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Abstract

Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive
interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic
mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and
increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a
challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be
estimated from the experimental data, and numerical calculations need to be precise and efficient. Here, we discuss,
compare and characterize the performance of computational methods throughout the process of quantitative dynamic
modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are
available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient,
objective and automated manner. Using this approach data generated by different measurement techniques and even in
single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the
performance of different optimization algorithms was compared systematically. Our results show that deterministic
derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin
hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we
investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further
enhancement in optimization performance. We provide a freely available open source software package that implements
the algorithms and examples compared here.
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Introduction

Biological processes such as the regulation of cellular decisions

by signal transduction pathways and subsequent target gene

expression are governed by highly complex molecular mecha-

nisms. These intertwined processes are difficult to understand by

interpreting experimental results directly since the underlying

mechanism can be rather counter-intuitive. In the context of

Systems Biology, dynamical models consisting of ordinary

differential equations (ODE) are a frequently used approach that

facilitates to analyze the mechanism of action in a systematic

manner. For example, the cellular response to perturbations in the

molecular reactions can be investigated. The advantage of

building a mathematical model is that molecular mechanisms

that are supposed to govern the respective process need to be

formulated explicitly. This allows to test hypothesis about the

supposed network structure of the molecular interactions [1] and

to predict systems behavior that is not accessible by experiments

directly [2]. However, the bottle neck for successful mathematical

description of cell biological processes are efficient and reliable

numerical methods. In the following we introduce quantitative

dynamical modeling and subsequently present results on how

challenges in the model building and calibration process were

tackled.
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Modeling the dynamics of cellular processes
The majority of cellular processes can be described by networks

of biochemical reactions. The dynamics of these processes, i.e. the

time evolution of the concentrations of the involved molecular

compounds, can often be modeled by systems of ODEs [3]

d

dt
x(t,h)~fx(x(t,h),u(t),h)~N:v(x(t,h),u(t),h): ð1Þ

The variables x correspond to the dynamics of the concentra-

tion of n molecular compounds such as hormones, proteins in

different phosphorylation states, mRNA or complexes of the

former. The right hand side of Equation (1) can usually be

decomposed into a stoichiometry matrix N and reaction rate

equations v of the molecular interactions [4]. A time dependent

experimental treatment that alters the dynamical behavior of the

system can be incorporated by the function u(t). For example, this

can be the extracellular concentration of a hormone that is

degraded during the experiment or is manually controlled by the

experimenter over time. The initial state of the system is described

by x(0,h)~fx0
(h). Often, these initial conditions represent a steady

state solution to Equation (1) that indicates that the system is in

equilibrium in the beginning of the experiment. The set of

parameters h~fh1 . . . hlg contains reaction rate constants and

initial concentrations of the molecular compounds that fully

determine the simulated dynamics.

ODE models assume spatial homogeneity inside the compart-

ments of the cell, i.e. that diffusion and active transport are fast

compared to the reaction rates of molecular interactions and the

spatial extent of the compartment. Furthermore, such models

describe macroscopic dynamics. Intrinsic stochasticity caused by

the discrete nature of the reactions is usually not considered.

Extrinsic stochasticity [5] caused by cell to cell variability can be

considered if single cell data is available. If necessary, the class of

ODE models can be extended to consider both sources of

stochasticity [6].

Biological context of modeling examples
Two recent applications, differing in the size of available

experimental data sets and of the mathematical model, were used

as examples (Figure 1). The first example is a mathematical model

describing the binding of the hormone erythropoetin (Epo) to its

membrane receptor (EpoR) and its subsequent trafficking [2]. The

second example is a model of the Epo-induced JAK2/STAT5

signaling pathway that primarily consists of the cytoplasmic

tyrosine kinase JAK2 and the latent transcription factor STAT5

[7]. The investigated processes, which range from interactions of

the ligand with the receptor to transcriptional induction of

negative feedback regulators, were addressed by different exper-

imental approaches. Selected examples of the experimental data

and of the model simulations are displayed in Figure 2. For the

Epo receptor model, radioactively labeled ligand was used to

monitor Epo concentrations in different compartments of the cell.

Binding assays were employed to infer receptor binding affinities

of Epo. For the JAK2/STAT5 model, data was generated (i) by

quantitative immunoblotting, yielding time-course data for pro-

teins and the respective phosphorylations [8], (ii) by qRT-PCR

providing time resolved measurements on mRNA expression and

(iii) by quantitative mass spectrometry that revealed relative

phosphorylation degrees [9]. Absolute protein concentrations were

determined by employing serial dilutions of protein standards in

the immunoblotting approach. Furthermore, different experimen-

tal conditions, such as increasing ligand concentrations and

treatment with inhibitors, were used. With these qualitatively

and quantitatively different data the mathematical models could

be established as well as calibrated more reliably.

Quantitative measurements for model calibration
Often, not all desired molecular compounds can be measured

directly or individually. Immunoassays are limited by the

availability and specificity of antibodies. For example, phosphor-

ylation of single proteins and proteins bound in complexes can

often not be distinguished by immunoblotting measurements, only

their sum may be available. In order to compare the model

dynamics simulated for candidate parameter values h, see

Figure 1. Quantitative dynamic models describing erythropoetin signaling used as examples. The hormone erythropoietin (Epo) is the
key regulator of erythropoiesis, the production of red blood cells. (a) Epo receptor model [2]. The model describes the interaction and the trafficking
of the hormone and of its membrane receptor (EpoR). The active complex Epo_EpoR can be internalized (Epo_EpoR2i) and is either recycled back to
the cell membrane or is degraded (dEpo 2i , dEpo2e). (b) Model of Epo induced JAK2/STAT5 signaling [7]. In erythroid progenitor cells (CFU-E), the
hormone Epo induces activation of the tyrosine kinase Janus kinase 2 (JAK2). Subsequently, the signal transducer and activator of transcription 5
protein (STAT5) is activated and shuttles to the nucleus where it induces target gene expression. Two of the target genes encode for the negative
feedback regulators suppressor of cytokine signaling 3 (SOCS3) and cytokine-inducible SH2-containing protein (CIS).
doi:10.1371/journal.pone.0074335.g001
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Equation (1), to these experimental data, the dynamic variables x
are mapped to m observables

y(ti,h)~fy(ti,x(ti,h),h) ð2Þ

via a function fy. The observables y are the quantities that can be

measured in experiments at time points ti. They may depend on

additional parameters that are included in h such as scaling or

offset parameters in case of relative data or measurement

background. Typically, the number of observables m is smaller

than the number of molecular compounds n.

