients demonstrates AT0 cell
state alterations
We further explored the utility of our topographic atlas as a reference to detect deviations in cellular
proportions, gene expression and local cell interactions in diseased lung tissue. We focused on a
common lung disease, chronic obstructive pulmonary disease (COPD), using samples from 3 patients
with COPD GOLD stage II obtained from the most distal lung locations (corresponding to region 3c in
Fig. 1A). These samples were derived from the tumor-free regions from lung cancer surgeries. Two
healthy atlas samples together with one histologically normal tumor-free lung sample of a COPD-free
cancer patient were processed side-by-side for comparison. Samples contained variable airway sizes
(large, medium, small bronchioles and respiratory bronchioles). We applied a SCRINSHOT panel to test
the expression of the 41 most selective genes in order to de�ne major cell types.

In this topographic lung tissue atlas of COPD we analyzed 84,631 high-quality cells and de�ned 20 major
cell types according to their markers (Suppl. Figure 7A). The major cell classes were equivalently
represented in all analyzed samples (Suppl. Figure 7B), however the proportion of AT1 cells was
decreased and the proportion of T lymphocytes increased in COPD samples (Fig. 5A). Previous extensive
scRNA-seq studies on COPD patients reported a shift in the expression of epithelial secretory cell gene
programs, where proximal airway gene expression levels gradually increased in distal epithelial cells of
COPD airways [31] leading to a decrease in the proportion of pre-TB (TASC) secretory cells [10]. Another
recent publication reported an increase in bronchial secretory cell type marker expression in the AT2
cells from COPD patients [21]. We therefore subclustered both bronchial secretory and AT2 cells and
de�ned a population of cells co-expressing AT2 (NAPSA, SFTPC) and airway (SCGB3A1, SCGB3A2, LTF)
markers, which we annotated as AT0 cells (Suppl. Figure 7A, C). We found that proportion of these AT0
cells was signi�cantly increased in all COPD samples (Fig. 5A, B). These AT0 cells were mostly in the
alveolar regions in proximity to the large and small airways, and near accumulations of lymphatic
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immune cells. This in situ increase in AT0 state is in line with the scRNA-seq analysis arguing for a
general upregulation of the proximal secretory cell type program in epithelial cells, not only in the
airways, but also in the alveoli [21, 31].

We extended our analysis to �nd the COPD-speci�c cellular niches. First, we compared healthy and
COPD peri-bronchial and alveolar non-epithelial cells, and found no alterations in their proportions in
COPD samples, apart from the increase in T lymphocytes in both COPD compartments (Suppl.
Figure 7D). Following this, we performed neighborhood analysis (Methods) [32], and clustered the COPD-
cellular neighborhoods together with the ones from the healthy atlas, which contained the coordinates of
218,496 cells grouped into 30 cell types, from three anatomic locations (3–4 donor samples per
location). The integrated data separated into twelve neighborhood clusters with two of them
corresponding to the SMG, and ten of them matching the distal lung regions (Fig. 5C). Three of these
neighborhoods were composed predominantly of cells deriving from COPD samples of all three patients
(Fig. 5D, arrows). The �rst COPD-cell neighborhood (termed, T-E) located in terminal bronchioles and
alveoli, contained cells from all disease-samples expressing TRB and AT0 markers, an unannotated
secretory epithelial cell type, AT1 cells and endothelial cells. This neighborhood was particularly
increased in proportion in one of the patients. The second COPD-cell neighborhood (Imm-P) was
composed of T lymphocytes and other immune cells, �broblasts, endothelial and AT2 epithelial cells, and
was consistently increased in all three patients analyzed. (Fig. 5D-E, Suppl. Figure 7D, E). This is in
accordance with the known in�ammatory nature of the COPD. Finally, the third COPD-speci�c cellular
neighborhood (AT0-Alv) was composed of cells expressing AT0, AT1 and AT2 cell markers, �broblasts
and endothelial cells. This neighborhood mainly contained cells from one COPD patient. Moreover, we
identi�ed two neighborhoods (AT2-Alv) and (Cap-Alv), composed of alveolar epithelial cells, endothelial
cells, macrophages and �broblasts, which were decreased in all three COPD patients compared to the
healthy lung tissue samples (Fig. 5D-E, Suppl. Figure 7D, E). This is consistent with the onset of alveolar
simpli�cation, which is an important component of the COPD pathology. This spatial analysis based on
the topography of the healthy lung describes deviations in the cellular locations and neighborhood
composition in the diseased lungs. We detected a reduction in the alveolar epithelial neighborhoods
(AT2-Alv and Cap-Alv). Instead, AT0 cells in COPD patients were increased and contributed to different
COPD-speci�c neighborhoods, AT0-Alv, T-E and Imm-P (Fig. 5E). The neighborhood analysis reveals a
consistent shift in the balance of the distal airway and alveolar cell phenotypes. We conclude that the
usage of the spatially resolved healthy lung cell atlas as a reference aids the detection of cellular
composition and cellular environments of tissue samples derived from diseased lungs.

