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Abstract

IMPORTANCE The association between short-term exposure to air pollution and mortality has been
widely documented worldwide; however, few studies have applied causal modeling approaches to
account for unmeasured confounders that vary across time and space.

OBJECTIVE To estimate the association between short-term changes in fine particulate matter
(PM2.5) and nitrogen dioxide (NO2) concentrations and changes in daily all-cause mortality rates
using a causal modeling approach.

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study used air pollution and mortality
data from Jiangsu, China; California; central-southern Italy; and Germany with interactive fixed-
effects models to control for both measured and unmeasured spatiotemporal confounders. A total
of 8 963 352 deaths in these 4 regions from January 1, 2015, to December 31, 2019, were included in
the study. Data were analyzed from June 1, 2021, to October 30, 2023.

EXPOSURE Day-to-day changes in county- or municipality-level mean PM2.5 and NO2

concentrations.

MAIN OUTCOMES AND MEASURES Day-to-day changes in county- or municipality-level all-cause
mortality rates.

RESULTS Among the 8 963 352 deaths in the 4 study regions, a 10-μg/m3 increase in daily PM2.5

concentration was associated with an increase in daily all-cause deaths per 100 000 people of 0.01
(95% CI, 0.001-0.01) in Jiangsu, 0.03 (95% CI, 0.004-0.05) in California, 0.10 (95% CI, 0.07-0.14) in
central-southern Italy, and 0.04 (95% CI, 0.02- 0.05) in Germany. The corresponding increases in
mortality rates for a 10-μg/m3 increase in NO2 concentration were 0.04 (95% CI, 0.03-0.05) in
Jiangsu, 0.03 (95% CI, 0.01-0.04) in California, 0.10 (95% CI, 0.05-0.15) in central-southern Italy, and
0.05 (95% CI, 0.04-0.06) in Germany. Significant effect modifications by age were observed in all
regions, by sex in Germany (eg, 0.05 [95% CI, 0.03-0.06] for females in the single-pollutant model of
PM2.5), and by urbanicity in Jiangsu (0.07 [95% CI, 0.04-0.10] for rural counties in the 2-pollutant
model of NO2).

CONCLUSIONS AND RELEVANCE The findings of this cross-sectional study contribute to the
growing body of evidence that increases in short-term exposures to PM2.5 and NO2 may be
associated with increases in all-cause mortality rates. The interactive fixed-effects model, which
controls for unmeasured spatial and temporal confounders, including unmeasured time-varying
confounders in different spatial units, can be used to estimate associations between changes in
short-term exposure to air pollution and changes in health outcomes.
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Introduction

The association between short-term exposure to air pollution and mortality has been widely
documented worldwide.1-4 Most previous epidemiological studies have investigated the effects of
short-term exposure to air pollution on mortality using time-series analyses.1-3 By contrasting each
spatial unit to itself over time, time-series studies avoid the confounding effects of spatial and time-
invariant variables by design; however, results from time-series analyses may be biased due to
unmeasured temporal confounding.5-7 Alternative causal modeling approaches that account for
unmeasured time-varying confounders in different spatial units offer an attractive alternative for
studying the association between short-term air pollution exposure and mortality.

Fixed-effects models, particularly 2-way fixed-effects (TWFE) models, have been widely applied
for causal inference in econometrics and other social sciences.8 In the field of air pollution
epidemiology, TWFE models have been recently applied, first in studies of long-term air pollution
exposure9-11 and most recently to estimate the effects of short-term fine particulate matter (PM2.5)
exposure on hospitalizations.7 By introducing indicators for each spatial unit and each time unit,
TWFE models can control for all spatial confounders that vary across space but not across the study
timescales (eg, geographical and socioeconomic factors) and all temporal confounders that vary by
time but not space (eg, day of week and seasonality).9,12 However, this approach assumes no
unmeasured confounders that display different temporal variations across spatial units (time-varying
spatial unit effects), an assumption that is often violated.13 To relax this assumption of the TWFE
model, the more flexible interactive fixed-effects (IFE) model was developed. By decomposing the
unmeasured time-varying spatial unit–specific confounders into heterogeneous effects of common
trends, the IFE model can potentially control for such confounders in the regression.13-15 To the best
of our knowledge, this study is the first application of the IFE approach to model the causal effects
of short-term exposure to air pollution on mortality.

