
Article https://doi.org/10.1038/s41467-024-46132-y

Genetic imputation of kidney transcriptome,
proteome and multi-omics illuminates new
blood pressure and hypertension targets

A list of authors and their affiliations appears at the end of the paper

Genetic mechanisms of blood pressure (BP) regulation remain poorly defined.
Using kidney-specific epigenomic annotations and 3D genome informationwe
generated and validated gene expression predictionmodels for the purpose of
transcriptome-wide association studies in 700 human kidneys. We identified
889 kidney genes associated with BP of which 399 were prioritised as con-
tributors to BP regulation. Imputation of kidney proteome andmicroRNAome
uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration
with plasma proteomics and metabolomics illuminated circulating levels of
myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream
effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We
showed that genetically determined reduction in renal expression may mimic
the effects of rare loss-of-function variants on kidney mRNA/protein and lead
to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation
(r = 0.81) in expression of protein-coding genes between cells harvested from
urine and the kidney highlighting a diagnostic potential of urinary cell tran-
scriptomics. We uncovered adenylyl cyclase activators as a repurposing
opportunity for hypertension and illustrated examples of BP-elevating effects
of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our
studies provide new biological insights into genetic regulation of BP with
potential to drive clinical translation in hypertension.

Persistently raised blood pressure (BP) (hypertension) is single most
important attributable risk factor for death globally1–3. BP is a heritable
trait4–6; previous studies uncovered ultra-rare7, low-frequency8–11 and
common12–23 genetic variants associated with BP and/or hypertension.
The mechanisms underpinning the role of ultra-rare variants in the
development of low/high BP is well-defined – almost all of them result
in alterations of sodium/water reabsorption in the kidney through
effect on target genes in the distal nephron and collecting duct7,24.
Several common genetic variants associated with BP in genome-wide
association studies (GWAS) also act through alterations of epigenetic
and transcriptional programmes operating in the kidney25,26 – anorgan
of “over-riding dominance” in the pathogenesis of hypertension27–30.
Indeed, our recent studies uncovered the identity of some of their

target genes and established causal connections between DNA-
methylation, expression and splicing of these genes and BP through
causal inference analyses25. However, for a majority of GWAS loci
associated with BP the effector genes have not been yet identified.
Thus, new strategies inclusive of previously unexplored “omics” layers
are needed to accelerate the BP gene discovery and fully characterise
the downstream molecular mechanisms and clinically measurable
consequences of these signals.

Here, using a collection of up to 700humankidneys25,31–34 andnew
computational algorithms embedded in three-dimensional (3D) con-
figuration of the genome and kidney epigenome, we uncover 6490
kidney genes with genetically imputable expression (~30.3% of kidney
transcriptome). We perform BP transcriptome-wide association
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studies (TWAS), Mendelian randomisation and fine-mapping of causal
gene sets (FOCUS) toprioritise kidney effector genes for BP regulation.
Through genetic imputation of the kidney microRNAome and pro-
teome we uncover the identity of renal miRNAs and proteins asso-
ciated with BP. Our computational drug repositioning analysis
demonstrates BP effects of the existing non-cardiovascular medica-
tions and highlight new drug repositioning opportunities for hyper-
tension. We also analyse urinary cell transcriptome to provide insights
into diagnostic tractability of BP kidney genes. Finally, we triangulate
outputs fromplasmaproteomics andmetabolomicswith kidneyTWAS
to yield new insights into pathways of blood pressure regulation.

Results
Prioritisation of human cell-types/tissues for relevance to blood
pressure through transcriptome-wide association studies
TWAS can not only shed light on the biological importance of cell-
types/tissues to a trait/disease but also uncover new and unexpected
tissue-disease associations, e.g. that of intestines to psychiatric
disorders35 or monocytes to Parkinson’s disease36.

We applied the elastic net method37 to predict the genetically
regulated component of gene expression across 49 human cell
types and tissues from numerically identical sets of individuals in
Genotype Tissue Expression (GTEx). We used an equal number of
samples (n = 65) across the panel of 49 tissues to maximise the
comparability of BP TWAS discovery rates across these tissues
accepting that this would be at the expense of the individual

discovery rates in tissues that have been down-sampled. After
quality control and a nested cross-validation we used S-PrediXcan
to estimate the mediating effects of gene expression levels in var-
ious GTEx tissues on systolic BP (SBP) and diastolic BP (DBP). In
brief, we used the eQTL data for 25,332 human genes across 49GTEx
tissues and summary statistics for 7,088,121 and 7,160,657 SNPs
from the GWAS meta-analysis of SBP and DBP conducted in UK
Biobank and the International Consortium for Blood Pressure
(ICBP)22 (~750,000 individuals). We then calculated the overall SBP
and DBP TWAS scores for each of the human cell-types/tissues
ranking them for their relevance to genetic regulation of SBP and
DBP, (Figs. 1A, 2A, S1–2 and Supplementary Data 1–2). Cultured
fibroblasts and kidney cortex showed the strongest overall asso-
ciation with SBP and DBP, respectively (Figs. 2A, S1–2 and Supple-
mentary Data 1–2).

Only five cell types/tissues – kidney, cultured fibroblasts, adrenal
gland, cells EBV-transformed lymphocytes and thyroid ranked within
top ten tissues for both SBP and DBP (Figs. 2A, S1 and Supplementary
Data 1–2). Both vasculature (aorta, tibial artery) and central nervous
system (several areas of brain including hippocampus, cortex, cere-
bellar hemisphere, frontal cortex, cerebellum, and caudate basal
ganglia) showed a strong representation within the tissues of the
highest relevance to BP (Figs. 2A, S1 and Supplementary Data 1–2). The
uncovered association between lymphocytes, spleen and minor sali-
vary gland supports the emerging role of immune system in BP reg-
ulation and hypertension38,39 while the connection between the brain

Fig. 1 | Transcriptome-wide association studies, kidney and blood pressure –

schematic representation of input data sources (with sample size), analytical
processes and output data. A Blood pressure tissue prioritisation. B Kidney GReX
derived by Prediction Using Models Informed by Chromatin conformations and
Epigenomics (PUMICE) algorithm – discovery analysis. C Kidney GReX – validation
analysis. D BP kidney TWAS analysis. E Causality and drug repositioning analyses.
The input data sources are coloured in blue, schematic intermediate results are
coloured in grey, the primary outputs are coloured in yellow, downstream single-
gene analyses are marked in green. GReX – genetically regulated expression,
GWAS – genome-wide association study, TWAS – transcriptome-wide association
studies, Beta – effect size estimate, SE – standard error of beta, ChIP-seq – chro-
matin immunoprecipitation sequencing, HiChIP – chromosome conformation
captureby sequencing and immunoprecipitation, ENCODE – encyclopaedia ofDNA

elements consortium, H3K27me3 – histone 3, lysine residue 27, tri-methylation,
H3K4me3 – histone 3, lysine residue 4, tri-methylation, DHS – DNase I hypersen-
sitive sites, H3K27ac – histone 3, lysine residue 27, acetylation, HK2 cell
line – human kidney 2 cell line, BP – blood pressure, ICBP – International Con-
sortium for Blood Pressure, FDR – false discovery rate, PMR – probabilistic Men-
delian randomisation, FOCUS – fine-mapping of causal gene sets. Parts of the figure
were drawn by using pictures from Servier Medical Art and some of these pictures
were modified. Servier Medical Art by Servier is licensed under a Creative Com-
mons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/
3.0/. Further parts of the figure were drawn by using pictures from Marcel Tisch
(https://twitter.com/MarcelTisch) and are licensedunder aCreative CommonsCC0
License (https://creativecommons.org/publicdomain/zero/1.0/).
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regions and BP is increasingly recognised not only in the pathogenesis
of hypertension but also hypertension-mediated cognitive decline40.

Collectively, our data uncovered new and prioritised existing tis-
sue contributors to BP regulation.We have also provided an additional
line of evidence for the role of the kidney as a key mediator of genetic
effects on BP regulation and the development of hypertension.

Development and validation of the prediction models for a
genetic component of kidney gene expression – enhanced per-
formance through integration of information from kidney epi-
genomics and 3D configuration of the genome
We applied Prediction Using Models Informed by Chromatin con-
formations and Epigenomics (PUMICE)41, an algorithm which inte-
grates 3D chromatin organisation data and epigenetic annotations, to
generate prediction models for genetically regulated gene expression

(GReX) in the human kidney (Fig. 1B). To obtain 3D kidney genome
data, we first generated a high-resolution transcription-centred chro-
matin map using established pipelines from H3K27ac Hi-ChIP in HK2
cell line42 (Fig. 2B). In total, we obtained 69,036,737 genomic contacts
and identified 11,569 Topologically Associating Domains (TADs) and
8934 chromatin loops (Fig. 2B). For epigenomics data, we retrieved
information for human adult kidney from ENCODE using 4 different
tracks, including H3K27ac (127,379 peaks), H3K4me3 (70,569 peaks),
DNase hypersensitivity sites (275,004 peaks) and CTCF (45,832
peaks; Fig. 2B).

By integrating these data with RNA-sequencing-derived tran-
scriptome of 478 kidneys available in the discovery resource using
PUMICE (Fig. 1B), we generated 8682 significant gene expression pre-
diction models (Fig. 2C). This is ~24% increase in comparison to 7011
models generated by fitting “traditional” elastic-net linear models on
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Fig. 2 | Blood pressure TWAS – from prioritisation of human tissues to devel-
opment of enhanced gene expression prediction kidney model.
A Representation of 49 human tissues and cell-types from the GTEx project ranked
bymagnitude of association with systolic (SBP) and diastolic blood pressure (DBP).
Higher score represents stronger association with blood pressure. The ranking of
each tissue is labelled from 1 to 49 derived by the sum of SBP and DBP scores. The
colour scale is based on the ranking (from highest to lowest) from orange, green,
blue, purple to pink. Each tissue or cell-type highlighted in black. Further infor-
mation is shown in Figs. S1–2. Created by Idoya Lahortiga. B Kidney-informed
enhanced prediction of gene expression. Numbers of features (peaks, 3D struc-
tures) are shown for each kidney data layer. TAD – The variant inclusion window
[delimited by a topologically associating domain (TAD), chromatin loop domain
(Loop), 1Mb fixed window or 250 kb fixed window] and variant specific weighting
strategy are optimised to maximise gene discovery in kidney transciptome-wide
association study (TWAS) using 3D genome and epigenomic data directly mea-
sured in the kidney. CTCF – CCCTC-binding factor. HiChlP – chromosome con-
formation capture with chromatin immunoprecipitation, genomic contact – two
regions of chromatin in close physical proximity in the HK-2 cell line. C TWAS

model prediction workflow. Data are coloured by type: genotype – grey, gene
expression – blue, predictive model – orange. D, E Correlation between the pre-
dicted genetically regulated expression (GReX) and observed expression of ERAP2
in HKTR (blue) and in NIH resources (red). The best-fitting linewith 95% confidence
interval (highlighted in grey) is represented, P – nominal P-value is calculated from
two-sided Pearson correlation. F Predictive performance (r2) of gene expression
models from discovery resource (HKTR, n = 478) vs validation resource (NIH,
n = 222). r – Pearson correlation coefficient.G Percentage of imputable genes (top)
and all expressed genes (bottom) inbiotypes. Data are coloured bybiotype: protein
coding gene – pink, long non-coding RNA – red, others – orange. H. Examples of
imputable kidney genes of relevance to cellular transport of solutes. Associations
between GReX of each gene and significantly associated quantitative and disease
traits are represented by large arrows showing the directionality of change in the
trait (upwards – higher risk or increased blood levels, downwards – lower risk or
lowerblood levels). Example genes are coloured according to their associated traits
and are placed in the region of the nephron with highest expression. Partially
created with BioRender.com.
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the same number of kidneys by PrediXcan (Supplementary Data 3).
We, then, validated these models in an independent dataset of 222
kidneys collected as our validation resource (Fig. 1C). We found that
6490 kidney PUMICE-derived models remained significant (in com-
parison to 5647 PrediXcan models; Fig. 2C and Supplementary
Data 3–4). ERAP2 (endoplasmic reticulumaminopeptidase 2) gene is an
example of kidney gene with an excellent correlation between the
predictedGReX and its observed expression in both our discovery and
validation resource (Fig. 2D, E). Overall, there was a very strong cor-
relation (r = 0.83, P-value = 1.1 × 10−1647) in the predictive performance
of PUMICE-derived models between our discovery and validation
kidney resources (Fig. 2F). We saw no significant differences in pro-
portions of imputable kidney genes across three main gene bio-
types (Fig. 2G).

Collectively, we enhanced the discovery of kidney genes with
genetically imputable expression through integration of kidney epi-
genomic and 3D genomic annotations and validated approximately
75%of the discoveredmodels in an independent collection of the same
tissue type.

The predicted kidney gene expression of metabolic transpor-
ters/receptors recapitulates their biological functions and
expected contributions to human disease
In addition to validation of the computational robustness for the pre-
dictivemodels, we sought to examine if their imputed gene expression
is associated with biochemical readouts of their molecular activity in
the kidney. We reasoned that the generated GReX models for the key
receptors/transporters involved in the renal handling of urate, glucose,
phosphate and calcium should capture the expected contributions of
these genes to the circulating levels of these solutes. Amongst kidney
genes with robust, independently validated GReX we selected: solute
carrier family 2 member 9 gene (SLC2A9), solute carrier family 22
member 12 gene (SLC22A12), solute carrier family 2 member 2 gene
(SLC2A2), inositol hexakisphosphate kinase 3 gene (IP6K3), calcium
sensing receptor gene (CASR) as the examples for regulators of urate,
glucose, phosphate and calcium transport in tubular epithelium
(respectively) (Fig. 2H). We demonstrated that the genetically imputed
kidney expression for these genes showed the expected associations
with the relevant blood biochemistry phenotypes in UK Biobank; e.g.
increased renal expression of SLC22A12 and SLC2A9 ([encoding apical
URAT1 and basolateral GLUT9] (respectively) – the main transporters
responsible for reabsorption of urate in proximal tubule)43 was
associated with increased serum levels of urate in 321,210 individuals
from UK Biobank (Fig. 2H and Supplementary Data 5). Moreover,
predicted renal expressions of these genes show directionally con-
sistent associations with diseases arising from increased/decreased
changes of these phenotypes in blood, e.g., increased predicted kidney
expression of SLC22A12 and SLC2A9 was associated with increased
odds of gout in UK Biobank (Fig. 2H and Supplementary Data 5).

In the absence of information on serum sodium and
potassium levels in UK Biobank we could not test their associations
with SCNN1B (encoding the imputable beta subunit of epithelial
sodium channel – ENaC). The latter operates as a key regulator of
sodium/potassium handling in the aldosterone-sensitive portion of
the distal nephron44, is targeted by amiloride45 and represents one
of the most consistent gene expression signatures of hypertension-
mediated effect on kidney disease46. However, we noted that
increased level of SCNN1B expression was associated with
numerically lower and nominally significant risk for hyperkalaemia
in UK Biobank consistent with the lowering effect of
upregulated ENaCs on circulating levels of potassium (Fig. 2H and
Supplementary Data 5).

Taken together, these examples illustrate the biological robust-
ness of the models for genetically predicted expression of kidney
genes developed for the purpose of TWAS.