For each observable yk(ti,h) the corresponding experimental

data yk(ti)
{ contains measurement noise eki. For concentration

measurements by biochemical assays it is reasonable to assume

that the measurement noise is multiplicative log-normally distrib-

uted. For data generated by immunoblotting experiments it was

explicitly shown that the measurement noise is log-normally

distributed [10]. In addition, biological variability that is contained

in the data was shown to be log-normally distributed as well [11].

For parameter estimation additive normally distributed measure-

ment noise is more convenient. A log-transformation of both

experimental data and observables yields additive normally

distributed measurement noise yk(ti)
{~yk(ti,h)zeki with

eki*N(0,s2
ki). In the following, yk(ti,h) and yk(ti)

{ already denote

log-10 transformed values. However, the variance components s2
ki

of the measurement noise are often not known a priori.

Model calibration by maximum likelihood estimation
In order to calibrate the dynamical model, the observables y,

see Equation (2), are compared to experimental data y{. For

normally distributed measurement noise the likelihood

L(y{jh)~Pm
k~1P

dk
i~1

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

ki

q exp {
1

2s2
ki

y
{
ki{yk(ti,h)

� �2
� �

ð3Þ

of the experimental data given the model parameters h is a well-

known distance measure [12]. Here, dk denotes the number of

experimental data y{ for each observable k~1 . . . m, measured at

time points ti with i~1 . . . dk. s2
ki are the variance components of

the measurement noise of each data point. By maximizing L the

maximum likelihood estimates of the unknown parameters bhh can

be obtained [13]. It is more common, equivalent and numerically

more efficient to minimize the negative logarithm of the likelihood

function {2: log (L(y{jh)) instead. For parameters that are by

definition non-negative a log-scale should be used in the parameter

estimation. This facilitates parameters being potentially different

by orders of magnitude to be handled with equal efficiency by

numerical computations. This applies for most of the parameters

occurring in ODE models such as reaction rate constants, initial

concentrations, scaling and offset parameters. The allowed search

space for most of the parameters spanned six orders of magnitude

and was set to ½{3,3� on a log10-scale. Due to the non-linearity of

Figure 2. Data obtained by different experimental approaches, associated measurement noise and corresponding model
simulation of the pathway dynamics. Solid lines indicate the simulated model dynamics with the optimal parameter values. Gray shading
indicates one standard deviation of the measurement noise that is associated with the respective measurement technique. (a,b) Data for Epo
receptor model [2], 36 out of 85 total data points used for parameter estimation are displayed. (c,d,e,f) Data for JAK2/STAT5 model [7], 92 out of 541
total data points used for parameter estimation are displayed.
doi:10.1371/journal.pone.0074335.g002
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the optimization problem numerical algorithms have to be used to

estimate the parameters.

Results

Efficient numerical simulation of quantitative dynamic
models

The system of nonlinear ODEs, see Equation (1), that

implements the biological processes has to be solved numerically.

The time scales for the reaction rate of the molecular processes can

differ by orders of magnitude. Therefore, a stiff ODE solver should

be applied. We used the CVODES algorithm [14] that was coded

in C for efficiency in combination with a MATLAB mex-interface.

For each of the experimental conditions the ODE system has to be

modified according to the applied treatment. For instance for the

JAK2/STAT5 model, an additional treatment with Actinomycin

D inhibits transcription of negative feedback regulators SOCS3

and CIS and therefore modifies the ODE system. Consequently,

there can be as many variants of the ODE systems as experimental

conditions, each having a different numerical solution for the

dynamics. For one comparison of the whole model to the

experimental data, given a specific set of candidate parameters,

all ODE variants have to be solved. During parameter estimation

many evaluations of the whole model are necessary. This can be a

numerically intensive task. All ODE variants can be solved

independently, therefore this problem is ideal for parallel

computing. We employed a multithreading technique that results

in a significant acceleration on multi-core machines.

For the JAK2/STAT5 model, 24 ODE variants have to be

solved concurrently. In this case, a 2-core machine yields an

acceleration of approximately 2-fold, a 4-core machine yields an

acceleration of approximately 2 to 3-fold, an 8-core machine yields

an acceleration of approximately 2 to 6-fold (Figure 3). For more

cores, the overhead due to thread creation and different runtimes

of single threads limit the acceleration of the calculations.

Importance of the assessment of measurement noise
In the quantitative dynamic modeling approach, the mathe-

matical model is calibrated based on experimental data. Exper-

imental data contain measurement noise. For a realistic calibration

of the dynamical model an adequate assessment of the measure-

ment noise is important. The magnitude of the noise depends on

the measurement technique (Figure 2). For instance, antibodies

used in immunoblotting differ with respect to their specificity.

Furthermore, the noise level is influenced by the biological context

of the experiment. For example, in experiments with primary cells,

available material is limited compared to experiments using cell

lines. In addition, biochemical assays such as immunoblotting,

qRT-PCR or mass spectrometry are time and cost intensive.

Frequently, no more than three repetitions of an experiment are

available, which results in a challenging setting for reliable

parameter estimation.

The variance s2
ki of the measurement noise controls the

parameter estimates bhh by entering into the likelihood, see Equation

(3). Therefore, a realistic choice of the variance components s2
ki is

crucial in order to obtain reliable estimates of the model

parameters and of the uncertainties that are associated with this

estimation process. Two approaches for the assessment of

measurement noise were investigated:

1) A standard approach is the estimation of variance directly

from measurement replicates as a pre-processing of the data.

However, in the case of few measurement replicates this

approach leads to highly variable estimates. In the case of

single replicates it is not feasible.

2) Alternatively, the variance of the measurement noise can be

estimated simultaneously with the model dynamics. To this end

the distribution of the measurement noise is considered as a

parametrized function

sk(ti,h)~fsk
(ti,y(ti,h),h): ð4Þ

These additional parameters that represent the magnitude of

the noise are estimated simultaneously with the remaining model

parameters. This approach facilitates an objective and automated

estimation of the measurement noise and of the actual model

parameters. Reasonable results can also be obtained if no

measurement repetitions are available. The measurement noise

estimated by this approach is depicted in Figure 2 by gray shading.

