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d Department of Psychology, LMU Munich, Leopoldstr. 13, 80802 Munich, Germany
e Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 100 Woodruff Circle, Atlanta GA 30322, USA

A R T I C L E  I N F O

Keywords:
Major depressive disorder
Immunopsychiatry
CRP
IL-1RA
Multi-omics
Transdiagnostic
BMI
Chemokines
RNA-seq

A B S T R A C T

In a subset of patients with mental disorders, such as depression, low-grade inflammation and altered immune 
marker concentrations are observed. However, these immune alterations are often assessed by only one data type 
and small marker panels. Here, we used a transdiagnostic approach and combined data from two cohorts to 
define subgroups of depression symptoms across the diagnostic spectrum through a large-scale multi-omics 
clustering approach in 237 individuals. The method incorporated age, body mass index (BMI), 43 plasma im
mune markers and RNA-seq data from peripheral mononuclear blood cells (PBMCs). Our initial clustering 
revealed four clusters, including two immune-related depression symptom clusters characterized by elevated 
BMI, higher depression severity and elevated levels of immune markers such as interleukin-1 receptor antagonist 
(IL-1RA), C-reactive protein (CRP) and C-C motif chemokine 2 (CCL2 or MCP-1). In contrast, the RNA-seq data 
mostly differentiated a cluster with low depression severity, enriched in brain related gene sets. This cluster was 
also distinguished by electrocardiography data, while structural imaging data revealed differences in ventricle 
volumes across the clusters. Incorporating predicted cell type proportions into the clustering resulted in three 
clusters, with one showing elevated immune marker concentrations. The cell type proportion and genes related 
to cell types were most pronounced in an intermediate depression symptoms cluster, suggesting that RNA-seq 
and immune markers measure different aspects of immune dysregulation. Lastly, we found a dysregulation of 
the SERPINF1/VEGF-A pathway that was specific to dendritic cells by integrating immune marker and RNA-seq 
data. This shows the advantages of combining different data modalities and highlights possible markers for 
further stratification research of depression symptoms.

1. Introduction

Mental disorders significantly impact human health, health care 
systems, and economies, accounting for up to 16 % of global disability- 
adjusted life years (Arias et al., 2022). Despite this substantial impact, 
the development of effective and innovative treatments remains a 

challenge (O’Donnell et al., 2019). Major depressive disorder (MDD) 
exemplifies these challenges, being the foremost psychiatric contributor 
to global disability (Vos et al., 2020).

The difficulty in understanding the underlying molecular causes of 
MDD arises from its biological heterogeneity. MDD manifests with a 
wide range of symptoms and is often comorbid with other mental 
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disorders (Kaufman and Charney, 2000; Kessler et al., 2017), which 
complicates its precise characterization. While the heritability of 
depression has been known for decades (McGuffin et al., 1996), genome- 
wide associations studies (GWASs) using minimal phenotyping have 
only yielded significant insights with extremely large sample sizes 
(Howard et al., 2019). Adopting a transdiagnostic approach that in
cludes disorders across diagnostic categories and uses biological path
ways, revealed associations between GWAS findings from MDD, 
schizophrenia and bipolar disorder with cytokine and immune pathways 
(O’Dushlaine et al., 2015).

Further evidence supports the pivotal role of the immune system in 
the pathology of MDD. Stress, a risk factor for depression, can lead to 
increased inflammation (Hammen, 2015; Rohleder, 2019). Accordingly, 
a subgroup of roughly 30 % of MDD patients shows a proinflammatory 
profile − often referred to as low-grade inflammation − characterized by 
elevated levels of C-reactive protein (CRP) (Osimo et al., 2019). Our 
recent research corroborated this observation of immune-related 
depression, demonstrating genetic correlation between increased CRP 
level and depressive symptoms, e.g., tiredness, changes in appetite, 
anhedonia and feelings of inadequacy (Kappelmann et al., 2021). Im
mune markers such as interleukin (IL)-6, IL-1beta and tumor necrosis 
factor (TNF) are often measured to evaluate immune dysregulation 
(Haapakoski et al., 2015) and contain genetic variants relevant for 
depression (Barnes et al., 2017). Several studies have provided evidence 
that an inflammatory stimulus can lead to depressed mood, and that the 
pre-existing inflammatory status can predict the severity (Cho et al., 
2019; Lasselin et al., 2020). For an overview on how cytokines and 
immune cells may mediate depressive symptoms see Miller and Raison 
(2016).

Many studies have employed case-control designs to find differences 
in immune markers between individuals with depression and healthy 
controls (Sforzini et al., 2023; Sørensen et al., 2023; Wittenberg et al., 
2020). At the same time, various studies have established the link be
tween specific depressive symptom profiles and inflammation. Increased 
inflammation has been observed in patients with dysregulated meta
bolism (immuno-metabolic depression) and linked to anhedonia (Felger 
et al., 2016; Lamers et al., 2013; Lucido et al., 2021; Milaneschi et al., 
2020). A study by Franklyn et al. (2022) found that inflammation is 
associated with symptoms like altered eating patterns, appetite and 
tiredness. Lynall et al. (2020) focusing on immune cell counts, identified 
a subgroup of depressed patients with increased levels of monocytes, 
CD4 + T cells and neutrophils. This subgroup also demonstrated 
increased CRP and IL-6 levels, correlating with more severe depressive 
symptoms.

The potential of an inflammatory subtype goes beyond symptom 
profiles, as a study by Cattaneo et al. (2020) identified differences in 
whole blood gene expression related to inflammation that differentiate 
patients with treatment-resistant depression from those responding to 
treatment. Such findings highlight the potential of precisely character
izing immune dysfunction within MDD, aiming to identify patients who 
might benefit significantly from targeted immunomodulation. In recent 
years, several randomized control trials evaluated the effectiveness of 
adding an anti-inflammatory medication to antidepressants. Some of 
these trials adopted elevated CRP concentration as an inclusion criterion 
or a measure for secondary analyses. While there is some evidence for 
beneficial effects (Köhler-Forsberg et al., 2019; Nettis et al., 2021; Savitz 
et al., 2018), several other studies reported no discernible differences 
between patients treated with anti-inflammatory medication or those 
receiving placebos (Hellmann-Regen et al., 2022; Husain et al., 2020), 
even when stratified by CRP (Baune et al., 2021). Inspired by ad
vancements in cancer research, Miller and Raison (2023) suggest shift
ing from traditional diagnostic evaluations to focusing on symptoms 
influenced by inflammation, such as anhedonia, changes in appetite and 
sleep (Drevets et al., 2022). This shift underpins our use of a trans
diagnostic cohort, aiming to transcend diagnostic boundaries and 
explore common biological underpinnings across psychiatric conditions.

This push towards a more integrative and holistic understanding 
aligns with the broader field of psychoneuroimmunology. Traditionally, 
many studies in this area have relied on single omics approaches (e.g., 
transcriptomics or protein concentrations of peripheral immune 
markers). However, with the recent advancements in multi-omics 
techniques such as clustering or factor analysis methods (Li et al., 
2021), there is an opportunity to integrate these individual omics data 
sets. Together with data from psychological assessments, imaging, and 
wearable devices (Moshe et al., 2021; Seppälä et al., 2019), we can 
further elucidate the complex interplay between the immune system and 
mental disorders by correlating molecular disease pathologies with 
clinical data (Halaris et al., 2019; Mengelkoch et al., 2023).

Building on the link between inflammation and depression, we 
explored this relationship in a transdiagnostic sample (n = 237) using 
multi-omics clustering. We hypothesized that distinct biological sub
groups, defined by immune and transcriptomic profiles, would exhibit 
unique clinical and behavioral characteristics. To achieve this, we 
employed a two-step approach. First, we focused on biological features 
− a broad panel of 43 immune markers and whole transcriptome data 
from PBMCs (12210 genes) − as well as age and body mass index (BMI), 
given their known influence on inflammation (Chung et al., 2019; 
Karczewski et al., 2018), to identify these subgroups. Subsequently, we 
characterized these clusters using in-depth clinical phenotyping to 
reveal their distinct symptom profiles. This strategy allowed us to 
identify novel biological signatures associated with depression hetero
geneity and explore their link to specific clinical presentations (Fig. 1).

2. Methods

For detailed methods see the Supplementary Methods.