Kidney transcriptome-wide association studies and computa-
tional drug repositioning analysis uncover newgenes associated
with blood pressure and provide new therapeutic insights
Using 6490 independently validated GReX models we conducted a
two-stage reciprocal replication BP kidney TWAS with SBP, DBP and
pulse pressure (PP) summary statistics from 337,422 UK Biobank
individuals and 299,024 individuals from ICBP (Figs. 1D and S3). In
brief, we used each BP summary statistic resource as a discovery
population and followed up the significant signals (i.e., kidney genes
associated with at least one BP trait) in the other cohort (for the same
BP trait) (Fig. S3). Through this reciprocal replication we uncovered a
total of 889 unique kidney genes showing statistically significant
associations (FDR <0.05) with at least one BP trait in both datasets
(SupplementaryData 6 and Fig. S3).We thenmapped these genes onto
the existing 429 independent BP GWAS loci (Supplementary Data 6)
and found at least one kidney gene within 258 of these loci (60.1%;
Fig. S3). Altogether, 772 BP TWAS genes weremappable to the existing
BP GWAS loci (Fig. S4). One-hundred and seventeen of these genes
mapped outside the known BP GWAS loci (Supplementary Data 6 and
Fig. S4) illustrating the potential of TWAS to uncover new associations
in the chromosomal regions “missed by GWAS”47. 78.7% and 57.9% of
kidney genes uncovered by our TWAS were not amongst BP genes
from any human tissues examined in TWAS by Giri et al23. or multi-
tissue panel TWAS examined more recently by Wu et al48. (Supple-
mentary Data 7). There was a modest (18%) degree of overlap between
kidney genes associatedwith BP in our TWAS and the genes associated
with CKD-defining traits in TWAS conducted by Schlosser et al49.
(Supplementary Data 7). Amongst those that overlap were several
notable genes linked already to both BP and kidney health/disease
including interferon regulatory factor 5 gene (IRF5)24,25, N-Acetyl-
transferase 8B gene (NAT8B)32,50 and Dipeptidase 1 gene (DPEP1)32,51.

We then examined the output from our BP kidney TWAS via
Connectivity Map (CMap)52,53 – a library of gene expression changes
induced by a panel of 1309 different FDA-approved drugs and small
chemical compounds. We sought to identify drugs/compounds both
inducing and reversing changes in gene expression associated with
BP – pharmaceuticals with reversed direction of the effects on gene
expression (to that of BP) can be interpreted as potential repurposing/
repositioning options for hypertension (Fig. 1E).

Based on the reversal of the BP-related changes in the tran-
scriptome, adenylyl cyclase activators were identified as a group of
medications with a potential to lower BP (Supplementary Data 8). This
is in line with their effect on adenylate cyclase and an elevation of
intracellular cyclic AMP (cAMP)54 leading to vascular smooth muscle
relaxation and subsequent vasodilation55. cAMP-dependent effect of
forskolin [natural root extract from Coleus barbatus (Blue Spur
Flower)] showed a potential to protect podocytes from injury56 and
already emerged as a new drug repurposing opportunity for kidney
diseases57. Forskolin is available as a diet supplement58 and was asso-
ciated with several health benefits before59.

Our data support previously reported side effect of topoisome-
rase inhibitors (commonly used to treat acute myeloid leukaemia) on
BP (hypotension)60. We also demonstrated both known (e.g., gluco-
corticoids) and less recognised (e.g., tubulin polymerisation inhibi-
tors) potential of several groups of therapeutics to increase BP based
on the direction of their effects on gene expression (i.e., synchronous
with that of BP) (Supplementary Data 8). The data on tubulin poly-
merisation inhibitors are in line with one of our most recent studies
showing how docetaxel induced endothelial dysfunction and
hypertension61.

Collectively, our studies identified almost 900 genes whose pre-
dicted kidney expression show directionally consistent associations
with SBP, DBP and/or PP across two independent cohorts providing a
robust input for further downstream analyses.We also identified a new
potential pharmaceutical repositioning opportunity for hypertension
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and highlighted examples of BP elevating effects of the existing
medications with indications for conditions other than hypertension.

Mendelian randomisation and fine-mapping of causal gene sets
uncovers putatively causal independent associations between
kidney genes and blood pressure
We then sought to substantiate the evidence of causal effects of 889BP
genes identified in our BP kidney TWASon BP traits (Figs. 1E and S3–4).
We integrated the summary statistics information from cis-eQTL ana-
lysis [generated using 478 kidneys from the Human Kidney Tissue
Resource (HKTR)] and GWAS summary statistics for SBP, DBP and PP
(generated using ~750,000 individuals from both UK Biobank and
ICBP) in two-sample Mendelian randomisation (MR) designed for
TWAS applications62. We determined that 663 kidney genes from our
TWAS analysis showed robust evidence of potentially causal effect on
at least one BP trait (FDR <0.05; Fig. S4).

We noticed that 510 of these genes cluster with at least one other
gene within the same locus (Supplementary Data 9) – we identified a
total of 133 loci with two or more BP kidney genes showing potentially
causal associations with BP (Supplementary Data 9). To account for a
potential effect of linkage disequilibrium-driven correlations between
genes in these regions on our findings we applied FOCUS-based
analysis63. Within 35 of these regions, FOCUS pointed to a single BP
kidney gene. For example, within a locus on chromosome 17, the initial
set of ten genes showing causal effects on DBP, FOCUS prioritised
N-Myristoyltransferase 1 gene (NMT1) whose primary function is a co-/
post-translational modification of proteins through the addition of a
fatty acid (myristate) to the N-terminal glycine residue64,65 (Supple-
mentary Data 10).

Altogether, our MR studies followed by fine-mapping of causal
gene sets prioritised 399 kidney genes showing a potentially causal
effect on BP (Figs. 3 and S4). Nearly half (182, 45.6%) of them mapped
as a single gene onto specific BP GWAS/TWAS locus (Supplementary
Data 9 and Fig. S4) and 29 of them had causal effects on all three BP
traits (Fig. 3).

We assigned each of these 399 genes into one of 16 biological
master themes based on their known function and relevance to human
health anddisease (SupplementaryData 11).Weobserved a very strong
footprint of human metabolism (Fig. 3 and Supplementary Data 11)
among BP kidney TWAS genes. This included biochemical pathways
responsible for metabolic processing of amino acids [e.g. agmatinase
gene (AGMAT) and serine racemase gene (SRR)], carbohydrates [e.g.
solute carrier family 5 member 11 gene (SLC5A11), solute carrier family
2 (facilitated glucose transporter),member 4 gene (SLC2A4) and starch
binding domain 1 gene (STBD1)] lipids [(e.g. Acyl-CoA Thioesterase 8
gene (ACOT8), ELOVL Fatty Acid Elongase 7 gene (ELOVL7) and fatty
acid desaturase 1 (FADS1)], vitamins [e.g. Folate receptor alpha gene
(FOLR1)] and oxidative phosphorylation [(e.g. Inner Membrane Mito-
chondrial Protein gene (IMMT) and Nicotinamide Nucleotide Trans-
hydrogenase gene (NNT)] in line with a theory of metabolic roots of
hypertension66 and increasingly appreciated role of the kidney as a key
regulatory organ of human metabolism beyond its contributions to
fluid-ion homeostasis67.

A few of these genes have an established role in the physiological
maintenance of sodium-water homeostasis and our data demonstrate
their contributions to BP elevation. For example, increased renal
expression of aquaporin 1 gene (AQP1) and aquaporin 4 gene (AQP4) –
water-selective channels operating in the proximal tubule/thin des-
cending limb of Henle/descending vasa recta and principal cells of
the collecting duct (respectively)68 showed causal effects on increased
SBP and DBP (Fig. 3). This is most consistent with the increase in both
constitutive (e.g. via AQP1)68 and arginine-vasopressin (AVP)-
regulated69 (e.g. via AQP4) reabsorption of water and their role in
hypertension proposed in experimental models70,71. Together with the
previous findings on aquaporin 11 gene (AQP11)25, this also means that

one third (3/9) of renal aquaporins68 are mediators of the genetically
determined predisposition to elevated BP.

Overall, our TWAS-driven studies identified 7.5-fold greater
number of kidney genes whose expression shows a potentially causal
effect on BP than our earlier MR analyses (n = 53)25. This is also over
2-fold increase in the discovery over the number of genes identified by
integration of BP GWAS and three different types of kidney omics25.

Triangulation of outputs from plasma proteomics and meta-
bolomics with kidney transcriptome-wide association studies
yields new insights into pathways of blood pressure regulation
Genetic analyses of plasma proteomics and metabolomics are
increasingly used to gain insights into the pathogenesis of complex
traits including chronic kidney disease (CKD) and hypertension51,72. We
sought to explore how such layers of omics may help in functional
interpretation of findings from kidney TWAS using SLC5A11, agmati-
nase gene (AGMAT) and angiotensinogen gene (AGT) as exam-
ples (Fig. 4).

We found that reduced renal expression of SLC5A11 is causally
associated with increase in PP (Fig. 4A, B). This gene encodes
sodium/glucose cotransporter 6 (SGLT6, SMIT2). Given a well-
established role of this family of transporters [e.g. solute carrier
family 5 member 1 gene (SLC5A1, SGLT1) and solute carrier family 5
member 2 gene (SLC5A2, SGLT2)] in glucose homeostasis73, we
firstly examined the association between renal expression of
SLC5A11 and levels of glucose and HbA1C using data from 337,350
unrelated European individuals from UK Biobank. Having found no
association with either (Supplementary Data 12), we then sought to
determine whether the key target substrate of SLC5A11 [(i.e. myo-
inositol – a cyclic carbohydrate of importance to signal transduc-
tion and osmoregulation)74] may act as a mediator of its association
with BP. Using data from 14,296 individuals from two cohorts
(INTERVAL and EPIC-Norfolk)75 we confirmed that renal SLC5A11was
indeed associated with circulating levels of myo-inositol (Fig. 4C).
This is in line with the key role of the kidney in myo-inositol
metabolism74. We then uncovered an inverse association between
myo-inositol and PP (Fig. 4C). Through further mediation analysis,
we determined that ~48.4% of effect of SLC5A11 renal expression on
PP ismediated by serum levels ofmyo-inositol. Indeed, myo-inositol
depletion was linked before to several metabolic disorders such as
insulin resistance and polycystic ovary syndrome74; its increased
urinary excretion was highlighted as amarker of CKD progression76.
These findings show that a reduction in circulating concentrations
of myo-inositol may contribute to increased BP at least in part
because of genetically determined drop in expression of its key
renal cotransporter. Our data also suggest that increasing levels of
myo-inositol (e.g. through enhancing SLC5A11-dependent reab-
sorption in the proximal tubule77) may be beneficial to BP control.

Our BP kidney TWAS also demonstrated that genetically deter-
mined increase in renal expression of AGMAT was causally associated
with increased SBP (Fig. 4D, E). AGMAT is responsible for enzymatic
conversion of agmatine to putrescine downstream from arginine on
the alternative pathway for polyamine biosynthesis78 (Fig. 4D). It shows
a strong enrichment in the kidney (Fig. S5) and a cell-type specific
enrichment in proximal tubule (https://www.proteinatlas.org/
ENSG00000116771-AGMAT/single+cell+type). While we could not
examine how kidney AGMAT expression correlates with putrescine
levels, we showed that genetically determined kidney expression of
AGMATmRNA is associatedwith circulating blood urea nitrogen (BUN)
levels – a by-product of its enzymatic activity (i.e. agmatine + H2O =
putrescine + urea) in two independent populations (Fig. S6). Using
data of 14,296 individuals from two cohorts (INTERVAL and EPIC-
Norfolk)75 we also confirmed the association between renal AGMAT
and plasma levels of 4-guanidinobutanoate (known also as gamma-
guanidinobutyric acid or gamma-guanidinobutanoate) – a metabolite
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whose salivary levels were linked to AGMAT before79 (Fig. 4F). We also
found an association between BP and circulating levels of
4-guanidinobutanoate (Fig. 4F). The latter was previously proposed to
act in a pro-inflammatory manner80,81. Finally, through further media-
tion analysis we determined that approximately 12.3% of effect of renal
AGMAT expression on SBP is mediated by increased levels of
4-guanidinobutanoate in plasma (Fig. 4F). These data demonstrate the
importance of renal catabolism of arginine in BP regulation and
uncover an arginine-derived compound as a newmetabolic readout of
high BP.

Our TWAS also uncovered a consistently strong causal asso-
ciation between increased renal expression of angiotensinogen gene
(AGT) and BP (Fig. 4G, H). Expression of angiotensinogen mRNA has
been thought to influence BP through intra-renal RAS activity
(Fig. 4G) and we sought to quantify the extent to which the effect we
detected is indeed independent of systemic (circulating) angio-
tensinogen. Using data from 10,708 individuals from the Fenland
study82 with available plasma levels of angiotensinogen protein we
first confirmed the causal association between the plasma angio-
tensinogen and BP in the expected direction (Fig. 4I). Further
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mediation analysis demonstrated that approximately 44.7% of the
effect of kidney AGT mRNA on BP was independent of circulating
plasma angiotensinogen (Fig. 4I) and possibly reflective of the local
activity of angiotensinogen in the kidney83. Interestingly, a sig-
nificant proportion of renal angiotensinogen mRNA effect on BP
appeared to be mediated by plasma levels of angiotensinogen
(Fig. 4I). This may suggest either a shared genetic regulation of
angiotensinogen mRNA expression between the kidney and the
key tissue(s) from where it is released into circulation (i.e. liver)83

or/and a largely unrecognised systemic effect of renal
angiotensinogen on BP.

Collectively, these studies exemplify how integration of genomics
and kidney transcriptomics with data from other “omics” (e.g., pro-
teomics and metabolomics) can provide insights into molecular
mechanisms underpinning the findings from TWAS, identify the

downstream effectors of kidney TWAS genes and highlight new bio-
chemical readouts of elevated BP.