Substantial heterogeneity in the association between air pollution concentrations and daily
mortality exists across countries and regions,1-3 especially between developed and developing
countries and between regions with low and high levels of pollution.1,3 A multicountry approach has
the potential to comprehensively describe the effects of air pollution in regions with different air
pollution levels and socioeconomic statuses. This study focused on 4 study regions: Jiangsu
Province, China (hereinafter Jiangsu); California; central-southern Italy; and Germany. We specifically
examined PM2.5 and nitrogen dioxide (NO2) as 2 major traffic- and/or health-related air pollutants.
Using data from these 4 regions from January 1, 2015, to December 31, 2019, we estimated the
association between changes in daily PM2.5 and NO2 concentrations and changes in daily mortality
rates using an IFE approach. Potential effect modifications by sex, age, and urbanicity were further
examined.

Methods

This cross-sectional study used anonymized daily county- or municipality-level mortality records and
was approved by the Yale Institutional Review Board. The need for informed consent was waived
owing to the use of publicly available deidentfied data. This study followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Mortality Rate
We collected daily all-cause mortality data from 2015 to 2019 by sex and age in each spatial unit
(county in Jiangsu, California, and Germany and municipality in central-southern Italy) of each region
(eAppendix 1 in Supplement 1). Based on the population size of each spatial unit (eAppendix 1 in
Supplement 1), we calculated daily spatial unit–level all-cause mortality rates for the whole
population and population subgroups by sex (male and female) and age (0-74 and �75 years). In
central-southern Italy, to have a sufficient number of deaths in each included municipality, we
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included in the analysis only the 669 municipalities with a population of 10 000 or greater of a total
of 3250 municipalities. This population cutoff was only applied to central-southern Italy because all
counties in the other 3 regions satisfied this population criterion.

Air Pollution and Meteorological Variables
Daily concentrations of PM2.5 and NO2 at 1 × 1-km2 resolution from 2015 to 2019 were estimated by
spatiotemporal models for Jiangsu,16,17 central-southern Italy,18,19 and Germany20,21 (eAppendix 2 in
Supplement 1). In brief, the models incorporated variables from satellite observations, chemical
transport model simulations, land use and/or land cover characteristics, and meteorological data as
predictive factors and applied advanced machine learning algorithms to model daily air pollution
concentrations. The modeled air pollution data were aggregated to daily county- or municipality-
level concentrations using the geographic mean and matched to the mortality data.

To the best of our knowledge, there was no available high-resolution daily spatiotemporal
model for PM2.5 and NO2 covering 2015 to 2019 for California at the time of our study, so we relied on
the records of air quality monitoring sites managed by the US Environmental Protection Agency Air
Quality System.22 The 32 California counties with monitoring sites for both PM2.5 and NO2 were
included in the analysis (of 58 counties), including data from 108 sites for PM2.5 and 115 sites for NO2.
For counties in California with multiple monitoring sites, we calculated county-level mean air
pollution concentrations and used these in our analyses.

Hourly air temperature data at 0.1° × 0.1° resolution were extracted from the ERA5-Land
reanalysis dataset23 for all 4 regions. Like the air pollution data, we calculated the mean air
temperature data for each day in each spatial unit. We also calculated the daily dew point
temperature and relative humidity in each region (eAppendix 3 in Supplement 1).

Statistical Analysis
Data were analyzed from June 1, 2021, to October 30, 2023. The IFE model assumes that the
unmeasured spatial unit effects that change over time have a factor structure and that all regressors
and factors are stationary. Additionally, the IFE model allows a weak serial and cross-sectional
correlation.14 In our study, the IFE model was expressed as Δmortality ratei,t = μ + αi + βΔair
pollutioni,t + ns(Δtemperaturei,t, df = 5) + vi,t + εi,t, where νi,t = Σd

l = 1λi,lfl,t, the outcome variable
Δmortality ratei,t is the change in all-cause mortality rate from day t – 1 to day t in spatial unit i, and
Δair pollutioni,t is the change in mean concentration of PM2.5 or NO2 from day t – 1 to day t in spatial
unit i. The day-to-day change in air temperature on the same lag day as the air pollution variable
(Δtemperaturei,t) was included as a flexible natural cubic spline with 5 df. First-order differences of
the observed time series were taken to remove the long-term and seasonal trend of mortality rate, air
pollution, and meteorological factors and to meet the stationarity and normality assumptions of the
model. The αi refers to time-invariant spatial unit effects, which can help control for the effects of
spatial confounders that do not vary over time. The μ is the intercept; εi,t is the error term; and vi,t is
the unmeasured time-varying spatial unit effect, which is decomposed into d common time-varying
factors fl,t, with corresponding unobserved spatial unit–level loading parameters λi,l.