Discussion
We generated a reference topographic atlas of three representative regions in the adult human lung,
combining Visium unbiased transcriptomics with expression maps at cellular resolution for 162 genes
with HybISS and 96 genes with SCRINSHOT. The targeted methods mapped 478,894 cells de�ning the
location of 35 major cell types and discovered additional region-related cell variability. This variability
includes new suprabasal intermediate cell states, such as the S100A8/9 cell state in the trachea, which
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included a KRT13-positive cell subset in the intermediate layer of the epithelium. In the SMG, we
discovered an SCGB3A2-expressing serous cell state and revealed a GHRL-expressing neuroendocrine
cell group selectively in the distal airways. The utilization of complementary methods with different
sensitivity, multiplexity and cellular resolution was also suitable to localize previously known but
underrepresented cell types, including neuronal cells and lipo�broblasts (�broblasts that co-express
APOD). However, a few of the expected cell types and subtypes could not be identi�ed either due to the
sparse signal from some probes, or due to the absence of particular cell types in the collected sections.
Our analysis was also limited by the absence of certain cell types in the scRNAseq datasets (such as
Schwann and adipocytes). We detected these cells in the histological sections, but cannot con�dently
annotate them by gene expression. Our further analysis of cell neighborhoods relates gene expression
levels with cell proximities and tissue histology and thereby facilitates future work to reveal homeostatic
cell communication patterns by mining the extensive scRNA-seq datasets from healthy lung tissues [2].
A major aim of the Human Cell Atlas projects is to generate reference maps and databases that also
enable the study of diseased cell states [32, 33]. We generated an additional SCRINSHOT dataset
including two distal lung regions from the atlas, three from COPD stage II patients and a corresponding
healthy region from another patient to explore the utility of our spatial atlas in identifying alterations in
cell composition in disease. In this integration we used a general cell type panel, without aiming to target
COPD-speci�c gene expression changes but to de�ne a diseased phenotype purely by cellular
neighborhoods and regional cell composition. Extensive previous work with samples from large cohorts
indicated that COPD pathology is linked with multiple perturbed cell types [10, 21]. Our relatively small
experiment identi�ed gene expression alterations including the increased proportion of AT0 and a
relative reduction in AT1 cells in the diseased lungs, in line with previous knowledge of the COPD
histopathology [34]. We further constructed the proximity-based COPD cellular neighborhoods and
compared them with the atlas revealing aberrant, COPD-characteristic cell niches involving �broblasts,
macrophages, epithelial, endothelial and immune cells. Our identi�cation of the cell types involved in
these aberrant disease-speci�c niches provides a basis for hypothesis building and further exploration of
available RNA-seq data from the corresponding cell types, as well as Visium data from COPD patients
[10, 21, 35, 36]. The extent and open availability of our atlas for exploration and data mining together with
the sensitivity of our targeted methods suggest their further application in early disease and pathology
detection in heterogeneous lung tissues.

Materials And Methods
1. Sample collection and screening

1.1. Donor information

For the healthy adult lung atlas, four deceased organ donors of various age, gender and smoking status
were used. Informed consent from the families and approval from NRES Committee of East of England,
Cambridge South, was obtained (15/EE/0152). Donors were anonymized and numbered randomly. Donor
information can be found in Suppl. Table 1. For the diseased sample analysis, tissues were collected
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with written informed consent from all patients and with ethics approval from the ethics committee of
the Ludwig Maximilian University of Munich (#330-10, #19-629 and #19-630). Patients admitted to the
hospital due to lung cancer were either diagnosed with COPD or were COPD-free. Lobectomy of the lobe
with the tumor was performed, and tissues were collected from peri-tumor (tumor-free) regions. Patients
were anonymized and numbered randomly. Patient information can be found in Suppl. Table 1.

