
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Maushagen et al. Biomarker Research           (2024) 12:31 
https://doi.org/10.1186/s40364-024-00578-w

Biomarker Research

*Correspondence:
Susanne Rospleszcz
susanne.rospleszcz@helmholtz-munich.de

Full list of author information is available at the end of the article

Abstract
Background Changes in serum metabolites in individuals with altered cardiac function and morphology may exhibit 
information about cardiovascular disease (CVD) pathway dysregulations and potential CVD risk factors. We aimed to 
explore associations of cardiac function and morphology, evaluated using magnetic resonance imaging (MRI) with a 
large panel of serum metabolites.

Methods Cross-sectional data from CVD-free individuals from the population-based KORA cohort were analyzed. 
Associations between 3T-MRI-derived left ventricular (LV) function and morphology parameters (e.g., volumes, 
filling rates, wall thickness) and markers of carotid plaque with metabolite profile clusters and single metabolites as 
outcomes were assessed by adjusted multinomial logistic regression and linear regression models.

Results In 360 individuals (mean age 56.3 years; 41.9% female), 146 serum metabolites clustered into three distinct 
profiles that reflected high-, intermediate- and low-CVD risk. Higher stroke volume (relative risk ratio (RRR): 0.53, 
95%-CI [0.37; 0.76], p-value < 0.001) and early diastolic filling rate (RRR: 0.51, 95%-CI [0.37; 0.71], p-value < 0.001) 
were most strongly protectively associated against the high-risk profile compared to the low-risk profile after 
adjusting for traditional CVD risk factors. Moreover, imaging markers were associated with 10 metabolites in linear 
regression. Notably, negative associations of stroke volume and early diastolic filling rate with acylcarnitine C5, 
and positive association of function parameters with lysophosphatidylcholines, diacylphosphatidylcholines, and 
acylalkylphosphatidylcholines were observed. Furthermore, there was a negative association of LV wall thickness with 
alanine, creatinine, and symmetric dimethylarginine. We found no significant associations with carotid plaque.

Conclusions Serum metabolite signatures are associated with cardiac function and morphology even in individuals 
without a clinical indication of CVD.
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Introduction
Cardiovascular diseases (CVD), such as heart failure 
(HF) and coronary artery disease, are among the lead-
ing causes of morbidity and mortality worldwide [1]. The 
prevalence of CVD is expected to increase by more than 
40% between 2015 and 2035, and the number of deaths 
is expected to increase 2.8-fold between 2000 and 2050 
(in US) [2]. Early detection of individuals at risk and sub-
sequent intervention, e.g., lifestyle modifications, offers 
an opportunity for the prevention of disease progression 
and clinical events. Thus, there are ongoing efforts to 
identify novel biomarkers, based on pathophysiological 
processes within cardiovascular metabolism, that could 
help to identify high-risk individuals early.

Biomarkers based on high-throughput metabolomics 
can help to describe CVD pathways [3] and metabolites 
measured in serum or plasma have already been linked 
to both incident and prevalent CVD [4–6]. Metabolites 
from different chemical groups such as acylcarnitines, 
amino acids, biogenic amines, dicarboxylacylcarnitines, 
and lipids have been found to be associated with inci-
dent CVD [4]. Combinations of metabolites including the 
amino acid alanine can predict incidence of major car-
diovascular events [7] and different metabolite panels can 
distinguish between HF subtypes [8]. Moreover, metab-
olites as intermediate products link genotypes to CVD 
phenotypes. For example, a genetic risk score of pyroglu-
tamine, dihydroxy docosatrienoic acid, and hydroxy (iso)
leucine has been associated with an increased risk for HF 
[9]. Furthermore, metabolites were identified as media-
tors for cardiometabolic risk factors in a comprehensive 
genome-wide association study (GWAS) [10].

Taken together, there is great interest to exploit metab-
olomics to reveal pathophysiological pathways of CVD. 
The AbsoluteIDQ™ p180 kit (BIOCRATES Life Sci-
ences AG, Innsbruck, Austria) is a high-throughput tool 
for basic, clinical, and epidemiological research, and its 
interlaboratory reproducibility has been assessed [11]. 
The panel has been used for investigations of metabo-
lomics and CVD in cohort and case-control studies. 
Metabolites of the panel were associated with a higher 
risk for coronary heart disease [12], improved MI risk 
prediction [13], or distinguished between HF subtypes 
[8]. However, to maximize the relevance of metabolomics 
for prevention or intervention it is necessary to evalu-
ate these metabolites already at the stage of subclinical 
alterations in cardiac function and morphology before 
overt CVD has developed. For this type of investiga-
tion, population-based studies comprising individuals at 
all stages of cardiac dysfunction with data on markers 
of cardiac function and morphology derived by medical 
imaging are optimal. In the Framingham Heart Study, 
phosphatidylcholines and diacylglycerols were associ-
ated with markers of cardiac morphology as derived by 

echocardiography [14]. Likewise, in the EpiHealth Study, 
several metabolites were associated with cardiac mark-
ers as measured by echocardiography [15]. However, the 
gold standard to assess cardiac function and morphology 
as well as carotid plaques is magnetic resonance imaging 
(MRI) as it enables a detailed assessment of volumes, tis-
sue, diffuse myocardial fibrosis and plaque composition 
[16]; hence an in-depth quantification by MRI will pro-
vide a more robust determination of cardiac function and 
a better understanding of underlying pathways.

In the current study, we thus aim to explore the asso-
ciation of cardiac function and morphology, as derived 
by MRI, with a panel of serum metabolites in a sample 
from a population-based cohort without known CVD 
or chronic kidney disease. Our objective is to deter-
mine whether there are distinct metabolite signatures 
of left ventricular (LV) function or morphology or 
carotid plaque burden at a preclinical stage, and whether 
these signatures can be mapped to known underlying 
pathways.

Methods
Study sample
The sample is a cross-sectional substudy from the Coop-
erative Health Research in the Region of Augsburg 
(KORA) FF4 survey. The FF4 study, N = 2279, is the sec-
ond follow-up of the population-based KORA S4 study 
(1999/2001, N = 4261). Of these, 400 individuals in FF4 
aged between 39 and 73 years underwent whole body 
MRI imaging. Participants were included in the MRI sub-
sample if they were not older than 73 years and had no 
validated/self-reported stroke, myocardial infarction, or 
revascularization. Individuals were excluded in case of 
any MRI contraindication or impaired renal function. All 
MRI participants underwent a comprehensive interview 
and physical examination within three months before 
the MRI exam, as described in detail elsewhere [17]. The 
KORA FF4 study was approved by the Bavarian Medical 
Association and the MRI substudy by the ethics commit-
tee of the Ludwig-Maximilians University Munich. All 
studies are in accordance with the declaration of Helsinki.