Genetically regulated expression of miRNAs in the kidney is
associated with blood pressure
Several miRNAs have been proposed to contribute to BP regulation
and the development of hypertension mostly through gene
expression-phenotype correlation studies84,85. To systematically
examine whether kidney miRNAs are associated with BP we first cre-
ated a repository of 339 miRNA expression profiles with matching
genotype information in our discovery resource (HKTR). We uncov-
ered 1459 kidneymiRNAs, a majority of which are encoded by intronic
sequences (Fig. 5A). As expected, miRNAs accounted for a much
smaller proportion of kidney genes when compared to protein-coding
genes and long non-coding RNAs (Fig. 5B). Fewer kidney miRNAs than
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Fig. 4 | Genetically predicted expression of kidney genes and their biochemical
readouts – integrative multi-omics analysis. A Localisation of the sodium/myo-
inositol cotransporter 2 (SMIT2), encodedby the SLC5A11, in the apical pole of renal
proximal tubular cells. SMIT2 facilitates the co-transport of Na+ and myo-inositol
across the cell membrane. Created with BioRender.com. B Effects of genetically
regulated expression (GReX) of kidney SLC5A11 on pulse pressure (PP) from
transcriptome-wide association study (TWAS). Nominal P-value is calculated from
two-sided Z-score test. UKB – UK Biobank, ICBP – International Consortium for
Blood Pressure, Estimate – change of PP in units per one-unit higher GReX of
SLC5A11, CI – confidence interval. C Representation of 58.4% effect of SLC5A11
mRNAexpressiononPPmediated by plasma levelsmyo-inositol. NominalP-value is
calculated from two-sided Z-score test. MP –mediation proportion, B – estimated
effect, SE– standard error of the estimated effect, EM – fromexposure tomediator,
EO – from exposure to outcome, MO – from mediator to outcome, indirect –
indirect effect from exposure to outcome, total – total effect from exposure to
outcome. D The polyamine pathway of arginine catabolism. Agmatinase, encoded

by the AGMAT, catalyzes the reaction between agmatine and putrescine, resulting
in the production of urea. Created with BioRender.com. E Effects of kidney AGMAT
(GReX) on systolic blood pressure (SBP) from TWAS. Nominal P-value is calculated
from two-sided Z-score test. Estimate – change of SBP in units per one-unit higher
GReX of AGMAT. F Representation of 11.7% effect of AGMAT mRNA expression on
SBP mediated by plasma levels of 4-guanidinobutanoate. Nominal P-value is cal-
culated from two-sided Z-score test. G Renin catalyzes the reaction from ANG
(angiotensinogen) to Angiotensin I (AngI), which is subsequently converted to
AngII by Angiotensin-Converting Enzyme (ACE). Created with BioRender.com.
H Effects of kidney AGT mRNA (GReX) on SBP from TWAS. Nominal P-value is
calculated from two-sided Z-score test. Estimate – change of SBP in units per one-
unit higher GReX of AGT. I Representation of 52.7% effect from AGT mRNA
expression on SBP mediated by circulating plasma protein levels of angiotensino-
gen. Nominal P-value is calculated from two-sided Z-score test. In 4B, 4E and 4H,
squares are positioned by the estimated effects with horizontal error bars illus-
trating 95% confidence intervals of the estimated effects.
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other biotypes accounted for the same proportion of cumulative gene
expression in the kidney (Fig. 5C).

We then examined the degree of miRNA specificity to kidney tis-
sue by integrating our catalogue of renal miRNAs with expression
profiles of 35 human tissues curated by miRNATissueAtlas286. Of 1431
miRNAs overlapping between our kidney catalogue and miRNA-
TissueAtlas2, 49 and 3 fulfilled the criteria of kidney enhanced and
kidney group enriched87, respectively (Fig. 5D). MiR-30a-3p, miR-30a-
5p and miR-188-5p showed strong enrichment in the kidney and some
of them have prior evidence of contributions to kidney disease
(Fig. 5D)88,89.

Using 339kidneys fromour discovery resourcewe then generated
and cross-validated GReX prediction models for 201 kidney miRNAs
(Fig. 5E). Of these, 143 were available for validation and 80 of these
were validated in an independent resource of 150National Institutes of
Health (NIH) kidneys (TCGA and CPTAC) with matching genotype and
small RNAseq-derived expression profiles (Fig. 5E, F and

Supplementary Data 13). miR-196a-3p is an example of a miRNAwhose
strong genetic regulatory component renders it an excellent target for
TWAS (Fig. 5F).

We then used a computational pipeline with reciprocal replica-
tions in two cohorts established at earlier stages to conduct BP kidney
microRNA-TWAS (Fig. S7). We identified 11 kidney miRNAs whose
genetically imputed expression was associated with BP across both
cohorts (Fig. 5G and Supplementary Data 14). They mapped to nine
independentBPGWAS loci and representeddifferent spectraof kidney
abundance, tissue specificity and genetic origin (Fig. 5H and Supple-
mentary Data 15).

Given the intragenic (exonic/intronic)DNAorigin for amajority of
BP kidney miRNAs, we then examined whether their host genes could
act as BP TWAS genes and whether they may account for the detected
associations with BP. Out of ten intragenicmiRNAs, only one – hsa-miR
1908-5p – had a kidney BP TWAS gene as the host gene (FADS1)
(Supplementary Data 16). However, further analyses showed that the
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association between the hsa-miR 1908-5p and BP was not mediated by
FADS1 – the only BP TWAS gene in the locus (Supplementary Data 16).
We then extended themediation analysis to all BP kidney TWAS genes
mapping onto the proximity of nine remaining intragenic kidney
miRNAs. For eight of the kidney miRNAs with at least one BP TWAS
gene in the locus, we found only one gene (Homeobox C6, HOXC6)
accounting for the mediation signals between kidney miRNAs (hsa-
miR-196a-3p) and BP (Supplementary Data 16).

Taken together, our data provided insights into the landscape of
miRNAs expressed in the kidney. We uncovered new associations
between BP and kidney miRNAs and showed that the associations
between BP and kidney miRNAs are not necessarily mediated via their
host genes. Finally, we demonstrated that in some cases other BP-
associated genes in proximity to the miRNA may act as the mediators
of their associations with BP.

Kidney proteome-wide association studies uncover new
proteins associated with blood pressure and provide an
orthogonal validation for blood pressure associations
uncovered at the transcriptome level
Proteins are the key effector molecules translating biological signals
inherited in DNA and/or transcribed in mRNA into phenotypic differ-
ences between individuals including their health and susceptibility to
disease. It is not clear whether genetic determinants of BP are asso-
ciated with changes of protein expression in the human kidney and
whether the associations between BP genetic variants and the renal
mRNA expression have a functional impact at the protein level. Using
72 NIH-CPTAC human kidneys with tissue proteome characterised by
liquid chromatography mass spectrometry, we identified 7,291 pro-
teins; with the majority classified as predicted intracellular proteins
(89%) (Supplementary Data 17). The proportions of soluble,
membrane-bound and secreted proteins (Fig. 6A) were consistent with
the data from tissue-based map of the global human proteome90. Of
452HPAgeneswith elevated expression in the kidney (when compared
to other tissues), 223 were identified in the NIH-CPTAC dataset (Sup-
plementary Data 18). As expected, we found the strongest enrichment
for proteins encoded by genes with highest level of specificity to the
kidney (Fig. 6B).

We then examined how the abundance of proteins known for their
relevance to BP regulation and hypertension correlates with the
expression of their respective genes. A total of 7036genes quantifiedby
RNA-sequencing had their abundance measured at the protein level in
the NIH-CPTAC dataset. Genes known for Mendelian hypertension/
hypotension syndromes91 and kidney targets for BP-lowering medica-
tions were significantly enriched amongst genes with the highest posi-
tive correlationwith their respective proteins (P-value = 2.5 × 10−2 and P-
value = 1.5 × 10−3, respectively) and the magnitude of enrichment was
comparable to HPA kidney-enriched/enhanced genes (Fig. 6C). For
example, SLC12A1 (encoding bumetanide-sensitive sodium-(potas-
sium)-chloride cotransporter 2 – a target for loop diuretics) and
SLC12A3 (encoding a thiazide-sensitive sodium-chloride cotransporter–
a target for thiazides) were within the top 25 kidney genes showing
very strong mRNA-protein correlations (Supplementary Data 19
and Fig. 6D). Kidney genes with evidence of causal association with
BP (Supplementary Data 20) were also enriched (although to a lesser
degree) for significant positive correlations with the respective
proteins (Fig. 6C).

Of 815 proteins, whose kidney expression was genetically impu-
table (Supplementary Data 21), 97 showed reciprocal association with
at least oneBP trait in two independent cohorts (UKBiobank and ICBP)
(Supplementary Data 22 and Figs. 6E and S8). Of these, 57 had no
evidence of association with BP at mRNA level because either their
GReX prediction model did not converge (n = 34) or there was no or
only weak BP signal in our kidney TWAS analysis (Supplementary
Data 23). This may indicate either the existence of differences in the

genetic regulationof theirmRNAandprotein expressions contributing
to BP/hypertension or/and reflect a false-positive finding in proteome-
wide association studies (PWAS).

For 46 BP-associated kidney proteins we identified additional
evidence for relevance to BP/hypertension at other molecular levels
(Supplementary Data 23 and Fig. 6F). Indeed, parent genes of 40
proteins showed association with BP in our kidney BP TWAS (Supple-
mentary Data 23 and Fig. 6F) and six others had an additional layer of
prior evidence for association with BP in our previous kidney QTL
studies25 (Supplementary Data 23 and Fig. 6F).

Overall, BP PWASproteinswereenriched for being therapeutically
tractable (Fig. 6G). Indeed, when compared to a random set of kidney
proteins, our set of 97 BP PWAS proteins showed a strong enrichment
for proteins with discovery potential (i.e., not currently targeted) by
small molecule and proteolysis targeting chimera (PROTAC) mod-
alities (Fig. 6G).

Our pathway enrichment analysis further revealed enrichment of
BP-associated proteins for hypertensive crisis (Fig. 6H and Supple-
mentary Data 24) as well as enrichment for RAS and proteins involved
in innate and adaptive immunity (Fig. 6H and Supplementary Data 24).
This is consistentwith a rarely appreciated role of the kidney as a tissue
contributor to immune activation38 and antimicrobial defence92. We
also observed an enrichment of BP-associated proteins within meta-
bolic pathways including those involved in detoxification of reactive
oxygen species, arachidonic acid metabolism, tyrosine metabolism
and fatty acid metabolism; in particular mitochondrial fatty acid beta-
oxidation (Fig. 6H, Supplementary Data 24). Indeed, genetically
determined reduction in three proteins of key importance to mito-
chondrial beta oxidation of fatty acids including long-chain specific
acyl-CoA dehydrogenase, mitochondrial (ACADL), medium-chain
specific acyl-CoA dehydrogenase, mitochondrial (ACADM) and Acyl-
CoA Dehydrogenase Family Member 10 (ACAD10) were associated
with increased BP (Supplementary Data 22).

Collectively, we show that kidney proteins showing positive
correlations with their parent mRNAs are enriched for genes of
relevance to BP, genetically mediated hypertension/hypotension
and antihypertensive treatment. This substantiates the evidence
for informativeness of kidney transcriptome as a source of infor-
mation on biological underpinnings of hypertension in the absence
of larger datasets on kidney proteome. Through triangulation with
other omics, we further corroborate the evidence behind relevance
of kidney proteins to hypertension. Such proteins (i.e., with evi-
dence of genetic contribution to their abundance at multiple
molecular levels) are of utmost clinical interest, e.g. for drugg-
ability studies.

Transcriptome profiling of cells harvested from urine yields
non-invasive insights into expression of kidney genes including
those of relevance to blood pressure
Human kidneys shed their epithelial cells (both of glomerular and
tubular origin) into urine93–96 and RNA-based analysis of urinary cells
has been proposed as a new strategy with potential to inform kidney
diagnoses97–99.

We have generated 33 RNA-sequencing derived transcriptomic
profiles of urinary cell pellets from individuals recruited into our HKTR
(Supplementary Data 25). We confirmed that a set of 12 RNA-
sequencing quality control metrics (generated by RNASeQC100 pro-
duce either similar (e.g. “Expression profiling efficiency”) or superior
(e.g. “Mapping rate”) values in urine compared to saliva (Fig. S9). We
detected expression of 21,981 genes in urinary cells and similar num-
bers of the major gene biotypes expressed in urine compared to
human kidney tissue (Fig. 7A). Transcriptome complexity was broadly
similar between urinary cells and kidney tissue (Fig. 7B). We confirmed
there was no obvious transcriptomic differences due to different
donor sources of urine in our study (i.e., nephrectomy and kidney
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biopsy, Fig. 7C). This is in line with our previous observations on
transcriptomic profiles of kidney tissue specimens84.

We hypothesised that functional annotations of genes with the
strongest expression in cells harvested from urine and the kidney
will show a strong overlap. Our analysis of the 100 mostly highly
expressed genes in urine and kidney tissue showed an over-
representation for 33 and 35 pathways, respectively (KEGG path-
ways and Gene Ontology Biological Process terms, Supplementary
Data 26), 24 (73%) of which were common to both urinary cells and
the kidney (Fig. 7D) and there were 44 distinct overrepresented
pathways (Fig. 7D). These pathways were then manually grouped
into 6 biological themes by overlap of shared genes. Most of the
common pathways mapped onto immunity theme are consistent
with the key role of the urinary tract in immune activation and
defence against infections38,92. The top 100 most highly expressed

genes in urinary cells also showed enrichment for pathways reflec-
tive of the renal contributions to ion exchange (Fig. 7D). We also
noted that the genes in urinary cells showed enrichment for glucose
metabolism, glycolysis and gluconeogenesis (Fig. 7D). The latter is
consistent with the renal origin of these cells given that apart from
the liver, kidney (mainly proximal tubule) is the only other organ
capable of de novo glucose production101,102.

We then examined the extent of transcriptomic similarity
betweenurinary cells fromourdataset and 54human tissue types from
GTEx. Kidney cortex and kidneymedulla showed the highest degree of
correlation in expression of 19,273 protein-coding genes with urinary
cells (Fig. 7E and Supplementary Data 27) at r = 0.81 and r = 0.80,
respectively (Fig. 7F). We confirmed the magnitude of the correlation
between urinary cells and the kidney using an independent (to GTEx)
set of 430 kidney tissue samples from HKTR (Fig. 7F).
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We also found that the magnitude of expression of genes known
as markers of renal cortex (20 genes) and those from medulla (11
genes) was correlated with that in urinary cells (Fig. 7G). There was a
particularly strong correlation between urinary cell expression of
medullary markers (Fig. 7G). UMOD in urinary cells was comparable to
that in the medulla and higher than in cortex, consistent with the
production of UMOD within the ascending loop of Henle (Fig. 7G). For
cortical markers, NAT8, MIOX, RIDA, BHMT all had relative urinary
expression levels comparable with that of cortex samples.

Finally, we examined the urinary cell-kidney correlation in
expression of 399 kidney genes showing a causal associationwith BP in
our analyses. We noted that 339 of these genes had detectable
expression in urinary cells. There was a strong positive correlation in
expression of these genes between urinary cells and the kidney
(r =0.73, P-value = 2.85 × 10−57, Fig. 7H).

Collectively, we generated robust profiles of urinary cell tran-
scriptome and showed its excellent correlation with the kidney tran-
scriptome. We further demonstrate that several histological and
functional annotations of gene expression profiles harvested from
urine highlight specific kidney regions as the likely origin of these cells.
Finally, we determine that profiling of urinary cells transcriptome
offers a non-invasive insight into expression of genes of relevance to
BP in the kidney. This highlights a potential diagnostic applicability of
urinary cell transcriptomics, e.g., in development of non-invasive tests
to determine kidney health and predict renal damage through analysis
of spot urine samples.

