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Abstract— Ultra-wideband raster-scan optoacoustic
mesoscopy (RSOM) is a novel modality that has
demonstrated unprecedented ability to visualize epidermal
and dermal structures in-vivo. However, an automatic
and quantitative analysis of three-dimensional RSOM
datasets remains unexplored. In this work we present
our framework: Deep Learning RSOM Analysis Pipeline
(DeepRAP), to analyze and quantify morphological skin
features recorded by RSOM and extract imaging biomarkers
for disease characterization. DeepRAP uses a multi-network
segmentation strategy based on convolutional neural
networks with transfer learning. This strategy enabled
the automatic recognition of skin layers and subsequent
segmentation of dermal microvasculature with an accuracy
equivalent to human assessment. DeepRAP was validated
against manual segmentation on 25 psoriasis patients
under treatment and our biomarker extraction was shown
to characterize disease severity and progression well
with a strong correlation to physician evaluation and
histology. In a unique validation experiment, we applied
DeepRAP in a time series sequence of occlusion-induced
hyperemia from 10 healthy volunteers. We observe how the
biomarkers decrease and recover during the occlusion and
release process, demonstrating accurate performance and
reproducibility of DeepRAP. Furthermore, we analyzed a
cohort of 75 volunteers and defined a relationship between
aging and microvascular features in-vivo. More precisely,
this study revealed that fine microvascular features in the
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dermal layer have the strongest correlation to age. The
ability of our newly developed framework to enable the rapid
study of human skin morphology and microvasculature
in-vivo promises to replace biopsy studies, increasing the
translational potential of RSOM.

Index Terms— Optoacoustic mesoscopy, photoacoustic,
skin imaging, skin aging, segmentation, machine learning.

I. INTRODUCTION

NON-INVASIVE and quantitative in-vivo assessment of
skin features, including the microvasculature, carries

significant potential for diagnostics and disease monitoring
in a number of pathologies [1], [2]. However, the use of
non-invasive observations is currently limited by the tools
available. Consequently, most of our knowledge on the
implication of morphological and microvascular skin features
in various skin and systemic diseases are based on histological
analysis of biopsied skin samples ex-vivo [3], [4], [5], [6],
[7]. For example, psoriasis leads to epidermal thickening,
capillary elongation and increased dermal vascularization
[4], [5], [8]. Aging, diabetes, and cardiovascular disease
lead to changes in subcutaneous microvascular morphology
and function [9], [10], [11], [12], [13]. While histological
sampling has shed light into these relationships, it is an
invasive procedure associated with pain and risk of infection.
In addition, biopsies are very laborious and costly, making
them undesirable for routine examinations in comparison
to diagnostic and theranostic tests that take into account
microvascular alterations [14], [15].

While imaging techniques can be used to analyze skin
non-invasively [1], [15], [16], many of the current methods
do not offer the fine detail of histological analysis. For
example, dermoscopy visualizes only the skin surface and is
not appropriate for retrieving skin features under the epidermis
due to the strong photon scattering of skin [15], [17]. Tissue
sectioning microscopy methods offer technology that can
reduce the effects of photon scattering but still have limitations
in skin imaging [1], [15], [16]. Confocal microscopy requires
high optical energy per volume element and only reaches a
few tens of microns deep [18]. Optical coherence tomography
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(OCT) [19], [20] and raster-scan optoacoustic mesoscopy
(RSOM) reach deeper into the skin and can also extract
vascular features. However, the optoacoustic method has
deeper penetration and provides stronger contrast from the
vasculature, holding the potential to become a widespread
method for the study of skin morphology and function.
It has been recently shown that RSOM is the only method
available today that can offer three-dimensional skin images
with virtually isotropic resolution and highly detailed cross-
sectional images [7], [8], [21]. Moreover, the different
chromophores that can be visualized at various wavelengths
render RSOM superior over other methods in terms of the
functional contrast visualized [21].

RSOM has been already employed in human studies to
quantify psoriasis burden and remission due to treatment [3],
[8], visualize vasculature associated with melanoma formation
[7] or capture functional skin characteristics in response to
heating [22]. In addition, structural and functional imaging
features derived from RSOM have been demonstrated to be
objective disease markers to assess and stratify the severity
of atopic dermatitis and were found to correlate well with
conventional metrics [23], [24], [25]. Depending on the
implementation of RSOM, the method is able to acquire
super broad bandwidth optoacoustic signals from ten up to
more than a hundred MHz, resulting in resolutions down
to tens of micrometers or better and penetrations of up
to several millimeters [3], [7], [8], [21], [22], [24], [26],
[27]. Nevertheless, the laborious nature of processing RSOM
images does not yet allow routine dissemination of the
modality in clinical settings. Firstly, manual segmentation and
simple intensity-threshold based approaches applied today are
laborious, user-dependent and do not allow for testing of
large patient cohorts in a time efficient manner [3], [8], [26].
Moreover, user-dependent operation may introduce errors.
Secondly, the fine structures of RSOM images correlated
to high frequency optoacoustic signals typically attain much
lower intensity compared to large skin structures reconstructed
from low frequency signals, which may result in biases in
image analytics especially when applying intensity thresholds
for image segmentation [28]. Thirdly, due to light attenuation
or substantial variations in image contrast at different skin
depths, there may be depth-dependent intensity loss in the
image, which is an image feature that cannot be addressed
with simple filtering operations.