1.2. Sample collection, freezing, and histopathological assessment of donor samples

Tissues for the healthy lung atlas were collected from the lungs of deceased organ donors. Lung tissue
samples (approximately 0.5-1 cm3) were collected from the following locations: (1) ventral side of
trachea in proximity to carina, (2) left bronchus 2-3 generation, (3a) bottom part of left upper lobe, 1-2 cm
from pleura, (3b) top part of left upper lobe, 1-2 cm from pleura, (3c) bottom part of left lower lobe, 1-2
cm from pleura. The samples were rinsed in PBS and stored until freezing in OCT within 2 hours from
collection. The samples from COPD and non-COPD patients were collected from the following locations:
(3c) left lower lobe, and (3d) right lower lobe. Then samples were brie�y rinsed in PBS and dried, then
refrigerated until freezing in OCT within 18 hours from collection. Frozen blocks of tissue were sectioned
using a cryostat at 10 µm thickness, �xed with 4% PFA and stained using hematoxylin and eosin (H&E).
Imaged sections were evaluated by a histopathologist, samples with signs of severe in�ammation were
excluded. A total of 55 tissue samples from six donors were sectioned and analyzed histologically. We
excluded two donors as unhealthy due to observed pathological landmarks in alveolar regions. The
remaining samples (from four donors described in Suppl. Table 1) were further screened using H&E
staining for the presence of the airways, submucosal glands, alveoli and blood vessels, as well as the
absence of freezing artifacts and other more subtle pathological conditions, such as in�ammation or
�brosis.  Within the patient cohort, six tissue samples from six patients (three COPD and three non-
COPD) were scanned. Two non-COPD samples were excluded due to poor quality and lack of airways.
One remaining non-COPD sample together with two healthy donor samples were used for the experiment
side-by-side with COPD samples. We processed morphologically suitable samples using SCRINSHOT
and screened for RNA integrity with the presence of mRNA signals of well-characterized cell type marker
genes.

1.3. mRNA quality assessment

For Visium/RRST eight 10 µm sections of each tissue were collected for the total RNA integrity (RIN)
values. Samples with RIN values above 5 were processed further. For targeted spatial analysis one
section per morphologically assessed tissue sample was processed with SCRINSHOT as described
previously [16] for main cell type marker genes. The cell type marker panel was used for the detection of
major cell types, as described previously [18]. Samples or regions with low or sparse signal were
considered to be of unsuitable quality. Samples with speci�c patterns of gene expression and strong
(>10 dots per cell) SCRINSHOT signal were considered suitable for further analysis. Selected samples
are summarized in Supplementary Table 2.

2. Gene panel selection
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The cell type probe panels were designed using Spapros, as described previously [18].  For the
SCRINSHOT panel, we utilized a precursor version of the method, which exhibited distinct characteristics
compared to the current versions v0.1.0-v0.1.4. Speci�cally, during the training for binary cell type
classi�cation, individual decision trees were computed instead of generating multiple trees and
subsequently choosing the most optimal one. Moreover, secondary trees aimed at enhancing
classi�cation performance for �nely annotated cell states, which are challenging to discern, were not
included. The implemented version combined gene set selections for the lung regions: proximal (airway)
and distal (alveoli, parenchyma) lung. This process involved choosing common genes for shared cell
types and unique genes for region-speci�c cell types. Fifty genes for each region were chosen from the
scRNA-seq lung data from previous publication [1]. Selections were based on log-normalised data post
scran normalisation [37]. We omitted Donor A47 due to missing location annotations. An internal marker
list was provided as input for Spapros, ensuring that genes from marker list groups that were not well
captured with the initial selection were automatically included. For the SCRINSHOT panel gene selection,
26 clusters (23 cell types and 3 subtypes) were targeted. To �lter out genes that might be below the
detection threshold, an expression penalty was applied. This penalty employed a smoothed rectangular
function to penalise genes with 0.99 expression quantiles below 2 and above 6 (set parameters on cpm
log-normalised data), which translates to 0.75 and 4.3 respectively when adjusted to scran
normalisation. Conversely, for HybISS selections, Spapros v0.1.0 was used on the same dataset but with
more detailed cell type annotations covering 52 cell types (36) and subtypes (16). No region-speci�c
selection or expression restrictions were applied. As before, the internal lung marker list was supplied for
selection.