Main exposure: Left ventricular function and morphology
For cardiovascular imaging, a 3 Tesla scanner (MAGNE-
TOM, Skyra; Siemens AG, Healthcare Sector, Erlangen, 
Germany) was used in combination with an 18-chan-
nel body coil and the table-mounted spine matrix coil. 
Details on the MRI protocol were described previously 
[17]. For the examination of LV function and mor-
phology, cine steady-state free precession (cine-SSFP) 
sequences in the short-axis and the long-axis 4-chamber 
views were used. The semi-automatically analyses of the 
cine-SSFP sequences were performed with cvi42 soft-
ware (Circle Cardiovascular Imaging, Calgary, Canada). 
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The LV wall thickness (mm) at end-diastole was assessed 
semiautomatically by manually marking the apex and 
base in the 4-chamber view, followed by an automatic 
endocardium-epicardium border detection in the short-
axis images and manual correction, if needed [17, 18]. 
According to AHA 16-segment model, the mean LV wall 
thickness was divided into basal (1-6), mid-cavity (7-12), 
apical (13-16), lateral (5, 11, 12, 16), septal (2, 3, 8, 9, 14), 
anterior (1, 7, 13), and inferior segments (4, 10, 15) [19].

An in-house software was used to derive estimates of 
LV volume changes over time: early diastolic filling rate 
(pfr1, ml/s) and late diastolic filling rate (pfr2, ml/s), as 
well as peak systolic ejection rate (per, ml/s) [20]. Fur-
ther LV parameters included were stroke volume (SV, 
ml), cardiac output (CO, ml*bpm), ejection fraction (EF, 
%), end-diastolic and end-systolic LV mass (g) as well as 
end-diastolic (EDV) and end-systolic volume (ESV, ml). 
Additionally, the presence of late gadolinium enhance-
ment (LGE) was assessed using the fast low-angle shot 
inversion recovery sequences in short-axis and 4-cham-
ber views [17].

All image analyses were conducted according to stan-
dardized guidelines [21] and by two blinded, and inde-
pendent readers in cardiac imaging, who were unaware 
of the participants’ clinical data. Measurements showed 
intraclass correlation coefficients > 0.9 [18].

Secondary exposure: carotid plaques
Presence and composition of carotid plaques were 
assessed on black-blood T1-weighted sequences in 14 
slice locations in the internal and common carotid artery. 
A semi-automatic software (CASCADE; University of 
Washington Seattle, WA) was used to classify plaques 
as type I, III, IV/V, VI, and VII, following the guidelines 
for MRI measurement [22, 23]. Presence of plaque was 
defined as plaque type above I. Furthermore, the normal-
ized wall index, and the plaque index were calculated. 
The normalized wall index was calculated by dividing the 
wall area by the total vessel area. The plaque index was 
derived from the assessment of plaque composition and 
divided into the three categories of normal to diffuse 
thickness (type I), plaques to complex plaques (type III) 
or fibrotic plaque (type IV/V, VI and VII).

Additional exposures
As additional exposures, we analyzed hypertension and 
self-reported angina pectoris. The SCORE2 risk score 
of 10-year CVD [24] was used as a marker of subclinical 
CVD. SCORE2 was calculated for all individuals, includ-
ing those with diabetes.

Outcome: targeted metabolomics
The KORA study is a deeply phenotyped population-
based cohort and comprises a large panel of -omics 

measurements that were assessed independently of the 
current MRI study.

Participants were examined between June 2013 and 
September 2014 at the KORA study center using stan-
dardized measurements including questionnaires and 
laboratory assessment of blood samples [25]. Blood 
samples were collected at the study center after at least 
8  h of fasting and samples were prepared as described 
elsewhere [26]. Between February 2019 and October 
2019 serum metabolites were measured in 2,218 samples 
from KORA FF4 study using a targeted metabolomics 
approach [27]. The AbsoluteIDQ™ p180 kit (BIOCRATES 
Life Sciences AG, Innsbruck, Austria) was used for quan-
tification. The samples were distributed randomly across 
29 kit plates. For quality assurance, each plate included 
five identical pooled EDTA-plasma reference samples 
from Sera Laboratories International Ltd. (Hull, United 
Kingdom). These reference samples were used to monitor 
technical variability and ensure consistent quantification 
across plates. Supplementary Table 1 of additional file 1 
shows the number of samples from the current study and 
reference samples per plate. We implemented a rigorous 
quality control (QC) protocol, excluding any metabolite 
that met any of the following criteria: (1) a coefficient of 
variance (CV) was ≥ 25% across the 145 reference sam-
ples, (2) a limit of detection (LOD) ≥ 50% of the metab-
olite concentrations on any given plate, where the LOD 
was defined as 3 times the median of 3 PBS zero samples 
per plate, or (3) a non-detectable rate was ≥ 50% across 
all plates [28]. Out of 188 targeted metabolites, 146 met 
the QC criteria and were adjusted for plate-specific nor-
malization factors (NFs). The NF for each metabolite was 
calculated by dividing the mean concentration of the 5 
reference samples per plate by the overall mean concen-
tration of the 145 reference samples [29]. Supplementary 
Table 2 of additional file 1 shows all analyzed metabolites 
and their respective abbreviations, whereas Supplemen-
tary Table 3 of additional file 1 shows the CVs of the refer-
ence samples. Afterwards, the metabolite concentrations 
were natural log (+ 1) transformed and scaled per plate 
(mean = 0, SD = 1) to further minimize plate effects. Sup-
plementary Table 4 of additional file 1 shows the mean 
concentrations of the study sample before and after plate-
standardization. Metabolites comprised groups of amino 
acids, biogenic amines, carnitines, lysophosphatidylcho-
lines (lyso-PC), sphingomyelins (SM), diacylphosphati-
dylcholines (diacyl-PC), acylalkylphosphatidylcholines 
(acyl-alkyl-PC) and hexoses (Supplementary Table 2).

Clinical data
Participants’ age, sex, body mass index (BMI), physical 
activity (active vs. not active), smoking status (never, ex- 
and current smoker), alcohol consumption, blood pres-
sures, diabetes status, blood lipid profile, and medication 
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intake were assessed during the visit at the study center 
by standardized examinations and interviews conducted 
by trained staff, as previously described [17]. Hyperten-
sion was defined as systolic blood pressure ≥ 140 mmHg, 
diastolic blood pressure ≥ 90 mmHg, or current antihy-
pertensive medication intake under the awareness of hav-
ing hypertension. Based on oral glucose tolerance test 
(OGTT) and physician-validated self-reporting, diabetes 
status was categorized according to WHO criteria. Total 
cholesterol, high density lipoprotein (HDL), low density 
lipoprotein (LDL), and triglycerides were measured by 
enzymatic, colorimetric methods [18]. High sensitivity 
C-reactive protein (hsCRP) concentrations were mea-
sured by particle-enhanced immunonephelometry.