Genetically programmed reduction in kidney abundance of
glutamyl aminopeptidase gene (ENPEP) and protein is asso-
ciated with increased blood pressure and the risk of
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Fig. 8 | Kidney glutamyl aminopeptidase gene (ENPEP) and blood pressure.
A Simplified renin-angiotensin system. AGT – angiotensinogen gene. B Normalised
ENPEP expression in GTEx. Red – Tissues enhanced, nTPM – consensus normalised
expression. C Effects of genetically regulated expression (GReX) of ENPEP on sys-
tolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse pressure (PP)
from kidney TWAS. Nominal P-value is calculated from two-sided Z-score test. UKB
– UK Biobank, ICBP – International Consortium for Blood Pressure, Estimate –

change of SBP/DBP/PP in units per one-unit higher GReX of ENPEP, CI – confidence
interval.D. Causal effects ofGReXof kidney ENPEPonSBP/DBP/PP inUKBand ICBP.
Estimate – change of outcome in units per one-unit higherGReXof ENPEP. Nominal
P-value is calculated from one-sided chi-squared test. E Effect of GReX of ENPEP
(per one standard deviation higher) on urinary sodium in UKB. Nominal P-value is
calculated from linear regression (two-sided test). Red arrow – positive associa-
tion. SE – standard error. Partially created with BioRender.com. F Effects of
genetically regulated protein (GReP) of glutamyl aminopeptidase on SBP/DBP/PP
from kidney PWAS. Nominal P-value is calculated from two-sided Z-score test.
Estimate – change of outcome in units per one-unit higher GReP of glutamyl

aminopeptidase.G rs33966350 of ENPEP [A –minor allele, G –major allele] leading
to a premature stop codon at position 413 (out of 957) in exon 6. A shortened
glutamyl aminopeptidase protein (red) compared to the normal variant (green).
White – active site (catalysis residues), blue – binding site (protein-chemical
interactions), Trp – Tryptophan, NMD – nonsense-mediated mRNA decay. Struc-
tural domains are coloured within each protein structure. Created with BioR-
ender.com. H Effects of rs33966350-A on human diseases from FinnGen. Nominal
P-value is calculated from Firth regression (two-sided test). Dots are coloured by
categories of diseases. Beta – log of Odds ratio. I Effect of rs33966350-A on urinary
sodium in UKB. Blue arrow – negative association. Partially created with BioR-
ender.com. J Effect of rs33966350 on ENPEPexpression inHKTR.NominalP-value is
calculated from linear regression (two-sided test). K, L Effects of rs33966350 on
ENPEP expression and protein abundance in CPTAC. Nominal P-value is calculated
from linear regression (two-sided test). In 8J-8L, whiskers denote extent of 1.5x
interquartile range. Upper, middle and lower box lines denote 75th, 50th and 25th
percentiles, respectively. In C, D and F, squares are positioned by the estimated
effects with horizontal error bars illustrating 95% confidence intervals.
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hypertension – integration of evidence from genome-level,
kidney transcriptome and proteome
ENPEP encodes glutamyl aminopeptidase – an enzyme responsible for
cleaving an aspartate from N-terminal of angiotensin II in the process
of its conversion to angiotensin III (Fig. 8A). It is anattractivedruggable
target for development of new antihypertensive medications. How-
ever, the recent clinical trial (Firibastat in Treatment-resistant Hyper-
tension - FRESH) has failed to demonstrate a BP lowering
effect through pharmacological inhibition of this enzyme - an oral
inhibitor of brain glutamyl aminopeptidase (Firibastat) did not lead to
a significant reduction in BP in patients with difficult-to-treat and
resistant hypertension when compared to the placebo.

ENPEP is one of kidney-enriched genes – it shows approximately
36-fold higher expression in the kidney than cerebral cortex (Supple-
mentary Data 28 and Fig. 8B).

Our kidney BP TWAS study showed a consistently strong asso-
ciation between genetically determined increase in renal expression of
ENPEP and a drop in all BP traits across two independent datasets as
well as in their joint analysis bringing together approximately 750,000
individuals (Fig. 8C) and further MR demonstrated a causal effect
(Fig. 8D). Genetically determined renal expression of ENPEP showed an
association with increased urinary sodium in 337,350 individuals from
UK Biobank (Fig. 8E); this may suggest renal Ang III-mediated effect on
natriuresis as the relevant mechanism103,104. Through our BP kidney
PWAS we also demonstrated an association between glutamyl ami-
nopeptidase protein and BP in the consistent direction – reduced
abundance of the protein was associated with higher values of DBP
(Fig. 8F). Finally, we determined a signal of multi-trait colocalisation
between DBP, ENPEP mRNA and protein expression in the kidney on
chromosome 4 (Supplementary Data 29).

We then sought to provide an orthogonal replication of these
findings using a rare ENPEP variant (rs33966350) associated with
hypertension in previous GWAS21. We confirmed that rs33966350 has
not been included in the models used to generate GReX for ENPEP in
TWAS and PWAS and is not in strong LDwith the genetic variants used
in thesemodels (Supplementary Data 30). The rare allelic variant (A) of
rs33966350 leads to a premature stop codon, has a scaled Combined
Annotation Dependent Depletion (CADD) score of 43 (consistent with
top ~0.01 % of 8.6 billion variants) and is one of the high-confidence
loss of function variants (Fig. 8G).

Our in silico analysis mapped this nonsense variant to exon 6 of
ENPEP and confirmed that the truncated mRNA is a strong candidate
for nonsense-mediated decay (NMD) and that the truncated protein
(lacking twobinding sites and a residue responsible for transition-state
stability) is unlikely to be functional (Fig. 8G).

In the phenome-wide association of 2269 binary traits in 377,277
individuals from the FinnGen consortium (r9.finngen.fi) (Fig. 8H) we
identified hypertension as the top association signal for rs33966350.
We further uncovered that the carriers of AA genotype of this variant
had approximately 33% increase in odds of hypertension compared to
thosewith awild-type genotype (P-value = 1.6 × 10−6). Our studies inUK
Biobank confirmed that rs33966350 was also associated with urinary
sodium (P-value = 4.7 × 10−2, Fig. 8I). We then showed that when com-
pared to those with a wild-type genotype (GG), carriers of one copy of
A-allele of rs33966350 have approximately 4.9-fold lower expression
of ENPEP mRNA in the analysis of 478 kidneys (P-value = 8×10−14,
Fig. 8J). We replicated this observation in the analysis of 65 kidneys
from CPTAC – carriers of the rare homozygous genotype had sig-
nificantly lower levels of ENPEP than those with GG genotype (P-
value = 4.4 × 10−7, Fig. 8K). We further validated these observations at
the protein level (Fig. 8L).

Collectively, our data show that genetically determined reduction
of kidney abundance of ENPEPmimicking the effects of its rare loss-of-
function genetic variant on gene and protein expression leads to
increase in BP and the risk of hypertension possibly via effects on renal

excretion of sodium. These results provide a persuasive case for the
development of pharmaceuticals that increase levels of ENPEP in the
kidney (rather than inhibit its activity in the brain, e.g. as in
FRESH trial).

Discussion
Through analysisof effects of subtle changes in genetically determined
portionof gene expression on phenotypes at a population scale, TWAS
has emerged as a powerful approach to gene discovery36,47,105–108. The
attractiveness of TWAS lies in its scaled-up detection power109,110,
immunity to confounding from pharmacological treatment, lifestyle,
environment111, and reverse causality105 as well as a capacity to uncover
disease/trait-associated geneswithin chromosomal regions “missedby
GWAS”47. Indeed, application of TWAS-based approach in our project
has increased the discovery of kidney genes showing robust associa-
tions with BP by 2.2-fold when compared to our previous cis-eQTL-
driven analysis of BPGWAS25 andmappedmanyof themoutside the BP
GWAS loci. This enhanced discovery power stems partly from
enhanced genetic input into the TWASpredictionmodels (aggregation
of numerous SNPs for each gene at the same time rather than single
“top” e-variant) and a reducedburden formultiple testing (fewer genes
in TWAS than SNPs in GWAS are tested109,110). We further augmented
the rate of gene discovery through integrating input from kidney 3D
genomic and epigenomic data in our GReXmodels41 developed for the
purpose of TWAS. With larger tissue reference panels, cross-ethnic
analyses112,113, utilisation of input from rare and in-trans variants114,
future BP TWAS studies should be able to generate even more precise
estimates for expression of more human genes enhancing the dis-
covery of new and fine mapping of the existing BP GWAS and
TWAS loci.

The genotype-based imputations of molecular layers other than
transcriptome are also gaining traction in post-GWAS searches of the
effector genes for complexdisorders115–117. Our study is thefirst analysis
applying the genotype-based prediction models to impute the kidney
microRNAome and proteome. This has helped us not only to uncover
new BP-associated molecules amongst kidney miRNAs and proteins
but also to substantiate the evidence for the robustness of our key
targets emerging from BP kidney TWAS (e.g., through multi-omic
overlaps or/and mediation analyses).

We also illustrate the benefit of triangulation of outputs from
kidney omics with data from other molecular layers including plasma
proteomics and metabolomics to uncover the consequences of BP-
related changes in gene/protein expression in clinically accessible
materials. Such analyses are a critical step in translating the findings
from post-GWAS omics into diagnostically actionable targets with a
potential to be tested e.g., as bio-markers of hypertension-mediated
organ damage. We further provide a proof-of-principle for the infor-
mativeness of urinary cells to track the expression of the kidney
transcriptomeand the expressionofgenes associatedwith BP inGWAS
and TWAS. Urinary mRNA signatures have emerged as non-invasive
predictors of kidney allograft status97,99; our data corroborate the
evidence behind potential diagnostic applicability of cell harvested
from human urine even in the absence of a powerful clinical driver
stimulating the urinary excretion of leucocytes97,99.

Apart from uncovering new potential repositioning opportunities
for hypertension, and illuminating BP-related effects of drugs used in
other conditions than hypertension, our analyses provide specific cues
into targets already tested in clinical trials (i.e. glutamyl aminopepti-
dase encoded by ENPEP) or those emerging as novel therapeutic
strategies for hypertension [(e.g. suppression of AGT mRNA expres-
sion using antisense oligonucleotides118]. Numerous kidney genes
causally associated with BP in our studies show a high level of ther-
apeutic tractability. Indeed, SLC5A11 and AQP4 belong to druggable
families whose other members (e.g. SLC5A2 and AQP2) are already
targeted (either directly or indirectly) by existing cardiovascular/
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nephroprotective medications (i.e. SGLT2 inhibitors and vasopressin
receptor 2 antagonists)119–121.

Our study has several limitations. First, it should be noted that
TWAS, MR and FOCUS are not fully orthogonal approaches to dis-
covery of genes associated with a phenotype of interest. However,
integration of these three approaches in one analytical pipeline
increases the level of robustness and confidence in the detected sig-
nals (genes) that received support at each stage of this computational
strategy. Second, at the TWAS stagewe chose an FDR-based correction
for multiple testing rather than a more conservative Bonferroni cor-
rection. This means we could have discovered more genes with per-
haps less stringent statistical evidence. However, we have carefully
reduced the likelihood of false positive signals through a layered sys-
tem of gene replications and refinements created by applying addi-
tional downstream filters on genes delivered by TWAS, i.e.,
independent replication, MR and FOCUS. Third, we accept that our
“recapitulation analyses” tested a limited number of carefully selected
biochemically active transporters and receptors in the kidney. Further
studies inclusive of other genes,molecules, pathways, and phenotypes
of relevance to kidney physiology will help to strengthen the evidence
for biological robustness of the predicted kidney gene expression
models. Finally, due to a very limited availability of kidney tissues
samples from individuals of non-white European origin24 we were
restricted in our studies to the European ancestry group. More inter-
national efforts are required to overcome this barrier to cross-ancestry
analyses of kidney-relevant diseases in the post-GWAS era.

Taken together, these studies demonstrate the value of kidney
omics to provide new biological understanding of the genetic regula-
tion of BP and to generate insights of therapeutic relevance to
hypertension.

Methods
Prioritisation of human tissues of relevance to blood pressure
Transcriptome-wide association studies across 49 human cell-
types and tissues. We used genotype information with matching
transcriptome of 49 human cell-types and tissues included in the
Genotype-Tissue Expression (GTEx, v8) for the purpose of this analysis.
Given that the currently employed metrics cannot fully account for the
dependence of TWAS discovery on the sample size, we opted for a
numerically equal representationof samples fromeach selected tissue–
65 samples of European ancestry was the most optimal cost-
performance trade-off between the power of discovery and the num-
ber of tissues included in the analysis122. Using an equally weighted
sampling algorithm123, we selected a random 65 samples from each of
49 tissues using publicly available GTEx v8. Genotype information
derived from whole genome DNA sequencing was downloaded from
dbGaP. We conducted the quality control on the genotype data using
updated PredictDB Pipeline (http://predictdb.org/). In total,
6,821,602 single nucleotide polymorphisms (SNPs) were available for
further analyses. Gene expression information was derived from
quality-controlled and normalised RNA-sequenced tissue datasets from
the GTEx (http://www.gtexportal.org/). In line with the recommenda-
tions of GTEx Consortium122, 15 probabilistic estimation of expression
residuals (PEER) were generated using the PEER framework124 for each
tissue. Gene expression residuals for the purpose of transcriptomics
model prediction were generated by adjusting the gene expression for
sex, RNA-sequencing protocol (PCR-based or PCR-free), sequencing
platform (Illumina HiSeq 2000 or HiSeq X), top five genotyping prin-
cipal components and 15 PEER factors. As an input into TWAS analysis,
we also used meta-analysis summary of the associations between
7,088,121/7,160,657 SNPs and SBP/DBP from 750,000 individuals22 (UK
Biobank and ICBP data). The position of SNPs under GRCh37 in the data
was converted to GRCh38 by LiftOver125. SNPs not present in the
1000 genome reference panel under GRCh38 were excluded from
the analysis.

Following the updated PredictDB Pipeline, we trained predictors
of gene expression by applying PrediXcan126 to genotype and RNA-
sequencing datasets across 49 tissues in GTEx v8. For each tissue, we
kept genes with nested cross validated correlation between predicted
and actual levels > 0.10 (or equivalently R2 > 1%) and P-value of the
correlation test <0.05. We identified gene-SBP/DBP associations by
analysing summary statistics from SBP/DBP and gene expression pre-
dictors using S-PrediXcan127. SNPs in the broad major histocompat-
ibility complex (MHC) region (chromosome 6: 28–34Mb) were
excluded. The correction for multiple testing was calculated using
Bonferroni-adjusted P-value < 0.05 after adjustment for the total
number of genes in each tissue tested. The gene-SBP/DBP associations
that remained after this filtering were considered significant.

To quantify the overall relevance of a tissue to BP, we adopted
three independent metrics of the tissue-disease association. Firstly, a
proportion of independent genes identified fromTWASwas quantified
in each tissue. Gene-gene independence was defined as a correlation
between genes R2 < 0.05128 within a 2Mb region or genes located larger
than 2Mb from each other. Second, the mean TWAS association sta-
tistics (mean of squared Z-score) using all independent genes identi-
fied from TWAS110 were used to quantify average strength of their
association with SBP and DBP – the tissues were ranked based on the
average effect of the magnitude of significant genes’ association with
BP. Third, we counted the number of significant genes associated with
SBP/DBP outside the previously identified BP GWAS loci, i.e. 49 tissues
were ranked according to the number of TWAS genes showing no
overlapwith any BPGWAS loci (GWAS locuswas defined as ±1Mb from
the sentinel BP GWAS SNP). The independence of three metrics was
tested by Pearson’s product-moment correlation test. The overall rank
was derived by taking the sum of three ranks for each tissue. The
relevance of each tissue to BP were then visualised by integrating DBP
overall ranking score against SBP overall ranking score for each tis-
sue (Fig. 2A).