To investigate the performance of both approaches systemat-

ically, i.e. analysis of bias and variance induced to parameter

estimation, a simulation study where true parameter values are

known is used. A simple test case with two reactions, A ? B with

rate constant k1 and B ? A with rate constant k2 is investigated.

Also initial conditions A(t~0) = A0 and B(t~0) = B0 are

estimated from the data. Experimental data is simulated for

y1(ti)~A(ti) and y2(ti)~B(ti) for time points

ti~½0,0:25,0:5,0:75,1� in triplicates and with absolute and relative

measurement noise according to y
{
ik~yikzeik where

eik*N(0,sazsb
:yk), sa~0:1 and sb~0:063. For the pre-process-

ing approach, for each time point ti and yk the variance ŝs2
ik is

individually estimated from the triplicates and is used in the

parameter estimation by eik*N(0,ŝs2
ik). For the simultaneous

estimation, the parametrized function sk(ti,h)~sazSb
:yk and

eik*N(0,sk(ti,h)2) is used in the parameter estimation. Here, sa

and sb are included in h and are estimated simultaneously with the

remaining parameters. Both approaches yield unbiased results,

however, the pre-processing approach induces a considerably

higher amount of variance in the estimated parameters than the

simultaneous estimation (Figure 4a,b). Even estimation of the

parameters using the true values for sa and sb is not significantly

better than the simultaneous estimation approach (Figure 4c).

The results show that the simultaneous calibration of model

dynamics and measurement noise in a single step facilitates a

statistically more accurate assessment of the model parameters

than using a preprocessing of the experimental data.

Performance of numerical optimization algorithms
To calibrate a model, all unknown parameters, including the

parameters contained in the measurement noise distribution, have

to be estimated based on the experimental data. Parameter

estimation involves an optimization routine that varies all

unknown parameters to obtain the best possible representation

of the data by the model. The optimal parameter values can be

ascertained by maximum likelihood estimation. Minimizing the

negative logarithm of the likelihood is mathematically equivalent

to maximizing the likelihood because the logarithm is a

monotonically increasing function. Minimization of log-likelihood

provides the same parameter estimates, but it has significant

advantages in efficiency. In the following, we will refer to negative

log-likelihood as objective function. Given two sets of parameters,

the one that has the smaller associated objective function is the one

that provides better agreement between a model and experimental

data.

Quantitative Dynamical Modeling in Systems Biology
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A common problem in the parameter estimation of dynamic

models is the occurrence of multiple optima, i.e. multiple basins of

attraction in the objective function. As an illustrating example

[15], an objective function of a two dimensional parameter space

that contains four optima, consisting of one global optimum (A)

and three local optima (B,C,D), is displayed in Figure 5a. In

general, there are three approaches to this problem:

1) Stochastic optimization algorithms apply sophisticated heuristics

that randomly sample parameter space to evaluate the

objective function. Due to the stochastic approach these

methods are less likely to get stuck in local minima. This is

particularly advantageous for applications that are character-

ized by many local optima. Hence, they increase the

probability of locating the global optimum despite local

optima. Typically, these methods do not evaluate derivatives

of the objective function.

2) Deterministic optimization algorithms take steps that successively

decrease the value of the objective function beginning from an

initial guess for the parameter values [16]. They evaluate

derivatives of the objective function. This leads to more rapid

convergence to the optimum compared to stochastic algo-

rithms. However, depending on the initially assumed

parameter values a deterministic optimization algorithm

may converge to a local rather than global optimum. This

limitation of deterministic optimization algorithms can be

overcome by performing many independent optimization

runs from randomly selected initial parameter guesses. This

‘‘multi-start’’ approach facilitates a broad coverage of the

parameter search space in order to find the global optimum.

Latin hypercube sampling [17] of the initial parameter guesses

can be used to guarantee that each parameter estimation run

starts in a different region in the high-dimensional parameter

space. This method prohibits that randomly selected starting

points are accidentally close to each other (Materials and

Methods: Latin hypercube sampling).

3) Hybrid optimization algorithms use a combination of both

strategies. First, promising candidate sets of parameter values

are generated using a stochastic strategy. The candidate sets

are then further improved by a deterministic strategy.

Figure 3. Acceleration of numerical computations for the solution of ODE systems by multithreading. For each bar in the figure the 24
variants of the ODE systems used for the JAK2/STAT5 model were solved for 1000 randomly drawn sets of parameters using a Latin hypercube
sampling strategy. The theoretically possible acceleration is displayed by the red dashed line.
doi:10.1371/journal.pone.0074335.g003
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We have performed a comprehensive comparison of 15

optimization methods selected from the above categories

(Table 1) using both examples. 12 different stochastic optimization

algorithms [18] were investigated (Materials and Methods:

Stochastoc optimization algorithms). For comparison of determin-

istic methods, we applied a trust region algorithm [19] in

combination with Latin hypercube sampling and two different

approaches for calculating derivatives of the objective function:

finite difference approximation and analytically derived sensitivity

equations. Additionally, we have evaluated the hybrid algorithm

scatter search [20,21]. All algorithms were applied with default

settings that are recommended for generic applications.

To evaluate their reliability, each method was applied 100 times

with different initial parameter guesses. Ideally, each optimization

run should reach an optimum, either local or global. Reliable

methods are characterized by returning the same results repro-

ducibly, for instance the global optimum A and the local optima

B,C and D (Figure 5a,b). This performance evaluation enables

characterization of multiple optima and visualization of results for

high dimensional problems. The number of repetitions of

optimization should be chosen large enough, until the best

method yield reproducible results in a satisfactory number of cases.

In our examples 100 repetitions were large enough. By this

method, multiple optima can clearly and reproducibly be

distinguished for both examples. In the Epo receptor model, we

discovered three local optima. In the JAK2/STAT5 model, five

local optima were detected. For the smaller Epo receptor model,

the hybrid optimization algorithm performed equally well, but the

method had a considerably higher computational cost. For multi-

start deterministic optimization, the rate of convergence to the

global optimum is associated with the size of the basin of attraction

of the global optimum compared to the size of the entire

parameter search space. For the Epo receptor model, the fraction

is about 30–40%, for the JAK2/STAT5 model only about 10%.