3. In Situ Sequencing (HybISS)

3.1 HybISS mRNA detection

Cell type markers were used as previously reported [15], replacing some of the markers by alternative
markers when the design of speci�c padlock probes was not possible. The �nal panel of genes pro�led
can be found at Supplementary Table 3. The CARTANA High-Sensitivity library preparation kit was
employed, following the manufacturer's instructions, with customized backbones as described in
Supplementary Table 3. In the experimental process, tissue sections were �xed and then subjected to an
overnight incubation with the probe mix in a hybridization buffer. Subsequently, stringent washing was
performed, followed by incubation with the ligation mix. After further washes, RCA (Rolling Circle
Ampli�cation) was conducted overnight. For detection, labeling was performed according to the
procedure described in the protocols.io website (https://doi.org/10.17504/protocols.io.xy4fpyw).

3.2 HybISS imaging

RCPs were detected using 4 different �uorophores (Cy3, Cy5, AF750 and AF488) across �ve imaging
rounds. DAPI staining was imaged on each cycle to identify cell nuclei. All images were acquired using a
Leica DMi8 epi�uorescence microscope, which was equipped with various accessories. The microscope
setup included an external LED light source called Lumencor® SPECTRA X light engine, an automatic
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multi-slide stage (LMT200-HS), a high-quality sCMOS camera named Leica DFC9000 GTC, and different
objectives such as HC PL APO 10X/0.45, HC PL APO 20X/0.80, and HCX PL APO 40X/1.10 W CORR. For
capturing multispectral images, the microscope was equipped with specialized �lter cubes capable of
separating 6 different dyes. Additionally, an external �lter wheel (DFT51011) was used to enhance the
imaging capabilities further. The image scanning process involved outlining Regions of Interest (ROIs)
that could be saved for multi-cycle imaging, employing tiled imaging with a 10% overlap. To capture the
depth of the tissue, Z-stack imaging was performed, covering 10 µm at 0.5 µm intervals.

3.3 HybISS preprocessing and decoding

The initial preprocessing of microscope images involved several steps. Z-stacks were subjected to
maximum intensity projection, tiles were aligned between imaging cycles, and image stitching was
performed. The code for this preprocessing can be accessed at
https://github.com/Moldia/ISS_preprocessing. During imaging, the images and their accompanying
metadata were exported. The images were then formatted into OME tiff �les and stitched and aligned
using ASHLAR [38]. To reduce computational requirements, the stitched images were sliced into 6000 by
6000-pixel sections for decoding. Due to the heightened sensitivity of the High Sensitivity Cartana kit, we
encountered challenges related to overlapping RCPs (optical crowding) in the 2D projected data, which
was essential for decoding. To address this issue, we employed a content-aware image restoration
(CARE) approach, which had previously been trained on pairs of raw-deconvolved RCP images of
multiple tissues (https://github.com/Moldia/ISS_CARE) [39]. As a result, the RCPs in the CARE-
processed images exhibited signi�cantly enhanced sharpness, leading to a reduction in overlapping
RCPs and improved decoding results. The transcript decoding process relied on the Python package
called star�sh (https://spacetxstar�sh.readthedocs.io/en/latest/). The decoding code can be found at
https://github.com/Moldia/ISS_decoding. In brief, the images were registered and underwent white top
hat �ltering. The channel intensities were then normalized across channels. Spots, representing
transcripts, were located in a composite maximum intensity projected image of signal images from the
same �eld-of-view and sequencing round. The decoding of spots was achieved using the
PerRoundMaxChannel method. For each spot and each base, the highest intensity channel was
determined and matched to a corresponding barcode in the codebook. Additionally, a quality metric was
assigned to each spot in every cycle. This metric was de�ned as the called channel intensity divided by
the sum of all other channels, with values ranging between 0.25 and 1.

3.4 HybISS data analysis

Cell segmentation was performed on each sample using the BIAS lite software (Single Cell Technologies
Ltd), using pre-trained deep neural network model (DiscovAIR Segmentation, v.1.4), which provided
precise delineation of individual cells in the imaging data. Approximately 104-105 nuclei were segmented
per sample. To ensure comprehensive coverage of each cell area, we expanded the cell masks by two
micrometers. The critical task of assigning reads to cells was accomplished using Baysor [19]. Taking
the segmentation mask generated with BIAS and the location of every decoded read as an input, Baysor
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enabled us to e�ciently associate the sequencing reads with their respective cells, facilitating
downstream analyses. By implementing these steps, we were able to establish a robust and reliable cell-
to-read assignment pipeline for our research, providing a solid foundation for further investigations and
insights into the biological processes under study.