2.1. Sample selection

The study sample comprised 246 participants from the Biological 
Classification of Mental Disorders (BeCOME) study (ClinicalTrials.gov: 
NCT03984084, (Bruckl et al., 2020)) and 115 participants from the 
OPtimized Treatment Identification at the MAx Planck Institute (OP
TIMA) study (ClinicalTrials.gov: NCT03287362, (Kopf-Beck et al., 
2024)). The Munich-Composite International Diagnostic Interview 
(DIA-X/M− CIDI) (Wittchen et al., 1995; Wittchen and Pfister, 1997) 
was employed to assess all participants. Out of these with immune 
marker measurement, 237 affected participants (BeCOME = 134, OP
TIMA = 103, Figure S1) met either threshold or subthreshold DSM-IV 
DIA-X/M− CIDI criteria for any substance use, affective or anxiety dis
order including post-traumatic stress disorder and obsessive–compulsive 
disorder within the last 12 months. 192 of these participants had a 
(subthreshold) DSM-IV diagnosis of major depression or dysthymia. We 
also included 36 mentally healthy participants from the BeCOME study 
without any DSM-IV DIA-X/M− CIDI diagnosis as controls. A replication 
sample consisted of 11 affected participants (BeCOME = 8, OPTIMA =
3) that met the study criteria but had no genotypes available. 9 out of 
these participants had a DSM-IV diagnosis of major depression or 
dysthymia.

2.2. Ethics approval and informed consent

The BeCOME and OPTIMA studies were approved by the ethics 
committee of the Ludwig Maximilians University, in Munich, Germany, 
under the reference numbers 350–14 and 17–395, respectively. Written 
informed consent was obtained from all participants before study 
enrollment.

2.3. Assessments

2.3.1. Questionnaire data
All participants were assessed by the Beck Depression Inventory 
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(BDI)-II (Hautzinger et al., 2006) and the Montgomery–Åsberg Depres
sion Rating Scale (MADRS) (Schmidtke et al., 1988). An overview about 
the sample characteristics for this subset are provided in Table 1 and for 
the replication sample in Table 2, differences between the cohorts in 
Table S2. Somatic comorbidities including auto-immune disorders were 
assessed for BeCOME and part of the OPTIMA study, non-psychiatric 
medication use was only available for the BeCOME study (Table S1).

2.3.2. Blood collection
Blood was collected in the morning under fasted conditions, pe

ripheral blood mononuclear cells (PBMCs) were extracted and stored at 
the biobank.

2.3.3. Immune marker measurements
We used the V-PLEX Human Biomarker 54-Plex Kit (Meso Scale Di

agnostics (MSD), Rockville, USA, Cat. No. K15248G-2) to measure im
mune markers in plasma, following the manufacturer’s instructions and 
including three internal controls run in duplicate to assess the coefficient 
of variation (Table S3). For markers available in both low and high 
sensitivity (LS and HS) formats within the V-PLEX, we exclusively uti
lized HS versions for enhanced accuracy. Markers with more than 16 % 
missing values were excluded (p = 18 markers, details see Table S3 and 
Figure S2). Additional measurements for critical immune markers were 
conducted using enzyme-linked immunosorbent assays (ELISAs) to 
ensure data completeness. This included high-sensitivity C-reactive 
protein (hsCRP, Tecan Group Ltd., Männedorf, Switzerland, Cat. No. 
EU59151), cortisol (Tecan Group Ltd., Männedorf, Switzerland, Cat No. 
RE52061), interleukin (IL)-6 (Thermo Fisher Scientific, Waltham, USA, 
Cat. No. BMS213HS), IL-6 soluble receptor (sIL-6R, Thermo Fisher Sci
entific, Waltham, USA, Cat. No. BMS214) and IL-13 (Thermo Fisher 
Scientific, Waltham, USA, Cat. No. BMS231-3). Participants with hsCRP 
concentration higher than 20 mg/L were excluded from the sample as 
this indicates an acute infection (n = 15). This resulted in 43 markers 
and 273 participants remaining for analysis (Table S3 and Figure S1).

2.3.4. RNA extraction and sequencing
The RNA was extracted with the chemagic 360 instrument (Perki

nElmer, Waltham, USA), rRNA depleted, libraries prepared with the 
Lexogen CORALL total RNA-Seq Library Prep Kit with UDIs 12 nt Sets 
A1-A4 (Cat. No. 117.96, 132.96, 133.96, 134.96) and sequenced on an 
NovaSeq 6000 (Illumina, San Diego, USA) yielding an average of 30.6 
million paired reads per library.

2.3.5. Structural magnetic resonance imaging (MRI) data assessment
151 affected participants (BeCOME = 117 and OPTIMA = 34) and 29 

controls without a DSM-IV diagnosis had high resolution T1-weighted 
images with the identical sequence in both original studies (Sagittal 
FSPGR 3D BRAVO, TE 2.3 ms, TR 6.2 ms, TI 450 ms, FA 12◦, FOV 25.6 ×
25.6 × 20.0 cm3, matrix 256 × 256, voxel size 1 × 1 × 1 mm3) 
available.

2.3.6. Electrocardiography data assessment
149 affected participants (BeCOME = 108 and OPTIMA = 41) and 32 

controls without a DSM-IV diagnosis had an electrocardiography (ECG) 
recording that spanned 24 h including a sleeping period with the 
portable ECG-device Faros 180 (Mega Electronics Ltd, Kuopio, Finland) 
at a sampling frequency of 500 Hz available.

Fig. 1. Analysis overview: 237 participants with a DSM-IV (subthreshold) diagnosis according to the Munich-Composite International Diagnostic Interview were 
clustered with a multi-omics clustering. The different layers contained phenotypes (age and BMI, orange), 43 immune markers measured in plasma (green) and RNA- 
seq from peripheral blood mononuclear cells (PBMCs, blue). The clustering was performed repeatedly as a consensus clustering on subsets of the data to obtain 
stability metrics for the optimal number of clusters. The stratification into clusters was characterized by several phenotypes. MIDS = mild depression symptoms 
cluster, HIRDS = high immune-related depression symptoms cluster, LIRDS = low immune-related depression symptoms cluster.

Table 1 
Cohort overview with either percent of participants and absolute numbers in brackets or mean and standard deviation in brackets. The age and BMI differences 
between case and control participants without a DSM-IV diagnosis were significant (t(58.8) = 4.106, p = 0.000126 and t(77.8) = 2.2761, p = 0.02559, respectively), 
while the sex difference was not (Fisher’s exact test, p = 0.8564). The depression diagnosis was assessed by the Munich-Composite International Diagnostic Interview 
and includes full and subthreshold cases. Psychotropic drugs include antidepressants, mood stabilizer, neuroleptics, tranquilizer and herbal psychotropics. BDI-II =
Beck Depression InventoryII. Information on other diagnoses of mental disorders is available in Figure S7, on somatic diseases and medication in Table S1.

status n age female BMI major depression or dysthymia diagnosis BDI-II psychotropic drugs

case 237 38.8 (13.3) 58 % (138) 25 (5.2) 81 % (192) 23.6 (13.2) 43 % (103)
control without a DSM-IV diagnosis 36 31.4 (9.4) 61 % (22) 23.7 (2.8) 0 % (0) 2 (2.9) 0 % (0)

Table 2 
Replication sample overview with either percent of participants and absolute 
numbers in brackets or mean and standard deviation in brackets. No variable is 
significantly different distributed compared to the participants used for the 
clustering.

n age female BMI major depression 
or dysthymia 
diagnosis

BDI-II psychotropic 
drugs

11 34.1 
(13.8)

73 % 
(8)

25.4 
(6.6)

82 % (9) 29.7 
(9.9)

27 % (3)
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2.4. Data analysis

2.4.1. Immune marker analysis
The immune markers were quantile-normalized and corrected for the 

biobank storage position. For each immune marker, a linear model was 
fitted in R version 4.0.2 (R Core Team, 2023) to regress out the batch 
variable. The residuals from this regression were then used for down
stream analysis.

2.4.2. RNA-seq analysis
The reads were aligned to GRCh38.p12 (Ensembl version 97, (Martin 

et al., 2023)) with STAR version 2.7.7a (Dobin et al., 2013) and counted 
with featureCounts version 1.6.4 (Liao et al., 2014).

Quality control and exclusion of genes with few counts or high GC 
content influence left 229 affected participants, 33 controls without a 
DSM-IV diagnosis and 12,210 genes (Figure S1). The data was sequen
tially corrected for the GC content and a preparation batch variable with 
ComBat_seq from the sva package version 3.38.0 (Leek et al., 2021) and 
normalized with vst from DESeq2 version 1.30.1 (Love et al., 2021).

2.4.3. Cell type deconvolution
The filtered RNA-seq count data, which was not batch-corrected, was 

converted to TPM and deconvoluted using the granulator package 
version 1.6.0 (Pfister et al., 2023) in R version 4.2.0 (R Core Team 
2023). All cell types with a standard variation of less than 0.5 were 
excluded, resulting in 14 cell types.

2.4.4. Multi-omics clustering and statistical analysis of cluster differences
Each variable of the normalized and batch corrected immune marker 

and RNA-seq data as well as age and BMI was standardized, the distance 
between the participants calculated and the clustering method SUMO 
version 0.3.0 (Sienkiewicz et al., 2022) was applied repeatedly on a 
subsample to calculate stability metrics for selecting the number of 
clusters.