Our comparison indicates that multi-start deterministic optimiza-

tion using the sensitivity equations for derivative calculations

performs best for both examples (Figure 5c,d) and is appropriate

for these examples.

All optimization algorithms were also compared in terms of

computational speed. This showed that multi-start deterministic

optimization using the sensitivity equations is also the computa-

tionally most efficient approach (Figure 6).

Derivatives used in deterministic optimization algorithms
Deterministic optimization algorithms such as LSQNONLIN

(MATLAB, R2011a, The Mathworks Inc., Natick, MA) that is

applied here require derivatives of the objective function, see

Equation (3), with respect to parameters. It is important to use

reliable and efficient numerics for the calculation of the derivatives

because they will guide the optimization method to the optimum.

The inner derivatives dx(t,h)=dh, also called sensitivities, are

required for this calculation. Two approaches for the calculation

of the sensitivities were investigated:

1) Finite difference approximation is a standard approach where the

model trajectories x(t,h) are calculated for perturbed

parameters

dx(t,h)

dhj

&
x(t,h){x(t,hzh:ej)

h
, ð5Þ

here, ej is the jth unit vector and h should be chosen

sufficiently small. For ODE models this approach leads to

significant numerical instabilities because x(t,h) can only be

approximated numerically by the ODE solver. An absolute

and relative tolerance of 10{8 was used here. As h should be

small, the numerical error in the difference of two noisy

solutions x(t,h){x(t,hzh:ej) can dominate (Figure 7). Note

that there is no generic way of choosing h that leads to least

errors.

2) Sensitivity equations represent additional ODEs

d

dt

dx(t,h)

dh
~

Lfx

Lx

dx(t,h)

dh
z

Lfx

Lh:
ð6Þ

for the derivatives [22] that are solved simultaneously with the

original ODE system, see Equation (1). An efficient algorithm

for solving the enlarged ODE system is the CVODES solver

[14]. There are some numerical properties that enable to

increase the performance of solving the enlarged ODE

system. For example, the sensitivity equations inherit the

stiffness of the original ODE system, therefore the adaptive

step size control for the enlarged ODE system can be chosen

equal to that of the original system. Futhermore, the Jacobian

matrix of the right hand side of the sensitivity equations is

composed block by block out of the Jacobian matrix of

the original ODE system. In our simulations calculating

Figure 4. Analysis of the bias and variance of parameter
estimates induced by different methods for the assessment of
measurement noise. The figure shows the result of two hundred
independent parameter estimation runs for one hundred different sets
of simulated data for the parameters A0 , B0 , k1 , k2 and sa, sb where
applicable. The amount of measurement noise was assessed by a pre-
processing approach (a), by using a simultaneous estimation of
dynamics and measurement noise (b) and using the true values for sa

and sb in the estimation (c).
doi:10.1371/journal.pone.0074335.g004
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derivatives by sensitivity equations is ten times faster than by

finite difference approximation.

Our results show that using finite difference approximation of

the derivatives in the optimization leads to unreliable results

(Figure 5c,d). Numerical inaccuracies in the derivatives (Figure 7)

are responsible for inaccuracy in the search direction of the

algorithm and consequently lead to premature termination of the

optimization procedure [23]. The calculation of derivatives using

the sensitivity equations is not only more reliable but also

considerably faster. For the JAK2/STAT5 model the calculation

is approximately ten times faster compared to finite difference

approximation.

Decoupling of parameters using scaling invariances
Each ODE model that corresponds to a reaction network is

realized as equations that describe quantities carrying physical

units. Such an ODE model has an intrinsic scaling invariance

originating from the free choice of units. This invariance can be

exploited to disentangle parameters that carry time units such as

rate constants and concentration units such as initial concentra-

tions, dissociation constants or scaling parameters. The corre-

sponding reparameterization does not restrict the dynamics of the

model and is also known as nondimensionalization [24].

Lets consider a simple test case with two reactions, A+B ? C

with rate constant k1 and C ? A+B with rate constant k2 for

illustrative purpose. The initial conditions A (t~0) = A0 and

B(t~0) = B0 are considered as free parameter whereas it is

assumed that C(t~0)~0. The reparameterizations that imple-

ment the invariance can be derived by dimensional analysis of the

parameters. The parameter k1 is expressed as concentration/time,

k2 as 1/time, while A0 and B0 are expressed as concentration.

Without loss of generality, we pick A0 to represent the

concentration scale and use reparameterizations B
rep
0 = B 0= A

0 and k
rep
1 = k1

:A0. The new parameters B
rep
0 and k

rep
1 do not carry

the concentration units any more, B
rep
0 is dimensionless and the

unit of k
rep
1 is 1/time. Similarly and without loss of generality, we

Figure 5. Performance analysis of parameter estimation using numerical optimization methods. (a) A two dimensional parameter
estimation problem [15] bearing multiple optima (global: A; local: B,C,D) is displayed for illustrative purposes. Traces in parameter space of two
hypothetical methods with high (blue) and low performance (red) are displayed. 50 independent runs with each method are displayed; the circles
indicate the results of the estimation. (b) The visualization of optimization performance by sorting objective function values increasingly is also
possible for high dimensional problems. It reveals that the performance of the red method is low, i.e. results are unreliable, whereas the performance
of the blue method is high, i.e. results are reproducible and reliable. (c,d) Visualization of performance using 100 independent optimization runs with
each of the considered algorithms for both quantitative dynamic models. For illustrative reasons, the global optimum was centered to one. For
stochastic optimization (gray), 12 different algorithms [18] were used (see Figure 11 for details). For deterministic optimization, two different
approaches for the calculation of derivatives were compared: (i) finite difference approximation (red) and (ii) analytically derived sensitivity equations
(orange and blue). Initial guesses for the parameters were generated by Latin hypercube sampling [17]. All algorithms are described in Table 1.
doi:10.1371/journal.pone.0074335.g005
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Table 1. Description of optimization algorithms.