3.5. Clustering and subclustering method.

With the aim of identifying cell populations present in the tissue, cell-by-gene matrices from different
regions and donors were pooled together. Cells with less than 3 genes and less than 5 transcripts per
gene were excluded from analysis. The counts of the remaining cells were then normalized and log-
transformed prior to clustering. Main clusters identi�ed were further subclustered, occasionally with
excluding 1-2 non-marker genes which interfered with the clustering in order to guarantee the division of
cells based on their cell identity. All details can be found in Suppl. Table 4.

3.6. Cell type annotation.

Manual doublet exclusion was performed for each cluster based on scRNA-seq data and previously
published annotations [1]. Gene detection levels ranged from 1 to 20 dots per cell (each dot representing
mRNA molecule), consistent with the differences in the expected gene expression levels [1].
Approximately 1-2% of misannotation was observed, allowing few AT1, AT2 and aerocyte-annotated cells
to be mapped to tracheal regions, some SMG cells to the parenchymal regions, and stromal cells to
epithelium. For overall analysis in the current study this misannotation was insigni�cant, but it should be
considered for re�ned cell type mapping using our HybISS-based atlas. Annotated cell types can be
found in the web data viewer (https://adult-lung-iss.serve.scilifelab.se/), which was created using
TissuUmaps [40].

3.7. Measurement of baso-luminal cell type distribution

With the aim of assessing the baso-luminal gradients present in the human lung airways, we �rst
manually segmented individual airways based on DAPI and complementary H&E stainings, keeping only
cells detected within the epithelium for further analysis. Next, we manually de�ned the basal layer using
TissUUmaps and we computed the minimum distance from each transcript and cell detected with ISS to
the basal layer. Finally, since airways present a different width along the proximodistal axis of the lung,
we normalized the distance to the basal layer of each cell/transcript per airway, which resulted in each
transcript/cell presenting a relative proximity to the basal layer (0-1). In this context, the closest
transcripts/cells to the basal layer will have a distance of 0, whereas the most distant ones will present a
relative distance of 1.

4. SCRINSHOT.

4.1. Probe design.
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All padlock probes for SCRINSHOT were designed with a unique barcode, as described previously [26]. In
order to detect �ve genes per hybridization cycle using DAPI for nuclei, detection probe oligos were
conjugated to one of the �ve different �uorophores: FITC, Cy3, TexasRed, Cy5 and Cy7. List of
SCRINSHOT probes is available in Supplementary Table 8.

4.2. Probe application and detection

Experimental procedure in SCRINSHOT was performed as previously described [16, 18, 26]. Brie�y, tissue
sections were �xed for 10 minutes in 4% paraformaldehyde, treated with 1M HCl, blocked and incubated
with padlock probe mix. Probes of highly expressed genes were reduced to 1-2 padlocks per gene, the
rest was applied at 3-4 padlocks per gene. Ligation with SplintR, and probe ampli�cation steps were
followed by �xation of cDNA product and detection cycles. Detection probes were applied at 30 oC in
30% formamide solution, followed by washes at 30 oC in 20% formamide solution. All samples were
processed with cell type panel (Suppl. Table 9) in three experiments with variation in probe list for
ZG16B, GRP, ZFP36L2, NKX2.1, CD69 and BPIFB1, and slight changes in concentration of padlocks for
highly expressed genes. Rare cell type panel was composed of the epithelial cell type markers and rare
cell type markers (Suppl. Table 9). It was applied to samples from four donors, but only two samples per
location were selected for further analysis (Suppl. Table 2). Additionally, SERPINB3 was detected in
samples from donors 1 and 4 together with other epithelial markers. Images were taken at 20x
magni�cation using as a Z-stack with 10-11 steps of 0.8 μm (to cover the whole 10 μm thickness) at a
wide�eld microscope (Zeiss Axio Observer Z.2, Carl Zeiss Microscopy GmbH, with a Colibri led light
source, equipped with a Zeiss AxioCam 506 Mono digital camera and an automated stage).

