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There is a pressing need to generate molecular data from diverse tissues across global populations. These
currently missing data are necessary to resolve genome-wide association study loci, identify effector genes,
and move the translational genomics needle beyond European-ancestry individuals and the minority of dis-
eases for which blood is the relevant tissue.
Genetic diversity of global
populations
Within a population, the prevalence of a

complex disease or the distribution of a

quantitative trait is determined by the inter-

play of genetic and environmental factors.

Understanding genetic diversity across

global populations can help elucidate ge-

netic components and underlying biolog-

ical mechanisms of complex diseases/

traits that traverse all populations—or are

population specific. A more comprehen-

sive representation of genetic diversity

enables the development of precision-

medicine approaches that address the

needs of everyone, irrespective of their

ancestry, ultimately leading to more equi-

table and democratized access to ad-

vances in healthcare.

Diversifying genome-wide
association studies
Genome-wideassociation studies (GWASs)

have revolutionized our understanding of

the genetic basis of complex diseases/

traits. GWASs are biased toward Euro-

pean-ancestry individuals (Figure 1).

This is also the case for collections in

countries with genetically diverse popula-

tions, such as the United States and

United Kingdom, in which biobanks are

generally not truly representative of the

general population. A large part of this is

due to a lack of engagement by the scien-

tific community with diverse communities.
This is an o
A further reason is mistrust by these

underrepresented communities due to

actual and perceived bias and past harm

inflicted by the medical and scientific

communities.1 This Eurocentric bias limits

the generalizability of GWAS findings and

fails to capture the full spectrumof genetic

variation present across global popula-

tions.2 For instance, African-ancestry

populations have a higher level of genetic

diversity compared to European- and

Asian-ancestry populations, resulting in

enhanced novel genetic findings per indi-

vidual.

In recent years, large international

collaborative efforts have been made

to expand GWASs beyond European-

ancestry populations.3–5 By expanding

GWAS efforts to encompass individuals

from diverse ancestries, novel genetic var-

iants associated with complex traits have

been identifiedandpopulation-specificge-

netic architectures have been unraveled,

shedding light on biological pathways that

may underlie disease susceptibility. For

example, a GWAS of estimated glomerular

filtration rate (eGFR), a measure of kidney

function used to define chronic kidney

disease, from the Ugandan population

(n = 3,288) identified a novel association

at the GATM locus.6 This association is

driven by an African-specific intergenic

variant, which is monomorphic in Euro-

pean-ancestry populations and rare in

East Asian-ancestry populations.
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To fully understand the biological mech-

anisms underlying these signals and un-

lock the translational potential of GWAS

findings, it is essential to identify the causal

variants and their target genes. Fine-map-

ping aims to narrowdown the set of poten-

tial causal variants within a given genomic

region by leveraging linkage disequilibrium

(LD) patterns and functional annotations.

This approach benefits from data from

diverse ancestries, especially those with

finer-grained LD structure as compared

with European-ancestry populations. The

lower correlation between variant geno-

types allows for a better resolution in

localizing causal risk variants.

Unraveling the translational
potential: Integrating GWAS signals
with molecular data
The majority of GWAS signals are located

in non-coding regions of the genome,

which makes it challenging to decipher

their functional impact. Integrating GWAS

findings with molecular data, such as

gene and protein expression and chro-

matin accessibility and conformation,

can help to overcome this challenge.

Integration of GWASs with molecular

data can be executed, for instance,

through comparing fine-mapped datasets,

colocalization analysis, and causal infer-

ence analysis usingMendelian randomiza-

tion. Colocalization analysis assesses

whether a GWAS signal and a molecular
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Figure 1. Distribution of sample ancestry in genetics and molecular studies
An illustration of the ancestral composition of samples sourced from publicly available datasets across diverse genetic data modalities. Ancestry is interpreted in
a broad context. The first and second quadrants present the ancestry distribution of GWAS and gene expression (RNA sequencing [RNA-seq]) data. In the upper-
left quadrant, the pictogramportrays the ancestry distribution of all sampleswithin theGWAS catalog. TheGWAS sample ancestry information is derived from the
GWAS Diversity Monitor (accessed on July 18, 2023), which aggregates data from the GWAS Catalog. The upper-right quadrant depicts the ancestry distribution
of the available gene expression RNA-seq data from the eQTL catalog release 6, which was extracted from the official GitHub repository containing various
resources related to the catalog data summary page (https://github.com/eQTL-Catalogue). The authors assigned each sample from the contributing studies to a
super-population from the 1000 Genomes Project. The third and fourth quadrants display the ancestry distribution for proteomics data in the lower-left quadrant
and the ancestry distribution for metabolomics data in the lower-right quadrant. Both omics modalities’ data are sourced from https://www.metabolomix.com/
(accessed on July 20, 2023).
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quantitative trait locus (QTL) signal origi-

nate from the same causal variant. A mo-

lecular QTL refers to a genomic variant

that is associatedwith variation of amolec-

ular trait, such as gene expression levels,

protein abundance, or metabolite concen-

trations.7 By examining the overlap be-

tween GWAS signals and molecular

QTLs, candidate effector genes can be

prioritized. Finally, Mendelian randomiza-

tion provides a framework for inferring

causal relationships between genetic vari-

ants, intermediate molecular traits, and

complex traits, offering insights into mech-

anism of action.