To explore the full potential of RSOM and address these
limitations, we employed deep learning as a tool to automate
and improve the segmentation accuracy and to extract features
and imaging biomarkers automatically. Convolutional neural
networks (CNNs) represent the state-of-the-art for pixel classi-
fication (segmentation) in general computer vision and medical
imaging modalities such as magnetic resonance imaging
(MRI) and computed tomography (CT) [29], [30], [31].
For vascular structures, the DeepVesselNet architecture [32],
[33] and topology-preserving loss functions [34], [35], [36],
[37] have been developed to automatically segment 3D
vessel structures from MRI, CT and optoacoustic tomography
images [38], achieving excellent segmentation performance.
In this study, we demonstrate for the first time the

Fig. 1. DeepRAP processing diagram. (a) the reconstructed high
frequency (HF) and low frequency (LF) images are preprocessed
separately as the input data; the raster-scan optoacoustic mesoscopy
(RSOM) image volumes are segmented using a U-Net to precisely
delineate the epidermis and dermis layers and the dermal vasculature
is segmented by a VesNet; vascular graph is extracted, and various
skin biomarkers are computed. (b) Segmentation results of one RSOM
volume; 3D renderings of the original RSOM volume (left); results of
our deep learning layer and vessel segmentation (middle), where the
segmented epidermis (EP) is marked in green, and the segmented
dermal (DR) vessels are in red; dermal vessels are color coded according
to their diameter (right). The bottom row shows the maximum intensity
projection images from the top view corresponding to the dermal vessels.
HF, high frequency; LF, low frequency. Scale bar: 500 µm.

application of deep learning-based methods for the quantitative
analysis of RSOM images and extraction of biomarkers
representative of skin morphology and microvasculature.
We developed DeepRAP (Deep Learning RSOM Analysis
Pipeline), a deep learning-based method for automated
analysis of RSOM image volumes. DeepRAP encompasses
three major technical developments (Fig. 1): (1) a U-Net
based model to separate skin morphology into epidermis and
dermis layers; (2) a topology-preserving loss function to train
a deep VesNet, allowing for accurate segmentation of dermis
microvasculature in 3D and (3) the automatic computation of
skin morphological and vasculature biomarkers. To preserve
the fine features, DeepRAP processes the high and low
frequency signals of RSOM data separately, significantly
improving the segmentation accuracy of high-resolution skin
structures.

We demonstrate DeepRAP by applying it to automatically
segment RSOM images obtained from 25 psoriasis patients
under treatment. The quantified RSOM biomarker is then
applied to characterize the disease severity and progression,
showing excellent agreement with manual segmentation and
histology. In addition, we test DeepRAP using a more
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challenging problem, namely the assessment of cutaneous
microvascular endothelial function by analyzing a sequence of
RSOM volumetric images acquired during the post-occlusive
reactive hyperemia process, i.e. an image sequence with
significant contrast variations. Results show that DeepRAP
accurately captures and quantifies the strong dynamic changes
of skin microvasculature features, in higher detail and accuracy
compared to Laser Doppler flowmetry or tissue spectrometry.
We found that DeepRAP performs well, even at varying
signal intensities due to tissue inhomogeneity at different skin
depths or from different skin conditions. Having validated
DeepRAP in datasets with known performance, we applied
it to explore the rate of microvasculature change as a function
of age in a group of 75 healthy volunteers. DeepRAP
extracted five vessel features, which were examined for their
relationship to age progression. The analysis indicates that
small vessels in the 10-40 micrometers range were most
prominently affected by age, with a reduction rate that
appeared most prominent in the 20-65 years’ age range. The
combination of RSOM and DeepRAP analysis presents an
attractive solution to image and quantify morphology and
functional changes in the skin, with the potential to improve
diagnostic and prognostic applications for skin and circulatory
pathologies..

II. METHODS AND MATERIALS

A. RSOM Imaging and Image Reconstruction

We employed an in-house RSOM imaging system, which
was introduced in our previous work [3], [39]. Illumination
was provided by a pulsed laser at a wavelength of 532 nm.
The repetition rate of the laser was 1 kHz, yielding an
optical fluence of 0.375 mJ/cm2, which is far below the
safety limit according to the American National Standards
for Safe Use of Lasers in humans (20 mJ/cm2) [40]. Before
each scan, the skin was cleaned with alcohol wipes. Both the
patients and the operators used appropriate goggles for laser
safety reasons. Each patient was scanned with an imaging
field of view of 4 × 2 mm2, a step size of 7.5 µm in
the fast axis (X axis), and a step-size of 15 µm in the
slow axis (Y axis). Z is the depth direction. Each RSOM
scan lasted approximately 70 s. We first applied motion
correction algorithms to minimize motion-related artifacts in
every RSOM scan before reconstruction [41]. Then, acquired
RSOM signals were divided into two frequency bands, 10-
40 MHz (low) and 40-120 MHz (high), for the 10-120
MHz bandwidth. Signals in the two different bands were
independently reconstructed. Reconstructions were based on
beam-forming algorithms that generated three-dimensional
images [39]. The reconstruction algorithm was accelerated by
parallel computing on a graphics processing unit (GPU) and
improved by incorporating the spatial sensitivity field of the
detector as a weighting matrix. The reconstruction time of
one bandwidth took about 5 minutes with the voxel size of
the reconstruction grid at 12 µm × 12 µm × 3 µm. The
two reconstructed images R_low and R_high corresponded
to the low- and high-frequency bands. A composite image
was constructed by fusing R_low into the red channel and

R_high into the green channel of an RGB image [3]. The
detailed process has been introduced in our previous work [3].
The RSOM images were rendered by taking the MIPs of
the reconstructed images along the slow axis or the depth
direction.