4.3 Data analysis.

Analysis of SCRISNHOT data was performed as described previously [16, 18, 26]. Projection and
stitching, followed by image export was performed in Zen (2.3 lite). Tiling of SCRINSHOT images was
performed in Fiji (ImageJ 1.53c), SCRINSHOT signal (dot) detection was done in CellPro�ler (3.1.9).
Automated nuclei segmentation was performed in BIAS on tiled images (via Image Filters function)
using deep neural network model (DiscovAIR Segmentation, v.1.0) in Segmentation function with scaling
1.50-2.00, detection con�dence 1%, contour con�dence 50%. Manual correction of segmented nuclei
shapes in areas with compact tissue, such as bronchial epithelium, was used via Manual Segmentation
function. Approximately 104-105 nuclei were segmented per sample. Nuclei shapes were then expanded
by 0.5 µm using Mask Operators function, overlapping shapes were removed at tile borders using
Remove Duplicate function at 10% overlap threshold, then nuclei shapes were eroded back by 0.5 µm in
order to create a gap between regions of interest using Mask Operators function. Images of nuclei
masks were exported using Scan function, and used to de�ne regions of interest (ROIs) in Fiji. Nuclei
regions were expanded by 2 µm (without overlaps) to recapitulate cell ROIs using CellPro�ler.
Assignment of dots to cells was performed in Fiji, as described previously [16, 26]. Cell type panel data
was used for clustering for cell type con�rmation, epithelial cell quanti�cation, epithelial cell type
mapping, SMG mapping, muscle and �broblast gene expression level comparison, and immune cell
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mapping. Rare cell panel was used for manual annotation and quanti�cation of rare cells. COPD panel
was used for selected cell type annotation, as in Supplementary Table 7, quanti�cation of cell types and
neighborhood enrichment analysis.

4.4. Clustering data and mapping cell types

Gene detection levels ranged from 1 to above 50 dots per cell (each dot representing mRNA molecule),
consistent with the differences in the expected gene expression levels [1, 18].  For cell type clustering
with 64 genes, negative and low positive cells were excluded by �ltering out cells with less than 25 total
dot count, leaving around 40% of cells for further analysis. For a shortened cell type panel of 41 genes
used for COPD analysis the �ltering of low positive cells was performed by excluding cells with less than
eight counts per cell. Normalization by total count was the only data conversion applied. For cell type
maps data was clustered separately for each sample. For comparison of healthy and COPD samples,
datasets were combined. Different resolutions and principle components (pc) were tested on a
representative dataset, so that most expected cell types appeared as clusters. Leiden clustering with 20
nearest neighbors, resolution 1.5 and pc number 7 was used for all remaining datasets.  Subclustering
was performed for selected clusters to retrieve smaller groups of cells with 10 nearest neighbors,
resolution 0.4 - 1.5 and pc number 0. Clusters were manually annotated according to expected marker
genes. Manual cell type assignment for rare cell types was performed by positivity (<20% of maximum
counts per cell for each gene) for any of the rare cell type marker genes. The rare cells were then
clustered as described above. Annotated cell types were mapped by ROI coordinates using TissuUmaps
[40], and can be found in the web data viewers.

4.5. Airway length measurement

Airway length or circumference was measured by drawing a line along the basal membrane (based on
the border of KRT5 and KRT15 signal) in Fiji and measuring its length in micrometers.

5. Visium and RRST

Visium and RRST were performed as described previously [20]. Proximal lung sample from donor 4 was
used for standard Visium in 8 sections 100 µm apart from each other. RRST was used in proximal and
distal lung sections from donor 4 and distal lung section from donor 1. Cell type annotation was
performed using stereoscope [41]. Graph panels were created using RNA rescue app and the annotated
dataset available online: https://github.com/ludvigla/DiscovAir_data_explorer/

6. Neighborhood enrichment analysis

To explore the cellular environment of each cell and de�ne cellular niches, each cell was re-de�ned
based on the local neighborhood of each pro�led cell. For each cell, its 20 closest cells were considered
its microenvironment and used to create a cell-by-neighboring cell types matrix. For every cell, we
quanti�ed the amount of cells of each cell type present in its de�ned neighborhood, as done previously
[33]. Cell-by-neighborhood matrices were then preprocessed following standard single cell preprocessing
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steps including library size-based normalization. To de�ne cellular neighborhoods in COPD vs healthy
dataset, graph-based clustering was performed using Leiden clustering. Neighborhoods were further
represented via UMAP low dimensional representation. Clusters resulting from this process represent
tissue neighborhoods, de�ned as groups of cells that present the same local microenvironment. Since
some cellular neighborhoods were sample, or even cell speci�c, local clusters with less than 50 cells
were excluded from the analysis, as they did not represent general neighborhoods, but rather unique rare
microenvironments.   