Statistical methods

Descriptive analysis
MRI-derived variables, metabolites, and demographic 
characteristics are given as mean and standard deviation 
for continuous variables and as absolute and relative fre-
quency for categorical variables. Where appropriate, MRI 
variables were indexed for body surface area according 
to Du Bois [30], to take potential confounding effects of 
body size into account. Differences between groups were 
quantified by one-way ANOVA and χ2-test, as applicable.

Metabolite profiles
To identify distinct serum metabolite profiles, we used an 
unsupervised clustering approach on the scaled metabo-
lite panel for the main sample and the secondary sample. 
For k-means clustering, the optimal number of clusters 
was based on Calinski-Harabasz Criterion, silhouette 
plot, and the elbow-method. Details on the methods are 
described in Additional file 1 (Supplemental Information 
1, Supplementary Table 5, and Supplementary Figs. 1–2). 
Well-separated and compact clusters were then obtained 
by the Hartigan-Wong algorithm. To test the stability of 
clusters, we replicated cluster segregation for the main 
exposure sample with agglomerative hierarchical cluster-
ing and calculated Jaccard indices for all clusters.

Pathway analysis
Differences in metabolic pathways between clusters, 
reflecting different metabolite profiles, contribute to 
the understanding of which metabolic pathways may be 
involved in CVD pathology. Therefore, we performed 
pathway analysis using MetaboAnalyst 5.0 [31, 32]. Path-
way analysis is based on the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) for homo sapiens database with 80 
possible pathways. MetaboAnalyst5.0 combines the three 
steps of (1) enrichment analysis using Fisher’s exact test, 
(2) topology analysis using relative-betweenness central-
ity, and (3) importance measure. For pathway analysis, 

only those metabolites were considered that were signifi-
cantly different between the clusters identified in the step 
“Metabolite Profiles” above. A metabolite was considered 
to be significantly different between all three clusters if 
the three Bonferroni-corrected p-values from the three 
one-way ANOVAs (Cluster 1 vs. Cluster 2, Cluster 1 vs. 
Cluster 3, Cluster 2 vs. Cluster 3) were all below 0.05. 
False-discovery corrected p-values ≤ 0.05 are considered 
to indicate significantly enriched pathways. However, 
results need to be interpreted with caution because a 
conservative, nonspecific background-set was used [33].

Association between cardiac function and morphology 
and serum metabolites
To identify associations between markers of cardiac 
function and morphology and metabolite clusters, multi-
nomial logistic regression models were fitted after check-
ing the independence of irrelevant alternatives (IIA) 
assumption by Hausman-McFadden test. Effect estimates 
are given as relative risk ratios (RRR) with correspond-
ing 95% confidence intervals (CI). We used a nested 
model approach for the confounder adjustment strat-
egy with a basic and a full model. The basic model was 
adjusted for age and sex, and the full model was further 
adjusted for diabetes, systolic blood pressure, total cho-
lesterol, and smoking status. These established risk fac-
tors were chosen as confounders based on prior clinical 
knowledge [34]. As a sensitivity analysis, we additionally 
adjusted for hsCRP in addition to the full model. Main 
exposures were MRI-derived parameters of LV function 
and morphology, secondary exposures were MRI-derived 
parameters of carotid plaque, and additional exposures 
were the non-imaging CVD risk factor hypertension, as 
well as SCORE2 and presence of angina pectoris as mark-
ers of subclinical CVD. All continuous exposures were 
scaled (mean subtracted and divided by standard devia-
tion) before modeling to interpret results as the effect of 
an increase by one standard deviation.

To identify associations between markers of cardiac 
function and morphology and individual metabolites, lin-
ear regressions were fitted with the same adjustments as 
above, and effect estimates are given as beta coefficients 
and associated 95% CI. P-values were Bonferroni-cor-
rected for the number of metabolites, 146.

All statistical analyses were conducted in R ver-
sion 4.1.1. P-values ≤ 0.05 were considered statistically 
significant.

Results
Study sample
The main analytical sample comprised 360 individu-
als with complete data on LV function and morphology 
(Fig.  1). The secondary sample contained 256 individu-
als with complete data on carotid plaques (Fig.  1). This 
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difference in sample size was due to the larger number 
of individuals without valid plaque measurements. Indi-
viduals without complete carotid plaque measures were 
more likely to be female, had a higher BMI, and were 
more likely to have prediabetes. Furthermore, several 
metabolite concentrations differed significantly (Addi-
tional file 1: Supplementary Table 6). In the main sample, 
151 (41.9%) individuals were female, and the mean age 
was 56.3 years (Table 1). The average CVD risk within 10 
years as estimated by SCORE2 was 5.2%.

Average values of MRI parameters of LV function and 
morphology were within the non-pathological range, 
e.g., mean EF was 69.3% (SD = 7.8) and mean SV and pfr1 
were 45.1ml/m2 (SD = 9.5) and 227.2  ml/s/m2 (SD = 8.6), 
respectively (Table 2). LGE was present in 20 (5.6%) indi-
viduals and average LV wall thickness was 4.8  mm/m2 
(SD = 0.7) (Table 2).

Metabolite profiles
Unsupervised clustering with k-means on the metabolite 
panel revealed three distinct clusters including 116 (32%, 
Cluster 1), 106 (29%, Cluster 2), and 138 (38%, Cluster 3) 
participants, respectively. Clusters showed high stabil-
ity with Jaccard indices > 0.6, indicating a valid group-
ing of the data (Additional file 1: Supplementary Table 
10). Agglomerative hierarchical clustering could repro-
duce Cluster 3 well, however Clusters 1 and 2 were only 
partly replicated (Additional file 1: Supplementary Table 
11). Moreover, the lower cluster stability in hierarchical 

clustering (< 0.6 for Clusters 1 and 2, Additional file 1: 
Supplementary Table 10) indicated that k-means clus-
tering better captured the underlying data structure. We 
thus continued with these clusters.

Metabolite concentrations differed significantly 
between at least two clusters for 145 out of 146 metabo-
lites and differed significantly between all three clusters 
for 68 out of 146 metabolites (Additional file 1: Supple-
mentary Table 7, Supplementary Fig. 3A-E). For these 68 
metabolites, pathway analysis was performed later on.