B. Volunteer and Patient Studies
Twenty psoriasis patients with Psoriasis Area Severity

Index (PASI) values from 1 to 7 were imaged following
approval from the Ethics Committee of the Technical
University of Munich. In addition, 5 psoriasis patients were
measured during conventional inpatient treatment consisting
of topical descaling, anti-inflammatory therapy (by means of
salicylate Vaseline, topical corticosteroids and dithranol) and
simultaneous phototherapy (311 nm Narrowband UVB (NB-
UVB) or psoralen-UVA (PUVA)). RSOM scans were recorded
at different time points on the same skin location. The detailed
information of the study has been reported in our previous
work [8].

For the hyperemia experiment, 10 healthy volunteers with
a mean age of 33 were recruited following approval from the
Ethics Committee of the Technical University of Munich. The
RSOM scanning head was positioned at an area of about 5 cm
to the wrist. A clinical use pneumatic cuff was placed at the
level of the upper arm (i.e., distal to the site of brachial artery
measurement) and controlled by an experienced operator. The
hyperemia measurement took a total of 9 minutes, including:
2 minutes baseline, 4 minutes cuff on (cuff pressure was
inflated to 220 mmHg), and 3 minutes cuff off (cuff deflation).
To visualize the skin microvessels during the 9-minute cuff
measurement, 9 RSOM 3D scans were recorded every minute
in an area of 4 mm × 2 mm.

Healthy volunteers were recruited following approval from
the Ethics Committee of the Technical University of Munich.
All participants gave written informed consent before the
planned RSOM examination. In total, 75 healthy volunteers,
with ages ranging from 25-65 years, were scanned. The
volunteers were divided into three age groups: I (n=24, 29.5 ±

3.5 years, in the range of 20 to 35 years), II (n=28, 41.1 ±

4.1 years in the range of 36 to 50 years) and III (n=23,
59.5 ± 4.9 years in the range of 51 to 65 years). Each
individual was scanned at a region of interest (ROI, 4×2 mm)
over the pretibial region of the distal lower limb. RSOM
data quality was evaluated based on our previously developed
RSOM quality evaluation approach and low-quality data was
excluded [42].

C. Skin Layer Segmentation
Our network architecture is a U-Net with a depth of

5 and dropout in the second to fifth up-convolution, based
on the work introduced by Gerl et al. [43]. This architecture
uses an encoder-decoder structure wherein the encoder uses
blocks of convolution and max-pooling operations to encode
the image information into a compressed feature space. The
decoder takes these encodings from the feature space as
input and uses up-convolutions and regular convolutions to
decompress the information into our desired representation.
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Finally, with residual connections, the output of each block
during the encoding is fed forward to the corresponding
decoder block.

For the layer segmentation model, 28 RSOM volumes from
volunteers and 15 RSOM volumes from psoriasis patients
are used for training, 7 RSOM volumes from volunteers
and 3 RSOM volumes from psoriasis patients are used for
validation and 8 RSOM volumes from volunteers and 2 RSOM
volumes from psoriasis patients are used for testing. We split
each volume into 2D slides from both sides, resulting in
a training set of 8550 2D samples with a pixel resolution
of 333 × 550. We used the following data augmentations:
(1) random Z rescale (rescaling of the epidermis region by
a random factor between 0.6 and 1.4); (2) random Z shift
(shifting the whole volume in the z direction by a random
value between −75 and 100); (3) random mirror; and (4)
intensity transform (a piecewise linear intensity rescaling).
We performed a five-fold cross validation. As a loss function,
we used binary cross entropy. Furthermore, we used the
Adam optimizer and trained our models on one P5000 GPU.
We achieved a quantitative segmentation performance of
84.26 ± 8.22 in Dice score and 73.63 ± 11.71 in IoU. We then
calculated two primitive skin layer features. First, we extracted
the average epidermis width in µm. Here we divide the total
epidermis volume by the fixed RSOM X and Y dimensions
(333 and 171).

To enhance signal density in low-signal areas of the
epidermis and to aid segmentation, we employed a 1D sliding
window maximum filter along the direction perpendicular
to the 2D slice fed into the U-Net. We explored this
post-processing step in an experiment, where we applied
different filter lengths to a set of 10 RSOM volumes.
We then calculated the resulting segmentation performance in
segmentation metrics and identified disconnected components
in the samples. For a set of 10 RSOM volumes, the
segmentation metrics (i.e., Dice, Precision, Recall) for
different filter lengths were comparable as shown in Table I.
However, at a length of five, we saw a minimum in the number
of disconnected components of the segmented epidermis (also
confirmed by optical inspection). This was favorable, as we
expected the epidermis to be segmented as one connected
component. Hence, we chose to filter with a 1D maximum
filter of length 5 as a post-processing step to improve our
segmentation.