If not otherwise stated, we used R version 4.0.2 (R Core Team, 2023) 
and determined the variable importance based on the F-value from 
ANOVA tests. A higher variable importance indicates a more distinct 
separation between the clusters. For continuous variables not used in the 
clustering, we applied the Tukey Honest Significant Differences 
(TukeyHSD) test and reported adjusted p-values, for categorical vari
ables the Fisher’s exact test.

We did not report p-values for group differences for variables that 
were used in the clustering as differences were anticipated (Kriegeskorte 
et al., 2009).

2.4.5. Replication analysis
A multinomial model containing age, BMI, IL-1RA, CRP, PlGF, CCL2, 

NRCAM, NAP1L2, FBLN2 and PXYLP1 was estimated to differentiate the 
clusters from the initial clustering using 227 participants with complete 
data and nnet version 7.13–15 (Venables and Ripley, 2002). The model 
was used to predict the cluster membership of the replication 
participants.

2.4.6. Gene set analysis
For each participant, a score was calculated for every biological 

process and molecular function GO term gene set using GSVA version 
1.36.3. (Hänzelmann et al., 2013) based on the batch-corrected and 
normalized RNA-seq data. The distribution of these gene set scores 
across clusters was tested using an ANOVA and F-values reported as 
variable importance.

2.4.7. Prediction of responder status
Mehta et al. (2013) measured the response status to infliximab (anti 

TNF antibody) treatment of 28 patients with treatment-resistant 
depression over 12 weeks and defined treatment response as a 50 % 
reduction in the 17-item Hamilton Depression Rating Scale at any point 

during the study (see Table 3 for details). The baseline values from gene 
expression data with accession number GSE45468 were mapped to 
ENSEMBL IDs. 8431 genes overlapped with our data and were used in a 
lasso model using glmnet version 4.1–8 (Friedman et al., 2023) to pre
dict the responder status, the p-value was empirically calculated based 
on random genes.

2.4.8. Imaging analysis
Morphological differences were investigated at the global, regional 

(FreeSurfer) and voxel level. FreeSurfer v7.1.1 (Fischl, 2012) based 
phenotypes were restricted to those with strong meta-analytical evi
dence for an effect in MDD (Schmaal et al., 2017, 2016). Analysis of 
covariance (ANCOVA) was applied to the clusters covarying for intra
cranial volume, age and sex, and cluster effects were FDR corrected at 5 
%.

2.4.9. Electrocardiography analysis
Raw data was preprocessed using the PhysioNet Cardiovascular 

Signal Toolbox (Vest et al., 2018) in Matlab version 2020b (The Math
Works Inc., 2020). Time domain metrics were calculated for every 
minute using a sliding window of 5 min.

2.4.10. Single-cell RNA-seq data analysis
Single cell PBMC RNA-seq data from 14 individuals with depression 

and other mental disorders with accession number GSE185714 was 
processed with scanpy version 1.9.3 (Wolf et al., 2018) according to 
Schmid et al. (2021) and their cell type labels used.

3. Results

3.1. Multi-omics clustering with age, BMI, immune markers and RNA-seq 
data identified 4 clusters with different depression severity and 
inflammation status

To discover subgroups with immune-related depression symptoms, 
we leveraged a comprehensive multi-omics approach, assessing a panel 
of 43 immune markers along with matched whole transcriptome RNA- 
seq data (p = 12210 genes) in 237 participants (Figure S1) diagnosed 
with MDD or another stress-related mental disorder within the last 12 
months. This approach allowed us to identify novel immune-related 
gene expression patterns associated with depression heterogeneity 
beyond traditional immune markers. The mean age of the affected 
participants was 39 years and the mean BMI 25 (see Table 1 for sample 
characteristics). Besides the biological data, the participants underwent 
phenotypic assessment. Our approach involved clustering the partici
pants based on multiple biological datasets and subsequently charac
terizing these subgroups using psychometric data. According to our 
hypothesis, we initially clustered the participants based on age, BMI, the 
immune markers and RNA-seq data. Subsequently, we employed a sec
ondary analysis, clustering the immune markers and RNA-seq data after 
correcting for age, BMI and sex due to the observed influence of these 
factors on the initial clustering. We also performed an exploratory 
analysis where we added deconvoluted cell type proportions to the 
initial clustering features, given their reported relevance in previous 
studies (Lynall et al., 2020).

For multi-omics clustering, we employed SUMO (Sienkiewicz et al., 
2022), a non-negative matrix factorization based clustering algorithm, 

Table 3 
Cohort overview of the data by Mehta et al. (2013) used to predict the responder 
status to infliximab treatment with either percent of participants and absolute 
numbers in brackets or mean and standard deviation in brackets.

status n female BMI

nonresponder 14 64 % (9) 30.9 (9.1)
responder 14 64 % (9) 30.9 (4.3)
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that provides cluster stability metrics via consensus clustering. This 
method organizes variables into layers and computes the distance be
tween the participants within each layer, which subsequently informs 
the clustering process (see section 2.4.4 for details). For our study, age 
and BMI were combined as one layer while the immune markers and 
RNA-seq data were each defined as separate layers. According to the 
built-in stability metrics (Figure S3A-B), this approach yielded a four 
cluster solution. These clusters included 121, 58, 39 and 19 participants, 
respectively (Table S4). In light of the findings described below, we 
termed cluster 1 mild depression symptoms cluster (MIDS), cluster 2 high 
immune-related depression symptoms cluster (HIRDS) 1, cluster 3 low 
immune-related depression symptoms cluster (LIRDS) and cluster 4 
HIRDS2. Each of the identified clusters showed a different pattern of 
immune markers and contained participants from both the BeCOME and 
OPTIMA cohorts (Fig. 2A), the significantly different distribution of the 
cohorts across the clusters (Fisher’s exact test, p = 0.000003) was driven 
by the MIDS cluster; between the LIRDS and HIRDS clusters there was no 
different distribution (Fisher’s exact test, p = 0.507320). The OPTIMA 
cohort contains hospitalized and predominantly medicated participants 
with a higher disease severity and age compared to BeCOME partici
pants (Table S2). The distribution of somatic comorbidities and medi
cation usage across the clusters is shown in Figure S5. The sex 
distribution across the clusters was significantly different (Fisher’s exact 
test, p = 0.004607, Figure S4).

3.1.1. BMI, age, IL-1RA, NRCAM and CRP identified as top differentiating 
variables

In order to understand which variables drive the clustering, we 
calculated the variable importance (VI) based on an ANOVA model 
(Table S5). Fig. 2B illustrates that BMI (VI = 139.8) and age (VI = 114.8) 
were most important for the clustering, followed by interleukin 1 re
ceptor antagonist (IL-1RA, VI = 35.7). Other important immune markers 
included high-sensitivity C-reactive protein (CRP, VI = 21), placental 
growth factor (PlGF, VI = 17.1), C-C motif chemokine 2 (CCL2 or MCP- 
1, VI = 17), tumor necrosis factor (TNF, VI = 15.4), CCL4 (MIP-1beta, VI 
= 14.4) and CCL13 (MCP-4, VI = 13.1). Among the genes, neuronal cell 
adhesion molecule (NRCAM, VI = 21.8), nucleosome assembly protein 1 
like 2 (NAP1L2, VI = 21), fibulin 2 (FBLN2, VI = 18.7), 2-phosphoxylose 
phosphatase 1 (PXYLP1, VI = 17.4), SH3 domain containing ring finger 
3 (SH3RF3, VI = 16.6), ectodysplasin A (EDA, VI = 15.8) and XK related 
X-linked (XKRX, VI = 15.7) were the most important. The genetic lo
cations of these genes are noted in Table S6, compared to the overall 
chromosomal distribution the top 100 genes show an enrichment in 
chromosome 7 (Figure S6). The importance of age and BMI in the 
clustering process was reflected in their distribution across clusters, as 
shown in Fig. 2C-D. Age demonstrated an increase from MIDS through to 
HIRDS2. Notably, HIRDS2 and especially HIRDS1 showed elevated BMIs 
(mean BMI of 27 and 32, respectively) compared to the other clusters.

Next, we aimed to provide insights into the distribution of age, BMI, 
and CRP concentration across the clusters due to their importance in the 
clustering and the established role of CRP as a standard marker for 
inflammation. Notably, in all clusters except HIRDS2, a positive corre
lation was observed between CRP concentration and BMI. Specifically, 
for the MIDS cluster the Pearson correlation was 0.13 (t-test, p = 0.155); 
for HIRDS1, it was 0.40 (t-test, p = 0.002); for LIRDS, it was 0.39 (t-test, 
p = 0.015); and for HIRDS2 it was − 0.61 (t-test, p = 0.006), as illus
trated in Fig. 3A. It also shows that the HIRDS clusters predominantly 
contained individuals with elevated CRP concentration and elevated 
BMI. As illustrated in Fig. 3B, no significant correlation between age and 
CRP was discernible within the clusters, with Pearson correlations 
ranging between − 0.16 and 0.01. Interestingly, the LIRDS cluster con
tained individuals with a restricted age range. Further examination 
revealed no strong correlation between age and BMI except for HIRDS2, 
with Pearson correlations ranging from 0.09 to 0.40, which were not 
significant (Fig. 3C). Notably, while the individuals in HIRDS1 spanned 
a wide age and BMI range and contained more males than females 

(Figure S4), HIRDS2 consisted mostly of females aged 50 or above with a 
BMI between 24 and 30.