type name description

stochastic STD-ES standard evolutionary strategy

stochastic CMA-ES evolutionary strategy with covariance matrix adaption

stochastic STD-GA standard genetic algorithm

stochastic PSO particle swarm optimization with constriction

stochastic DE differential evolution algorithm

stochastic TRIBES adaptive particle swarm optimization

stochastic RANDOM random Monte-Carlo search

stochastic HILLC hill climbing strategy

stochastic CBN-ES cluster-based niching evolutionary strategy

stochastic CHILL clustering hill climbing strategy

stochastic IPOP-CMA-ES evolutionary strategy with increasing population size

stochastic CBN-GA cluster-based niching genetic algorithm

deterministic LSQNONLIN FD trust region algorithm using Latin hyper cube multi-starts

and finite difference approximation for derivative calculations

deterministic LSQNONLIN SE trust region algorithm using Latin hyper cube multi-starts

and sensitivity equations for derivative calculations

hybrid SSmGO enhanced scatter search using FMINCON

for deterministic optimization

Stochastic optimization algorithms are provided by the Evolutionary Algorithms Workbench [18]. LSQNONLIN and FMINCON are part of the Optimization Toolbox
(MATLAB, R2011a, The Mathworks Inc., Natick, MA). SSmGO is part of the toolbox Scatter Search for Global Optimization for Matlab [20,21].
doi:10.1371/journal.pone.0074335.t001

Figure 6. Number of calls to the objective function for 100 independent optimization runs with each of the considered algorithms
for the JAK2/STAT5 model. For description of the algorithms, stochastic optimization (gray), deterministic optimization (red, blue) and hybrid
optimization (green) see Table 1. The LSQNONLIN algorithm (MATLAB, R2011a, The Mathworks Inc., Natick, MA) was used in combination with Latin
hyper cube sampling of the initial parameter guesses and using two different approaches for derivative calculation, finite difference approximation
(FD) and the sensitivity equations (SE). LSQNONLIN using SE is the most efficient algorithm for parameter estimation considered in this study. For all
algorithms default options were used. The maximum number of allowed function evaluations niter was chosen such that the algorithm stops before
reaching niter in most cases. For stochastic optimization (gray) niter~104 , for deterministic optimization using SE (red) niter~400 and using FD (blue)
niter~115:100~1:15:104 and for hybrid optimization (green) niter~105 .
doi:10.1371/journal.pone.0074335.g006
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pick k
rep
1 to represent the time scale and use the reparameterization

k
rep
2 = k2=k

rep
1 where the new parameter k

rep
2 is now dimensionless.

As results of the reparameterization, the concentration and time

scales of the dynamics are disentangled

x(t,2A0,2B0,2k1,2k2)~2A0
:xrep(t=2k

rep
1 ,2B

rep
0 ,2k

rep
2 ), ð7Þ

i.e. the concentration scale is exclusively controlled by A0 and the

time scale is exclusively controlled by k
rep
1 (Figure 8 and 9). The

parameter transformations as well as the ordinary differential

equations for the Epo receptor model and for the JAK2/STAT5

model are given in the Materials and Methods.

For most of the measurement techniques, the observables y are

related to the dynamical variables x by scaling factors s

yj(ti,h)~sj
:xj(ti,h): ð8Þ

Often, only relative data can be obtained, e.g. of mRNA

concentration by qRT-PCR or of protein concentration by

immunoblotting. In this case, the respective parameter sj is

unknown and cannot be determined from this experimental data.

The concentration scale invariance illustrated in Equation (7) and

Equation (8) directly imply that also the product s:2A0 cannot be

determined. Both s and 2A0 are structurally non-identifiable [25]

in this case. This structural non-identifiability can directly be

detected from the reparameterization. As a consequence, model

predictions for quantities x that lack experimental information

about the absolute concentration can only be made on a relative

scale, e.g. prediction of the number of mRNA molecules in case of

the JAK2/STAT5 model is not possible. At least one measure-

ment on an absolute concentration scale is necessary to enable

predictions on an absolute scale. When using the reparameterized

model, the parameter that corresponds to 2A0 can in this case

securely be fixed to an arbitrary value, without restricting the

dynamics of the model.

All results shown before were based on reparameterized models

with disentangled parameters. In order to evaluate the positive

effect of the disentanglement of parameters on the efficiency of

parameter estimation, 100 independent runs using the best

method were performed without reparameterization (Figure 5c,d).

For the JAK2/STAT5 model, the optima are reached more

efficiently and reliably by fitting the reparameterized model. Since

the Epo receptor model is smaller, the performance by

reparameterization has not improved significantly in this case.

Considering uncertainties in model predictions
As discussed above, it is important that parameter estimation

can be performed reliably and efficiently. However, if specific

model predictions are required, finding the set of optimal

parameter values is only the starting point. The measurement

uncertainties of the experimental data have to be propagated to

the estimated parameters and, in turn, to the model predictions. In

general, there are two approaches to deal with uncertainties:

1) Uncertainties can be investigated in terms of the analysis of

identifiability of model parameters [26], of observability of the

predicted dynamics [27] and the calculation of confidence

intervals [28]. It is of utmost importance that experimental data

is sufficiently informative. Otherwise, the problem of param-

eter non-identifiability can arise [26]. Non-identifiability of a

parameter indicates that its value cannot be determined given

the available data, i.e. confidence intervals are infinite. As a

consequence the model dynamics and predictions affected by

this parameter may not be determined, i.e. non-observable [27],

and subsequent analysis might not be reliable. To overcome

this problem, an iterative cycle of identifiability analysis,

experimental design and performance of the proposed

measurements can be applied. For investigation of confidence

intervals and identifiability of parameters the profile likelihood

approach can be used [26]. For each parameter hj a profile

PL(hi)~ max
Vj=i

L(hj)
� �

ð9Þ

Figure 7. Comparison of derivatives calculated by finite difference approximation and by the sensitivity equations. The figure shows
the calculation of derivatives dx(t,h)=dh for the JAK2/STAT5 model for the dynamical variable pSTAT5 at t~100 minutes with respect to the
parameter CISInh on the y-axis, for several values of the parameter CISInh on the x-axis. For finite difference approximation, h~10{6 (red), h~10{4

(blue) and h~10{2 (green) was used. The numerical errors rapidly become uncontrollable as h gets smaller. For larger h, finite difference
approximation is of bad quality showing systematic errors. In contrast, the analytical derivatives calculated by the sensitivity equations produce stable
and correct results (black).
doi:10.1371/journal.pone.0074335.g007
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can be calculated individually. The profiles break down the

uncertainty contained in the high-dimensional likelihood to a

footprint in one dimension. A perfectly flat profile indicates a

structural non-identifiable parameter. Using a desired confi-

dence level, practically non-identifiable and identifiable

parameters can be distinguished by the profiles. In the latter

case, the confidence intervals of the estimate are finite and can

be directly obtained from the profile. Since only one-

dimensional profiles are calculated, this approach for

identifiability analysis is computationally feasible for large

models and its results are easy to visualize and to interpret. A

similar concept, the prediction profile likelihood, can be used

to study observability of model predictions [27].