Populations, DNA and RNA processing
Human Kidney Tissue Resource – populations and samples. The
Human Kidney Tissue Resource (HKTR) is the collection of human kid-
ney tissue samples secured for the purpose ofmulti-omics analyses. The
following studies have contributed to the resource: the TRANScriptome
of renaL humAn TissuE study (TRANSLATE)25,31–34,84, TRANScriptome of
renaL humAnTissuE - Transplant study (TRANSLATE-T)25,32,34, moleculAr
analysis of humankiDney-Manchester renal tIssuepRojEct (ADMIRE)25,34,
Renal gEne expreSsion and PredispOsition to cardiovascular and kidNey
Disease (RESPOND)25,34 and moleculaR analysis of mEchanisms regulat-
ing gene exPression in post-ischAemic Injury to Renal allograft
(REPAIR)25,34.

As reported before25, the specimens were taken directly from the
healthy (unaffected by cancer) pole of the kidney immediately after
elective nephrectomy or by needle biopsy of donor kidneys before the
transplantation.Of the 478 specimens used in this study 296were from
nephrectomies and 182were fromkidney biopsies. All individualswere
of white-European ancestry. Further information on the individuals
recruited into each study are given in Supplementary Data 31.

HumanKidney TissueResource –DNAgenotyping data generation,
quality control and analysis, genetic principal components. As
reported previously25,31–33,84, tissue samples were first homogenised
andDNAextracted using theQiagenDNeasy Blood andTissue kit. DNA
was then hybridised to the Illumina HumanCoreExome-24 beadchip
array. Genotype calls for each sample were made using Illumina Gen-
omeStudio. DNA quality control consisted of excluding any sample
displaying cryptic relatedness, low genotyping rate (<95%), hetero-
zygosity outside ±3 standard deviations from the mean, genetic/phe-
notypic sex mismatch. Variant-level quality control excluded all
variants with genotyping rate (<95%), genomic location on a sex-
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chromosomeormitochondrial genome, ambiguous genomic location,
Hardy-Weinberg equilibrium (HWE) P-value <1 × 10−3 and minor allele
frequency <5%. Genotypes were imputed by the Michigan Imputation
Server (MIS)129 using the 1000 Genomes phase 3 reference panel. Post-
imputation quality control excluded all variants duplicated genomic
location, imputation score <0.4, minor allele frequency <1% or HWE P-
value < 1 × 10−6. 8,735,852 variants remained after all genotyping qual-
ity control steps. Genotype principal components were derived from
genotyped autosomal variants that passed all genotyping quality
control filters using EIGENSTRAT130 and SNPWeights131.

Human Kidney Tissue Resource – RNA-sequencing data genera-
tion, quality control and analysis. As reported previously25,31–33,84,
kidney tissue was first homogenised and then either the Qiagen
RNeasy kit or the Qiagen miRNeasy kit was used to complete the
extraction of RNA. RNA integrity and purity was checked and 1μg of
normalised RNA was used in either a New England Biosciences or
Illumina TruSeq poly-A selection sequencing library preparation pro-
tocol. Libraries were then sequenced paired-end with either a 75 bp,
100bpor 150bp read length. An average of 35million paired reads and
6Gb of sequencing data were generated per sample. RNA-sequencing
quality control metrics were generated by FastQC and RNASeQC.
Reads were pseudoaligned to the Ensembl v83 GRCh38 human tran-
scriptome reference using Kallisto v0.44.0. Gene expression was
quantified at the transcript-level in units of Transcripts Per Million
(TPM) and was summarised to the gene-level by summing expression
of all transcripts produced by each gene in the Ensembl transcriptome
reference. The criteria for a gene to be expressedwere if at least 20%of
kidney samples in each population had TPM>0.1 and read count > 5.
After application of these criteria 21,414 kidney genes remained
available for analysis.

Inference of cell-type proportions from RNA-sequencing data. To
adjust for between-sample cell-type heterogeneity in gene expres-
sion data from HKTR we used a computational deconvolution
approach combined with a single-cell renal gene expression data-
set. Firstly, we extracted expression profiles for the 3448 normal
kidney cells present in the data generated by Young et al132. These
data were generated from FACS-sorted cellular suspensions which
were derived from ≈30mm3 kidney tissue samples. Sequencing
cDNA libraries were created by the 10X Genomics Chromium plat-
form and sequenced on an Illumina HiSeq 4000. Gene expression,
at the single cell level, was then normalised and kidney cell-types
were identified using the Seurat R package133. We identified seven
key distinct cell-type clusters amongst these cells and then used
non-negative least squaresmultivariate regression on the single-cell
expression data to determine cell-type specific gene weightings
using the “MuSiC” R package134. We applied these gene weightings
to all bulk tissue sample profiles and deconvolved estimated cell-
type proportions for each sample.

Human Kidney Tissue Resource ethical compliance. The studies
adhered to the Declaration of Helsinki and were approved/ratified by
theBioethicsCommittee of theMedicalUniversity of Silesia (Katowice,
Poland), Bioethics Committee of Karol Marcinkowski Medical Uni-
versity (Poznan, Poland), Ethics Committee of University of Leicester
(Leicester, UK), University of Manchester Research Ethics Committee
(Manchester, UK) and National Research Ethics Service Committee
Northwest (Manchester, UK). Informed written consents were
obtained from all individuals recruited (for the deceased donors, the
consent was obtained in line with the local governance; e.g. from the
family members).

National Institutes of Health kidney collections – populations and
samples. We used kidney samples from The Cancer Genome Atlas

(TCGA)135, GTEx122 and Clinical Proteomic Tumor Analysis Consortium
(CPTAC)136.

TCGA contains human tissue samples collected after elective
surgical procedures for a variety of cancers. Normal adjacent tissue
samples (NATs) were taken from companion normal tissue adjacent to
the tumour135. We identified 91 kidney NATs with matching genotype
and RNA-sequencing data in this resource.

Tissue samples in the GTEx project were collected post-mortem
and immediately stored for DNA/RNA extraction and processing122. We
identified and used 65 kidney cortex samples with matching whole
genome sequencing and RNA-sequencing data.

CPTAC collects and generates proteomic, transcriptomic and
genomic data from a variety of solid tissue tumours, along with same
data from NATs136. We used 66 NAT kidney tissue samples with whole
genome sequencing and RNA-sequencing profiles for the purpose
of TWAS.

Collectively, we used 222 kidney samples fromNIH cohorts for the
purpose of prediction performance validation of the GReX prediction
models. The characteristics of individuals from these cohorts are given
in Supplementary Data 32.

National Institutes of Health kidney collections – DNA extraction,
genotyping data generation, quality control and analysis. In TCGA,
DNA was extracted from blood samples using QiAamp Blood Midi Kit
(CGARN, 2016) and hybridised with probes on the Affymetrix SNP 6.0
array (composed of 906,600 probes); genotype calls weremade using
the Birdseed algorithm (https://www.broadinstitute.org/birdsuite/
birdsuite-analysis). The TCGA genotype data were downloaded from
the Genomic Data Commons (GDC) Portal’s legacy archive. A total of
525 cases/files were initially identified using the following query cri-
teria: “project name”—“TCGA”, “primary site”—“kidney”, “sample
type”—“solid tissue normal”, “race”—“white”, “data category”—“simple
nucleotide variation”, “data type”—“genotypes”, “experimental strate-
gy”—“genotyping array” and “access”—“controlled”. We downloaded
the data for 110 individuals who had matching RNA-sequencing-
derived information on the transcriptome of normal kidney tissue.
Genotype quality control, imputation, post-imputation quality control
and genotype principal component analyses were performed identi-
cally to the HKTR genotyping data set. After all steps were complete,
8,541,201 variants remained in the TCGA genotyping data set.

Genotyping in the GTEx project was performed by whole genome
sequencing on an Illumina HiSeqX (to 15x coverage) on DNA extracted
from blood samples. The full experimental protocol is reported in the
following NCI SOPs: BBRB-PR-0004, BBRB-PR-0004-W1, BBRB-PR-
0004-W1-G3 and in the original publication122. Complete methodolo-
gical detail is provided elsewhere122, but in brief, raw reads were
mapped to the human GRCh38 reference sequence using BWA-MEM
(http://bio-bwa.sourceforge.net). Autosomal variant calling was per-
formed by SHAPEIT. Genotype data was downloaded in indexed VCF
format from dbGAP. The final number of variants available for com-
bination with other genotype datasets was 45,138,608.

DNA extraction in CPTAC was performed on blood samples for
each sample according to the following SOPs: https://brd.nci.nih.gov/
brd/sop-compendium/show/41. Briefly, DNA was extracted using the
QIAsymphony DNA Mini Kit (Qiagen), acoustically sheared, indexed,
multiplexed and then sequenced to 15x coverage on an Illumina
HiSeqX. FASTQ reads were mapped to the National Cancer Institute
(NCI) Genomic Data Commons (GDC) GRCh38.d1.vd1 reference
sequence (https://api.gdc.cancer.gov/data/254f697d-310d-4d7d-a27b-
27fbf767a834) following the standard GDC protocol (https://docs.gdc.
cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_
Pipeline/#alignment-workflow) which involves read mapping with
BWA-MEM137 alignment sorting and merging using Picard (https://
broadinstitute.github.io/picard), duplicate marking (also using Picard)
and finally base quality score recalibration using the Genome Analysis
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ToolKit (GATK). BAM files containing reads aligned using this workflow
were then downloaded from the GDC portal using the following query
parameters: cases.samples.sample_type = ‘solid tissue normal’, case-
s.primary_site = “kidney”, cases.project.program.name = “CPTAC”,
files.data_format = “bam” and files.experimental_strategy = “WGS”.
Variant calling was performed by the GATK version 3.8 “Haplotype-
Caller” variant caller in single sample GVCF mode with the following
command line arguments “-dontUseSoftClippedBases -ERC GVCF”
using 8 CPU cores with 32GB of RAM. All individual GVCF files were
then genotyped jointly using the GATK tool “GenotypeGVCFs” using
default arguments using 32 CPU cores with 128GB or RAM. BCFTools
was then used to split any multiallelic variant calls into biallelic calls to
produce afinal variant call set which could be integratedwith that from
all other cohorts. The final number of variants available for combina-
tion with other genotype datasets was 19,847,739.

National Institutes of Health kidney collections – RNA processing,
RNA-sequencing data generation, quality control and analysis. In
TCGA kidney RNA was extracted using the Qiagen ALLPrep kit.
Sequencing libraries were generated from poly-A selected mRNA and
sequenced on an Illumina HiSeq2000 producing an average of 80.6
million paired reads per sample. All TCGA sequencing reads for kidney
NAT samples were downloaded from the genomic data commons
portal (https://portal.gdc.cancer.gov).

Tissue RNA extraction in GTEx was performed as reported
before138; sequencing libraries were generated using the Illumina Tru-
Seq poly-A selection protocol. The libraries were sequenced on either
an Illumina HiSeq2000 or HiSeq2500 producing an average of 82
million paired 76 bp reads per sample. GTEx sequencing reads for all
kidney cortex samples were downloaded from the GTEx v8 google
cloud computing bucket (data accessed May 2021).

Extraction of RNA from CPTAC samples was performed using the
study’s SOPs: https://brd.nci.nih.gov/brd/sop-compendium/show/41.
The libraries were constructed using the Illumina TruSeq total RNA
protocol with rRNA depletion (RiboZero gold) and sequenced on an
IlluminaHiSeq4000 generating aminimumof 120million paired 75 bp
reads per sample. CPTAC aligned reads were downloaded from the
genomic data commons data portal (https://portal.gdc.cancer.gov/).

All validation panel samples were downloaded, raw FASTQ reads
extracted and pre-processed using the protocol identical to the dis-
covery resource. Raw FASTQ reads were extracted from aligned BAM
files using bamtofastq from biobambam (https://github.com/gt1/
biobambam).

Regulatory compliance. NIH has granted us access to TCGA, GTEx
and CPTAC data under the approved dbGAP project 13040.

Generation of genetically regulated expression models for the
purpose of kidney blood pressure transcriptome-wide associa-
tion studies
Input into gene expression prediction models – Human Kidney
Tissue Resource (discovery resource). We conducted the quality
control on the genotypedata usingupdatedPredictDBPipeline (http://
predictdb.org/). SNPs not present in the 1000 genome reference panel
under GRCh37 and not available from the meta-analysis summary of
the SNP-BP associations22 were excluded from the analysis. In total,
6,571,172 SNPs remained for the analysis.

Gene expression, in TPM units, was normalised by logarithmic
transformation, quantile normalisation (using the R package aroma.-
light) and rank-based inverse normal transformation, as described
before25.We thenused PEER124 to infer 100hidden factors thatdescribe
global sources of variation in the normalised data. Residuals of gene
expressionwere then calculated from thenormaliseddata by adjusting
for age, sex, tissue source (nephrectomy/biopsy), the first three

genetic principal components, the 100 PEER hidden factors and seven
cell-type proportions using linear regression.

Gene annotation data. Gene biotypes, start and end coordinates,
strand information and chromosomal localisations were collected
using the “biomaRt” R package using the Ensembl gene ID for all
expressed genes in our data set. We queried v83 of the “hsapiens_-
gene_ensembl” dataset using the GRCh38 human genome build, data
accessed February 2021. The positions of genes were also converted to
GRCh37 by LiftOver125 for downstream analyses.

Prediction Using Models Informed by Chromatin conformations
and Epigenomics model for imputing gene expression in
the kidney. PUMICE41 generates GReX models utilising epigenetic
information (i.e. epigenetic annotation tracks) to prioritise essential
genetic variants that carry important functional roles and 3D genomic
information to define windows that harbour cis-regulatory variants.

Variants that overlap these annotation tracks are deemed
“essential” genetic variants, and variants that do not overlap the
annotation tracks are deemed “non-essential variants”. We use X1 to
represent the set of essential genetic variants, X2 to denote “non-
essential” genetic variants, and E to represent the vector of gene
expression levels across multiple individuals. ϕ is a tuning parameter
that controls the penalty on the “essential” predictors relative to the
non-essential predictors139. We assume ϕ≤1 so that “essential” pre-
dictors are penalised no more than the non-essential predictors.

The GReX model seeks to estimate the weights β1 and β2 by
minimising the following objective function:

Lðβ1,β2; λ,ϕÞ= jjE � X 1β1 � X2β2jj22 +
1
2
×
λ
2
ðϕjjβ1jj22

+ jjβ2jj22Þ+
1
2
λðϕjjβ1jj11 + jjβ2jj11Þ

ð1Þ

PUMICE also utilises different choices for windows that harbour
cis-regulatory variants as another tuning parameter (denoted as w),
which includes the ones defined by conventional linear windows sur-
rounding gene start and end sites (i.e., ±250kb and ±1Mb) as well as by
3D genomics informed regions (i.e., loop and TAD). In total, nested
cross-validation is utilised to select theoptimal combinations of tuning
parameters λ, ϕ, and w.