3.1.2. Clinical phenotypes, imaging features and heart rate data identified 
clusters with elevated depression severity

Next, we explored how the clusters, which were defined solely based 
on biological data (including immune markers, RNA-seq data, BMI, and 
age) without considering depression severity or symptoms, corre
sponded to these measures of depression post-clustering. Interestingly, 
the LIRDS and HIRDS clusters exhibited greater depression severity, as 
measured by the Beck Depression Inventory-II (BDI-II), than the MIDS 
cluster (Tukey HSD test, all adjusted p-values < 0.05), and control 
participants without a DSM-IV diagnosis (Tukey HSD test, all adjusted p- 
values < 0.000001). This difference in severity was especially pro
nounced in the HIRDS clusters (Fig. 3D). A similar result was observed 
using the Montgomery–Åsberg Depression Rating Scale (MADRS) 
(Tukey HSD test, all adjusted p-values < 0.05). The MIDS cluster had the 
highest proportion of participants without a depression or dysthymia 
diagnosis (Fisher’s exact test, p = 0.000500, Figure S7) and the lowest 
overall depression severity. All BDI-II items differentiated the clusters 
from the controls without a DSM-IV diagnosis (Fisher’s exact test, all p- 
values FDR adjusted < 0.05). When comparing only the clusters, 14 BDI- 
II items, including changes in sleeping behavior (Fisher’s exact test, 
adjusted p-value 0.006997), were significantly different (FDR<0.05, 
Table S7). Notably, the HIRDS clusters showed increased sleeping and a 
trend towards increased appetite (Figure S8A-B).

To further assess if the identified symptom differences were mirrored 
in other biological data, we analyzed heart rate data collected from 
portable ECG devices (n = 149) and structural imaging-derived features 
(n = 151) in a subset of the participants for whom these data were 
available. The median maximum normal-to-normal intervals between 
heartbeats were higher in the controls without a DSM-IV diagnosis 
compared to HIRDS1 (Tukey HSD test, adjusted p-value 0.039302) 
(Figure S8C) and the heart rate variability metrics − for short-term 
(RMSSD) and long-term (SDNN) − were lower in the LIRDS and 
HIRDS clusters in comparison to the MIDS cluster and controls without a 
DSM-IV diagnosis (Fig. 3E). The p-values for these differences ranged 
from 0.000087 to 0.020397 for RMSSD and from 0.000228 to 0.012328 
for SDNN (Tukey HSD test with adjusted p-values). The clusters 
including the controls without a DSM-IV diagnosis showed a trend of 
different total gray matter (TGM) (F = 2.186, p = 0.073), with LIRDS 
showing significantly higher TGM compared to the HIRDS1 and con
trols; a similar pattern was seen for total brain volume (TBV) and total 
white matter (TWM) where HIRDS2 showed the lowest volumes 
(Table S8). Regional analyses of 17 MDD-related phenotypes revealed 
robust effects on the lateral ventricle volume (F = 4.32, FDR adjusted p 
= 0.040, with the lowest volume in LIRDS, see Fig. 3F), and nominal 
significant effects for the right rostral anterior cingulate, the right pos
terior cingulate and the bilateral hippocampus (Table S9). Voxel-based 
morphometry revealed no cluster main effects.

3.1.3. Immune markers and genes revealed differences in immune system 
and brain related pathways between clusters

We wanted to understand how the immune markers and RNA-seq 
data each contributed to defining the clusters, and if these different 
data types contained distinct information. Interestingly, except for 
CCL13, all the top important immune markers were elevated in the 
HIRDS clusters (Fig. 4A). These clusters not only showed increased BMI 
but also the highest BDI-II. This distinctive pattern was reflected in 
CCL13′s low correlation with key markers such as IL-1RA and CRP 
(Fig. 4D). While still discriminating the HIRDS clusters from the others, 
PlGF also had a similar low correlation with the top markers IL-1RA and 
CRP (Fig. 4D). All top immune markers showed a positive correlation 
with BMI (Figure S9).

In contrast, the most discriminating genes mainly differentiated the 
MIDS cluster, defined by a low depression severity, from the other 
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Fig. 2. Initial clustering with age, BMI, immune markers and RNA-seq data. (A) Heatmap of immune markers where the columns are participants while the cohort 
and cluster are noted at the top. The color denotes the normalized concentration with green values missing. (B) Barplot displaying the variable importance of the top 
40 variables that most differentiate the clusters, calculated using the F-value from an ANOVA model with the clusters as independent variables. These variable 
importance values should not be interpreted as p-values, because the variables were used in the clustering themselves and therefore inflate the p-values. Violin plots 
depicting the distribution of (C) age and (D) BMI across the clusters. N = 36 controls without a DSM-IV diagnosis not used in the clustering, MIDS = mild depression 
symptoms cluster, HIRDS = high immune-related depression symptoms cluster, LIRDS = low immune-related depression symptoms cluster, cohort 1 = OPTIMA, 
cohort 2 = BeCOME.
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clusters (Fig. 4B), while several other genes discriminated the HIRDS 
clusters (Figure S10). Accordingly, the correlations between the genes 
were stronger than those among immune markers, with the exception of 
the correlation between EDA and NAP1L2. On average, the absolute 
correlation between the top genes was 0.36, while it was 0.27 between 
the top immune markers (Fig. 4E). To link the findings to clinical data, 
we investigated if the top discriminating genes could predict the 
responder status in 28 patients with depression to treatment with an 
antibody against TNF in an external data set (Mehta et al., 2013). Based 
on the area under the curve (AUC), the top 10 and top 20 genes did not 
perform better than random genes (permutation test, p = 0.139 and p =
0.159). The most important gene for the 20-gene-model was vesicle 
associated membrane protein 1 (VAMP1), which was also included in 
the 10-gene prediction model, although it was not statistically signifi
cant. Additionally, we found that 22 genes differentially expressed be
tween responders and non-responders at baseline in the Infliximab study 
(e.g., SOX4 and ZNF577) recapitulated the differences between our 

HIRDS clusters and the MIDS/LIRDS clusters in our data. However, a 
PCA dimension reduction of our RNA-seq data using these differentially 
expressed genes did not reveal distinct cluster separation, mirroring the 
results from our prediction of Infliximab responder status.

To understand the underlying molecular mechanisms, we analyzed 
not only individual genes but also their coordinated expression patterns, 
examining these genes in the context of pathways. We applied gene set 
enrichment analysis using GSVA (Hänzelmann et al., 2013) to calculate 
gene set scores for every participant and compared the distribution 
across clusters (Table S10). As depicted in Fig. 4C, the gene sets that 
stood out prominently were enriched in the LIRDS and HIRDS clusters. 
Interestingly, these gene sets included those related to the brain (e.g., 
anterograde axonal transport, VI = 17.3, 38 genes), immune system 
(regulation of macrophage activation, VI = 12.5, 32 genes), stress 
response (response to mineralocorticoid, VI = 12.4, 15 genes) and (ion) 
transport (e.g., regulation of calcium ion transmembrane transporter 
activity, VI = 13.1, 44 genes).

Fig. 3. Distribution of biological and phenotype data across the clusters in the initial clustering with age, BMI, immune markers and RNA-seq data. (A) − (C) 
Scatterplots illustrate the associations between C-reactive protein (CRP), BMI and age across the four clusters, as determined by locally estimated scatterplot 
smoothing (LOESS). (D) Violin plots showing the distribution of Beck Depression Inventory (BDI)-II across the clusters. Significant differences (p < 0.05) were 
observed when comparing HIRDS1, LIRDS and HIRDS2 to the MIDS cluster and the controls without a DSM-IV diagnosis. (E) Violin plots illustrating the Standard 
Deviation of normal-to-normal intervals (SDNN), a measure for heart rate variability, for 149 participants. The significant differences (p < 0.05) were observed 
between HIRDS1, LIRDS and HIRDS2 compared to the MIDS cluster. (F) Violin plots illustrating the cluster-specific effect (global intercept + cluster-specific effect +
residuals) of the lateral ventricle volume from a model including age, sex and intracranial volume (ICV) derived from structural magnetic resonance imaging for 151 
participants. A significant difference (p < 0.05) was observed between the clusters. MIDS = mild depression symptoms cluster, HIRDS = high immune-related 
depression symptoms cluster, LIRDS = low immune-related depression symptoms cluster.
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3.1.4. Replication of the initial clustering in a holdout sample
To assess the robustness of the clustering, we trained a multinomial 

regression model on the initial clustering using the 10 most important 
variables and predicted the cluster membership in a replication sample 
of 11 participants not used in the clustering. The relative number of 
participants per cluster was similar compared to the initial clustering 
and we could replicate the age and BMI distribution (Figure S11 A-B). In 
general, the mean BDI-II was higher in the replication sample which was 
also reflected in a higher median BDI-II in the predicted MIDS cluster 
(Figure S11C). The predicted LIRDS cluster with only one participant 
showed the highest BDI-II, while the predicted HIRDS1 cluster showed a 

higher median BDI-II than the predicted MIDS cluster. The differences of 
the top seven immune markers and genes can be replicated between the 
predicted MIDS and HIRDS1 clusters except for TNF and SH3RF3 
(Figure S11D-E).