24,25 The number
of factors (d) was selected following the criteria proposed by Bai and Ng24 (eAppendix 4 in
Supplement 1). The coefficient of changes in air pollution (β) represents the expected change in the
daily mortality rate for each unit change in the daily air pollution level. Heteroskedasticity and
autocorrelation-consistent standard errors (SEs) were calculated to account for potential
heteroskedasticity and autocorrelation in the error terms. The sample R code for our main IFE model
can be found in eAppendix 5 in Supplement 1.

To account for the potential confounding effects from the other air pollutant, we also used
2-pollutant models in which both PM2.5 and NO2 were included. We explored the lag pattern in the
associations of PM2.5 and NO2 changes with changes in daily mortality rate on the current day and the
previous 2 days using both single lag days (lag0 to lag2) and cumulative lag days (lag01 to lag02),
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which was commonly used in previous studies.1-3 The IFE analyses were performed with R software,
version 4.1.3 (R Project for Statistical Computing) using the package phtt.25

We conducted subgroup analyses to estimate potential differences in the effects of air pollution
according to sex (male and female) and age (0-74 years and �75 years). In addition, we performed
stratified analyses to examine the potential effect modification by urbanicity (urban and rural). The
classification criteria of urban and rural areas in each study region are described in eAppendix 6 in
Supplement 1. We tested the statistical difference in effect estimates between groups by calculating
the z score as (Q̂1 − Q̂2)/�( SÊ1)

2 + (SÊ2)2, where Q̂1 and Q̂2 are the estimates and SÊ1 and SÊ2 are
their respective standard errors.26 Statistical significance was evaluated at P < .05 (2-sided test).

To evaluate the model specification, we performed a randomization test in which we
randomized the PM2.5 or NO2 concentration 2000 times across all 1825 days in each spatial unit.
Such a randomization test is widely applied to detect temporal dependence in panel models due to
model misspecification.27 In addition, we performed several sensitivity analyses to test the
robustness of our results: (1) we additionally adjusted for relative humidity or dew point temperature
in the model; (2) we applied a traditional fixed-effects model, which does not consider unmeasured
time-varying spatial unit effects; and (3) we used 4 df or 6 df instead of 5 df in the natural cubic spline
of air temperature. Furthermore, we compared the results from the IFE model with those from a
traditional 2-stage time-series model (eAppendix 7 in Supplement 1).2,3

Results

Description of Mortality Rate and Air Pollution Exposure
This study covered a total of 8 963 352 deaths, including 2 633 920 in Jiangsu (45.0% female and
55.0% male; 60.0% aged �75 years), 1 237 862 in California (48.3% female and 51.7% male; 58.7%
aged �75 years), 1 227 482 in central-southern Italy (51.8% female and 48.2% male; 73.5% aged �75
years), and 3 864 088 in Germany (52.1% female and 47.9% male; 72.5% aged �75 years) from 2015
to 2019. The descriptive statistics of daily mortality rate, PM2.5 and NO2 concentrations, and air
temperature in each region are presented in Table 1. No data were missing in this study. The mean
(SD) spatial unit–level PM2.5 and NO2 concentrations were the highest in Jiangsu (PM2.5, 50.8 [27.8]
μg/m3; NO2, 32.2 [1.28] μg/m3). The mean (SD) PM2.5 concentration was the lowest in California (9.9
[9.2] μg/m3), and the mean (SD) NO2 concentration was the lowest in Germany (12.2 [7.8] μg/m3)
(Table 1). The spatial distribution of PM2.5 and NO2 in the 4 study regions is displayed in Figure 1.