To understand the quality of our segmentations, we per-
formed an inter-rater test where two experts independently
labeled 14 images of skin layers. We calculated volumetric
scores of raters against each other and calculated an agreement
in Dice of 0.7970 ± 0.1132 and 0.6771 ± 0.1441 in IoU.
We observed that the quantitative performance of our model
was on par with expert segmentations and had lower standard
deviations as well.

D. Vessel Segmentation

Our neural network architecture for vessel segmentation
is based on the VesNet (DeepVesselNet) architecture [32],
which is a 3D fully convolutional neural network (FCN)

TABLE I
SLIDING WINDOW MIP EXPERIMENT

TABLE II
INPUT CHANNEL COMPARISON

with four fully convolutional layers. We modified the
architecture by replacing 2D-crosshair convolutions with
full 3D convolutions to increase performance. In addition,
we added group normalization layers and increased the feature
space size. We trained DeepRAP using one RTX8000 GPU.
We use the following torchio augmentations: RandomFlip,
RandomBlur, Random-Noise and RandomBiasField. As the
final loss function (L f inal), we used a weighted combination
of the topology aware clDice [34] (Lcl Dice) and the binary
cross entropy (BCE) loss function (L BC E ) to preserve vessel
connectivity, where α is the weighting parameter, as in
Equation 1:

L f inal = α × Lcl Dice + (1 − α) × L BC E (1)

The networks were trained on two channels of input
data (detailed in RSOM imaging and image reconstruction).
We found that training on the two channels improved
the segmentation performance by roughly 2% while also
reducing the standard deviation (Table II). Labeling a large
number of curvilinear structures such as blood vessels in
3D RSOM volumes is highly time-consuming. Therefore,
we chose to follow a Transfer Learning approach for the
vessel segmentation task [33]. Here, we trained our neural
network first on a large set of generated synthetic data
samples; second, on a small set of real RSOM samples with
annotated 3D vessels; and third, on so-called background
samples to reduce artifacts on a set of RSOM samples without
vessels.

Initially, we trained our network on synthetic arterial
tree images which were generated using the method of
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TABLE III
VESSEL SEGMENTATION COMPARISON AMONG OUR MODEL WITH OTHER METHODS

Schneider et al. [44]. Style transforms were applied to
minimize its domain distribution shift to the original RSOM
images, resulting in 30 samples with two channels and 304 ×

325 × 600 pixels. To show that our synthetic dataset was
indeed a valid starting set for our data, we trained networks
on only synthetic data while testing real data (Table III).
We observed that training purely on synthetic data leads to an
acceptable segmentation performance, which can be improved
with few real labeled samples (82.24 on purely synthetic
data and 88.42 when refined on real data, see Table III).
For the fine-tuned vessel segmentation model, 30 synthetic
volumes and 15 RSOM volumes from volunteers are used
for further training, 4 RSOM volumes are used for validation
and 3 RSOM volumes are used for testing. The epidermis was
already cut in the Z-direction, resulting in two channel data
with an X, Y resolution of 333 × 171 pixels and a varying
depth resolution around 400 pixels.

A frequently observed artifact in our results were layer-
like reflections in the lower part of the RSOM images
and above the skin surface. In response to this, four
very noisy RSOM samples were selected, labeled only as
“background”, and used for training to improve the network’s
capability to distinguish between reflections and vessels.
The parts of the background samples containing vascular
structures were excluded beforehand so as not include false
negative samples in our dataset. We extensively compared
our network architecture and loss functions to other state-
of-the-art methods and found that the VesNet architecture,
with four convolutional layers and a combined loss function
of clDice and BCE, outperformed other cost functions such
as the standard Dice loss (Table III). Our method also
outperforms all traditional vessel segmentation methods (e.g.
Frangi, Table III). Compared to other state of the art deep
learning methods, our model outperforms a simple U-Net [45],
performs similar to a SwinUnet transformer [46] but is
slightly outperformed by a nnUnet [31]. However, we chose
to use the lightweight VesNet architecture because it requires
about 520 times less (30582058 vs. 58 816) parameters
compared to nnUnet while still providing us with “human-
level” performance (see Results). Using a lightweight neural

network (NN) is important in a clinical setting to speed up the
analysis process of the entire pipeline. Regardless, changing
the segmentation NN is easily employable due to the modular
setup of our pipeline.

E. Vessel Features
Based on the binary segmentations, we computed the total

blood volume in mm3. The blood volume is defined by the
sum of all segmented vessel voxels. Furthermore, we extracted
the surface area to volume ratio (sa/vol), where low values
describe compact shapes, and high values describe objects with
large surface areas. The surface is the defined scanning field
of view (4 × 2 mm2). We used Pyradiomic implementations
to extract these features [47]. Complex vascular features were
extracted from the metric graph representation, see below for
details. Features were calculated by iterating over the metric
graph edges or nodes. We calculated the total microvasculature
length in millimeters by extracting the collective length of all
edges in a volume. Using the edge weight, we distinguished
small and large vascular structures, where the vessel radius
r <= 2.5 pixel (30 µm) denotes a small vessel. Using this
criterion, we extracted the feature of small vessel length,
which is an indicator for microvasculature. The location
where a vessel splits into two or more branches is a
bifurcation point, a key characteristic of vascular networks.
Bifurcation points were extracted from the metric graph
as the number of nodes with a degree higher than two.
Moreover, we extracted the average vessel radius per sample.
We explored more features such as the number of loops,
degree assortativity coefficient [48], and average path length,
but omitted them due to low significance for subsequent
use cases.