3.2. Secondary analysis of the initial clustering adjusted for age, BMI and 
sex showed no phenotypic differences

Considering the strong impact of BMI and age on the clustering 
outcomes, we performed a secondary clustering where we first adjusted 
the biological data (immune markers and RNA-seq data) for age, BMI 

Fig. 4. Immune marker and RNA-seq data contains complementary information in the initial clustering with age, BMI, immune markers and RNA-seq data. (A) Violin 
plots showing the distribution of the seven most differentiating immune markers across the clusters. (B) Violin plots showing the distribution of the seven most 
differentiating genes across the clusters. (C) Heatmap of the 20 most differentiating GO gene sets ordered by their variable importance that are enriched in the 
clusters. These gene sets were identified through Gene Set Variation Analysis (GSVA). (D) Heatmap showing the Pearson correlation between the top immune 
markers. (E) Heatmap showing the Pearson correlation between the top genes. MIDS = mild depression symptoms cluster, HIRDS = high immune-related depression 
symptoms cluster, LIRDS = low immune-related depression symptoms cluster.
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and sex using a linear model. We then applied the clustering algorithm 
to this adjusted data set. This secondary analysis yielded a three cluster 
solution (Fig. S3C-D), which differed from the four clusters identified in 
the initial, unadjusted analysis (Figure S12A). Notably, in the secondary 
analysis, the variable importance of the immune markers was dimin
ished relative to the RNA-seq data (Table S11). Among the immune 
makers, IL-27 stood out with the highest immune marker variable 
importance of 7.4. Contrastingly, the gene CKLF like MARVEL trans
membrane domain containing 6 (CMTM6) showed a much higher vari
able importance of 77.4. Moreover, the primary discriminative immune 
markers or genes in this analysis were different from those in our initial 
clustering (Figure S12B). Compared to the genes, the distribution of the 
immune markers across the clusters was more uniform (Figure S12C-D). 
There were no significant differences of age, BMI, BDI-II or MADRS sum 
scores between the clusters, while the controls without a DSM-IV diag
nosis had lower BDI-II or MADRS sum scores compared to all clusters 
and a lower age than clusters 2 and 3 (Tukey HSD test with adjusted p- 
values, p = 0.025967 and 0.005217) (Figure S12E-G).

3.3. Exploratory analysis of the initial clustering including cell types 
identified three clusters predominantly driven by RNA-seq data

Motivated by previous findings that highlight the significance of 
blood cell type composition in discerning depression subgroups (Lynall 
et al., 2020), we conducted an exploratory analysis. In this analysis, we 
integrated deconvoluted cell types proportions (derived from the RNA- 
seq data) into the clustering model, aligning them in one layer with 
age and BMI. This allowed us to investigate the potential contribution of 
cell type composition to the clustering outcome, while recognizing that 
the cell type proportions are estimated rather than directly measured. 
The predominant cell types in our sample were “T cells CD4 memory 
resting” (median fraction of 0.41) and “Macrophages M1” (median 
fraction of 0.15, see Fig. 5A). This exploratory analysis, incorporating 
cell type proportions, led to a three cluster solution (Fig. S3E-F). Cluster 
1 contained mostly (85.7 %) individuals initially assigned to the MIDS 
cluster (without cell types). Cluster 3 contained predominantly in
dividuals from the initial clusters characterized by high BMI and high 

Fig. 5. Exploratory analysis with age, BMI, cell types, immune markers and RNA-seq data. (A) Stacked barplot illustrating the proportion of various cell types 
predicted from the RNA-seq data for all participants. (B) Mapping of the participants from the initial clustering to the re-evaluated clustering that additionally 
contains cell type proportions. (C) Barplot showing the variable importance of the top 30 variables that most differentiate the clusters, along with the 10 most 
differentiating biological variables and immune markers. (D) Violin plots illustrating the predicted cell type proportions across the clusters. (E) Heatmap of the 20 
most differentiating GO gene sets, ordered by their variable importance, that are enriched in the clusters. These gene sets were identified through Gene Set Variation 
Analysis (GSVA). reMIDS = re mild depression symptoms cluster, reIDS = re intermediate depression symptoms cluster, reHIRDS = re high immune-related 
depression symptoms cluster, NK = natural killer cells.
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BDI-II (HIRDS clusters, 69.2 %). Cluster 2 presented a mixed composi
tion, drawing from different initial clusters: 54.2 % from MIDS, 17.7 % 
from HIRDS1, 24 % from LIRDS and 4.2 % from HIRDS2 (Fig. 5B). 
Accordingly, we termed these exploratory clusters reMIDS, intermediate 
depression symptoms cluster (reIDS) and reHIRDS, respectively, where 
“re” indicated re-evaluated clusters that incorporate cell type 
proportions.

3.3.1. Exploratory analysis revealed T cell proportions and RNA-seq data 
as primary drivers of the clustering

The distribution of age and BMI demonstrated an increasing trend 
across the three clusters identified in the exploratory analysis. Notably, 
BMI was markedly increased in the reHIRDS cluster (mean = 29.1) 
compared to the reMIDS (mean = 22.0) and reIDS (mean = 23.7) clus
ters (Figure S13A-B). In line with the pattern seen in the initial clus
tering, the reHIRDS cluster showed significantly elevated BDI-II 
compared to the other clusters (Tukey HSD test with adjusted p-values, 
p = 0.000072 for reMIDS and p = 0.008531 for reIDS, Figure S13C), and 
the MADRS in the reHIRDS cluster was elevated compared to the reMIDS 
cluster (Tukey HSD test with adjusted p-values, p = 0.014189) as well. 
All clusters showed higher BDI-II and MADRS compared to the controls 
without a DSM-IV diagnosis (Tukey HSD test with adjusted p-values, p 
< 0.000000).

In this exploratory analysis incorporating cell type proportions, we 
observed a shift in the variables driving the clustering compared to the 
initial findings. While age and BMI were the most important variables in 
the initial clustering, their impact was reduced. BMI still remained the 
second most important biological variable (VI = 53.5, Fig. 5C and 
Table S12), ranking 77th overall, but age (VI = 19.5) dropped consid
erably in importance to the 2037th position. The top 7 immune markers 
were the same as in the initial clustering except CXCL10 (IP-10, VI =
29.3) replacing CRP (VI = 21.3). However, in the reclustering of the 
exploratory analysis the immune markers ranked 240th to 1484th in the 
variable importance, whereas in the initial clustering 3rd to 24th. The 
cell type “T cells CD4 memory resting” emerged as the most important 
biological variable (VI = 79.1), also being the most prevalent cell type in 
our sample (Fig. 5A). Other notable cell types included “Dendritic cells 
activated” (VI = 31.7) and “Monocytes” (VI = 26.6). In the reMIDS 
cluster, “T cells CD4 memory resting” showed an increased mean pro
portion of 0.48 compared to 0.36 and 0.40 in the other clusters, while 
the “Dendritic cells activated” and “Monocytes” were decreased in the 
reMIDS cluster (Fig. 5D). Furthermore, Fig. 5C shows that genes were 
the essential variables to discriminate between the clusters (see Sup
plementary Results for more details).

3.3.2. Exploratory analysis revealed immune system involvement in the 
gene set enrichment of re-clusters

To further understand the biological processes differentiating the re- 
clusters identified in the exploratory analysis, we performed gene set 
enrichment analysis. As highlighted in Fig. 5E, the most discriminative 
gene sets were downregulated in the reMIDS cluster, upregulated in the 
reIDS cluster and moderately upregulated in the reHIRDS cluster. Closer 
examination revealed that these gene sets were enriched for terms 
related to the immune system (response to molecule of bacterial origin, 
VI = 119, 186 genes), secretion (regulation of secretion, VI = 118.1, 297 
genes), transmembrane transport (regulation of transmembrane trans
port, VI = 108, 237 genes) and neurons (positive regulation of neuron 
death, VI = 103.7, 58 genes) among others (Table S13).