Association Between Short-Term Air Pollution Exposure and Mortality Rate
Figure 2 shows the estimated associations between changes in daily PM2.5 and NO2 concentrations
and changes in daily mortality rate (per 100 000 people) from both single- and 2-pollutant models in
each region. In single-pollutant models, increases in PM2.5 and NO2 concentrations were associated
with increases in mortality rates in all 4 study regions. We define the main lag for each pollutant in
each region as the lag with the greatest effect size from the single-pollutant model; the estimated
coefficients for all lags are presented in eTable 1 in Supplement 1. In the single-pollutant models for
PM2.5 in Jiangsu and Germany, the greatest effect estimates were observed for lag01; a 10-μg/m3

increase in 2-day mean concentration of PM2.5 was associated with increases in daily all-cause deaths
per 100 000 people of 0.01 (95% CI, 0.001-0.01) in Jiangsu and 0.04 (95% CI, 0.02-0.05) in
Germany. In California and central-southern Italy, the highest estimate for PM2.5 in the single-
pollutant model was found for lag02; a 10-μg/m3 increase in 3-day mean PM2.5 concentrations was
associated with increases in daily all-cause deaths per 100 000 people of 0.03 (95% CI, 0.004-0.05)
in California and 0.10 (95% CI, 0.07-0.14) in central-southern Italy. In the single-pollutant models, the
largest effect estimates for a 10-μg/m3 increase in NO2 concentration were 0.04 (95% CI, 0.03-0.05)
deaths per 100 000 people in Jiangsu (lag02), 0.03 (95% CI, 0.01-0.04) deaths per 100 000 people
in California (lag02), 0.10 (95% CI, 0.05-0.15) deaths per 100 000 people in central-southern Italy
(lag02), and 0.05 (95% CI, 0.04-0.06) deaths per 100 000 people in Germany (lag01). The results
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from 2-pollutant models were generally consistent with those from single-pollutant models, though
the estimated coefficients were relatively smaller (Figure 2 and eTable 1 in Supplement 1).

Effect Modification by Sex, Age, and Urbanicity
We used the lags with the largest effect sizes in each region to examine potential effect modification.
In subgroup analyses by sex, we found a significantly larger effect size in the association between

Table 1. Descriptive Statistics of Daily County- or Municipality-Level Mortality Rate and Environmental Data,
2015 to 2019

Study region Mean (SD) Median (IQR) [range]
Jiangsu, Chinaa

All-cause mortality rateb

All-group 1.9 (0.7) 1.8 (0.9) [0.0 to 11.2]

Male 2.0 (1.0) 1.9 (1.2) [0.0 to 11.4]

Female 1.7 (0.9) 1.6 (1.1) [0.0 to 13.5]

Aged 0-74 y 0.8 (0.4) 0.7 (0.5) [0.0 to 5.9]

Aged ≥75 26.7 (13.5) 24.6 (16.1) [0.0 to 210.7]

Environmental factors

PM2.5 concentration, μg/m3 50.8 (27.8) 44.0 (31.8) [6.0 to 254.4]

NO2 concentration, μg/m3 32.2 (12.8) 29.8 (15.1) [6.6 to 122.5]

Air temperature, °C 16.1 (9.1) 17.1 (15.7) [−10.0 to 34.8]

Californiac

All-cause mortality rateb

All-group 2.0 (0.8) 1.9 (0.8) [0.0 to 9.5]

Male 2.0 (1.1) 1.9 (1.1) [0.0 to 14.7]

Female 1.9 (1.1) 1.8 (1.0) [0.0 to 10.4]

Aged 0-74 y 0.9 (0.6) 0.8 (0.6) [0.0 to 6.7]

Aged ≥75 y 19.8 (10.0) 18.7 (10.4) [0.0 to 108.5]

Environmental factors

PM2.5 concentration, μg/m3 9.9 (9.2) 8.0 (6.4) [0.0 to 411.7]

NO2 concentration, μg/m3 15.7 (11.4) 12.8 (13.6) [0.0 to 108.2]

Air temperature, °C 16.3 (7.0) 15.7 (10.1) [−5.0 to 40.0]

Central-southern Italyd

All-cause mortality rateb

All-group 2.7 (3.9) 0.0 (4.7) [0.0 to 69.9]

Male 2.7 (5.5) 0.0 (3.4) [0.0 to 106.0]

Female 2.7 (5.3) 0.0 (3.5) [0.0 to 79.0]

Aged 0-74 y 0.8 (2.2) 0.0 (0.0) [0.0 to 43.6]