F. Metric Graph Extraction
Extracting specific features from a volumetric segmentation

mask has limitations regarding a compact description of the
connectivity information. Therefore, we constructed a metric
graph representation (G) to achieve a compact anatomical
representation preserving topological properties [49]. A metric
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Fig. 2. Multiple segmentation comparisons on raster-scan optoacoustic
mesoscopy (RSOM) images between our DeepRAP and a thresholding-
based approach. Using DeepRAP, the segmented epidermis (EP) is
marked in green, and the segmented dermal (DR) vessels are in red.
A threshold-based approach cannot distinguish these. (a) DeepRAP
accurately segments the epidermis and dermis microvascular layers
of RSOM volumes with artifacts (white arrows) mixed with the
epidermis layer while these artifacts are left in the thresholding image;
(b) DeepRAP segments the microvasculature in the high frequency
content (yellow arrows) while these vascular features are not correctly
segmented using the thresholding approach; (c) DeepRAP accurately
segments the dermal microvasculature by removing artifacts mixed with
dermal microvasculature while they are segmented as vessels in the
thresholding image (white arrows).

graph is a one-dimensional stratified space composed of
linked nodes and edges. To extract G, we followed the
approach by Aanjaneya et al. [50], which is based on
distinct groups of points. A pre-existing open-source project
served as our codebase [50]. In this work, we extended
the existing 2D implementation to 3D and termed it metric
graph reconstruction. As an initial step, we convert the
complete segmentation mask into a point cloud. To reduce
computational complexity, we constructed a skeleton based on
this point cloud and passed it to our algorithm. To preserve
minimal volumetric shape properties, we further extended G
to hold edge weights representing the average vessel radius.
Here, we determined for each element of the skeleton the
closest Euclidean distance to the background and assigned
this distance value to the element. The resulting modified
skeleton holds the minimum vessel radius in each point.
When merging groups of edge points to identify an actual
edge during metric graph reconstruction, we added the
mean value of all points as a weight corresponding to
the edge’s average vessel radius. Fig. 2 depicts the result
of our modified metric graph reconstruction. We observed
that metric graph reconstruction decreased the complexity
of the volumetric segmentation mask by multiple orders of
magnitude, while preserving major topological properties.

Due to the uniform representation of graphs, we could now
easily iterate over nodes and edges and compute features
quickly.

G. Post-Processing of the Graph Representation
The metric graph representation G is based on the original

vessel segmentation mask (not post-processed); therefore,
we discarded small unpaired structures in G with a Euclidean
length < 50. Furthermore, G might contain small ending
branches that do not represent the actual vascular topology
caused by the skeletonization of unsmooth or spikey vessel
surfaces. Thus, we “smoothed” G by removing ending
branches (edges with exactly one node of degree one) with
a Euclidean length smaller than 20 pixels.

H. Feature-Regions of Interest
To minimize the effects of different image sizes, varying

regions of interest, and segmentation inconsistencies on the
feature extraction, we applied two pre-processing steps. The
most frequent misclassifications occurred slightly below the
epidermis and in the lower dermal part, usually caused by so-
called reflections. Thus, we restricted our feature extraction to
an ROI, focusing only on the central dermal part. We estimated
that the information loss due to the ROI is less severe
than discarding samples that contain reflections. The ROI
had the same dimensions for all volumes, allowing us to
report absolute values for the features. Secondly, our feature
extraction could have been affected by small false positives.
Our study focused on connected vascular components and not
on small, unconnected objects. Therefore, objects with a total
volume smaller than 1000 pixels were removed for all features
not dependent on metric graph (G).

I. Statistics
All metrics represent the mean value with standard

deviations (e.g. as error bar). To assess the statistical
significance between different age groups, we performed
parametric tests (unpaired t-test) for normally distributed data;
otherwise, nonparametric tests (Mann Whitney U test) were
applied. Statistical significance was defined at P < 0.05.
We applied third-order polynomial curve fitting to the
data distributions of RSOM features in different age
groups.

III. RESULTS

A. Quantification of Skin Layer Thickness and
Vasculature Features Using Deep Learning

The superficial structure of human skin comprises of the
epidermis and the dermis layers. Epidermal thickness is an
important biomarker to assess the dermatological health and
severity of pathologies such as psoriasis [3], [8]. Therefore,
we developed a CNN segmentation model inspired by our
previous work [43] to segment the pathological skin layers
(Fig. 1). Our U-Net achieves a high segmentation performance,
with a Dice score of 84.26 ± 8.22 and IoU of 73.63 ± 11.71.
These scores can be considered as “human level” performance.
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We validated this via a dedicated inter-rater experiment where
two experienced raters were tasked with manual segmentation
of 15 identical images. The two experts achieved a Dice score
of 79.70 ± 11.32 and 67.71 ± 15.62 IoU (standard deviation
was calculated between the full 3D volumes), which is similar
to the performance of our model (see Table I). Detailed
documentation, hyper-parameter search and results can be
found in the Methods section. Based on the layer segmentation
shown in Fig. 2a, the average epidermal thickness in 3D was
automatically computed by averaging 2D slices in the out-of-
plane direction.