Cluster 1 was characterized by the highest concen-
trations of alanine and the majority of further amino 
acids, and biogenic amines, carnitine, and acylcarnitines 
including C5, hexoses, and lyso-PCs, however showing 
intermediate concentrations for lyso-PC 17:0, high to 
intermediate concentrations of diacyl-PCs, and interme-
diate concentrations of acyl-alkyl-PCs and hydroxysphin-
gomyelines (Additional file 1: Supplementary Table 7). 
Individuals in Cluster 2 exhibited intermediate values 
for the majority of metabolites; however, concentrations 
of amino acids including alanine, short-chain carnitines 
(C2-C5) and hexose were lowest while the concentrations 
of all acyl-alkyl-PCs, lyso-PC 17:0 and hydroxysphingo-
myelines were highest of all clusters (Additional file 1: 
Supplementary Table 7). Cluster 3 generally showed the 
lowest concentrations of metabolites, apart from amines 
including alanine, short-chain carnitines, and hexoses 
(Additional file 1: Supplementary Table 7).

Fig. 1 Flowchart of the sample sizes for the main exposure and secondary exposure data sets
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Pathway analysis of the 68 metabolites that had signifi-
cantly different concentrations between the three clusters 
showed that relative to Cluster 2, the glycerophospho-
lipid metabolism, alanine, aspartate, and glutamate 
metabolism had the highest impacts in both Clusters 1 
and 3 with an impact factor > 0.1 (Fig. 2, Additional file 1: 
Supplementary Table 8). Additionally, aminoacyl-tRNA 
biosynthesis, valine, leucine, and isoleucine biosynthe-
sis and degradation were the most enriched pathways in 
Cluster 1 and arachidonic acid and linoleic acid metabo-
lism in Cluster 3. However, these pathways did not show 
a significant topology impact and the compounds found 
were only one per pathway (Additional file 1: Supplemen-
tary Table 8).

In the secondary exposure sample, three clusters of the 
sizes 80 (31%), 98 (39%), and 76 (30%) individuals respec-
tively were found (Additional file 1: Supplementary Table 
9). Concentrations differed significantly in 138 metabo-
lites between at least two clusters and in 59 metabolites 
between all three clusters. Cluster 1 showed most amines 
with lowest concentrations, as well as carnitine and acyl-
carnitines. Lyso-PCs, diacyl-PCs were mostly intermedi-
ate whereas acyl-alkyl-PCs were mostly highest. Cluster 2 
was characterized by mostly lowest concentrations of all 
metabolites and Cluster 3 mostly highest or intermediate 
concentrations.

Clinical characteristics of metabolite profiles
In the main data set, Cluster 1 had the highest average 
age (58.8 years), highest proportion of men, highest prev-
alence of hypertension, as well as highest levels of LDL 
cholesterol, triglycerides, alcohol consumption, and CVD 
risk as measured by SCORE 2 (Table  3). Cluster 2 was 
mainly characterized by the high proportion of women 
(73.6%) and the most favorable cardiometabolic risk pro-
file, as seen by a low prevalence of hypertension and dia-
betes, high HDL levels, and a high prevalence of physical 
activity (Table  3). Cluster 3 had the lowest average age 
(54.3 years) but the highest prevalence of diabetes, lipid-
lowering medication, and former smoking; moreover, 

Table 1 Characteristics of participants of the main exposure 
sample. Continuous variables are reported as mean (SD) and 
categorical variables as absolute frequency (percentage)
Variable Total

N = 360
Age (years) 56.3 (9.2)
Female sex 151 (41.9%)
BMI (kg/m2) 28.0 (4.8)
Regularly physically active 215 (59.7%)
Smoking status
 Currently smoking 72 (20%)
 Ex - Smoker 156 (43.3%)
 Never - Smoker 132 (36.7%)
Alcohol consumption (g/day) 18.3 (24.0)
Diabetes status (based on OGTT)
 Normoglycemic 221 (61.4%)
 Prediabetes 97 (26.9%)
 Type 2 diabetes 42 (11.7%)
Fasting glucose (mg/dl) 103.8 (22.6)
Hypertension 115 (32.0%)
Systolic blood pressure (mmHg) 120.3 (16.7)
Diastolic blood pressure (mmHg) 75.4 (10.0)
Angina pectoris 23 (6.4%)
Total cholesterol (mg/dl) 217.68 (36.4)
HDL cholesterol (mg/dl) 61.59 (17.1)
LDL cholesterol (mg/dl) 139.8 (32.9)
Triglycerides (mg/dl) 130.7 (85.2)
hsCRP (mg/L) * 1.15 (0.6; 2.5)
Antidiabetic drugs 24 (6.7%)
Antihypertensive drugs 84 (23.3%)
Lipid lowering drugs 37 (10.3%)
Anticoagulant drugs 6 (1.7%)
Antiplatelet drugs 13 (3.6%)
SCORE2, % 5.2 (3.8)
Continuous variables are reported as mean (SD) and categorical variables as 
absolute frequency (percentage).

*Based on 359 individuals; reported as median, 1st and 3rd quantile.

Abbreviations BMI = Body mass index; OGTT = Oral glucose tolerance test; 
HDL = High-density lipoprotein; LDL = low-density lipoprotein; hsCRP = High-
sensitivity C-reactive protein.

Table 2 MRI-derived parameters of participants in the main 
sample. Continuous variables are reported as mean (SD) and 
categorical variables as absolute frequency (proportion)
Variable Total

N = 360
End diastolic volume (ml/m2) 65.7 (14.9)
End systolic volume (ml/m2) 20.6 (8.6)
Stroke volume (ml/m2) 45.1(9.5)
Cardiac output (ml/min/m2) 2973.1 (590)
Ejection fraction (%) 69.3 (7.8)
Cardiac mass, diastolic (g/m2) 70.9 (13.8)
Cardiac mass, systolic (g/m2) 72.0 (15.4)
Late Gadolinium Enhancement 20 (5.6%)
Early diastolic filling rate (ml/s) 227.2 (116.4)
Late diastolic filling rate (ml/s) 227.5 (110.4)
Peak ejection rate (ml/s) 357.8 (133.5)
LV wall thickness per segment
All segments (mm/m2) 4.8 (0.7)
Basal (mm/m2) 5.1 (0.7)
Mid (mm/m2) 4.9 (0.8)
Apical (mm/m2) 4.9 (0.8)
Lateral (mm/m2) 5.0 (0.7)
Septal (mm/m2) 4.7 (0.7)
Anterior (mm/m2) 4.8 (0.9)
Inferior (mm/m2) 4.8 (0.7)
Continuous variables are reported as mean (SD) and categorical variables as 
absolute frequency (proportion).

Abbreviations LV = Left ventricle
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physical activity was lowest in cluster 3 and CVD risk 
as measured by SCORE 2 intermediate of all clusters 
(Table 3). Based on these characteristics, Cluster 1 can be 
labeled as the high CVD risk cluster and Cluster 3 as the 
intermediate CVD risk cluster in our sample.