7. Statistical analysis

Data normality for percentage values was reached using logit-transformation, variance was tested in
using F test. Statistical tests for each corresponding dataset are indicated in �gure legends. When
normality could not be reached (for example, due to true 0 values), non-parametric tests were used for
data comparison. For too low/undetectable values the 0 were replaced half of the minimum detection
values. Statistic comparisons were performed and graphs were created in GraphPad Prism 8.3.0 (538),
or in Microsoft Excel (14.0.7268.5000).
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Figure 1

HybISS-based cell type map reveals cell type distribution and neighborhoods. A. Experimental outline
including the location of sample collection from donated healthy human lungs, and the methods used for
the mRNA-based cell type mapping. 1 – trachea, 2 – proximal bronchi, 3a – bottom part of upper left
lobe, 3b – top part of upper left lobe, 3c – bottom part of lower left lobe. B. UMAP of cells after leiden
clustering pro�led with HybISS, colored by the assigned cell type (35 cell types presented). Gen –
general, adv – adventitial, nan – not annotated. C. Heatmap of relative abundance of clustered cell types
between locations demonstrating their frequency across the pro�led regions. Similarity in cell type
composition between three distal lung regions can be assessed by hierarchical clustering dendrogram
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on the left side. D. Representative histological images of an analysed trachea (donor 4) and a distal lung
(donor 1) biopsies with hematoxyllin and eosin (H&E) staining (up) coupled to the maps of cell types
identi�ed by HybISS on top of nuclei (DAPI, white) in the same sections (down). Spots represent
detected transcripts, colored according to the corresponding cell type of the cell they were assigned to.
Colors as in Figure 1B. Dashed lines indicate the approximate borders of histologic compartments. SMG
– submucosal gland, aw – airway, alv – alveolar region, bv – blood vessel. Scale bar 200 μm. E. Cell type
neighborhood enrichment graph representing cell types as nodes, and edges indicating a positive
neighborhood enrichment (>2) between cell types across the pro�led sections. Suggested
neighborhoods are shown as bubbles. Node colors as in Figure 1B.

Figure 2
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Distribution of cells and gene expression in bronchial epithelium along proximo-distal and apical-basal
axes. A. Cell type frequencies in the airway epithelium according to HybISS. Left: stacked bar plot
representing relative frequencies of the airway epithelial cell types across regions from different donors,
using samples with representative numbers of airway cells. Right: cell type maps in the indicated regions
from donor 1. Spots represent detected transcripts, colored according to the corresponding cell type of
the cell they were assigned to. Colors as in Figure 1B. Nuclei: gray. Lu – lumen, dashed line: approximate
location of basal membrane. Scale bar: 50 μm. B. Heatmap of the relative mean gene expression in
airway epithelium of variable epithelial markers across regions (colors) in three analysed donors
(numbers). The expression is normalized by gene, dividing by sum of values on each row. Superscript
numbers: references of previous studies, reporting variable expression of the corresponding marker
along the proximal-distal axis. asterisk*: statistically signi�cant expression differences of the
corresponding marker between regions (p-value<0.05, repeated measures ANOVA with Geisser-
Greenhouse correction, followed by Tukey’s multiple comparisons test, all 161 detected genes tested).
plus+: having highest mean change (labeled with plus+). C. Maps of epithelial cell types detected by
SCRINSHOT in the indicated regions of the airways. Arrows: cell clusters. Inserts in respiratory
bronchiole map: (a-b) SCRINSHOT images of representative AT0 cells with either SCGB3A2 (a, orange
squares) or SCGB3A1 (b, jade squares) dominating expression. (c) Zoomed area. Nuclei: gray. Scale bar
in maps: 50 μm. Scale bar in SCRINSHOT images 10 μm. aw – airway. D. Area plots representing the
relative apical-basal cell type distribution across regions according to HybISS (data from one
representative donor). X axis: relative distance of cells from the basal membrane. Y axis: relative
frequency of cell types. E. Heatmap of the relative mean gene expression of selected markers along the
apical-basal axis of the tracheal epithelium (data from one representative donor). The expression is
normalized by gene, dividing by sum of values on each row. F. Representative images of detected
transcripts of the indicated genes with SCRINSHOT in the tracheal epithelium of different donors. (top)
KRT15: basal layer and SERPINB3: suprabasal layer. (middle) SCGB1A1: intermediate layer and MUC5B:
luminal layer. (bottom) KRT13 intermediate layer and S100A9: all layers. Lu – lumen, dashed line:
approximate location of basal membrane. Scale bar 20 μm.
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Figure 3