3.4. Integration of protein and RNA-seq data with single cell expression 
showed cell type specific regulation of inflammation

To further elucidate the characteristics of the high depression 
severity clusters from our initial clustering model delineated in Fig. 2, 
we analyzed the genes and immune markers that differentiated the 
LIRDS and HIRDS clusters. Two prominent variables emerged: the gene 

serpin family F member 1 (SERPINF1, VI = 9.1) and the protein vascular 
endothelial growth factor A (VEGF-A, VI = 10.1). As represented in 
Fig. 6A and 6B, SERPINF1 expression was elevated in the MIDS and 
LIRDS clusters, coinciding with low VEGF-A protein concentrations. In 
contrast, the HIRDS clusters displayed an opposite pattern. Interestingly, 
we did not find differences in the gene expression of VEGFA between the 
clusters (Fig. 6C) and in general low correlation between RNA-seq and 
corresponding protein level (see Supplementary Results and Figure S14
for more details).

The importance of different cell types was underlined by single cell 
gene expression analysis. PBMC RNA-seq data from 14 individuals with 
depression and other mental disorders indicated a predominant SER
PINF1 expression in dendritic cells (Fig. 6D and 6F), while VEGFA was 
mainly expressed in monocytes (Fig. 6E-F), showing the importance of 
cell types even when not included directly in the clustering. This cell 
type specificity was confirmed in healthy subjects of the human protein 
atlas (Uhlen et al., 2019).

4. Discussion

In this study, we analyzed a transdiagnostic sample of individuals 
with stress-related mental disorders from two cohorts to identify pat
terns of depression symptoms in relation to immune alterations, thereby 
broadening the understanding of immune-related subgroups in depres
sion. Traditionally, such subgroups have been defined by specific im
mune markers such as CRP or TNF, known to be increased in some 
depressed patients (Haapakoski et al., 2015; Osimo et al., 2020), espe
cially those resistant to antidepressant treatment (Chamberlain et al., 
2019; Strawbridge et al., 2015; Yang et al., 2019). Our large-scale multi- 
omics analysis, integrating gene expression data of 12,210 genes with 
immune marker profiling of 43 makers including CRP, suggests a more 
complex immune involvement in depression symptoms than achieved by 
examining a limited set of markers like CRP alone. Our approach un
covered four distinct clusters dissecting depression symptoms across the 
diagnostic spectrum that were partly replicated in a small replication 
sample: two high immune-related-depression symptoms (HIRDS) clusters 
with increased immune markers, BMI, and depression severity; a mild 
depression symptoms (MIDS) cluster, predominantly younger participants 
with lower depression severity and minimal immune marker elevation; 
and a low immune-related-depression symptoms (LIRDS) cluster with 
elevated depression severity but without increased immune markers. 
This nuanced classification offers deeper insights into the interplay be
tween immune function and depression symptoms.

Incorporating a multi-omics integration clustering approach has 
clearly demonstrated its value, providing unique insights through the 
combination of phenotypic data, immune markers and the entire tran
scriptome. This was especially evident in identifying HIRDS clusters 
with elevated immune markers such as CRP, TNF, IL-1RA, PlGF, CCL2, 
CCL4, and CCL13. Measuring IL-1 beta posed a challenge due to its low 
concentration, even with high-sensitivity assays, highlighting the diffi
culties in detecting certain cytokines. Interestingly, IL-1RA, typically 
anti-inflammatory, is produced under the same inflammatory conditions 
as the proinflammatory IL-1 beta, linking it to an increased risk of 
developing depressive symptoms in elderly (Milaneschi et al., 2009; 
Osimo et al., 2020). Consistent with this, we found heightened IL-1RA 
levels in our HIRDS clusters, which also exhibit altered appetite pat
terns, aligning with findings from Simmons et al. (2020). These clusters 
further show a clear elevation in overall depression severity and BMI, 
along with differences in sleeping patterns and a trend towards 
increased appetite. These patterns support the concept of immuno- 
metabolic depression, where heightened inflammation correlates with 
disrupted energy balance, manifesting as obesity and fatigue (Lamers 
et al., 2020; Milaneschi et al., 2020; Simmons et al., 2020).

Our research sheds light on the role of less-studied chemokines in 
depression. Elevated CCL2 in blood, CSF, and in post-mortem brain 
tissues of depressed patients (Eyre et al., 2016; Sørensen et al., 2023; 
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Torres-Platas et al., 2014; Young et al., 2014), alongside mixed data for 
CCL4 (Camacho-Arroyo et al., 2021; Leighton et al., 2018; Sørensen 
et al., 2023) and limited research on CCL13, with only one study that 
found lower levels in suicide attempters (Janelidze et al., 2013), indicate 
their intricate roles in this symptom spectrum. Additionally, it high
lighted PlGF, part of the vascular endothelial growth factor family (De 
Falco, 2012), implicated in angiogenesis, the immune response, and 
obesity-related processes (Lijnen et al., 2006; Oura et al., 2003), which 
was previously found to have lower levels in depressed patients (Yue 
et al., 2016). By employing a multi-panel approach to simultaneously 
measure a wide array of immune markers, we elucidated the complex 
roles of chemokines and established markers in depression symptom 
spectrum. This strategy not only identifies specific immune markers 
associated with depression symptoms but also advances our under
standing of the disorder’s immunological aspects, suggesting a prom
ising direction for future research.

The immune markers were crucial for differentiating between the 
HIRDS clusters and others, while key genes and the gene set analysis 
were instrumental in separating between clusters of varying depression 
severity. The panel of important genes includes genes that are associated 
with neurodevelopmental disorders (NRCAM) (Kurolap et al., 2022), 
neuronal development (NAP1L2) (Attia et al., 2007) or that were 
downregulated in post mortem choroid plexus from patients with MDD 
(FBLN2) (Turner et al., 2014). This underlines that depression not only 
affects the brain but other tissues as well and demonstrates our 
approach’s effectiveness at identifying genes differentiating depression 

severity. Our gene set analysis further supports this, revealing a preva
lence of pathways related to neurons and axonal transport in the high 
depression severity clusters. While immune system pathways were 
enriched in the genes differentiating the clusters, the immune marker 
data primarily defined the immune-related depression symptom clus
ters, underscoring the value of this integrative approach.

The significance of BMI and age in relation to depression symptoms 
in our analysis added to the ongoing debate about whether BMI ad
justments in immune marker analyses clarify or confound the relation
ship with depression (Horn et al., 2018; Moriarity et al., 2023). Several 
studies suggest that CRP’s association with depression is more pro
nounced without BMI-adjustments (Chae et al., 2022; Figueroa-Hall 
et al., 2022; Horn et al., 2018). Recently, a simulation study demon
strated that including BMI as a covariate can lead to reduced precision in 
estimating the relationship of inflammation on depression (Moriarity 
et al., 2023). Consistently, our secondary clustering analysis adjusting 
for BMI, sex and age led to a different cluster solution and our findings 
revealed no significant differences in depression severity or inflamma
tion status across the clusters, underscoring the complex interplay 
among these factors. Rather than viewing age and BMI simply as con
founding factors, our results suggest these factors should be considered 
integral components of the depression phenotype. This has important 
implications for clinical practice, as it suggests that interventions tar
geting obesity and promoting healthy aging may not only improve 
physical health but also reduce the risk or severity of depression. 
Furthermore, while elevated BMI and age indicate an inflammatory 

Fig. 6. Cell-type specific dysregulation in the initial clustering with age, BMI, immune markers and RNA-seq data. Violin plots displaying: (A) the gene expression of 
SERPINF1 across the clusters, (B) normalized protein concentration of VEGF-A across the clusters, and (C) gene expression of VEGFA across the clusters. (D) − (F) 
Single-cell RNA-seq data of peripheral blood mononuclear cells (PBMCs) from 14 patients with depression and other mental disorders visualized using UMAP plots. 
(D) Demonstrates the gene expression of SERPINF1. (E) Shows the gene expression of VEGFA. (F) Illustrates the cell types identified within the PBMCs. NK = natural 
killer cells, MIDS = mild depression symptoms cluster, HIRDS = high immune-related depression symptoms cluster, LIRDS = low immune-related depression 
symptoms cluster.
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phenotype, biological measurements such as immune markers and gene 
expression data are needed to determine the exact inflammation status 
and possible treatment options on an individual level.