Aged ≥75 y 19.2 (32.7) 0.0 (31.6) [0.0 to 645.7]

Environmental factors

PM2.5 concentration, μg/m3 12.6 (6.0) 11.3 (5.7) [1.3 to 99.3]

NO2 concentration, μg/m3 12.4 (7.3) 10.1 (7.6) [1.8 to 81.2]

Air temperature, °C 15.9 (6.8) 15.5 (10.6) [−12.7 to 35.3]

Germanye

All-cause mortality rateb

All-group 2.6 (1.6) 2.4 (1.9) [NA]

Male 2.5 (2.1) 2.2 (2.5) [NA]

Female 2.7 (2.2) 2.4 (2.5) [NA]

Aged 0-74 y 0.8 (0.9) 0.7 (1.2) [NA]

Aged ≥75 y 16.3 (10.9) 15.3 (13.3) [NA]

Environmental factors

PM2.5 concentration, μg/m3 10.0 (7.1) 8.2 (6.8) [0.5 to 141.7]

NO2 concentration, μg/m3 12.2 (7.8) 10.1 (8.8) [0.6 to 83.9]

Air temperature, °C 10.2 (7.4) 10.0 (11.9) [−17.9 to 31.8]

Abbreviations: NA, not available; NO2, nitrogen
dioxide; PM2.5, fine particulate matter.
a Includes 82 counties with a total population of

77 955 026 persons.
b Reported per 100 000 population.
c Includes the 32 out of 58 counties with

Environmental Protection Agency air quality
monitoring stations, with a total population of
37 290 255.

d Includes 669 of 3250 municipalities with a
population of 10 000 or greater, with a total
population of 24 545 330.

e Includes 401 counties with a total population of
82 735 005. Minimum and maximum values of
mortality rates in Germany were not allowed to be
released according to the information protection
policies of the German Statistical Offices.
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changes in daily PM2.5 concentration and changes in daily mortality rate among females compared
with males in Germany in both single-pollutant (0.05 [95% CI, 0.03-0.06] deaths per 100 000
people; P = .03) and 2-pollutant (0.04 [95% CI, 0.02-0.05] deaths per 100 000 people; P = .01)
models (Table 2). No statistically significant differences between sexes were observed for PM2.5 in
other regions or for NO2.

In subgroup analyses by age, changes in daily PM2.5 concentration and changes in daily
mortality rate were found to be significantly greater among people 75 years and older than among
those aged 0 to 74 years in central-southern Italy for the single-pollutant model (1.00 [95% CI, 0.65-
1.35] deaths per 100 000 people; P < .001) and the 2-pollutant model (0.90 [95% CI, 0.46-1.33
deaths per 100 000 people; P < .001) and in Germany for the single-pollutant model (0.21 [95% CI,
0.13-0.29] deaths per 100 000 people; P < .001) and the 2-pollutant model (0.11 [95% CI, 0.02-
0.20] deaths per 100 000 people; P = .03). Consistently, for NO2, the association was greater among
people 75 years and older compared with those aged 0 to 74 years in all 4 regions in single-pollutant
models (0.46 [95% CI, 0.23-0.69] deaths per 100 000 people in Jiangsu; 0.40 [95% CI, 0.19-0.61]
deaths per 100 000 people in California; 0.98 [95% CI, 0.45-1.51] deaths per 100 000 people in
central-southern Italy; and 0.31 [95% CI, 0.22-0.40] deaths per 100 000 people in Germany)
(P < .001 for all) and in Jiangsu (0.61 [95% CI, 0.30-0.91] deaths per 100 000 people), California
(0.39 [95% CI, 0.17-0.60] deaths per 100 000 people), and Germany (0.26 [95% CI, 0.17-0.36]
deaths per 100 000 people) in 2-pollutant models (P < .001 for all) (Table 2).