For generating PUMICE-kidney-specific GReX models, we
retrieved epigenomic annotation data for adult human kidney tissue
from ENCODE140,141 and kidney-specific chromatin conformations42.
Specifically, we downloaded epigenomic annotations (in BED format)
from ChIP-seq experiments for the following epigenetic marks:
H3K27ac (ENCFF077LXK), H3K4me3 (ENCFF423PKK), DNase hyper-
sensitivity sites (ENCFF416ORJ), and CTCF (ENCSR000DMC). For BED
files based on GRCh38 human genome build, we used LiftOver
implemented in rtracklayer142 to convert genomic positions to GRCh37
version. Fastqfiles of two technical replicates forH3K27acHiChIP from
the proximal tubule-derived HK2 cell line were obtained from Eur-
opean Nucleotide Archive (Run Accession SRR11434878 and
SRR11434879)42. HiChIP paired-end reads for each replicate were
combined and aligned to hg19 reference genomes using the Juicer
pipeline143 with default parameters to assign reads to MboI restriction
fragments andgeneratebinned interactionmatriceswith aligned reads
MAPQ ≥ 30. TADs were called using HiCtool144 at the required 40 kb
resolution. A 40 kb resolution interaction matrix was obtained by
converting 10 kb matrix generated by Juicer to 40 kb resolution using
HiCExplorer145. Loopswere called using Peakachu146 at 10 kb resolution
using pre-trained CTCF ChIA-PET and H3K27ac HiChIP model for
30million intra-reads. The final set of loops were combined from both
models with predicted probability > 0.59. The probability threshold
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was chosen to obtain approximately 10,000 loops combining results
from both models.

We then used 478 samples from HKTR to generate GReX models
for kidney genes. We trained predictors of gene expression by apply-
ing the above PUMICE-based algorithm to genotype and RNA-
sequencing-derived transcriptome from HKTR. We kept genes with
nested cross-validated Pearson correlation between predicted and
actual levels > 0.10 (or equivalently r2 > 0.01) and P-value of the cor-
relation test <0.05126.

Prediction performance validation of PUMICE-derived genetically
regulated expressionmodels for kidney genes using the validation
panel of The Genotype-Tissue Expression, The Cancer Genome
Atlas and Clinical Proteomic Tumor Analysis Consortium data. For
the purpose of the prediction performance validation, genotype data
from GTEx, TCGA and CPTAC (n = 222) were combined. TCGA was
integratedwithGTEx andCPTACbyonly retaining variants common to
all data sets. SNPs with missing rate > 5% were excluded. After further
overlapping with the genotype data from HKTR, the final genotype
dataset contained 6,305,298 autosomal variants that were used for
prediction performance validation of the GReX models.

Gene expression from all NIH datasets (GTEx, TCGA, CPTAC,
totalling 222 samples), in units of TPM, was normalised by logarithmic
transformation, quantile normalisation (using “aroma.light”), and
rank-based inverse normal transformation, as described before25. We
then used PEER124 to infer 30 hidden factors that describe global
sources of variation in the normalised data. Residuals of gene
expressionwere then calculated from thenormaliseddata by adjusting
for age, sex, study (GTEx, TCGA, CPTAC), top three genetic principal
components and the 30 hidden factors from PEER using linear
regression.

We obtained predicted expression for all imputable genes by
applying the PUMICE-derived GReX models to our fully independent
validation dataset of 222 human kidney tissue samples (from GTEx,
TCGA and CPTAC). Predicted expression for each imputable gene was
compared to residuals of gene expression across all samples using
Pearson’s correlation coefficient. A correlation coefficient of > 0.1 was
used as the criterion of a validated model. Predictive performance of
PUMICE-derived validated models between the discovery and valida-
tion kidney resources were tested using Pearson’s correlation
coefficient.

Analysis of recapitulation of biological function for generated
models of predicted gene expression. We examined the association
between predicted kidney expression of genes of key relevance to four
biochemical blood phenotypes (i) reflective of the kidney’s involve-
ment in excretion and/or reabsorption of solutes and (ii) measured in
UK Biobank147 [serum glucose (mmol/L), serum urate (µmol/L), serum
phosphate (mmol/L) and serum calcium (mmol/L)].

For each phenotype, we looked up the GWAS SNPs (ordered by
the magnitude of statistical significance of association with the
respective trait) from the list of GWAS Catalog148 associations and
selected the topgeneswith validatedGReXmodels towhich theGWAS
SNPsweremapped (SLC2A2 for glucose, SLC2A9 and SLC2A12 for urate,
IP6K3 for phosphate, CASR for calcium).

We also manually curated the diseases arising from/related to
abnormalities in each of the selected blood biochemistry traits (Sup-
plementary Data 5) from those that (i) had at least 100 cases present in
UK Biobank and (ii) were assigned full ICD10 code (Supplementary
Data 5). In brief, type 2 diabetes and gout were selected as the diseases
related to glucose and urate, respectively. For phosphatewe examined
“polyarthrosis” and “other arthrosis” traits (7 diseases in total) (Sup-
plementary Data 5). A total of 17 diseases were examined as related to
renal metabolism of calcium under two umbrella terms (“urolithiasis”
and “obstructive and reflux uropathy”) (Supplementary Data 5). The

following four disorders were selected as relevant to renal handling of
sodium/potassium “hyperosmolality and hypernatraemia”, “hypo-
osmolality and hyponatraemia”, “hyperkalaemia” and “hypokalaemia”
(Supplementary Data 5). Further details of UK Biobank fields, field
codes and ICD codes are provided in Supplementary Data 5.

In the absence of serum sodium/potassium levels in UK Biobank
we selected SCNN1B as the well-established contributor to renal
homeostasis of sodium/potassium24,149.

Associations between a genetically predicted expression of the
relevant kidney gene (generated using a PUMICE algorithm in the
discovery resource and validated in the validation resource) and a
continuous blood biochemistry phenotype were conducted using the
relevant genotype data from 337,350 unrelated individuals of white-
European ancestry in UKBiobank147 –weused linear regressionwith an
adjustment for age, sex, genotyping array and the top ten genetic
principal components.

Associations between a genetically predicted expression of the
relevant kidney gene and a binary disease/disorder status were
determined by Firth logistic regression150 (to minimise a potential bias
arising from an imbalanced case/control ratio). The logistic regression
models were adjusted for the same set of covariates as those included
in the analysis of continuous traits. For the scenarios with more than
one trait examined we applied a correction for multiple testing (cal-
culated using the Benjamini–Hochberg FDR); the threshold of cor-
rected statistical significance was established at FDR < 0.05.

Kidney transcriptome-wide association studies of blood
pressure
A catalogue of variants associated with blood pressure in genome-
wide association studies. As an input into TWAS analysis, we used
summary statistics of the associations between (i) 19,267,390SNPs and
SBP/DBP/PP from 337,422 UK Biobank individuals, and (ii) 7,371,711/
7,476,460/7,359,508 SNPs and SBP/DBP/PP from 299,024 ICBP
individuals22 (Supplementary Data 33). SNPs (i) not present in the 1000
genome reference panel under GRCh37 and (ii) not available in the BP
GWAS analyses (UK Biobank and ICBP) were excluded from the ana-
lysis. A total of 6,305,298 variants common for HKTR, TCGA, GTEx and
CPTAC were retained for the TWAS analysis.

Existing blood pressure genome-wide association study loci and
genomic loci outside blood pressure genome-wide association
study loci. A total of 885 GWAS variants were associated with at least
one of the BP traits (SBP, DBP, PP) in previous BP GWASs22. A GWAS
locus was defined by a GWAS variant and the 1Mb region adjacent to
the variant (on both sides). For the purpose of this study, overlapping
loci were merged into single locus. In such cases, the most significant
GWAS variant in each locus was defined as the sentinel GWAS variant
for this locus. As a result, 429 independent BP GWAS loci were iden-
tified (Supplementary Data 34). Genomic regions not overlappingwith
these BP GWAS loci were mapped to pre-defined disjoint LD blocks151.

Blood pressure kidney transcriptome-wide association studies –

reciprocal replication in UK Biobank and International Consortium
for Blood Pressure. We examined associations between kidney
PUMICE-derived predicted gene expression and SBP, DBP and PP using
S-PrediXcan127.Wefirst examined associationsbetweenall 6490kidney
genes with validated expression models developed using kidney
PUMICE with each of three BP-defining traits in each of the two
resources, separately. The correction formultiple testingwasbased on
the Benjamini–Hochberg FDR. Kidney genes whose predicted
expression retained its significant association with BP in one of the
resources were then taken for reciprocal replication (for analysis with
the same BP trait) in the other resource. The correction for multiple
testing was calculated using the Benjamini–Hochberg FDR (at the
individual resource level) separately for each BP-defining trait. The
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threshold of corrected statistical significance in both stages above was
established at FDR <0.05. Only genes showing directionally consistent
associations with the same BP-defining trait in both cohorts were
considered statistically significant (Fig. S3).

Computational drug repurposing with Connectivity Map. Using S-
PrediXcan, we also generated summary statistics for gene-SBP/DBP/PP
associations using meta-analysis GWAS summary statistics on SBP/
DBP/PP from UK Biobank and ICBP22. For each BP-defining trait, we
extracted its significant TWAS associations (FDR q-value < 0.05) from
the pool of 6490 kidney genes and used this as a proxy for a trait
signature.We then applied CMap algorithm52 to identify drugs capable
of inducing and reversing the disease signature. Specifically, we
queried BP TWAS association signals against the reference profiles in
the CMap database (from L1000 assay)53, which recorded gene
expression changes caused by perturbagens as the signature of the
drug x gene pair. Only reference data from touchstone dataset were
used, which comprised of reference signatures across nine cell lines
treated with ~3000 small molecule drugs. To quantify the correlation
between a query signature and reference profile, CMap calculated a τ-
score. A negative τ-score indicates that the identified molecule can
normalise trait signature and are capable of drug reposition, and vice
versa. Only drug classes that survived a correction formultiple testing
(calculated by the Benjamini–Hochberg FDR <0.05) were considered
as statistically significant.

Causal inference and fine mapping analyses
Mendelian randomisation with PMR-Egger. We adopted a recent
two-sample Mendelian randomisation method, PMR-Egger62, devel-
oped specifically to control for horizontal pleiotropy and the presence
of multiple correlated instruments through a maximum likelihood
inference framework62. As an input to each MR analysis, we used: (i) a
summary of the associations between the instrumental SNPs and SBP/
DBP/PP, calculated from a meta-analysis of ~750,000 individuals22

from UK Biobank and ICBP and (ii) a summary of the associations
between the same SNPs and the selected BP TWAS genes generated in
a kidney cis-eQTL analysis conducted using 478 samples with infor-
mative genotype and transcriptome information from HKTR. In brief,
kidney cis-eQTL analysis brought together 8,735,852 genetic variants
and 21,414 kidney genes. The normalised expression of each kidney
gene was regressed against alternative allele dosage, age, sex, source
of tissue indicator (nephrectomy/kidney biopsy), the top three prin-
cipal components derived from genotyped autosomal variants, 100
hidden factors estimated using PEER and seven kidney cell-types. Only
variants within 1Mb-regions from the transcription start site of a gene
were considered and the analysis was carried out using FastQTL152. For
each MR analysis, all cis-SNPs were LD-clumped with r2 < 0.5 and
selected as instruments. The correction for multiple testing was cal-
culated using the Benjamini–Hochberg FDR, and the threshold of
corrected statistical significancewas established at FDR < 0.05. Genes
with statistically significant causal effects and no evidence of pleio-
tropic effects estimated through PMR-Egger (i.e., FDR >0.05) were
selected for further analyses.

Fine-mapping of transcriptome-wide association study associa-
tions. We first mapped kidney genes prioritised through BP TWAS and
PMR-Egger to pre-defined disjoint LD blocks151. Genes located within
the MHC region were excluded. We then applied probabilistic fine-
mapping to each of the independent genomic regions with more than
one TWAS signal. Using Fine-mapping Of CaUsal gene Sets63 (FOCUS)
we prioritised kidney genes within each locus while controlling for
pleiotropic effects. Within each locus we computed a 95% credible set
of causal genes and the posterior inclusion probability (PIP) for each
gene63 (Fig. S4). We retained all genes present in the credible set and
with a PIP > 0.5 for further analysis. As an input into FOCUS analysis, we

used (i) a weight database containing 6490 validated kidney gene
expression prediction models generated by kidney PUMICE from
HKTR, (ii) a summary of the associations between SNPs and SBP/DBP/
PP from the meta-analysis GWAS22 and (iii) 1000 genome
reference panel.

Mapping TWAS signals to independent genomic regions. We map-
ped TWAS signals to existing BP GWAS loci and genomic loci outside
BP GWAS loci (BP TWAS loci) and examinedwhether a genomic region
contained a single or multiple TWAS signals.

Integration of outputs from blood pressure kidney
transcritome-wide association studies with plasma metabo-
lomics and proteomics
Association between kidney expression of solute carrier family 5
(sodium/inositol cotransporter), member 11 (SLC5A11) and serum
glucose and HbA1c. Using the validated kidney PUMICE-derived
prediction model for SLC5A11, we generated its GReX in UK Biobank.
We then examined its association with serum glucose (Data-Field
30740) and HbA1c (Data-Field 30750) values from294,159 and 321,435
unrelated UK Biobank individuals of white-European ethnicity
(respectively). In brief, included in these analyseswere individualswho
passed the sample level quality control filters147. Prior to the analysis,
circulating glucose levels and HbA1c were normalised using rank-
based inverse normal transformation. We then examined the associa-
tions between predicted kidney expression of SLC5A11 and both glu-
cose and HbA1c by regressing their normalised values on the SLC5A11
GReX adjusting for age, sex, genotyping array and the top ten genetic
principal components (PCs) in respective linear regression models.

SLC5A11 kidney expression, plasma myo-inositol and pulse pres-
sure –mediation analysis using two-stepMendelian randomisation.
We conducted mediation analysis using two-step MR153,154 to investi-
gate the extent to which the effect of predicted kidney expression of
SLC5A11 on PP may be mediated by plasma levels of myo-inositol. In
brief, each step of the two-step MR is an independent univariable two-
sample MR analysis. Penalised inverse-variance weighted (IVW)
method155 was used to estimate the potentially causal effect of the
exposure (e.g. kidney mRNA expression of SLC5A11) on the mediator
(e.g. plasmamyo-inositol) and the causal effect of the mediator on the
outcome (e.g. PP) in the first and second step (respectively), sepa-
rately. MR-Egger regression was used to detect horizontal pleiotropy
in each MR analysis155. A modified version of the IVW and MR-Egger
estimators156 that account for genetic correlationswas used for anyMR
analysis with selected correlated instruments. The total effect of the
exposure on the outcome was estimated using penalised IVW. The
indirect effect (i.e. mediation effect) was calculated by multiplying the
estimated effects from both steps. Mediation proportion (MP) was
then calculated by dividing the indirect effect by the total effect.
Standard errors of the estimated indirect effect and MP were derived
using the delta method157,158. In each MR analysis, significant causal
effect was identified if (i) the effect estimatewas statistically significant
(P-value < 0.05) and (ii) there was no horizontal pleiotropy (P-
value > 0.05).