2) Alternatively, the uncertainties in the parameter estimates and

in model predictions can be evaluated by applying Markov

chain Monte Carlo approaches [29] that facilitate the sampling

from the posterior distribution of parameters and of model

predictions. While the sampling approach can yield enlight-

ening results it may come at a high computational cost,

especially if the parameter space in question is high-

dimensional.

Both approaches were recently described and compared in the

context of quantitative dynamic models [30–32]. The efficiency of

the MCMC sampling for the 115 dimensional parameter space of

the JAK2/STAT5 model benefits from the efficient parameteri-

zation of the model and numerical implementation of the ODE

solver. In this setting, reliable results can still be obtained within

acceptable computation time. It was demonstrated that they yield

similar results, however (1) has superior performance in practice. If

the accuracy in the desired predictions is insufficient, experimental

design can be used to generate additional experimental data that

enhances the predictive power of the model. The iterative cycle

between model calibration, uncertainty analysis and experimental

design was recently demonstrated in detail for the Epo receptor

model [25].

Conclusions

We presented a comprehensive discussion and comparison of

methods used for quantitative dynamic modeling, employing two

recent examples of relevant size and impact. Implementation of

the modeling examples and source code of the methods are freely

available and can be used as reference for future applications

(Materials and Methods: Software implementation).

For successful model calibration and the estimation of unknown

model parameters, it is crucial to have a realistic estimate of the

measurement noise of the experimental data. We recommend to

estimated the parameters that characterize the measurement noise

of the experimental data simultaneously with the parameters that

determine the model dynamics. This approach enables determi-

nation of the quality of experimental data in an objective and

automated manner. Avoiding preprocessing of the experimental

data represents substantial progress towards a statistically more

reliable procedure, especially in the case of low replicates, which is

typical for applications in biology. Furthermore, the assessment of

measurement noise in the case of single repetition experiments is

feasible. The additional computational cost of that arises from the

Figure 8. Decoupling of parameters using concentration scale invariance. The figure shows the dependency of the dynamics of the original
system and of the reparameterized system on the parameter A0 . In case of the original system (top row) the parameter controls the scale of species A
but also the time when the steady state is reached. In case of the reparameterized system (bottom row) the parameter controls only and exclusively
the concentration scale of the entire system leaving the shape of the dynamics unaffected.
doi:10.1371/journal.pone.0074335.g008
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extra parameters defining the measurement noise parameters is

comparatively small.

Numerical optimization used for the estimation of unknown

model parameters is a challenging task. We compared the

performance of 15 stochastic, deterministic and hybrid optimiza-

tion algorithms. The results show that multi-start deterministic

optimization using the sensitivity equations for the calculation of

derivatives significantly outperforms all other tested algorithms. In

our evaluation the performance of stochastic optimization

algorithms was surprisingly low compared to the hybrid and fully

deterministic optimization algorithms. The stochastic optimization

algorithms considered here do not make use of derivative

information whereas the hybrid and fully deterministic optimiza-

tion algorithms do. It is documented in [33] that there are

considerable disadvantages in not using derivative information. So

one cannot expect the performance of derivative-free methods to

be comparable to those of derivative-based methods.

Each of the stochastic algorithms has multiple tuning param-

eters that can improve their performance for a specific application.

It is important to note that all algorithms (stochastic, deterministic

as well as the hybrid algorithms) were applied with default settings

that are recommended for generic applications to avoid manip-

ulation of the results. Based on the example models presented

here, our aim was to report the performance of these methods in

an unsupervised and hence unbiased way. This reflects the

situation in a real application for which no prior knowledge about

the optimization problem is available and yields in our opinion the

most objective performance evaluation.

Deterministic optimization algorithms make use of derivative

information, typically through finite difference approximations.

Unfortunately, these approximations tend to yield numerically

unstable results for dynamic models [23]. For the two quantitative

dynamic modeling examples employed here, we explicitly

demonstrated that this leads to unreliable results. Hence, our

method of choice for calculating derivatives for dynamic models is

the simultaneous solution of the sensitivity equations. We have

shown this strategy to be more reliable and efficient.

We report an additional advantage of our performance

evaluation of optimization routines by systematic comparison of

repeated parameter estimations. It has previously been very

difficult to decide whether an unsatisfactory parameter estimation

run was due to a local optimum or to a premature termination of

the optimizers. Reasons for this premature termination include

numerical inaccuracies in the calculation of derivatives. In our

definition, true (local) optima are indicated by the fact that several

parameter estimation runs result in the same (local) optima in

terms of the objective function. Parameter values, however, can be

different, if the parameters are non-identifiable. Surprisingly,

based on this definition of optima, the number of local optima was

rather limited in the examples we have tested so far.

Stochastic optimization algorithms are often applied based on

the argument that the objective function contains a plethora of

Figure 9. Decoupling of parameters using time scale invariance. The figure shows the dependency of the dynamics of the original system
and of the reparameterized system on the parameter k1 and krep

1 respectively. In case of the original system (top row) the parameter controls the level
of the steady state but also the time when the steady state is reached. In case of the reparameterized system (bottom row) the parameter controls
only and exclusively the time scale of the entire system leaving the shape of the dynamics, especially the steady state level, unaffected.
doi:10.1371/journal.pone.0074335.g009
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local optima. We showed that deterministic optimization algo-

rithms with inaccurate approximations of derivatives could cause

spurious local optima. Instead of employing stochastic optimiza-

tion algorithms to solve this artificial problem, we suggest to use

the sensitivity equations for a reliable calculation of derivatives.