Values of cardiac function and morphology markers 
differed significantly between clusters (Table  3). Clus-
ter 1 had lowest average EDV, ESV, SV, and EF, highest 
cardiac mass, and wall thickness, as well as lowest peak 
ejection rate and lowest pfr1. Interestingly, the late filling 
rate through atrial contraction was higher than the early 
filling rate (234.5  ml/s vs. 193.6  ml/s) and highest of all 
clusters. Cluster 2 had highest average SV and EF, lowest 
cardiac mass, and wall thickness, as well as highest peak 
ejection rate and pfr1. Values in Cluster 3 were mainly 
intermediate between those in Cluster 1 and 2 (Table 3).

The clinical characteristics within the secondary data 
set were not as clearly differentiated as in the main data 
set (Additional file 1: Supplementary Table 9). Although 
there was a differential distribution of cardiometabolic 
risk factors and CVD risk (e.g., SCORE2 = 4.1% in Clus-
ter 1 vs. 5.0% in Cluster 2 vs. 6.6% in Cluster 3), resulting 
in nominal differences in plaque prevalence (e.g., preva-
lence of any plaque = 21.2% in Cluster 1 vs. 18.4% in Clus-
ter 2 vs. 25% in Cluster 3), prevalence and characteristics 
of carotid plaque were not significantly different between 
clusters (Additional file 1: Supplementary Table 9).

Association between cardiac function and morphology 
and metabolites
In all multinomial logistic regression models in the main 
exposure sample, Cluster 2 was used as reference group. 
The base model, adjusted for age and sex, showed 9 asso-
ciations of 5 cardiac function and morphology markers, 
as well as SCORE2 and hypertension to be significantly 
associated with metabolite Cluster 1 and 3 member-
ship. The fully adjusted model showed 9 associations of 
5 markers, including two non-MRI-derived exposures 
(Table  4). Increased LV function (e.g., higher EDV, SV, 
CO, pfr1) exhibited a protective effect, resulting in a 
decreased risk of membership to the high- and interme-
diate- CVD risk cluster. SV showed the strongest protec-
tive effects. An increase of one SD decreased the relative 
risk (RR) of cluster membership to the high- and inter-
mediate-risk cluster by 47.2% and 49.3%, respectively. 
Furthermore, pfr1 showed strong protective effects. An 
increase by one SD decreased the RR of belonging to the 
high- and intermediate-risk cluster by 48.8% and 41.1%, 
respectively. The detailed RRRs, 95% CI, and p-values are 
provided in Table 4. Moreover, one SD elevated SCORE2 
increased the RR of belonging to the high-risk cluster by 
2.2-fold and to the intermediate-risk cluster by 3.5-fold.

Additional adjustment for hsCRP did not substantially 
affect the results (Additional file 1: Supplementary Table 
12).

Fig. 2 Pathway analysis of 68 metabolites that differed significantly between the three clusters using MetaboAnalyst. A: Cluster 1 compared to Cluster 2; 
B: Cluster 3 compared to cCluster 2. The x-axis shows the pathway impact of the topology analysis and the y-axis the -log10 p-value of the enrichment 
analysis. The color indicates the -log10 p-value where white indicates a low value and red a high value; the greater the circle size the higher the pathway 
impact.
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Table 3 Demographic characteristics and MRI variables of the clusters based on metabolites
Characteristic Cluster 1

N = 116
Cluster 2
N = 106

Cluster 3
N = 138

p value

Sociodemographic variable
Age (years) 58.8 (8.7) 56.2 (9.1) 54.3 (9.2) < 0.001
Female sex 25 (21.6%) 78 (73.6%) 48 (34.8%) < 0.001
BMI (kg/m2) 28.8 (4.3) 25.8 (4.5) 28.9 (4.9) < 0.001
Regularly physically active 68 (58.6%) 79 (74.5%) 68 (49.3%) < 0.001
Alcohol consumption (g/day) 26.7 (30.9) 10.6 (12.9) 17.1 (21.7) < 0.001
Smoking status 0.415
Currently smoking 24 (20.7%) 23 (21.7%) 25 (18.1%)
Ex- smoker 49 (42.2%) 39 (36.8%) 68 (49.3%)
Never-smoker 43 (37.1%) 44 (41.5%) 45 (32.6%)
Diabetes status < 0.001
Normoglycemic 60 (51.7%) 82 (77.4%) 79 (57.2%)
Prediabetes 41 (35.3%) 20 (18.9%) 36 (26.1%)
Diabetes 15 (12.9%) n < 5 23 (16.7%)
Fasting glucose (mg/dl) 105.8 (22.8) 96.5 (11.92) 107.8 (27.15) < 0.001
Hypertension 46 (39.7%) 19 (17.9%) 50 (36.2%) < 0.001
Systolic blood pressure (mmHg) 125.5 (15.6) 113.0 (14.8) 121.6 (17.1) < 0.001
Diastolic blood pressure (mmHg) 77.14 (8.8) 71.7 (8.7) 76.70 (11.1) < 0.001
Angina pectoris 7 (6.0%) 11 (10.4%) 5 (3.6%) 0.100
Total cholesterol (mg/dl) 229.8 (34.8) 230.1 (35.6) 198.0 (29.2) < 0.001
HDL cholesterol (mg/dl) 59.1 (13.9) 73.7 (17.5) 54.4 (14.1) < 0.001
LDL cholesterol (mg/dl) 150.24 (32.1) 145.01 (34.42) 127.0 (28.1) < 0.001
Triglycerides (mg/dl) 159.0 (109.2) 97.6 (51.5) 132.2 (73.8) < 0.001
hsCRP* 1.29 (0.73; 2.9) 0.91 (0.42; 2.1) 1.35 (0.72; 2.55) 0.350
Antidiabetic drugs 6 (5.2%) n < 5 15 (10.9%) 0.033
Antihypertensive drugs 33 (28.4%) 17 (16.0%) 34 (24.6%) 0.083
Lipid lowering drugs 9 (7.8%) 6 (5.7%) 22 (15.9%) 0.018
Anticoagulant drugs 5 (4.3%) n < 5 n < 5 0.024
Antiplatelet drugs 8 (6.9%) n < 5 n < 5 0.051
Heart rate (bpm) † 69.8 (12.6) 63.5 (10.0) 67.2 (10.0) < 0.001
SCORE2, % 5.9 (0.5–22.3) 3.2 (0.2–15.7) 4.00 (0.4–14.0) < 0.001
MRI characteristics
End diastolic volume in LV (ml/m2) 62.4 (14.2) 68.6 (15.00) 66.2 (15.1) 0.007
End systolic volume in LV (ml/m2) 19.6 (8.2) 20.6 (7.5) 21.5 (9.6) 0.194
Stroke volume (ml/m2) 42.8 (9.2) 48.12 (10.4) 44.7 (8.5) < 0.001
Cardiac output of LV (ml/min/m2) 2920.7 (625.9) 3018.3 (640.8) 2982.4 (514.6) 0.457
Ejection fraction (%) 69.3 (8.4) 70.5 (7.1) 68.4 (7.8) 0.113
Peak ejection rate (ml/s) 347.0 (140.9) 368.1 (132.4) 358.9 (128.1) 0.497
Cardiac mass, diastolic (g/m2) 73.9 (14.0) 66.4 (12.9) 71.9 (13.4) < 0.001
Cardiac mass, systolic (g/m2) 75.8 (15.4) 65.7 (14.3) 73.6 (14.8) < 0.001
Late Gadolinium Enhancement 8 (6.8%) n < 5 8 (5.8%) 0.981
Early diastolic filling rate (ml/s) 193.6 (102.5) 264.0 (128.8) 227.2 (109.4) < 0.001
Late diastolic filling rate (ml/s)) 234.5 (101.0) 230.2 (115.8) 219.6 (113.9) 0.540
LV wall thickness
All segments (mm/m2) 4.9 (0.7) 4.7 (0.7) 4.7 (0.6) 0.023
Basal (mm/m2) 5.2 (0.8) 5.0 (0.7) 5.0 (0.7) 0.029
Mid (mm/m2) 5.1 (0.9) 4.7 (0.8) 4.9 (0.7) 0.003
Apical (mm/m2) 4.3 (0.8) 4.3 (0.8) 4.2 (0.7) 0.370
Lateral (mm/m2) 5.1 (0.8) 5.0 (0.7) 4.9 (0.6) 0.119
Septal (mm/m2) 5.0 (0.8) 4.6 (0.7) 4.8 (0.7) < 0.001
Anterior (mm/m2) 4.9 (0.9) 4.7 (0.9) 4.7 (0.8) 0.047
Inferior (mm/m2) 4.9 (0.7) 4.71 (0.7) 4.8 (0.7) 0.128
*Reported as median, 1st and 3rd quantile; †Based on 333 participants; Abbreviations: BMI = Body mass index, HDL = High-density lipoprotein, LDL = low density 
lipoprotein, hsCRP = High-sensitivity C-reactive protein, LV = Left ventricle
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Multinomial logistic regression for the secondary 
exposures of carotid plaque did not show any significant 
results (Additional file 1: Supplementary Table 13).