Furthermore, the structural and functional changes of
the cutaneous microvasculature of the dermis are closely
associated with changes in disease activity [3], [4], [5],
[6]. We developed a dedicated segmentation model for the
dermal microvasculature (Fig. 1a), in which we thoroughly
benchmarked and tested different architectures, layer depths,
loss functions and hyperparameter configurations to achieve
optimal segmentation as shown in Fig. 1b and Supplementary
movie 1. Our final model is based on a DeepVesselNet architec-
ture, which is a 3D CNN with 4-layers (Table III). We trained
our model on a mixed set of images from healthy controls
and patients with diabetes, using the clDice loss function
[34] to preserve vessel connectivity. Our model achieved a
Dice score of 88.42 ± 1.62 and 86.37 ± 6.14 using clDice.
Similar to our epidermis segmentation, we again implemented
an inter-rater experiment where two expert evaluators rated
16 volumes. Compared to the labels, they achieved a Dice
score of 85, a performance similar to our model. Based on this
segmented vessel network, various biomarkers were computed,
as shown in Fig. 1.

B. Segmentation Comparison
The segmentation comparisons of various RSOM data

between DeepRAP and a thresholding-based method are
shown in Fig. 2. The first column (Fig. 2a) depicts the
original RSOM volumes with strong reflection artifacts
(marked by white arrows), which appear in the regions
above the skin surface or in the lower dermis mixed with
the vasculature. Since the contrast of reflection artifacts
is similar to the RSOM features, the thresholding method
(Fig. 2b) cannot separate the artifacts (marked by white
arrows) while they are completely removed by the DeepRAP
method (Supplementary movie 2). In addition, the fine
microvasculature has lower contrast compared to the large
RSOM features, which can be easily degraded using the
thresholding segmentation (Fig. 2b). However, those fine
microvasculature features are well segmented in the DeepRAP
image (Fig. 2c), indicating that DeepRAP can achieve much
higher segmentation accuracy with RSOM datasets containing
various contrasts and artifacts compared to the thresholding
method.

C. Severity Assessment of Psoriasis Skin
The epidermis thickness has been reported to be an

important biomarker to diagnose and monitor the severity
of psoriasis [3], [8]. To investigate whether DeepRAP

Fig. 3. Epidermis segmentation of psoriasis skin. (a)-(e) Cross-sectional
raster-scan optoacoustic mesoscopy (RSOM) images of psoriasis skin
lesions with various Psoriasis Area Severity Index (PASI) scores, where
the epidermal thickness is segmented and marked by the grey areas.
(f) Correlation between the PASI score and the epidermal thickness.
Scale bar: 500 µm.

can differentiate between various stages of disease activity,
we assessed epidermal thickness in psoriasis patients with
different PASI scores ranging from 1-7 (7 being the most
severe). We then applied DeepRAP to automatically segment
and compute the epidermal thickness in volumetric RSOM
images (Supplementary movie 3). Fig. 3a-e depict images from
patients with different PASI scores with segmented epidermis
masks. Using DeepRAP, we found that the PASI values
are closely correlated with the epidermal thickness, i.e., the
more severe the disease, the thicker the calculated epidermal
thickness (Fig. 3f). Our findings are well correlated to our
previous work analyzed manually by experienced RSOM
operators based on MIP 2D images [8].

D. Quantification of Skin Feature Changes During
Hyperemia

To demonstrate the capability of RSOM for assessing
endothelial function of the cutaneous microvasculature over
time, we applied DeepRAP to quantify skin feature changes
during pressure-induced hyperemia. Here, we recorded 3D
images of the skin structures every minute during a nine-
minute pressure-induced hyperemia process, consisting of a
two-minute baseline measurement without cuff pressure, four
minutes of cuff inflation and three minutes of cuff deflation.
Cross-sectional MIP images in Figures 4a-c show that during
the hyperemia process, there was a decrease in image intensity
in the dermis compared to the baseline image. Following cuff
deflation, we observed that vascular structures fully recover,
with dilated vessel diameters and more cutaneous vessels
(white arrows in Fig. 4c). It is worth noting that the skin
microvasculature was accurately segmented despite strong
variations in image contrast during the hyperemia process.
In addition, the microvascular changes during hyperemia were
characterized by computing the mean RSOM image intensity
(Fig. 4d). Next, we applied DeepRAP to measure epidermal
thickness and various vascular features including the total
blood volume (Fig. 4e), total vessel number (Fig. 4f), total
vessel lengths (Fig. 4g) and small (diameter less than 60 µm,
Fig. 4h) and large vessel (diameter more than 60 µm, Fig. 4i)
lengths. The response pattern of these vascular biomarkers was
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Fig. 4. Quantification of skin features during hyperemia. 3D RSOM images were recorded at the forearm of a healthy volunteer every minute
during a nine-minute arterial occlusion process. The original and segmented RSOM images by DeepRAP at (a) the baseline, (b) cuff inflation, and
(c) deflation points are shown. White arrows indicate new vessels appearing during the hyperemia process. The epidermis is segmented and marked
by the grey areas, while the dermal vessels are marked in blue color and overlaid with the original vessel structures. (d) The normalized image
intensity profiles of the RSOM images acquired during the hyperemia process. Skin features computed from the segmented images include: (e) total
blood volume, (f) total vessel number, (g) total vessel length, (h) total length of small vessels (with diameter less than 60 µm), (i) total length of large
vessels (with diameter more than 60 µm), (j) diameter change of the labelled vessel (marked by the white dashed line in a), (k) epidermal thickness;
(l) profiles of the blood flow, oxygen saturation (SO2), and partial blood volume (rHb). Scale bar: 500 µm.