True local optima can arise due to insufficient amount and quality

of experimental data in combination with the non-linearity of the

models. Our proposed performance evaluation of parameter

estimation facilitates the detection of these local optima.

Concluding, our results show that the best and most accurate

method to reveal true local optima and the global optimum is a

deterministic derivative-based optimization using the sensitivity

equations for calculating derivatives in combination with a multi-

start strategy based on Latin hypercube sampling of the initial

guesses for the parameters. Furthermore, we show that an

alternative parameterization of the dynamic model has superior

performance for larger applications.

Finally, we discussed the importance of uncertainty analysis of

the estimated model parameters and of the model predictions. For

the examples discussed here, challenges in quantitative dynamic

modeling are surmounted allowing useful insights into the

underlying biology [2,7].

Materials and Methods

Latin hypercube sampling
In order to make deterministic optimization algorithms more

robust against local optima a ‘‘multi-start’’ approach can be used.

Here, many independent optimization runs from different initial

guesses are performed.

For the generation of the initial parameter guesses purely

random sampling or Latin hypercube sampling [17] can be used

(Figure 10a,b). Drawing N Latin hypercube samples in 2D can be

illustrated by dividing the space into N2 boxes. For the first

sample, one box in the first row is selected and then drawn from

within this box randomly. For the second sample, one box in the

second row is selected, except of the columns that have previously

already been drawn from, and then drawn from within this box

randomly.

Latin hypercube sampling is favorable compared to purely

random generation because Latin hypercube sampling prohibits

two randomly selected starting points from being accidentally close

to each other (Figure 10c,d). In contrast, for a random generation

samples are sometimes very close to each other. Therefore, Latin

hypercube sampling provides a better coverage of the space.

Stochastic optimization algorithms
The performance of twelve different stochastic optimization

algorithms [18] were investigated (Table 1). This includes a

standard evolutionary optimizer, an evolutionary strategy with

covariance matrix adaption, a standard genetic algorithm, particle

swarm and adaptive particle swarm optimization, a differential

evolution algorithm, a hill climbing strategy, as well as a random

Monte-Carlo search. In addition, clustering-based optimization

approaches like cluster-based niching evolutionary strategy,

clustering hill climbing strategy, an evolutionary strategy with

increasing population size, a cluster-based niching genetic

algorithm, as well as a population based incremental learning

algorithm are available.

One hundred independent runs of parameter estimation are

performed with each of the twelve algorithms (Figure 11). The

results show that the particle swarm optimization algorithm

performs best for the Epo receptor model and second best for the

JAK2/STAT5 model. The evolutionary algorithm with increasing

population size performed best for the Epo receptor model but

does not show good performance for the larger JAK2/STAT5

model. Ideally, the algorithms should find reproducibly the global

optimum, i.e. return the same value of the objective function

multiple times (Figure 5a,b). However, none of the algorithms is

able to do so for neither of the examples.

Software implementation
The model equations and experimental data for the Epo

receptor and the JAK2/STAT5 models are available from the

original publications [2,7]. Here, we additionally provide user-

ready implementations in a novel computational format for

quantitative dynamic modeling that we introduce here. The novel

format is compliant with the SBML standard [34], i.e. models can

be imported and exported. It is especially tailored to quantitative

dynamic modeling applications as are presented here. The

software is based on MATLAB (R2011a, The Mathworks Inc.,

Natick, MA), its source code is freely available from the hosting site

Bitbucket: https://bitbucket.org/d2d-development/d2d-software/

wiki/Home. It includes a parallelized implementation of the ODE

solver CVODES [14] that also allows to solve the sensitivity

equations for deterministic optimization and implementation of all

modeling concepts and algorithms presented here. The modeling

examples [2,7] are easily accessible by the provided software

implementation and allow for testing novel methods and for the

characterization of their performance. They can also be used as a

reference for further applications.

Equations for Epo receptor model
The rate equations of the reactions are

v1~kon
:½Epo�:½EpoR�

v2~koff
:½Epo EpoR�

v3~kt
:Bmax

v4~kt
:½EpoR�

v5~ke
:½Epo EpoR�

v6~kex
:½Epo EpoR i�

v7~kdi
:½Epo EpoR i�

v8~kde
:½Epo EpoR i�:

The ODE systems is composed out of the rate equations by

d=dt ½Epo�~{v1zv2zv6

d=dt ½EpoR�~{v1zv2zv3{v4zv6
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d=dt ½Epo EpoR�~zv1{v2{v5

d=dt ½Epo EpoR i�~zv5{v6{v7{v8

d=dt ½dEpo i�~zv7

d=dt ½dEpo e�~zv8:

The initial condition are

½Epo�(0)~init Epo

½EpoR�(0)~init EpoR

½Epo EpoR�(0)~0

½Epo EpoR i�(0)~0

½dEpo i�(0)~0

½dEpo e�(0)~0:

Figure 10. Comparison of random sampling and Latin hypercube sampling (LHS) for the generation of initial parameter guesses. (a)
One realization of twenty samples drawn randomly in a two dimensional parameter space is shown. (b) Twenty samples drawn by LHS. (c,d) Euclidean
distance to the nearest neighbor parameter values for one thousand repeated generations of twenty samples in a 2D parameter space.
doi:10.1371/journal.pone.0074335.g010
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The parameter transformation that decouple the parameter are

init EpoR~init EpoR rep:init Epo

kon~kon
:init Epo:

In the re-parametrized formulation, the scale of the dynamics is

only determined by the parameter init Epo that solely carries the

units of concentration.