Figure 1. Daily Mean Fine Particulate Matter (PM2.5) and Nitrogen Dioxide (NO2) Concentrations in Each Spatial Unit in All Study Regions

PM2.5 concentrationsA

NO2 concentrationsB

5.6-10.0 μg/m3 10.1-15.0 μg/m3 15.1-25.0 μg/m3 25.1-50.0 μg/m3 50.1-67.0 μg/m3

4.1-8.5 μg/m3 8.6-10.0 μg/m3 10.1-15.0 μg/m3 15.1-30.0 μg/m3 30.1-46.8 μg/m3

Jiangsu, China California Central-southern Italy Germany

Jiangsu, China California Central-southern Italy Germany

The blank areas in California represent counties that lack air quality monitoring stations for both PM2.5 and NO2; the blank areas in central-southern Italy represent municipalities with
a population of less than 10 000 individuals.
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In stratified analyses by urbanicity, we found no statistically significant differences in the
association between changes in daily PM2.5 or NO2 concentration and changes in daily mortality rate
between urban and rural areas except for NO2 in Jiangsu, where the difference was significant in rural
compared with urban areas in the 2-pollutant model (0.07 [95% CI, 0.04-0.10] deaths per 100 000
people; P = .02) (Figure 3 and eTable 2 in Supplement 1).

Randomization Test, Sensitivity Analysis, and Comparative Analysis
As shown in eFigure 1 in Supplement 1, the distributions of the model coefficients when the changes
in PM2.5 or NO2 concentrations were randomly assigned 2000 times across days were centered at
approximately 0 in all 4 regions, and the coefficient estimates from our main model fell substantially
outside these distributions in all study regions. This indicates that the estimated associations
between air pollution and mortality in our study were unlikely driven by temporal dependence due
to a misspecification of the model.

Sensitivity analyses showed that our results remained robust when additionally adjusting for
dew point temperature and relative humidity using traditional fixed-effects models and alternative
degrees of freedom for air temperature (eTable 3 in Supplement 1). The estimated unmeasured time-
varying spatial unit effects in the main IFE model for the main lag in Jiangsu and California are
visualized in eFigure 2 in Supplement 1. We observed 1 unmeasured factor that displayed different
temporal variations across spatial units in Jiangsu and 5 in California. However, these factors may not

Figure 2. Estimated Change in Daily Mortality Rate Associated With a 10-μg/m3 Increase in Fine Particulate Matter (PM2.5) or Nitrogen Dioxide (NO2) Concentration
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Single- and 2-pollutant models on different lag days in each study region are shown. The error bars represent the 95% CIs. Lag0 to lag2 represent single lag days; lag01 to lag02,
cumulative lag days.
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be directly interpretable because they are, at best, linear transformations of the true factors. No such
factors were detected by the IFE model in central-southern Italy and Germany.

The results from the traditional 2-stage time-series analysis are shown in eFigure 3 in
Supplement 1. While the estimates from the IFE model and those from the time-series analysis should
not be directly compared because of their different interpretations, the positive estimates from each
analysis reinforce the findings from the IFE model. Both suggested that short-term exposure to PM2.5

or NO2 was associated with an increase in all-cause mortality.

Discussion

Using the IFE model, a causal modeling approach, we found that short-term increases in PM2.5 and
NO2 concentrations were associated with increases in daily mortality rate in Jiangsu, California,
central-southern Italy, and Germany. The IFE model has the advantage of controlling for unobserved
confounding factors that vary over time within each spatial unit. This study showcases the

Table 2. Estimated Changes in Daily Mortality Rate Associated With a 10-μg/m3 Increase in PM2.5 and NO2 Concentrations by Sex and Agea

Subgroup

Single-pollutant model Two-pollutant model

PM2.5 NO2 PM2.5 NO2

Estimated changes in daily
mortality rate (95% CI)b P valuec

Estimated changes in daily
mortality rate (95% CI)b P valuec

Estimated changes in daily
mortality rate (95% CI)b P valuec

Estimated changes in daily
mortality rate (95% CI)b P valuec

Jiangsu, China

Sex

Male 0.01 (0.003 to 0.01)
.51

0.04 (0.03 to 0.05)
.83

−0.0006 (−0.01 to 0.004)
.31

0.05 (0.03 to 0.06)
.39

Female 0.01 (0.001 to 0.01) 0.04 (0.03 to 0.05) −0.004 (−0.01 to 0.0004) 0.05 (0.04 to 0.07)

Age, y

0-74 0.008 (−0.0009 to 0.002)
.10

0.01 (0.01 to 0.02)
<.001

−0.002 (−0.004 to 0.00006)
.78

0.02 (0.01 to 0.02)
<.001

≥75 0.06 (−0.01 to 0.13) 0.46 (0.23 to 0.69) −0.01 (−0.10 to 0.07) 0.61 (0.30 to 0.91)