Our analysis extended beyond clinical depression severity to heart 
rate variability and neuroimaging, differentiating the clusters. While not 
corrected for covariates, heart rate variability (SDNN) was lower in the 
LIRDS and HIRDS clusters and could discriminate them from the MIDS 
cluster, aligning with previous findings that link reduced heart rate 
variability to current and former depression, as well as dysphoria 
(Dell’Acqua et al., 2020; Hartmann et al., 2019; Koch et al., 2019), 
which suggests broader physiological implications of depression. 
Structural neuroimaging revealed a trend of relatively higher TGM 
volume in the LIRDS cluster compared with the HIRDS and MIDS clus
ters, with similar effects for TBV and TWM analyzed separately. 
Regional analyses confirmed inverse changes of cerebrospinal fluid 
(CSF), specifically of the lateral ventricle volume. In the presence of 
acute depressive symptoms, it seems that the LIRDS constellation pro
tects from CSF enlargement. Larger ventricles have been observed in 
MDD with early disease onset before 21 years of age (Schmaal et al., 
2016) and in bipolar disease (Hibar et al., 2016) which could suggest 
that stronger immune activation might represent subclinical or masked 
bipolar traits. Regional effects as detected for the bilateral hippocampi 
and the right rostral anterior cingulate cortex, were heterogeneous be
tween the two HIRDS clusters. While these structures were reported 
before in immune-based stratifications (Savitz et al., 2013) and are 
plausibly involved in stress response regulation (Herman et al., 2016), 
larger samples are needed to fully map the anatomical characteristics of 
immune-related depression.

Our exploratory analysis supports the hypothesis that depression is 
associated with alterations in cell type composition and immune marker 
levels (Foley et al., 2022; Lynall et al., 2020). Integrating cell type 
proportions into the clustering analysis refined our initial clusters, 
revealing three re-clusters with varying depression severity and aligning 
well with the pattern observed in the initial clustering. This highlights 
the robustness of our subgroups. The reHIRDS cluster, marked by 
elevated BMI and immune markers, showed an intermediate alteration 
in T cells CD4 memory resting proportion deviating from Foley et al. 
(2022) who reported no significant CD4 + T cells proportion changes in 
depression. Conversely, our reHIRDS and intermediate depression symp
toms (reIDS) clusters reflected their findings of decreased lymphocyte 
percentage in depression. In contrast to the results from Lynall et al. 
(2020) who observed elevated immune markers and absolute immune 
cell counts in their immune-related depression cluster, our reHIRDS 
cluster did not exhibit the strongest cell type phenotype. This discrep
ancy could stem from methodological differences, such as direct cell 
counts versus deconvolution. This suggests a complex interplay between 
immune markers and PBMC composition in depression. Possible sources 
of immune markers like neutrophils (Tecchio et al., 2014) and adipose 
tissue (Shelton and Miller, 2011; Fain, 2006; Shelton et al., 2015) 
highlight the importance of obesity in immune-related depression. Our 
findings emphasize the need for further research into the associations of 
immune cell composition and immune markers in this context.

The advantages of a multi-omics integration were further demon
strated by revealing cell type specific inflammation of immune-related 
depression symptom clusters. VEGF-A was elevated in the HIRDS clus
ters, contrasting the SERPINF1 expression, which showed the opposite 
pattern. This aligns with its gene product, pigment epithelium-derived 
factor (PEDF), known to inhibit VEGF-A (Dawson et al., 1999). Of 
note, PEDF is neurotrophic (Tombran-Tink and Barnstable, 2003) and 
was shown to ameliorate depression-like symptoms in mice (Tian et al., 
2020) and was increased in depression patients after electroconvulsive 
treatment (Ryan et al., 2017). This suggests a link of the dysregulated 
immune pathway in the HIRDS clusters and the observed elevated 
depression severity.

Furthermore, our single cell data revealed that SERPINF1 is mainly 
expressed in dendritic cells, suggesting a potential reduction of these 

cells within immune-related depression symptom clusters. This finding 
merits additional exploration, as it could open new pathways for un
derstanding and potentially targeting the immune-related aspects of 
depression symptoms.

Our study has some limitations worth noting. The heterogeneity of 
our sample, which includes a transdiagnostic sample of both in- and out- 
patients with varying medication usage and comorbid conditions, may 
affect the generalizability of our findings. While the MIDS cluster was 
mainly driven by healthier and younger BeCOME participants, the 
LIRDS and HIRDS clusters did not have a significantly different cohort 
distribution. Additionally, incomplete assessment of somatic comor
bidities and medication use for the entire sample could influence results. 
The imaging and psychophysiology data represents only a subset of 
participants (63 %), and the cell type composition was inferred rather 
than being directly measured, potentially impacting accuracy. Further
more, the top discriminating genes did not effectively predict treatment 
response in an external dataset. Future research with larger, more 
diverse and longitudinal datasets is needed to validate our findings, 
further explore the predictive utility of our identified clusters and gene 
signatures, and investigate the causal relationships between these fac
tors and treatment response.

Taken together, our multi-omics integration analysis successfully 
discovered two clusters with immune-related depression symptoms, 
supporting the immuno-metabolic depression hypothesis and high
lighting the importance of biological variables such as age and BMI. 
Incorporating single cell data, we uncovered cell type specific inflam
mation dysregulation involving SERPINF1 and VEGF-A, both previously 
implicated in depression. This integrated approach, recognizing de
pression’s heterogeneity, enhances our understanding of its complexity 
by exploring symptoms across diagnoses. It highlights novel immune 
markers and genes as potential targets for clinical stratification and new 
therapeutic intervention.
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Jordanova, A., Meiner, V., Innes, A.M., Wang, H., Elpeleg, O., Kruer, M.C., Kaslin, J., 
Baris Feldman, H., 2022. Bi-allelic variants in neuronal cell adhesion molecule cause 
a neurodevelopmental disorder characterized by developmental delay, hypotonia, 
neuropathy/spasticity. Am. J. Hum. Genet. 109, 518–532. https://doi.org/10.1016/ 
j.ajhg.2022.01.004.

Lamers, F., Vogelzangs, N., Merikangas, K.R., de Jonge, P., Beekman, A.T.F., Penninx, B. 
W.J.H., 2013. Evidence for a differential role of HPA-axis function, inflammation 
and metabolic syndrome in melancholic versus atypical depression. Mol. Psychiatry 
18, 692–699. https://doi.org/10.1038/mp.2012.144.

Lamers, F., Milaneschi, Y., Vinkers, C.H., Schoevers, R.A., Giltay, E.J., Penninx, B., 2020. 
Depression profilers and immuno-metabolic dysregulation: Longitudinal results from 
the NESDA study. Brain Behav Immun 88, 174–183. https://doi.org/10.1016/j. 
bbi.2020.04.002.

Lasselin, J., Schedlowski, M., Karshikoff, B., Engler, H., Lekander, M., Konsman, J.P., 
2020. Comparison of bacterial lipopolysaccharide-induced sickness behavior in 
rodents and humans: Relevance for symptoms of anxiety and depression. Neurosci. 
Biobehav. Rev. 115, 15–24. https://doi.org/10.1016/j.neubiorev.2020.05.001.

Leek, J.T., Johnson, W.E., Parker, H.S., Fertig, E.J., Jaffe, A.E., Zhang, Y., Storey, J.D., 
Collado Torres, L., 2021. sva: Surrogate Variable Analysis. 10.18129/B9.bioc.sva.

Leighton, S.P., Nerurkar, L., Krishnadas, R., Johnman, C., Graham, G.J., Cavanagh, J., 
2018. Chemokines in depression in health and in inflammatory illness: a systematic 
review and meta-analysis. Mol. Psychiatry 23, 48–58. https://doi.org/10.1038/ 
mp.2017.205.

Li, Y., Ma, L., Wu, D., Chen, G., 2021. Advances in bulk and single-cell multi-omics 
approaches for systems biology and precision medicine. Brief. Bioinform. 22, 
bbab024. https://doi.org/10.1093/bib/bbab024.

Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts: an efficient general purpose program 
for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. 
https://doi.org/10.1093/bioinformatics/btt656.

Lijnen, H.R., Christiaens, V., Scroyen, I., Voros, G., Tjwa, M., Carmeliet, P., Collen, D., 
2006. Impaired Adipose Tissue Development in Mice With Inactivation of Placental 
Growth Factor Function. Diabetes 55, 2698–2704. https://doi.org/10.2337/db06- 
0526.

Love, M., Ahlmann-Eltze, C., Forbes, K., Anders, S., Huber, W., 2021. DESeq2: 
Differential gene expression analysis based on the negative binomial distribution. 
10.18129/B9.bioc.DESeq2.

Lucido, M.J., Bekhbat, M., Goldsmith, D.R., Treadway, M.T., Haroon, E., Felger, J.C., 
Miller, A.H., 2021. Aiding and abetting anhedonia: impact of inflammation on the 
brain and pharmacological implications. Pharmacol. Rev. 73, 1084–1117.

Lynall, M.E., Turner, L., Bhatti, J., Cavanagh, J., de Boer, P., Mondelli, V., Jones, D., 
Drevets, W.C., Cowen, P., Harrison, N.A., Pariante, C.M., Pointon, L., Clatworthy, M. 
R., Bullmore, E., Neuroimmunology of Mood, D., Alzheimer’s Disease, C., 2020. 
Peripheral Blood Cell-Stratified Subgroups of Inflamed Depression. Biol Psychiatry 
88, 185–196. 10.1016/j.biopsych.2019.11.017.