Analyzing single metabolites as outcomes in linear 
regression, there were 49 significant associations in the 
base model and 23 significant associations in the full 
model after Bonferroni correction; most of them were 
glycerophospholipids (Fig.  3, Additional file 1: Supple-
mentary Table 14). Additional adjustment for hsCRP did 
not substantially affect the results (Additional file 1: Sup-
plementary Information 2, Supplementary Table 15).

Increased SV was associated with higher diacyl-PCs 
(PC_aa_C38:0, PCaa_C42:2) and acyl-alkyl-PC (PC_ae_
C34:3, Pcae_C40:6). Higher pfr1 was associated with 
increased levels of diacyl-PC PC_aa_C42:0 and lyso-PC 
lyso-PC_a_C17:0. Both SV and pfr1 were associated with 
lower levels of acylcarnitine C5. Moreover, higher EDV 
was associated with increased lyso-PC (lyso-PC_a_C17:0, 
lyso-PC_a_C18:1), and also peak ejection rate was associ-
ated with lyso-PC_a_C17:0. Increased LV wall thickness 
in five different segments was associated with lower lev-
els of alanine, symmetric dimethylarginine (SDMA), and 
creatinine (Fig. 3, Additional file 1: Supplementary Table 
14).

Additionally, of the non-MRI-derived exposures, 
hypertension was associated with the lyso-PC lyso-PC_a_
C17:0 and acyl-alkyl-PC PC_ae_C42:2. Furthermore, 
increased SCORE2 was associated with the acyl-alkyl-PC 
PC_ae_C38:0 (Additional file 1: Supplementary Table 14).

Presence and characteristics of plaque showed no sig-
nificant associations with single metabolite concentra-
tions after Bonferroni correction.

Discussion
CVD biomarkers based on serum metabolomics have 
great potential to elucidate underlying pathways and may 
assist in CVD prediction and risk stratification. However, 
studies assessing metabolite signatures of early changes 
in cardiac function and morphology are scarce. Thus, we 
analyzed the association of MRI-derived markers of car-
diac function and morphology as well as carotid plaques 
with targeted serum metabolites in a sample from a pop-
ulation-based cohort without prior CVD or renal impair-
ment. We found that circulating metabolites clustered 
into three distinct profiles that reflected high-, interme-
diate- and low-CVD risk as measured by SCORE2. Less 
favorable markers of LV function (low EDV, SV, CO, 
pfr1) were associated with higher risk clusters. Moreover, 
markers of LV function were associated with several glyc-
erophospholipids and the short-chain acylcarnitine C5, 
whereas markers of LV morphology were associated with 
amines (alanine, creatine, and SDMA). The associations 
between non-MRI-derived markers, such as the SCORE2 
risk score, and metabolites, similar to the associations 

Table 4 Multinomial logistic regression of subclinical CVD 
markers and cluster membership

Cluster RR ratio 95% CI P value
MRI marker
End-diastolic vol-
ume in LV (ml)

1 0.557 0.391; 0.793 0.001
3 0.633 0.453; 0.886 0.008

End-systolic vol-
ume in LV (ml)

1 0.729 0.516; 1.029 0.072
3 0.921 0.678; 1.253 0.602

Stroke volume (ml) 1 0.528 0.368; 0.757 < 0.001
3 0.507 0.354; 0.727 < 0.001

Cardiac output of 
LV (ml/min)

1 0.742 0.563; 0.979 0.035
3 0.643 0.490; 0.842 0.001

Ejection fraction of 
LV (%)

1 1.009 0.725; 1.406 0.956
3 0.806 0.579; 1.122 0.201

Peak ejection rate 
(ml/s)

1 0.737 0.547; 0.995 0.046
3 0.740 0.546; 1.003 0.052

Cardiac mass, 
diastolic (g)

1 0.911 0.633; 1.312 0.617
3 0.884 0.608; 1.287 0.521

Cardiac mass, 
systolic (g)

1 0.976 0.656; 1.452 0.906
3 1.013 0.673; 1.526 0.950

Late Gadolinium 
Enhancement

1 0.720 0.165; 3.139 0.662
3 1.388 0.312; 6.17 0.667

Early diastolic filling 
rate (ml/s)

1 0.512 0.370; 0.708 < 0.001
3 0.589 0.434; 0.799 < 0.001

Late diastolic filling 
rate (ml/s)

1 0.998 0.73; 1.365 0.992
3 0.923 0.672; 1.268 0.621

All segments 
(mm/m2)

1 1.015 0.720; 1.432 0.931
3 1.033 0.724; 1.474 0.858

Basal segment 
(mm/m2)

1 1.036 0.746; 1.439 0.833
3 1.002 0.71; 1.412 0.993

Mid segment 
(mm/m2)