California

Sex

Male 0.03 (−0.003 to 0.06)
.79

0.02 (−0.01 to 0.04)
.25

0.02 (−0.01 to 0.05)
.94

0.01 (−0.01 to 0.04)
.27

Female 0.03 (0.003 to 0.06) 0.04 (0.01 to 0.06) 0.02 (−0.01 to 0.05) 0.03 (0.01 to 0.05)

Age, y

0-74 0.02 (0.01 to 0.03)
.20

0.004 (−0.004 to 0.01)
<.001

0.02 (0.01 to 0.03)
.78

−0.0009 (−0.01 to 0.01)
<.001

≥75 0.20 (−0.08 to 0.47) 0.40 (0.19 to 0.61) 0.06 (−0.22 to 0.34) 0.39 (0.17 to 0.60)

Central-southern Italy

Sex

Male 0.09 (0.03 to 0.14)
.37

0.08 (0.01 to 0.16)
.50

0.08 (0.01 to 0.14)
.55

0.02 (−0.07 to 0.11)
.83

Female 0.12 (0.07 to 0.17) 0.12 (0.05 to 0.19) 0.11 (0.04 to 0.17) 0.04 (−0.06 to 0.13)

Age, y

0-74 0.01 (−0.01 to 0.04)
<.001

0.03 (−0.0006 to 0.06)
<.001

0.002 (−0.02 to 0.03)
<.001

0.03 (−0.01 to 0.07)
.45

≥75 1.00 (0.65 to 1.35) 0.98 (0.45 to 1.51) 0.90 (0.46 to 1.33) 0.28 (−0.37 to 0.93)

Germany

Sex

Male 0.02 (0.01 to 0.04)
.03

0.05 (0.04 to 0.07)
.79

0.004 (−0.01 to 0.02)
.01

0.05 (0.03 to 0.07)
.19

Female 0.05 (0.03 to 0.06) 0.05 (0.03 to 0.07) 0.04 (0.02 to 0.05) 0.03 (0.01 to 0.05)

Age, y

0-74 0.01 (0.01 to 0.02)
<.001

0.02 (0.01 to 0.02)
<.001

0.01 (0.001 to 0.01)
.03

0.01 (0.01 to 0.02)
<.001

≥75 0.21 (0.13 to 0.29) 0.31 (0.22 to 0.40) 0.11 (0.02 to 0.20) 0.26 (0.17 to 0.36)

Abbreviations: NO2, nitrogen dioxide; PM2.5, fine particulate matter.
a In subgroup analyses, we used the main lag day (lag01 to lag02 represent cumulative lag days) for each pollutant in each region (Jiangsu: PM2.5 lag01, NO2 lag02; California: PM2.5

lag02, NO2 lag02; central-southern Italy: PM2.5 lag02, NO2 lag02; and Germany: PM2.5 lag01, NO2 lag01).
b Calculated per 100 000 population.
c We tested the statistical differences in effect estimates between males and females and between those aged 0 to 74 years and those 75 years or older based on the z score

calculated using the coefficients and standard errors for different groups.
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applicability of the IFE approach across diverse regions, including China, the US, and Europe,
encompassing varying levels of air pollution concentrations and socioeconomic statuses.

Our estimated associations between short-term changes in air pollution and changes in daily
mortality rates in 4 countries are generally consistent with findings from previous studies using time-
series analysis.1-3 For example, in the multicountry and multicity studies,2,3 a 10-μg/m3 increase in
PM2.5 concentration on lag01 or in NO2 concentration on lag1 was found to be associated with a
0.68% or 0.46% increase in daily all-cause mortality, respectively. In a study based on 272 cities in
China, a 10-μg/m3 increase in the 2-day mean NO2 concentration was associated with an increase of
0.9% in daily total nonaccidental mortality.1 However, the estimates of our study cannot be directly
compared with those from time-series analyses due to different interpretations of the model
coefficients. The coefficient in our model estimates the change in the daily mortality rate for each
10-μg/m3 change in the daily air pollution level; the coefficient does not directly provide information
about the association between the absolute level of air pollution and the absolute level of mortality.
Nevertheless, the consistency between the results from traditional time-series analyses and the
novel IFE approach provides robust support for an association between short-term exposure to
PM2.5 and NO2 and mortality.