similar to the image intensity profile (Fig. 4d). In addition, the
changing diameter of a specific vessel (marked by the white
dashed line in Fig. 4a) during the hyperemia process was
well visualized and quantified in Fig. 4j. Arterial occlusion
did not affect epidermal thickness as it remained relatively
constant (Fig. 4k). To compare our results, we used a
commercial Laser Doppler flowmetry and tissue spectrometry
setup to measure the blood flow (Flow), oxygen saturation
(SO2) and partial blood volume (rHb) during post-occlusive
reactive hyperemia (PORH). The changes in flow and SO2
were similar in trend to the skin biomarkers computed by
DeepRAP (Fig. 4l). These change profiles of the individual
parameters can be used to quantify skin vessel function, for
example, the endothelial function of the small and large vessels
respectively.

E. Assessment of Aging on Skin Features

Previous studies have reported that skin morphological and
microvasculature features can be affected by aging [13], [51],
[52], [53], [54]. To further validate the utility of our deep
learning tool, we studied skin feature changes resulting from
aging, applying DeepRAP to analyze RSOM datasets acquired
from healthy volunteers with different ages. Fig. 5a-c shows
cross-sectional MIP RSOM images and corresponding dermal
vessels from three groups: 1. young age volunteers (I, n=24,
29.5 ± 3.5 years, in the range of 20 to 35 years), 2. middle
age volunteers (II, n= 28, 41.1 ± 4.1 years, in the range of
36 to 50 years) and 3. old age volunteers (III, n=23, 59.5 ±

4.9 years in the range of 51 to 65 years). Using DeepRAP,
we found that the density of the dermal vascular network
was highest in young volunteers (Fig. 5a) and decreased with

age, with lower densities found in volunteers from the middle
age group (Fig. 5b) and the lowest densities found in the
old age volunteers (Fig. 5c). Vessel lengths, diameter and
the number of bifurcation points are commonly computed to
quantify the vascular architecture. Hence, we used DeepRAP
to segment the RSOM volume and compute these vascular
features and the epidermal thickness. Quantitative comparisons
of the magnitude of different RSOM features are presented in
Fig. 5d-5h, while the distributions of these features with the
increment of age is shown in Fig. 5i. As for the total vessel
length (Fig. 5d, length normalized to the size of the scanning
field of view), we found a mean value of 21.43 ± 4.48 mm
in the young age (I) group versus 16.52 ± 5.62 mm in the
middle age (II) group (p = 0.0022) with 23% difference of the
mean value, while the mean total vessel length significantly
decreased to 10.19 ± 2.39 mm in the old age (III) group,
a 38% reduction compared to the middle age (II) group
(p < 0.001). To investigate the effects of age on different
vessel sizes, we further separated the total vessel length
into the small (diameter < 60 µm) and large (diameter ≥

60 µm) vessel lengths. The small and large vessel lengths both
decreased significantly from the young age group to the middle
age groups (for small vessels, 5.25 ± 1.84 mm (I) vs. 3.58 ±

1.49 mm (II), with p = 0.0012; and for large vessels, 17.17 ±

3.83 mm (I) vs. 12.84 ± 4.89 mm (II) with p = 0.0288).
We found that the average small vessel length (Fig. 5e) was
approximately 56% lower in the old age group (III) than
in the middle age (II) group (1.57 ± 0.46 mm vs. 3.58 ±

1.49 mm with p < 0.0001), whereas the mean large vessel
length (Fig. 5f) was about 49% lower in the old age group (III)
compared to the middle age (II) group (8.75 ± 2.34 mm versus
17.17 ± 3.83 mm, p = 0.0019). This finding suggests that the
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Fig. 5. Comparisons of skin features among healthy volunteers in three age groups. The healthy volunteers were divided into three groups based on
their ages: I (n=24, 29.5 ± 3.5 years), II (n= 28, 41.1 ± 4.1 years) and III (n=23, 59.5 ± 4.9 years). Three cross-sectional raster-scan optoacoustic
mesoscopy (RSOM) images of each group and corresponding dermal vessels from the top-view are shown in (a-c), where the epidermis (EP) and
dermal (DR) vessels were segmented by the DeepRAP. The epidermis is segmented and marked by the grey areas, while the dermal vessels are
marked in blue color and overlaid with the original vessel structures. (d-h). Skin features were computed and compared among the three groups
including: (d) total vessel length, (e) small vessel length (vessels with diameter < 40 µm), (f) large vessel length (vessels with diameter ≥ 40 µm),
(g) total blood volume and (h) epidermal thickness. (i) the distributions of these five skin features with increment of volunteer aging. ns: not significant.
Scale bar 500 µm.

systemic impacts of aging on the dermal vasculature are more
prominent in small vessels than in larger vessels. The total
blood volume in the DR layer (i.e., the sum of the total vessel
voxels) was markedly different between the young and middle
age groups (Fig. 5g, 0.043 ± 0.0074 mm3 versus 0.034 ±

0.0093 µm3, p < 0.0008, 21% mean value difference), while
the difference is also larger between the old age and the middle
age groups (0.02 ± 0.0067. mm3 versus 0.034 ± 0.0093 mm3,
p < 0.0001, 40% mean value difference). The impairment
of aging on the dermal microvasculature is more significant
between the middle age to old age groups compared to the
young age to middle age groups. Analysis of the epidermal
thickness (Fig. 5h) showed no obvious difference among the
young age (109.80 ± 12.37 µm), middle age (108.76 ±

9.94 µm) and old age groups (109.69 ± 14.35 µm).