Rare cell types and their distribution in the airways. A. Maps of rare cell types detected with SCRINSHOT
from three anatomical regions (donor 4). Scale bar 200 μm. Lu – lumen. B. Heatmap of gene expression
demonstrating unique and overlapping marker genes within the detected rare cell types from at least two
donor samples (donors 2 and 4) per anatomical region. (Number of cells quanti�ed: ionocytes – 37, tuft
– 23, rare tuft-like – 3, NE-GHRL – 6, NE-PCSK1N – 28, NE-ASCL1 – 29, NE-GRP – 32). C. SCRINSHOT
signal of rare cell type marker genes plotted on top of nuclei (DAPI, grey) in the indicated regions in (A).
Colored outlines: segmented nuclei expanded to approximate cell borders. Scale bar: 10 μm. D. Bar plot
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of the average number of the detected cells from (B) per mm length of basal membrane from two donors
in each anatomical region, error bars: standard error. Arrow: NE-GHRLpos cells appearing only in distal
lung.

Figure 4

Distribution of non-epithelial cell subtypes in histological tissue compartments. A. Histological images of
sections stained with hematoxylin and eosin (left) after SCRINSHOT analysis and their corresponding
maps of cell types/subtypes (right) in trachea (top) and distal lung (bottom). Dotted outlines:
peribronchial, SMG and alveolar neighborhoods. Cell type color code at the right side, pb – peribronchial,
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adv – adventitial, alv – alveolar, pv – perivascular, cap – capillary, gen – general. Scale bar 200 μm.
Labels on �gure: distal br – distal bronchiole, SMG – submucosal gland, alv – alveoli, art – artery. B.
Heatmap of mean cell type/subtype proportions in each of the peri-epithelial compartments. Mean
proportion per compartment is indicated in percent (%), n=3 in tracheal regions, n=4 in proximal and
distal lung regions. Values were compared in lung regions using Friedman test followed by Dunn’s
multiple comparisons test. Signi�cantly changing groups (P<0.05) are indicated by asterisk (*), data
demonstrates the increase in smooth muscle cells in peribronchial region in comparison to alveolar, and
in CLDN5 endothelial and RGCC �broblasts in alveolar region in comparison to peri-SMG and peri-
bronchial compartments of proximal lung, respectively. C. Heatmap of average (mean) cell type/subtype
proportions in perivascular and peri-chondrial mesenchyme. Peri-arterial (n=9), perivenous (n=7) and
peri-chondrial (n=5) compartments from four donors were compared using Kruskal-Wallis test and
revealed signi�cant increase in smooth muscle cells in peri-arterial compared to perichondrial
compartment.
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Figure 5

Cell type and neighborhood changes in COPD. A. Box plot of the cell type numbers in healthy and COPD
(Median ± standard deviation, with individual values). Signi�cant differences are highlighted with asterisk
(**, p<0.01), according to multiple t-test (20) of logittransformed data with Holm-Sidak correction, n=3.
The direct cell type comparison without the correction also revealed signi�cant differences between
healthy and COPD samples in the following cell types: AT0, AT1, AT1-AT2, basal cells, T lymphocytes
(labeled by asterisks at the cell type name). B. Representative maps of alveolar epithelial cell types
detected in healthy and COPD samples, nuclei: gray. Scale bar 200 μm. C. UMAP plots of analyzed cells
labeled according to their cellular neighborhoods (left) and their corresponding condition (right).
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Neighborhood annotations: Cap-Alv – capillary-enriched alveoli, AT2-Alv – AT2-enriched alveoli, AT0-Alv
– AT0-enriched alveoli, C-E – club-enriched epithelium, G-E – goblet-enriched epithelium, T-E – secretory
TRB-enriched epithelium, B-E – basal cellenriched epithelium, Imm-P – immune cell-enriched
parenchyma, Str-P – stromal cell-enriched parenchyma, SM – smooth muscle, SMG – submucosal gland,
SMG-serous – serous cell-enriched submucosal gland, TRB – terminal respiratory bronchiole. Arrows
indicate the clusters that are predominantly composed of COPD-derived cells. D. Heatmap exploring the
cell type composition of each neighborhood, with cells (vertical lines) grouped by their assigned
neighborhood cluster (y-axis) represented in Fig. 5C (left). Bar color represents the ratio of neighborhood
enrichment with each cell type for each cell. E. Maps of cell type neighborhoods in healthy and COPD
samples in alveolar region with large and small airway and respiratory bronchioles. Color code as in C
(left). Scale bar 200 μm. Simple arrows: AT0-enriched alveolar neighborhood, dashed arrows – immune-
enriched parenchyma, double-line arrows – secretory TRB-enriched epithelium.
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