As an input, we used (i) summary statistics for SNPs associated
with kidney expression of SLC5A11 in cis-eQTL analysis conducted in
478 individuals from HKTR, (ii) GWAS summary statistics for plasma
myo-inositol levels from INTERVAL and EPIC-Norfolk (n = 14,296)75 and
(iii) GWAS summary statistics for PP from UK Biobank and ICBP22

(n = 750,000). Moderately correlated SNPs associated with SLC5A11
expression (P-value < 1 × 10−3 and LD r2 < 0.5) were selected as instru-
ments for estimating effects from SLC5A11 expression to myo-inositol
and PP, respectively. Independent SNPs associated with myo-inositol
(P-value < 5 × 10−8 and LD r2 < 0.1) were selected as instruments to
estimate an effect from myo-inositol to PP.
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Expression of AGMAT – tissue and cell-type enrichment in human
tissues. Tissue enrichment was examined in a panel of human tissues
from the Human Protein Atlas (HPA) based on RNA tissue specificity
classification159. The kidney cell-type enrichment of AGMATwas based
on the HPA cell-type specificity definition (https://www.proteinatlas.
org/ENSG00000116771-AGMAT/single+cell+type).

Analysis of association between kidney expression of AGMAT and
blood urea nitrogen. We first generated GReX based on the validated
kidney PUMICE-derived prediction model for AGMAT using UK Bio-
bank imputed genotype data147. BUN values (mmol/L) were derived
from blood urea values (mmol/L) (Data-Field 30530) measured in
321,409 unrelated UK Biobank individuals of white-European ethnicity
surviving sample level quality control147 by multiplying the blood urea
values by 0.1554160. The BUN values were further normalised using
rank-based inverse normal transformation. We then estimated the
effect of AGMAT GReX on BUN by regressing normalised values of
the latter on AGMATGReX adjusting for age, sex, genotyping array and
the top ten genetic principal components (PCs) in linear regression.

We next estimated the effect of AGMAT expression on BUN in an
independent cohort from CKDGen Cosnortium using two-sample MR.
IVWwas used to estimate the effect of AGMAT expression on BUN and
MR-Egger regression was used to examine the presence of horizontal
pleiotropy. For the purpose of the analysis, we used: (i) a summary of
the associations between the instrumental SNPs and BUN, calculated
from a meta-analysis of ~243,000 individuals160 from CKDgen (ii)
summary statistics of the associations between the same SNPs and
kidney expression of AGMAT generated in the kidney cis-eQTL analysis
in 478 samples from HKTR. The correction for multiple testing was
conducted by Benjamini–Hochberg FDR on cis-eQTL associations on
AGMAT expression. Independent SNPs associated with kidney
expression of AGMAT (FDR <0.05 and LD r2 < 0.1) were selected as
instruments for theMRanalysis. Significant causal effectwas identified
if the effect estimate is significant (P-value < 0.05) with no horizontal
pleiotropy (P-value > 0.05).

AGMAT kidney mRNA expression, plasma concentrations of
4-guanidinobutanoate and systolic blood pressure – mediation
analysis using two-step Mendelian randomisation. We conducted a
mediation analysis under the aboveMR framework to estimatewhether
the effect of kidney expression of AGMAT on PP is mediated by plasma
4-guanidinobutanoate. For the purpose of this analysis, we used (i)
summary statistics for AGMAT expression in the kidney (from cis-eQTL
analysis carried out in 478 samples fromHKTR), (ii) summary statistics
for plasma 4-guanidinobutanoate from GWAS in INTERVAL and EPIC-
Norfolk (n = 14,296)75 and (iii) GWAS summary statistics for SBP from
UK Biobank and ICBP22 (n = 750,000). We selected independent SNPs
associated with kidney expression of AGMAT (P-value < 1 × 10−2 and LD
r2 < 0.1) as instruments to estimate effects of AGMAT expression on
SBP. Independent SNPs associated with kidney expression of AGMAT
(P-value < 1×10−3 and LD r2 < 0.1) were selected as instruments for the
purpose of estimating effects from AGMAT expression to
4-guanidinobutanoate. Independent SNPs associatedwithmyo-inositol
(P-value < 5×10−8 and LD r2 < 0.1) were selected as instruments in esti-
mation of the effect of 4-guanidinobutanoate on SBP.

AGT kidney mRNA expression, angiotensinogen plasma protein
levels and systolic blood pressure – mediation analysis using two-
step Mendelian randomisation. To determine whether plasma
angiotensinogen protein levels mediate the effect of AGT kidney
mRNA expression on SBP, we performed a mediation analysis under
the MR framework described above. As an input, we used (i) summary
statistics from cis-eQTL analysis of kidney AGT mRNA expression
conducted in 478 samples from HKTR, (ii) GWAS summary statistics
for angiotensinogen plasma protein levels from the Fenland study

(n = 10,708)82 and (iii) GWAS summary statistics for PP from UK Bio-
bank and ICBP22 (n = 750,000). MR analyses of the effects of kidney
AGT expression on circulating angiotensinogen protein levels and SBP
(respectively) were based on a selected set of independent (r2 < 0.1)
instrumental SNPs showing a significant (P-value < 1 × 10−3) associa-
tion with AGT expression in the cis-eQTL analysis. In estimating effect
of circulating concentrations of angiotensinogen protein on SBP we
used independent SNPs associated with plasma angiotensinogen (P-
value < 5 × 10−8 and LD r2 < 0.1) as instruments.

Characterisation of kidney microRNAome and kidney blood
pressure microRNAome-wide association studies (micro-
RNA-TWAS)
Processing of miRNA-sequencing data and quality control. A total
of 379 samples from HKTR studies underwent small RNA-sequencing
analysis to identify and quantify kidney miRNAs; all of these samples
had matching genotype information. The libraries were generated
using Illumina TruSeq and were sequenced using either 75 bp single-
end reads from an Illumina NextSeq or 50 bp single-end reads from an
Illumina HiSeq2500. In addition, 114 TCGA samples had kidneymiRNA
profiles available; all were sequenced using 30 bp single-end reads on
an Illumina HiSeq2500161. Finally, 75 kidney miRNA profiles were
secured fromCPTAC resource162. These samples were processed using
an Illumina HiSeq4000, as reported before162. The TCGA and CPTAC
miRNA-sequencing reads were obtained from the GDC data portal and
filtered using the following filters: (i) Program: TCGA or CPTAC,
respectively, (ii) Primary site: kidney, (iii) Race: white, (iv) Sample type:
solid tissue normal, (v) Experimental strategy: miRNA-sequencing and
(vi) Data format: bam. In total, 114 TCGA and 75 CPTAC miRNA-
sequencing datasets with corresponding genotyping data were
downloaded.

In all studies, adaptors were trimmed with Trimmomatic using
standard Illumina adapter sequences (sliding window size: 4 bases;
minimum window length: 15 bases)163. Next, Spliced Transcripts
Alignment to a Reference (STAR) software was used to align reads and
to quantify miRNA mature products into reads per million (RPM)164.
miRNAmature product annotations were taken frommiRbase (release
22) using the GRCh38 reference genome165. ComBat-seq was later used
for batch effect correction166.

Samples with total read number <2 million and a D-statistic > 5167

were excluded from further analysis. A total of 489 samples with
matching genotype data survived quality control (339 – HKTR, 85 –

TCGAand65 –CPTAC, SupplementaryData 35) andwere included into
the downstream analyses.

AmiRNAwas retained for downstream analysis if its expression in
RPMwas>0.1 and read count≥5 in at least 10%of the kidney samples in
each population. miRNAs that did not fulfil these criteria, had an
interquartile range of 0 or were located on sex chromosomes were
excluded from further analysis. There were 1459 miRNAs that passed
the quality control filters in HKTR, 967 in TCGA and 1459 in CPTAC. A
total of 967 miRNAs common to all datasets were retained for further
analyses.

Expression data were normalised by logarithmic transformation,
quantile normalisation (using the R package aroma.light168), and rank-
based inverse normal transformation, as described before25. miRNA
expression residuals from linear regression models were then further
adjusted for (i) age, (ii) sex, (iii) source of tissue sample indicator
(nephrectomy/pre-transplantation biopsy), (iv) the first three auto-
somal genetic principal components (calculated using the
EIGENSTRAT130 and SNPWeights131 packages), and (v) 30 PEER
factors124.

Mapping miRNA onto host genes and their classification. miRNA
annotations for the human (Homo sapiens) genome were obtained
from miRbase (GRCh38; release 22)165 and genomic coordinates were
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used to map each miRNA onto gene positions curated from the
Ensembl genome database (GRCh38; release 108)169. miRNAs located
within the start and end coordinates of genes were defined as ‘intra-
genic’, and further divided into ‘intronic’ and ‘exonic’ based on their
position within the host gene. Other miRNAs (not present within the
body of any gene) were defined as ‘intergenic’.

Complexity of kidney microRNAome. To determine relative tran-
scriptomic complexity of miRNAs, we first divided all 21,414 kidney-
expressed genes into simplified categories through manual mapping
of Ensembl v83 “gene_biotype” values (Supplementary Data 36) and
excluded 72 miRNAs and 23 other small non-coding RNAs identified
using polyA RNA sequencing. In total, there were 15,205 protein-
coding genes, 5063 long non-coding RNAs and 1051 pseudogenes. For
each biotype, we calculated the proportion of the transcriptome/
microRNAome attributable to each kidney-expressed gene and ranked
them in descending order.We quantified the cumulative proportionof
transcriptomes for each biotype referable to each quartile (25, 50 and
75%) of expression.

miRNA tissue enrichment. Human (Homo sapiens) small non-coding
RNA expression information was curated frommiRNATissueAtlas286 –

we identified a total of 2656 mature miRNAs across 35 organs. Each
miRNA was then assessed for enrichment using the HPA definitions159:
miRNAs were categorised as ‘enriched’ if the expression in an organ
was at least four times that of any other organ, ‘group enriched’ if the
expression in a group of 2-5 organs was at least four times that of any
other organ, ‘enhanced’ if the expression in an organ was at least four
times the cross-tissuemean, ‘low specificity’ if the expression in at least
one organ had log2 RPM> 1 but did not belong to any previous cate-
gory, and ‘not detected’ if the expression in all organs had log2 RPM< 1.

Kidney blood pressuremicroRNAome-wide association studies. We
used elastic net regression under Predixcan framework126 to develop
prediction models for kidney miRNAs expression using (i) genotype
data and (ii) the adjusted residuals of renal miRNA expression data
derived from normalised small RNA-sequencing profiles, as reported
above. Consistent with the computational pipeline developed for the
purpose of BP kidney TWAS, all HKTR samples with informative kidney
miRNA profiles and matching genotype information were used as a
discovery resource (n = 339) while samples from NIH resources (TCGA
and CPTAC, n = 150) were used for the purpose of validation. The
prediction models of expression for 1459 kidney miRNAs in the dis-
covery resource were produced using nested cross validated elastic
net regression.

The prediction models with nested cross validated Pearson’s
correlation coefficient > 0.1 and P-value < 0.05 in the discovery
resource were retained for further analysis. They were further exam-
ined in the validation resource; the residuals of miRNA expression in
the discovery cohort were correlated with their respective GReX in the
validation resource. The prediction models with Pearson’s correlation
coefficient >0.1 in the validation resource were retained for further
downstream analysis.

Overall, there were 201 prediction models for kidney miRNA
expression in the discovery resource. Of these, 80 were validated and
retained for kidney microRNA-TWAS of BP. As an input into this ana-
lysis, we used the GWAS summary statistics for SBP, DBP and PP from
UK Biobank (n = 337,422) and ICBP (n = 299,024), as reported above.
We first examined associations between all 80 kidney miRNAs with
fully validated GReX models and each of three BP-defining traits in
each of the two resources, separately. The correction for multiple
testing was based on the Benjamini–Hochberg FDR. Kidney miRNAs
whose predicted expression retained its significant association with
the same BP trait in one of the resources were then taken for a reci-
procal replication in the other resource. The correction for multiple

testing was conducted using Benjamini–Hochberg FDR separately for
each BP-defining trait. Only miRNAs showing directionally consistent
associations with the same BP-defining trait in both resources were
considered statistically significant (Fig. S7).

Kidney miRNAs associated with blood pressure – biological anno-
tations. To provide functional context to the detected associations
between kidney miRNAs and BP we have examined their (i) genetic
origin, (ii) magnitude of their kidney expression, (iii) tissue specificity
and (iv) genetic imputability. To determine the relative expression of
BP-associated miRNAs in the kidney, we quantified mean expression
values for 1459 renal miRNAs using 339 samples in the discovery
resource and scaled the values between0 and 1. To characterise kidney
specificity, we retrieved miRNA expression data for multiple tissues
frommiRNATissueAtlas252. We derived a mean value of expression for
each miRNA in each organ and inferred specificity by calculating the
fold-change of mean expression in the kidney against the cross-tissue
mean. To quantify the imputability of miRNAs, we assessed the per-
formance of their prediction models using nested cross-validated
correlation between the predicted and measured levels of expression
in the kidney.

Blood pressure-associated kidney miRNAs and the neighbouring
genes – conditional analyses. We sought to examine the extent to
which the identified signal of associations between BP and 11 kidney
miRNAs may be mediated by (i) the host genes (i.e. genes whose
sequences overlapwithmiRNAs), (ii) all BP kidney TWASgenes sharing
the same chromosomal region with the miRNA. For each BP TWAS
miRNA,wefirst identified all validated imputable protein-coding genes
whose TSS map within 500 kb of the TSS of the BP TWAS miRNA. For
further analyseswe selected either the host gene (if acting as BP kidney
TWAS gene) or each of the BP kidney TWAS genes within the 500 kb
boundaries.

As an input into the conditional analysis, we used (i) a Z-score for
the BP TWASmiRNA (obtained from the BP microRNA-TWAS showing
the most significant association), denoted ZmiRNA, (ii) a Z-score for the
corresponding selected gene (obtained from the BP TWAS), denoted
Zgene, and (iii) cis-regulated genetic correlation (r) of the BP TWAS
miRNA and the corresponding selected gene.

We conditionedBPTWASgene associations on the corresponding
miRNA to obtain conditional Z-scores, i.e. Zgene|miRNA using the fol-
lowing formula170:

ZgenejmiRNA =
Zgene � r ×ZmiRNA

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p ð2Þ

The cis-regulated genetic correlation was calculated from the
Pearson’s coefficients of correlation between imputed miRNA
expression and imputed gene expressions for individuals from 1000
Genome by applying weights of their imputation models to the gen-
otype data. A significant mediation effect was identified if (i), |r| > 0.1,
(ii) |Zgene| > |Zgene|miRNA| > 2, and (iii), the direction of Zgene|miRNA was
consistent with Zgene171.

Characterisation of kidney proteome andbloodpressure kidney
proteome-wide association studies
CPTAC human kidney tissue proteomics – data generation, quality
control and quantification. The abundance of human kidney tissue
proteins were obtained from the CPTAC pre-processed protein-level
assembly136 and downloaded from the proteomic data commons (data
accessed May 2022, https://pdc.cancer.gov/pdc/study/PDC000127).
The details of the biochemical analyses are reported in full in the ori-
ginal publication136. In brief, we made use of the NAT samples (taken
from regions of the kidney adjacent to renal clear cell tumours) and
reviewed by a board-certified pathologist (to confirm the histological
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status)136. Each kidney tissue sample was homogenised, lysed, digested
and trypsinised. Samples were thenmultiplexed using tandemmass tag
(TMT) and fractionated by basic reversed-phase liquid chromatography
(bRPLC)136. Peptides were then separated by ultra-high-performance
liquid chromatography (UHPLC) and analysed using the Thermo Fusion
Lumosmass spectrometer136. The protein-level assembly of spectra and
peptides into estimates of protein abundance was performed by a
software workflow using the Philosopher pipeline172 including spectral
search by MSFragger173 and refinement by PeptideProphet174. Peptide
spectral match data for each sample were then normalised by log2-
transformed reference intensities determined for each TMT channel. A
total of 83 NAT samples had raw protein-level abundance data; 72 of
these had genotype information from whole genome sequencing
available and 65 of these also had poly-A RNA-sequencing data. All
samples used in this analysis were collected from patients of European
ancestry. A total of 7291 proteins were quantifiable in all 72 samples and
7036 of these from 65 samples were available with measurable
expression of their source gene in the RNA-sequencing data.