IV. DISCUSSION

DeepRAP is a pipeline for automatic segmentation and
biomarker extraction of the skin layers and dermal vasculature,

facilitating a new avenue for disease characterization. We show
excellent, human-level performance with computed results
which correlate well with clinical psoriasis severity scores.
We also showed that changes in skin morphology and vascu-
lature during PORH have similar response patterns of blood
flow and oxygen saturation as measured by commercial setups.
These experiments demonstrate the efficacy of DeepRAP
for comprehensive assessment of microvascular endothelial
function facilitating clinical application [55]. In addition, five
anatomical and vascular features are extracted by DeepRAP
and studied in relation to aging. We found that the small
vessels in the upper dermis were most prominently impaired
with aging.

In previous RSOM studies, conventional analysis often
relied on manual or thresholding-based segmentation meth-
ods to process 2D MIP images, which could induce
significant variations, annotator bias or loss of the 3D
geometrical information. This method is error-prone and
labor-intensive when used to analyze large clinical RSOM
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studies. DeepRAP is the first deep learning-based method
designed to automatically segment RSOM images in 3D
and compute various skin features. We also demonstrated
that DeepRAP achieves much better segmentation perfor-
mance compared to conventional thresholding-based methods
(Fig. 2) and is more robust towards varying SNR and artifacts.
In a unique validation experiment, we applied DeepRAP
to a timeseries sequence of RSOM volumes recorded over
occlusion-induced hyperemia from 10 healthy volunteers.
We observe how the biomarkers decrease and recover during
the occlusion and release process, demonstrating accurate
performance and reproducibility in a highly challenging vali-
dation task which exhibits marked contrast variations. Previous
studies report an urgent need to develop a safe and ideally non-
invasive method of microvascular function assessment [55]
which we address in this study. Hence, assessment of the skin
micro-vasculature endothelial function is important for early
disease detection and therapy monitoring, e.g., for diabetes
and cardiovascular diseases [56], [57]. Our DeepRAP pipeline
can accurately segment and quantify skin features from a
series of RSOM images, despite significant changes in image
contrast during hyperemia test. This allows RSOM to assess
microvasculature function by accurately quantifying vessel
changes in response to stimuli, which could further promote
the clinical applications of RSOM. Furthermore, DeepRAP
was able to analyze large RSOM datasets from healthy and
disease conditions, with the capacity to automatically measure
skin morphology features in 3D for disease monitoring in the
relevant anatomical regions of interest.

Using DeepRAP, we showed that vessel lengths (of varying
hierarchy), vessel number and total blood volume, were
reduced in the middle age group compared to the young
age group and significantly decreased in the old age group
compared to the middle age group which is in line with
previous findings [13], [51], [52], [53], [54]. For example,
it was reported that the superficial skin microvasculature
assessed by video capillaroscopy or histology was significantly
reduced in older volunteers compared to young volunteers.
Moreover, aging impaired the small vessels more significantly
than the large vessels, which has not been reported in previous
studies.

DeepRAP is based on a transfer learning approach,
where we pre-trained the CNN on synthetic data [44] and
refined it on a small labelled dataset of 17.75% of the
synthetic dataset. Thus, our method might generalize well to
different types of imaging data (such as other optoacoustic
imaging systems or other tissue structures), as only a small,
labelled dataset is needed to adjust our pre-trained network.
It has been shown that for the segmentation of tubular
structures such as vessels, the optimization of voxel overlap
alone (e.g., Dice) is not sufficient [34], [58]. Hence, we aim to
improve the topological faithfulness of our method by employ-
ing a topology-aware loss function, namely clDice. However,
this is only one of many approaches for improving topology.
Frequently used methods are based on post-processing [59],
tree shape priors for vessel segmentation [60], or persistent
homology [37]. Approaches based on persistent homology
come with the strictest theoretical guarantees. Nevertheless,

in our use case, we chose clDice because it is more robust
towards image noise, as present in RSOM data, which
presents challenges when modeling topology in structures used
in persistent homology approaches, such as Betti numbers.
Furthermore, existing approaches address vessel analysis
directly at a graph level (segmentation, in our case), allowing
the computation of total blood volume (Fig. 5), an important
biomarker. From a limitation perspective, it is important to be
aware that all supervised learning methods are heavily depen-
dent on data and label quality. Secondly, while transfer learn-
ing helps with the generalizability of methods, this generality
has limits, and the performance of the model should always
be evaluated on a target domain test set. Finally, training
topological methods requires more computational resources
than training basic networks with, for example, Dice loss.

In conclusion, DeepRAP is a scalable, modular and
automated machine learning-based method that can be used to
analyze and quantify skin morphological and functional fea-
tures from 3D RSOM datasets. We envisage that our method
will be employed to promote the applications of RSOM
imaging for quantitative clinical studies and diagnostics.
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