Figure 3. Estimated Change in Daily Mortality Rate Associated With a 10-μg/m3 Increase in Fine Particulate Matter (PM2.5) or Nitrogen Dioxide (NO2)
Concentration in Urban and Rural Areas
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lag02; Germany: PM2.5 lag01, NO2 lag01). We tested the statistical differences in effect estimates between urban and rural areas by calculating P values based on the z score derived
from the coefficients and SEs for different subgroups. P values were noted only for statistically significant between-group differences.
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In addition, the results from our main IFE models were similar to those from traditional fixed-effects
models, which do not take into account unmeasured time-varying effects at the spatial unit level
(eTable 3 in Supplement 1). This suggests that even though we observed such unmeasured spatial unit–
specific temporal confounding (as seen in the model for the main lags in Jiangsu and California)
(eFigure 2 in Supplement 1), its role in the estimated air pollution–mortality association was minimal. This
observation further bolsters our confidence in traditional time-series analysis. Despite its inherent
limitations in adjusting for unmeasured temporal confounding, the results it produces remain valid.

Although short-term exposure to NO2 has been linked to mortality and morbidity outcomes by
numerous epidemiological studies,28,29 questions remain about the causal nature of this
association.30-32 As stated in the Integrated Science Assessment by the US Environmental Protection
Agency, current evidence for short-term NO2 exposure is “suggestive of, but not sufficient to infer, a
causal relationship.”30 Because NO2 and other combustion-derived air pollutants such as PM2.5 can
be coemitted from traffic and other sources,33,34 it has been speculated that NO2 only serves as a
surrogate for other traffic-related air pollutants.34-36 This uncertainty not only calls into question the
weight of epidemiological evidence on the health effects of NO2 but also complicates policy making
for air quality regulations.34 In our study, the NO2 association remained after adjustment for PM2.5 in
the 2-pollutant model in all 4 study regions, suggesting that NO2 may have its own independent
effect on mortality that is not explained by PM2.5 levels.

We found substantial effect modification by age in all study regions. The effect modification of
associations between short-term changes in air pollution and changes in daily mortality rate was
significantly larger among people 75 years and older than among those aged 0 to 74 years. This
association among older people reflects both the high mortality rate (Table 1) and the high
susceptibility in the older population as found in previous studies.37

This study encompasses regions from 4 distinct countries spanning different air pollution levels
and diverse socioeconomic backgrounds. Substantial heterogeneity in the associations between
short-term changes in air pollution and changes in daily mortality rate was observed across study
regions. These heterogeneous results could be explained by different chemical compositions of
particulate matter, population characteristics (such as age structure) affecting susceptibility, regional
climate, socioeconomic factors, and other factors.38 In addition, in central-southern Italy, the spatial
unit was the municipality, which was much smaller than the counties used in other study regions. This
resulted in fewer daily mortality counts in each spatial unit and, consequently, greater uncertainties
in central-southern Italy. The difference in spatial scale also introduced different degrees of exposure
measurement error; using larger spatial units such as counties might dilute the actual effects.

Limitations
This study has several limitations. First, using county- or municipality-level air pollution and mortality
data, we were unable to capture variations within individual spatial units, which may be particularly
pronounced in larger counties or municipalities. Second, the air pollution exposures in Jiangsu,
central-southern Italy, and Germany were modeled and therefore subject to uncertainty. In
California, our reliance on records from air quality monitoring stations did not yield full spatial
coverage. Third, although the IFE model relaxed the assumptions of the traditional TWFE model, it
has its own assumptions, and violation of these assumptions might bias the results. In addition, we
assumed a linear association between air pollution and mortality, but this assumption may
oversimplify the actual relationship. Studies with finer spatial resolution, wider spatial coverage, and
more accurate exposure assessment are needed to further investigate the potentially nonlinear
causal relationship between short-term air pollution exposure and health outcomes.

Conclusions

In this cross-sectional study, after controlling for both measured and unmeasured spatiotemporal
confounders, we found that increases in short-term PM2.5 and NO2 concentrations were associated with
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increases in all-cause mortality rates. This study contributed to the growing body of evidence on the
potentially detrimental health effects of short-term PM2.5 and NO2 exposure. The IFE model can be used
to estimate associations between changes in short-term exposure to air pollution and changes in daily
health outcomes.
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