1 1.141 0.804; 1.618 0.460
3 1.161 0.807; 1.671 0.422

Apical segment 
(mm/m2)

1 0.834 0.604; 1.151 0.270
3 0.907 0.657; 1.252 0.552

Lateral segment 
(mm/m2)

1 0.929 0.672; 1.284 0.6560
3 0.856 0.614; 1.194 0.360

Septal segment 
(mm/m2)

1 1.143 0.801; 1.63 0.461
3 1.158 0.801; 1.676 0.435

Anterior segment 
(mm/m2)

1 0.982 0.696; 1.386 0.918
3 1.047 0.734; 1.491 0.801

Inferior segment 
(mm/m2)

1 1.040 0.744; 1.456 0.817
3 1.175 0.837; 1.65 0.350

Other markers
SCORE2 1 2.202 1.146;4.234 0.018

3 3.529 1.67; 7.455 0.001
Hypertension 1 2.152 1.02; 4.538 0.044

3 2.605 1.214; 5.593 0.014
Angina Pectoris 1 0.847 0.27; 2.657 0.776

3 0.298 0.083; 1.066 0.063
All models were adjusted for age, sex, diabetes, systolic blood pressure, total 
cholesterol, and smoking status. CI = 95% confidence interval; RR = relative risk; 
LV = Left ventricle. Continuous exposures are scaled and relative risk ratios are 
given per standard deviation
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seen with MRI-derived markers, suggest that metabo-
lites may play a role in cardiovascular disease pathways 
reflected in changes of cardiac function and morphology.

Association of MRI markers with metabolite profiles 
(cluster membership)
Increased concentrations of several metabolites have 
been found to be associated with an increased risk for 
CVD; for instance, based on principal component analy-
sis, a factor containing branched-chain amino acids was 
associated with increased risk of coronary artery disease, 
and a factor containing acylcarnitines was associated 
with increased risk for HF [35]. This is consistent with 
the gradual increase of most metabolite concentrations 
according to SCORE2 CVD risk reflected in our clusters. 
For example, branched-chain amino acids and acylcarni-
tines were highest in the high-risk cluster.

The cardiac function markers in multinomial logis-
tic regression are related. Cardiovascular impairments 
that would alter these functional markers are involved 
in the pathophysiology of heart failure as hemodynamic 
measures of the pump function. A lower SV, as a mea-
sure of subclinical CVD, is associated with higher risk for 
incident heart failure, independently of other subclini-
cal CVD markers [36]. Additionally, a decreased early 
diastolic filling rate is associated with HF and shows a 
negative prognosis for HF [37]. These associations are 
consistent with our findings that individuals with better 
LV function are less likely to show unfavorable metabo-
lite profiles.

Acylcarnitines
The heart requires large amounts of adenosine triphos-
phate (ATP) for myocyte contraction and relaxation [38]. 
Oxidative glucose metabolism using glucose, lactate, 
and ketone bodies as substrates, fatty acid (FA) oxida-
tion using acylcarnitines, or branched chain amino acid 
metabolism are metabolized for energy synthesis. Sub-
strates are transferred to cell mitochondria and trans-
formed into acyl coenzyme A to be further metabolized 
in the tricarboxylic acid (TCA) cycle. The use of sub-
strate for energy production depends on the physiologi-
cal needs. In HF, ATP synthesis is shifted to glycolysis 
(more ATP per molecule under low oxygen conditions) 
resulting in decreased mitochondrial uptake of fatty 
acids [38]. Impaired cardiac function before heart fail-
ure shows a lower FA uptake as well, indicating ineffec-
tive β-oxidation [39], contributing to pathology of CVDs 
[40] and leading to decreased contractile LV function [5, 
41]. Acylcarnitines serve as carriers for FA transportation 
into the mitochondria. Hence, in HF, serum acylcarnitine 
concentrations increase as β-oxidation is reduced [38, 
39]. These mechanisms support the association of acyl-
carnitine C5, as ester of FAs, with cardiac function mark-
ers as surrogate for contractile LV function. Long-chain 
acylcarnitines have been suggested as diagnostic param-
eter as plasma concentrations reflect those in heart tis-
sue [42]. Long-chain acylcarnitine (C18:2) distinguishes 
between HF with preserved or reduced EF [8]. Among 
other acylcarnitines, C5 predicts major cardiac events in 
elderly people [7]. Decreased short-chain acylcarnitines 
are associated with improvement in systolic function 
in patients with acute HF after recovery from the acute 
condition [43]. This association further confirms the 

Fig. 3 Significant associations from multiple linear regression of LV function and morphology markers and metabolites Results are shown for the fully 
adjusted model and significance was defined as a Bonferroni corrected p-value ≤ 0.05. The x axis shows the negative log p-value and the y axis the me-
tabolites. Ala = alanine, SDMA = symmetric dimethylarginine, Per = peak ejection rate, pfr1 = early diastolic filling rate
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direction of the association of C5 found in the current 
study. The association of acylcarnitines with subclinical 
CVD is supported by other studies as well, for example, 
higher values of medium and long-chain acylcarnitines 
(C7, C9, C16) are associated with LV diastolic dysfunc-
tion (septal or lateral velocity) in women with or at risk 
for HIV infection [44]. Interestingly, other studies have 
predominantly found associations of long-chain acylcar-
nitines (C16, C18, C18:1) with heart failure [45], long-
chain acylcarnitines (C16, C18:1, C18:2, C18, and C26) 
with LV remodeling index [46] and long-chain acylcarni-
tines (C2:0, C8:0-OH, C12:0, C12:1, C14:0, C14:1, C16:0, 
C16:1, C18:1) with higher risk for atrial fibrillation [47]. 
We hypothesize that this association was not visible in 
our study due to the specific characteristic of our sample, 
where all participants were free of CVD and presented 
with cardiac morphology and function in the non-path-
ological range. Therefore, we might hypothesize that the 
stage of subclinical CVD is not reflected by metabolite 
signatures including long-chain acylcarnitines, but that 
these are characteristic of a later, more advanced stage of 
CVD.