Equations for JAK2-STAT5 model
The rate equations of the reactions are

v1~
½Epo�:½EpoRJAK2�:JAK2ActEpo

½SOCS3�:SOCS3Inhz1

v2~½EpoRpJAK2�:JAK2EpoRDeaSHP1:½SHP1Act�

v3~
½EpoRpJAK2�:EpoRActJAK2

½SOCS3�:SOCS3Inhz1

v4~
3:½EpoRpJAK2�:EpoRActJAK2

EpoRCISInh:½EpoRJAK2 CIS�z1ð Þ: ½SOCS3�:SOCS3Inhz1ð Þ

v5~
3:EpoRActJAK2:½p1EpoRpJAK2�

EpoRCISInh:½EpoRJAK2 CIS�z1ð Þ: ½SOCS3�:SOCS3Inhz1ð Þ

v6~
EpoRActJAK2:½p2EpoRpJAK2�

½SOCS3�:SOCS3Inhz1

v7~JAK2EpoRDeaSHP1:½SHP1Act�:½p1EpoRpJAK2�

v8~JAK2EpoRDeaSHP1:½SHP1Act�:½p2EpoRpJAK2�

v9~JAK2EpoRDeaSHP1:½SHP1Act�:½p12EpoRpJAK2�

v10~½EpoRJAK2 CIS�:EpoRCISRemove:

½p12EpoRpJAK2�z½p1EpoRpJAK2�ð Þ

v11~½SHP1�:SHP1ActEpoR: ½EpoRpJAK2�zð

½p12EpoRpJAK2�z½p1EpoRpJAK2�z

½p2EpoRpJAK2�Þ

v12~SHP1Dea:½SHP1Act�

Figure 11. Comparison of optimization performance for stochastic optimization algorithms. The figure shows 100 independent runs by
each of the considered algorithms (Table 1) on the x-axis, sorted by the respective value of the objective function. For illustrative reasons, the y-axis
was shifted by a constant (Figure 5b).
doi:10.1371/journal.pone.0074335.g011
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v14~
½STAT5�:STAT5ActEpoR: ½p12EpoRpJAK2�z½p1EpoRpJAK2�ð Þ2

½CIS�:CISInhz1ð Þ: ½SOCS3�:SOCS3Inhz1ð Þ

v15~STAT5Imp:½pSTAT5�

v16~STAT5Exp:½npSTAT5�

v17~{CISRNAEqc:CISRNATurn:½npSTAT5�

v18~½CISnRNA1�:CISRNADelay

v19~½CISnRNA2�:CISRNADelay

v20~½CISnRNA3�:CISRNADelay

v21~½CISnRNA4�:CISRNADelay

v22~½CISnRNA5�:CISRNADelay

v23~½CISRNA�:CISRNATurn

v24~½CISRNA�:CISEqc:CISTurn

v25~½CIS�:CISTurn

v26~{SOCS3RNAEqc:SOCS3RNATurn:½npSTAT5�

v27~½SOCS3nRNA1�:SOCS3RNADelay

v28~½SOCS3nRNA2�:SOCS3RNADelay

v29~½SOCS3nRNA3�:SOCS3RNADelay

v30~½SOCS3nRNA4�:SOCS3RNADelay

v31~½SOCS3nRNA5�:SOCS3RNADelay

v32~½SOCS3RNA�:SOCS3RNATurn

v33~½SOCS3RNA�:SOCS3Eqc:SOCS3Turn

v34~½SOCS3�:SOCS3Turn

Reactions v18 to v22 and v27 to v31 account for a delay that

summarize the processing steps of the mRNA by a linear chain of

reactions [35] with common rate constant CISRNADelay and

SOCS3RNADelay, respectively. The ODE systems is composed

out of the rate equations by

d½EpoRJAK2�=dt~{v1zv2zv7zv8zv9

d½EpoRpJAK2�=dt~zv1{v2{v3{v4

d½p1EpoRpJAK2�=dt~zv3{v5{v7

d½p2EpoRpJAK2�=dt~zv4{v6{v8

d½p12EpoRpJAK2�=dt~zv5zv6{v9

d½EpoRJAK2 CIS�=dt~{v10

d½SHP1�=dt~{v11zv12

d½SHP1Act�=dt~zv11{v12

d½STAT5�=dt~{v13{v14zv16
: 0:275

0:4

d½pSTAT5�=dt~zv13zv14{v15

d½npSTAT5�=dt~zv15
: 0:4

0:275
{v16

d½CISnRNA1�=dt~zv17{v18

v13~
½STAT5�:STAT5ActJAK2: ½EpoRpJAK2�z½p12EpoRpJAK2�z½p1EpoRpJAK2�z½p2EpoRpJAK2�ð Þ

½SOCS3�:SOCS3Inhz1
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d½CISnRNA2�=dt~zv18{v19

d½CISnRNA3�=dt~zv19{v20

d½CISnRNA4�=dt~zv20{v21

d½CISnRNA5�=dt~zv21{v22

d½CISRNA�=dt~zv22
: 0:275

0:4
{v23

d½CIS�=dt~zv24{v25

d½SOCS3nRNA1�=dt~zv26{v27

d½SOCS3nRNA2�=dt~zv27{v28

d½SOCS3nRNA3�=dt~zv28{v29

d½SOCS3nRNA4�=dt~zv29{v30

d½SOCS3nRNA5�=dt~zv30{v31

d½SOCS3RNA�=dt~zv31
: 0:275

0:4
{v32

d½SOCS3�=dt~zv33{v34:

The volume factors vol cyt~0:4 pl and vol nuc~0:275 pl

account for transitions between different compartments and are

determined experimentally. The species npSTAT5, CISnRNA1–5

and SOCS3nRNA1–5 are located in the nuclear compartment,

the remaining species in the cytoplasmatic compartment. The

initial condition are set to zero except for

½EpoRJAK2�(0)~init EpoRJAK2

½SHP1�(0)~init SHP1

½STAT5�(0)~init STAT5:

The parameter transformation that decouple the parameter are

JAK2EpoRDeaSHP1~JAK2EpoRDeaSHP1=init SHP1

EpoRCISRemove~EpoRCISRemove=init EpoRJAK2

SHP1ActEpoR~SHP1ActEpoR=init EpoRJAK2

STAT5ActJAK2~STAT5ActJAK2=init EpoRJAK2

STAT5ActEpoR~STAT5ActEpoR=init EpoRJAK22

CISInh~CISInh=CISEqc

SOCS3Inh~SOCS3Inh=SOCS3Eqc

CISRNAEqc~CISRNAEqc=init STAT5

SOCS3RNAEqc~SOCS3RNAEqc=init STAT5

CISEqc~CISEqc=CISRNAEqc

SOCS3Eqc~SOCS3Eqc=SOCS3RNAEqc

In the re-parametrized formulation, the scale of the dynamics is

only determined by the parameters init EpoRJAK2, init SHP,

init STAT5, CISEqc and SOCS3Eqc that solely carry the units

of concentration.
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