Martin, F.J., Amode, M.R., Aneja, A., Austine-Orimoloye, O., Azov, A.G., Barnes, I., 
Becker, A., Bennett, R., Berry, A., Bhai, J., Bhurji, S.K., Bignell, A., Boddu, S., Branco 
Lins, P.R., Brooks, L., Ramaraju, S.B., Charkhchi, M., Cockburn, A., Da Rin 
Fiorretto, L., Davidson, C., Dodiya, K., Donaldson, S., El Houdaigui, B., El 

Naboulsi, T., Fatima, R., Giron, C.G., Genez, T., Ghattaoraya, G.S., Martinez, J.G., 
Guijarro, C., Hardy, M., Hollis, Z., Hourlier, T., Hunt, T., Kay, M., Kaykala, V., Le, T., 
Lemos, D., Marques-Coelho, D., Marugán, J.C., Merino, G.A., Mirabueno, L.P., 
Mushtaq, A., Hossain, S.N., Ogeh, D.N., Sakthivel, M.P., Parker, A., Perry, M., 
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Seisdedos, R., Tabb, K.M., Tadakamadla, S.K., Taherkhani, A., Tajdini, M., 
Takahashi, K., Taveira, N., Teagle, W.L., Teame, H., Tehrani-Banihashemi, A., 
Teklehaimanot, B.F., Terrason, S., Tessema, Z.T., Thankappan, K.R., Thomson, A.M., 
Tohidinik, H.R., Tonelli, M., Topor-Madry, R., Torre, A.E., Touvier, M., Tovani- 
Palone, M.R.R., Tran, B.X., Travillian, R., Troeger, C.E., Truelsen, T.C., Tsai, A.C., 
Tsatsakis, A., Car, L.T., Tyrovolas, S., Uddin, R., Ullah, S., Undurraga, E.A., 
Unnikrishnan, B., Vacante, M., Vakilian, A., Valdez, P.R., Varughese, S., Vasankari, 
T.J., Vasseghian, Y., Venketasubramanian, N., Violante, F.S., Vlassov, V., Vollset, S. 
E., Vongpradith, A., Vukovic, A., Vukovic, R., Waheed, Y., Walters, M.K., Wang, J., 
Wang, Y., Wang, Y.-P., Ward, J.L., Watson, A., Wei, J., Weintraub, R.G., Weiss, D.J., 
Weiss, J., Westerman, R., Whisnant, J.L., Whiteford, H.A., Wiangkham, T., Wiens, K. 
E., Wijeratne, T., Wilner, L.B., Wilson, S., Wojtyniak, B., Wolfe, C.D.A., Wool, E.E., 
Wu, A.-M., Hanson, S.W., Wunrow, H.Y., Xu, G., Xu, R., Yadgir, S., Jabbari, S.H.Y., 
Yamagishi, K., Yaminfirooz, M., Yano, Y., Yaya, S., Yazdi-Feyzabadi, V., Yearwood, 
J.A., Yeheyis, T.Y., Yeshitila, Y.G., Yip, P., Yonemoto, N., Yoon, S.-J., Lebni, J.Y., 
Younis, M.Z., Younker, T.P., Yousefi, Z., Yousefifard, M., Yousefinezhadi, T., Yousuf, 
A.Y., Yu, C., Yusefzadeh, H., Moghadam, T.Z., Zaki, L., Zaman, S.B., Zamani, M., 
Zamanian, M., Zandian, H., Zangeneh, A., Zastrozhin, M.S., Zewdie, K.A., Zhang, Y., 
Zhang, Z.-J., Zhao, J.T., Zhao, Y., Zheng, P., Zhou, M., Ziapour, A., Zimsen, S.R.M., 
Naghavi, M., Murray, C.J.L., 2020. Global burden of 369 diseases and injuries in 204 
countries and territories, 1990–2019: a systematic analysis for the Global Burden of 
Disease Study 2019. The Lancet 396, 1204–1222. 10.1016/S0140-6736(20)30925-9.

Wittchen, H.-U., Pfister, H., 1997. DIA-X-Interviews: Manual für Screening-Verfahren 
und Interview; Interviewheft.

Wittchen, H.-U., Beloch, E., Garzcynski, E., Holly, A., Lachner, G., Perkonigg, A., Pfütze, 
E.-M., Schuster, P., Vodermaier, A., Vossen, A., Wunderlich, U., Zieglgansberger, S., 
1995. Münchener composite international diagnostic interview (M-CIDI) (version 
2.2 / 2 / 95).

Wittenberg, G.M., Greene, J., Vertes, P.E., Drevets, W.C., Bullmore, E.T., 2020. Major 
Depressive Disorder Is Associated With Differential Expression of Innate Immune and 
Neutrophil-Related Gene Networks in Peripheral Blood: A Quantitative Review of 
Whole-Genome Transcriptional Data From Case-Control Studies. Biol Psychiatry 88, 
625–637. https://doi.org/10.1016/j.biopsych.2020.05.006.

Wolf, F.A., Angerer, P., Theis, F.J., 2018. SCANPY: large-scale single-cell gene expression 
data analysis. Genome Biol. 19, 15. https://doi.org/10.1186/s13059-017-1382-0.

J. Hagenberg et al.                                                                                                                                                                                                                              Brain Behavior and Immunity 123 (2025) 353–369 

368 

https://doi.org/10.1016/j.biopsych.2020.05.006
https://doi.org/10.1186/s13059-017-1382-0


Yang, C., Wardenaar, K.J., Bosker, F.J., Li, J., Schoevers, R.A., 2019. Inflammatory 
markers and treatment outcome in treatment resistant depression: A systematic 
review. J. Affect. Disord. 257, 640–649. https://doi.org/10.1016/j.jad.2019.07.045.

Young, J.J., Bruno, D., Pomara, N., 2014. A review of the relationship between 
proinflammatory cytokines and major depressive disorder. J. Affect. Disord. 169, 
15–20. https://doi.org/10.1016/j.jad.2014.07.032.

Yue, Y., Jiang, H., Liu, R., Yin, Y., Zhang, Y., Liang, J., Li, S., Wang, J., Lu, J., Geng, D., 
Wu, A., Yuan, Y., 2016. Towards a multi protein and mRNA expression of biological 
predictive and distinguish model for post stroke depression. Oncotarget 7, 
54329–54338. https://doi.org/10.18632/oncotarget.11105.

J. Hagenberg et al.                                                                                                                                                                                                                              Brain Behavior and Immunity 123 (2025) 353–369 

369 

https://doi.org/10.1016/j.jad.2019.07.045
https://doi.org/10.1016/j.jad.2014.07.032
https://doi.org/10.18632/oncotarget.11105

	Dissecting depression symptoms: Multi-omics clustering uncovers immune-related subgroups and cell-type specific dysregulation
	1 Introduction
	2 Methods
	2.1 Sample selection
	2.2 Ethics approval and informed consent
	2.3 Assessments
	2.3.1 Questionnaire data
	2.3.2 Blood collection
	2.3.3 Immune marker measurements
	2.3.4 RNA extraction and sequencing
	2.3.5 Structural magnetic resonance imaging (MRI) data assessment
	2.3.6 Electrocardiography data assessment

	2.4 Data analysis
	2.4.1 Immune marker analysis
	2.4.2 RNA-seq analysis
	2.4.3 Cell type deconvolution
	2.4.4 Multi-omics clustering and statistical analysis of cluster differences
	2.4.5 Replication analysis
	2.4.6 Gene set analysis
	2.4.7 Prediction of responder status
	2.4.8 Imaging analysis
	2.4.9 Electrocardiography analysis
	2.4.10 Single-cell RNA-seq data analysis


	3 Results
	3.1 Multi-omics clustering with age, BMI, immune markers and RNA-seq data identified 4 clusters with different depression s ...
	3.1.1 BMI, age, IL-1RA, NRCAM and CRP identified as top differentiating variables
	3.1.2 Clinical phenotypes, imaging features and heart rate data identified clusters with elevated depression severity
	3.1.3 Immune markers and genes revealed differences in immune system and brain related pathways between clusters
	3.1.4 Replication of the initial clustering in a holdout sample

	3.2 Secondary analysis of the initial clustering adjusted for age, BMI and sex showed no phenotypic differences
	3.3 Exploratory analysis of the initial clustering including cell types identified three clusters predominantly driven by R ...
	3.3.1 Exploratory analysis revealed T cell proportions and RNA-seq data as primary drivers of the clustering
	3.3.2 Exploratory analysis revealed immune system involvement in the gene set enrichment of re-clusters

	3.4 Integration of protein and RNA-seq data with single cell expression showed cell type specific regulation of inflammation

	4 Discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