Glycerophospholipids
Consistent with the impact of glycerophospholipid 
metabolism, as found in pathway analysis, 6 different 
glycerophospholipids showed 9 positive associations 
with cardiac function parameters in our study. Consis-
tent with the positive association of favorable cardiac 
function markers, inverse associations of lyso-PCs and 
PCs with HF were found [8, 14] or inverse associations 
of other glycerophospholipids with subclinical CVD 
[15]. In another study from the population-based KORA 
cohort, circulating lyso-PC_17:0 was associated with 
a reduced risk for myocardial infarction (MI) [13]. In 
contrast, diacyl-PC_38:0 has been reported to be asso-
ciated with CVD mortality [48], whereas in our study it 
was positively associated with favorable cardiac function 
markers. The same study found a protective association 
of acyl-alkyl-PC_40:6 and lyso-PCs with mortality [48]. A 
recent review on lipidomics illustrated that unsaturated 
or monosaturated PCs are associated with higher risk of 
CVD, while polyunsaturated PCs show inverse associa-
tions [49]. In our study, 3 out of 4 PCs that were positively 
associated with function markers contained polyunsatu-
rated fatty acids (Fig. 2). Although studies confirm inverse 
associations of lyso-PCs and PCs with HF or coronary 
artery disease, there is controversy about the biological 
mechanisms for these protective effects that are not yet 
understood [50]. One suggested pathway by Ward-Cavi-
ness et al. is that lower lyso-PC concentrations lead to 
increased inflammation and oxidative stress. Due to lyso-
PCs influencing the synthesis of antioxidative enzymes, 
lower concentrations of lyso-PC result in higher oxidative 

stress and enhance inflammation [13]. This mechanism 
might explain involvement of lyso-PCs to endothelial 
function. Another pathway suggests that lower 1,2-dia-
cylglycerol (DAG) concentrations, derivatized with dif-
ferent fatty acids including phosphatidylcholines, are 
associated with cardiomyopathy in an animal model [51]. 
Lower 1,2-DAG might lead to a decreased activation of 
phosphokinase C, resulting in lower calcium channel 
activity and therefore in reduced contractility. This path-
way would support our findings since higher concentra-
tions of glycerophospholipids were associated with an 
improved contractile function as represented as stroke 
volume. Hydrolysis of phosphatidylcholine splits into 
lyso-PC and one fatty acid by phospholipase A2 (PLA2), 
which is also found in cardiac tissue. In an in vitro study 
of cardiac myoblast H9c2 cells, lyso-PC was found to 
increase arachidonate and Ca2+ concentrations leading to 
an activation of phosphokinase C. This, in turn, activated 
intracellular PLA2 [52]. Another study [53] tackled the 
paradoxical findings for lyso-PCs, suggesting a feedback 
loop of lyso-PCs inhibiting plasma secretory phospholi-
pase A2 (sPLA2) as its own product in the context of sep-
sis. It is suggested that higher lyso-PCs inhibit sPLA2 and 
therefore prevent further pro-inflammatory processes 
induced by sPLA2. Associations of lysoPCs and sphingo-
myelins with incident coronary heart disease have been 
hypothesized to be partly mediated through traditional 
cardiovascular risk factors and markers of inflammation 
and oxidative stress, but there was no evidence for cau-
sality [54]. In conclusion, although the results from our 
study support the positive association between favorable 
cardiac function and circulating glycerophospholipids, 
more studies are needed to further evaluate their suitabil-
ity as biomarkers of alterations in cardiac function before 
the onset of CVD.

Amino acids and hypertrophy / heart failure
The amino acid alanine was associated with five differ-
ent LV wall segments and the mean LV wall thickness in 
our analysis. Increased alanine concentrations predict 
major adverse cardiac events in high-risk individuals 
free of HF [7]. In contrast, lower concentrations of ala-
nine have been found to predict major adverse events in 
HF patients [55]. The latter is partly consistent with our 
finding of lower alanine concentrations to be associated 
with increased LV wall thickness, indicating precur-
sors of left ventricular hypertrophy (LVH). Pathological 
LVH is the consequence of chronic pressure overload 
as myocardial growth stimuli and neurohormones are 
activated leading to heart failure or cardiac events [56]. 
A study assessing the transition from LVH to HF in rats 
found decreased alanine in rats with HF and an impact of 
the pentose phosphate pathway [57]. Alanine is further-
more suggested as cardioprotective as part of carnosine 
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in combination with histidine [58] acting as antioxidant 
[59]. Although alanine has been found to be prognostic 
for cardiac events [7], it is still unclear if it is also pre-
dictive of early alterations in morphology and function, 
and the causality of the association still needs to be 
investigated.

Our results extend the current evidence on the role 
of metabolomics in CVD by illustrating that serum 
metabolite signatures reflect not only overt CVD, but 
already early alterations of cardiac function and mor-
phology. Interestingly, we have not found any associa-
tions with carotid plaque burden. We hypothesize that 
the plaque burden was not high enough at this sample 
size to observe alterations in serum metabolites. Metabo-
lite profiles within different plaque types, e.g. stable and 
vulnerable plaques, have been shown to exhibit differ-
ent characteristics [60], but is still unclear how this can 
be reflected by circulating metabolites in serum. Another 
limitation of the current study is that there were no mea-
sures of coronary artery calcification. Thus, future stud-
ies with larger sample sizes are needed to investigate the 
relation between plaques in preclinical condition and 
metabolites. This is especially relevant since a main path-
way that causally relates increased amino acids with CVD 
seems to work via plaque rupture and thrombus forma-
tion, mediated via glucose-regulating and neuroendo-
crine pathways [61].

The small sample size limited us further to conduct sex- 
or age-stratified analyses or to include interaction terms 
in the models. It is important to note that our sample, 
although originating from a population-based cohort, 
represents a selected subsample that already underwent 
two follow-up visits, and had no CVD or contraindica-
tions to MRI. Generalizability to the general population 
is therefore somewhat limited. The use of an unspecific 
background set in the pathway analyses is an additional 
limitation, which should be taken into account by future 
studies assessing enriched pathways as the type one error 
rate can increase. Moreover, although we have used an 
established targeted metabolite panel, it is by no means 
comprehensive, and it will be crucial to repeat our analy-
ses on further metabolite panels. For example, our panel 
did not provide extensive coverage of polar metabolites, 
which would be interesting to study since they constitute 
the majority of metabolites in some interesting pathways, 
e.g. central carbon metabolism.

Although our findings are an important contribution 
to our understanding of disease pathways and a potential 
stepstone for initiating statistical models for risk stratifi-
cation, it is crucial to note that in this study we did not 
evaluate if metabolites are predictive of cardiac function 
or morphology. Our current cross-sectional sample is not 
adequate to set up a meaningful prediction model, since 
for prediction of subclinical disease parameters we would 

need larger samples due to (1) the smaller effect sizes 
in subclinical vs. overt CVD, (2) the need for separate 
training and validation data. Thus, we do not make any 
claims about the predictive ability of serum metabolites 
on cardiac function and morphology, or causal relations 
between them. To assess causality, longitudinal data as 
well as appropriate statistical tools like Mendelian Ran-
domization are needed and should be investigated in 
future studies.

Conclusion
In conclusion, our findings illustrate that changes in 
metabolites occur at early subclinical disease stages 
and provide evidence on underlying pathophysiologi-
cal mechanisms. However, more prospective studies are 
needed to assess the ability of serum metabolites for early 
prediction of individuals at risk.
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