Despite the enormous ongoing efforts

in the GWAS community to generate ge-

netic data from diverse ancestries, a sig-

nificant gap remains in the availability of

molecular data from primary tissues and

cells of diverse populations, coupled

with genotype information8 (Figure 1). Re-

turning to the novel association reported

in the Ugandan GWAS of eGFR, attempts

to elucidate the function of the identified
2 Cell Genomics 4, 100485, February 14, 202
intergenic variant through colocalization

are limited because this variant is absent

or rare in European-centric molecular

QTL resources.6

The majority of available omics data

with corresponding genetics data from

Asian ancestry comes from East Asia

(including Japan and China) rather

than South Asia. Similarly, data from Afri-

can American research participants are

often reported as broad African ancestry

without considering the plurality of

genomic diversity in this continent. A

more fine-grained definition of sample

ancestry is lacking from multiple re-

sources and might disguise the real pop-

ulations where data collection efforts

need to be concentrated to fill the gaps.

Pressing demand to generate
tissue-specific molecular data from
diverse ancestry groups
Gene regulation is a complex process that

varies across tissues and ancestries.

Different cell types exhibit distinct gene
4

expression profiles and regulatory land-

scapes, influencing the interpretation of

GWAS results. To fully exploit the poten-

tial of large-scale genetic data, eluci-

dating tissue-specific regulatory net-

works underlying complex traits, it is

necessary to incorporate molecular infor-

mation from the relevant primary tissue or

cells of interest. Therefore, it is crucial to

prioritize and invest in the collection of

molecular data from a wide range of pri-

mary tissues across diverse populations

to enhance our understanding of the func-

tional consequences of genetic variation

that may be specific to certain popula-

tions and pave the way for more inclusive

and personalized healthcare approaches.

Recently, large initiatives that include ge-

netic data from diverse populations, such

as the UK Biobank and the Trans-Omics

for Precision Medicine (TOPMed) pro-

gram, have included proteomics and me-

tabolomics data from blood.9,10

It is important to note here that most

existing molecular data from diverse

https://github.com/eQTL-Catalogue
https://www.metabolomix.com/


Figure 2. Tissue partitioning of omics samples per ancestry
This stacked bar plot provides an overview of sample distribution across different tissues based on broad ancestral backgrounds. Considering that the vast
majority of samples comes from blood, tissues were classified in a binary way: ‘‘blood’’ and ‘‘other.’’ For both omics modalities, data were extracted from https://
www.metabolomix.com/ (accessed on July 20, 2023).
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populations is predominantly from blood

samples (Figure 2). However, different

tissues in the human body can have

distinct gene regulation patterns. To

understand the full range of human ge-

netics, data from primary tissues involved

in complex traits are essential.11 Address-

ing this need, the ENCODE (Encyclopedia

of DNA Elements) and Roadmap

Epigenomics projects are significant en-

deavors in genetics research.12,13 The

projects provide a systematic map and

characterization of functional elements

and the epigenetic landscape of the hu-

man genome, respectively. However,

ancestry information for the tissue-spe-

cific molecular data is not available, hin-

dering its integration with GWAS results

to disentangle population-specific biolog-

ical mechanisms.

One example of a genetic data resource

that contains tissue-specific molecular

data from diverse ancestry groups is

GTEx.14 The GTEx v8 release includes

whole-genome sequencing and gene

expression data for 838 individuals,
including 103 African American and 12

Asian American individuals from self-re-

ported ancestry. However, when strati-

fying the samples by tissues, population-

specific sample sizes remain low and

insufficiently powered to allow the confi-

dent characterization of robust molecular

QTLs in their majority.14 For single-cell-

resolution data, the global initiative Hu-

man Cell Atlas is creating a reference

map of all human cells and inclusively col-

lecting data from populations across the

globe to better represent the genetic land-

scape of human diversity.15

Challenges and future directions
In addition to the growing drive to expand

GWASs to underrepresented ancestry

groups, there is now a pressing need to

generate molecular data particularly from

primary tissues frommore diverse popula-

tions. To truly advance equity in human ge-

nomics, amultifaceted approach is crucial.

This entails the allocation of funding spe-

cifically aimed at closing the gaps in

genomic research and ensuring equitable
Cel
distribution of resources. Intensification of

efforts toward the generation of diverse-

population molecular data from primary

tissues, the development of robust

infrastructure for sample collection, and

thoughtful engagement of underrepre-

sented communities is warranted going

forward. Finally, fostering global collabora-

tion will continue to be of paramount

importance, facilitating the exchange of re-

sources, knowledge, and data.

The integration of genetic and molecu-

lar data across populations requires

sophisticated computational tools and

methodologies to handle the complexity

and heterogeneity of these datasets.

Advancements in statistical methods

and data integration techniques will be

instrumental in overcoming these chal-

lenges and enabling comprehensive ana-

lyses of multi-ancestry data. The avail-

ability of longitudinal omics data across

tissues would enable the analysis and

prediction of health and disease patterns

throughout life but would be challenging

to achieve.
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By addressing the gap of ancestrally

diverse molecular data and advancing

analytical methods, we can come one

step closer to unlocking the full potential

of genomics for health and pave the way

for equity across populations in personal-

ized medicine and precision therapeutics.
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