General characteristics of kidney proteins. We have first
assigned each of the quantified kidney proteins into three predicted
localisation categories (intracellular,membrane and secreted) provided
by the HPA https://www.proteinatlas.org/about/download (data acces-
sedMay2022).We thenexamined theextent towhichproteins fromthe
CPTAC dataset are enriched for varying degrees of kidney specific
expression. Kidney enriched, group enriched and kidney enhanced
genes were downloaded from the HPA (data accessed May 2022). We
then used Fisher’s exact test to calculate the enrichment odds ratio
(with corresponding P-values) illustrative of the extent to which each of
the kidney-specificity categories are over-represented amongst the
proteins quantified in the CPTAC dataset compared to the whole HPA.

Correlation between kidney gene expression and protein abun-
dance. Using 65 CPTAC samples with overlapping transcriptome/
proteome information we examined Pearson’s correlation between
abundances of each of 7036 proteins (normalised intensity) and log2-
transformed estimated read counts of their parent genes (from the
matching kidney RNA-sequencing data). These were then catalogued
across the entire distribution of the observed correlations – from the
most negative (r = -0.54, P-value = 9.9 × 10−7) to the most positive
(r = 0.92, P-value = 1.6 × 10−29) and further examined using a density
plot. An FDR threshold of 5% was used to adjust for multiple testing
and determine the statistical significance of the identified correlations.

We examined whether genes of relevance to BP/hypertension are
enriched for positive kidney gene-protein correlations within the
CPTAC catalogue of 7036 gene-protein pairs. We selected four cate-
gories of relevance to BP/hypertension: (i) 216 genes with enriched or
enhanced expression in kidney from HPA (ii) eight monogenic hyper-
tension/hypotension genes collected from the manual review of
Samani and Tomaszewski et al91, (iii) seven antihypertensive drug tar-
gets manually collected from drugbank (https://go.drugbank.com/)
and the OpenTargets platform (https://platform.opentargets.org/),
(iv) 152 protein-coding BP kidney TWAS genes selected from the list of
399 BP TWAS genes showing causal association to BP in MR analyses.
The enrichment P-value was calculated by a two-sample
Kolmogorov–Smirnov test.

Kidney proteome-wide association studies of blood pressure in
Clinical Proteomic Tumor Analysis Consortium. Using 72 kidney
proteome profiles with matching genotype information from CPTAC
as a reference we developed predictionmodels for protein abundance
in the kidney tissue (Fig. S8). All individuals included in this analysis
were of white-European ancestry.

Of 7291 proteins whose abundance in the kidney tissue were
quantified by mass spectrometer based tissue proteomics, included

were those with matching expression data for their parent gene in the
RNA-sequencing dataset from HKTR. A total of 6712 such kidney pro-
teins were identified for the downstream analyses (Fig. 6E).

Prior to the analysis, we used linear regression to adjust kidney
abundance of each included protein for age, sex, the top three prin-
cipal components derived fromgenotyped autosomal variants and the
top ten principal components derived from normalised kidney abun-
dance. The generated residuals of 6712 proteins were then included as
an input in the protein abundance model prediction together with
genotype information on 5,785,933 variants derived from the whole
genome sequencing data (Fig. 6E). Variant positions were lifted to
GRCh37. We retained all variants present in the 1000 Genome refer-
ence panel (GRCh37) and that were also available in the BP GWAS
analyses (UK Biobank and ICBP).

We trained prediction models of kidney protein abundance using
the genotype and protein abundance data from CPTAC using the
PrediXcan framework126 (Fig. S8). We kept predictive models with
nested cross validated correlation between predicted and actual levels
> 0.1 and P-valueof the Pearson’s correlation test <0.05 (Fig. S8). Those
that satisfied these criteriawere included in kidney PWASof BP. For the
purpose of this analysis, we used the GWAS summary statistics on SBP,
DBP and PP from UK Biobank and ICBP reported above. In brief, we
included 337,422 individuals from UK Biobank and 299,024 from ICBP
in this analysis (Figs. 6E and S8). We first examined association
between all 815 cross-validated kidney protein abundancemodels with
eachof threeBPdefining traits in eachof the tworesources, separately.
The correction for multiple testing was applied based on the
Benjamini–Hochberg FDR. Kidney proteins whose predicted abun-
dance retained its significant association with BP in one of the
resources were then taken for a reciprocal replication in the other
resource (Fig. S8). The correction for multiple testing was applied
again at this stage andwasbasedon theBenjamini–Hochberg FDR. The
threshold of corrected statistical significance in both stages was
established at FDR <0.05.

Annotating blood pressure-associated kidney proteins with addi-
tional levelsof evidence for relevance tobloodpressure.We sought
to identify additional evidence for each BP-associated kidney protein
at othermolecular levels, i.e.: (i) associationwith BP inBP kidney TWAS
and (ii) prior evidence of colocalisation between BP and any other
molecular phenotypes (i.e. mRNA expression, alternative splicing or
DNA methylation) from previous kidney QTL studies25. We further
partitioned BP-associated kidney proteins with no association with BP
in kidney TWAS into two categories (i) those that yielded non-
significant associations with BP in TWAS and (ii) those whose GReX
model did not fully converge prior to TWAS.

Kidney proteins associated with blood pressure in proteome-wide
association studies –overrepresentation pathway analysis. Over-
representation analysis was performed by the “fora” function in the
“fgsea” R package. All KEGG pathways from MSigDB subcategory
“C2:KEGG” and all Human Phenotype Ontology (HPO) terms from
MSigDB subcategory “HPO” with more than ten genes and fewer than
1000 genes were tested. The enrichment odds ratio and the respective
P-value were calculated by a hypergeometric test. Nominal P-values
were adjusted by the FDR method and the corrected significance
threshold was set at 5% FDR. KEGG pathways were manually grouped
and labelled into classes based on the known functions of genes
overlapping with each pathway. HPO terms were grouped into a
category distinct from KEGG pathways.

Kidney proteins associated with blood pressure in proteome-wide
association studies – drug tractability enrichment. Drug tractability
data was collected from the OpenTargets ftp server (http://ftp.ebi.ac.
uk/pub/databases/opentargets/platform/latest/input/target-inputs/
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tractability/tractability.tsv, data accessed 05/2023) and was a product
of the OpenTargets tractability pipeline (https://github.com/chembl/
tractability_pipeline_v2). Tractability categories for eachmodalitywere
extracted from the columns “Category_sm”, “Category_ab”, “Categor-
y_PROTAC” and manually relabelled. The enrichment analysis was
performed using 100,000 permutations for each of the eight cate-
gories. For each permutation a random sample of genes was selected
(without replacement) of size equal to the number of genes present in
the category being tested and then the number of genes assigned to
that category was recorded. P-values were calculated by one-sided
permutation test for positive enrichment which is calculated as the
proportion of permuted values which exceed the test value (the
number of BP PWAS protein belonging to the category in question)
divided by the number of permutations performed. For visualisation,
the distribution of all permuted values (per category) was smoothed
using the function “stat_density_ridges” from the “ggridges” R package
with a bandwidth of 0.4.

Characerisation of urinary cell transcriptome
Urinary cell collection, purification and RNA extraction. Demo-
graphic information for all individuals included in this analysis is pre-
sented in Supplementary Data 25. In brief, 100ml of fresh urine was
collected and refrigerated (up to a maximum of 2 hours) until cen-
trifugation at 2000 g for 30minutes at 4°C. The supernatant was then
discarded, and the pelletised material resuspended in 1ml of PBS
minus (Sigma-Aldrich). The sample was then spun a second time at
10,000g for 4minutes at room temperature. The supernatant was
again removed and 1ml of a mixture of 70% Hank’s balanced salt
solution (HBSS), 20% foetal calf serum (FCS) and 10% dimethyl sulf-
oxide (DMSO) before storage at -80°C. RNA was extracted using
the Qiagen RNeasy kit, following the standard protocol. Urinary
cell RNA concentration and purity was quantified by NanoDrop and
RIN scores estimated by TapeStation (Agilent) with a high-
sensitivity assay.

Urinary cell RNA-sequencing and data processing. Sequencing
libraries were generated using the New England Biolabs (NEB) poly-A
selection kit for Illumina sequencers. The gene expression quantifica-
tion protocols was identical to that used by the GTEx for version 8 of
their data release122. This protocol was selected so the urinary cell
expression data could be compared with the GTEx gene expression
profiles without introducing a potential bias introduced by the differ-
ences in the quantification protocol. Briefly, the read alignment to the
genome was conducted using STAR164, read deduplication and quanti-
fication – by RNASeQC (against the GTEx v8 transcriptome reference in
units of TPM at the gene level). Our quality control process excluded
samples with (i) less than tenmillion paired reads, (ii) less than 2million
mapped paired reads and (iii) those with a D-statistic greater than 5. A
total of 33 urinary cell pellet samples passed all quality control criteria.
Expressed genes were defined as those with greater than 6 mapped
reads and aTPM>0.1 inmore than 20%of samples; 21,981 genes passed
all quality control filters and were used for the downstream analyses.

Salivary cell RNA-sequencing and RNA-sequencing metric calcu-
lation. Salivary samples were obtained from the publicly available GEO
series (GSE108664) of longitudinally collected saliva specimens sam-
pled before administration of a pneumococcal vaccination175. We used
all available 40 samples collected before administration of the vacci-
nation (“pre-vaccination”). The NCBI SRA-toolkit was used to down-
load and extract raw fastq data (“fasterq-dump”) for all 40 samples.
The raw fastq was then processed using the same pipeline applied to
the urinary cell and GTEx tissue samples. Gene expression was also
quantified in an identical manner. RNA-sequencing metrics were cal-
culatedbyRNASeQC. RNASeQCmetricsweremanuallygroupedby the
range or units of reported values into 3 groups: (1) Read and fragment

count metrics [0-100 million reads/fragments], (2) rates [0.0–1.0 fre-
quency] and (3) small value metrics [0-2.0 units].

Urinary cell transcriptome – overall characteristics. We assigned
one of four biotype categories to each expressed gene by grouping all
Ensembl v83 “gene_biotype” values using a manual mapping (Supple-
mentaryData 36).We then examined the complexity of the urinary cell
and kidney tissue transcriptome by calculating the cumulative pro-
portionof each transcriptomeattributable to each expressed gene and
ranking them from highest to lowest expression. We then quantified
the cumulative proportion of each transcriptomewhich is attributable
to the top 25, 50 and 75% of expressed genes.

To examine whether transcriptomic profiles of urinary cell pellets
collected from patients undergoing cancer nephrectomies differ from
those who did not have cancer we used hierarchical clustering of
sample similarity values. We used Pearson distances to determine an
inverse measure of urinary cell sample similarity. Pearson distances
were calculated as (1 – Pearson correlation coefficient) between all
sample pairs, using log2 TPM data from all genes expressed in urine.
These distances were then clustered hierarchically using the complete
linkage method for cluster agglomeration as implemented in the R
function “hclust”; samples were annotated as “nephrectomy” (to indi-
cate that the urinary cell sediment was secured from a patient under-
going surgical removal of the kidney due to cancer) and “biopsy” (to
indicate that the urinary cell pellet was secured from a donor prior to
kidney transplantation).

Urinary cell overrepresented pathways. The top 100 expressed
genes, by median TPM, were identified in both (i) 33 urinary cell
samples and (ii) 430 kidneys from HKTR25. The top 100 HGNC gene
symbols from each were then examined by an overrepresentation
analysis using the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID)176 functional annotation tool with the KEGG
pathways andGeneOntologybiological process termannotations. The
results significant at 5% FDR were grouped by shared genes and were
manually assigned to specific biological themes using known func-
tionality of overlapping genes.

Analysis of correlation between the transcriptomic footprint of
urinary cells and different human tissues/cell-types. We used the
publicly available RNA-sequencing-derived median gene expression
profiles for each of the 54 different GTEx tissues from the GTEx portal
(accessed 09/2021). The gene expression data were processed using
the standard GTEx computational pipeline122. In brief, gene expression
wasquantifiedbyRNASeQC inTPMunits at the sample level and then a
median valuewas calculated across all samples from each tissue, for all
genes. The urinary cell pellet expression profile from 33 individuals
was summarised in an identical way to calculate a median gene
expression profile. All 19,273 protein-coding genes from the GTEx v8
transcriptome reference were used in the correlation analysis. Overall
transcriptomic correlation was calculated as the squared Spearman’s
correlation coefficient between the urinary cell pellet profile and the
profile for each GTEx tissue. Tissues were then ordered according to
the strength of their transcriptomic correlation with urinary cell pel-
lets. To validate the findings on correlation between transcriptome of
urinary cells and the kidney tissues from GTEx we then used RNA-
sequencing data from our in-house collection of 430 kidney samples
(HKTR)25 quantified and pre-processed according to the same pipeline
used for GTEx samples and urinary cell pellets. Overall transcriptome
correlation was calculated between urinary cell pellets and the kidney
profile from the HKTR resource using all 19,273 protein-coding genes
from the GTEx v8 transcriptome reference.

Expression of markers for specific segments of the nephron in
urinary cells. To investigate whether cellular components of different
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kidney regions are present within the cells harvested from urine, we
first selected marker genes by renal cell-type (either enriched or
enhanced for any specific kidney cell-type), from the HPA177. Marker
genes for cortex were selected from the following cell-types - “Prox-
imal tubule”, “Glomerulus”, “Distal tubule”. Medullary marker genes
were selected from the “Loop of Henle”, “Collecting duct” cell-types.
Marker genes for cortex and medulla were then pruned by the fol-
lowing criteria: (i) median expression <than 1 log2(TPM+ 1) and (ii) any
significant expression ( > 10 log2(TPM+ 1)) in a renal cell-type from the
opposite region. Finally, marker genes were trimmed to the top 20
most highly expressed, per region. Gene expression for each tissue (in
log2(TPM+ 1) units) was standardised before visualisation. Genes were
ordered (within each kidney region) by hierarchical clustering of a
Euclidean distancematrix calculated from themarker gene expression
profile of all 3 tissues by the R function “hclust” using the complete
linkage method.

Analysis of correlation in expression of genes causally associated
with blood pressure between the kidney and urinary cells. We first
identified that out of 399 BP TWAS genes, 339 had detectable
expression in urinary cells. We used calculated median expression in
log2(TPM+ 1) values for these genes from our urinary cell samples
dataset (n = 33) and kidney tissue samples (n = 430) and then fitted a
linear regression line (with kidney expression as the dependent vari-
able and urinary cell expression as the independent variable). The ten
genes with the smallest deviation (defined as smallest absolute resi-
dual) from the regression line were then identified and labelled.

Glutamyl aminopeptidase gene (ENPEP) and blood pressure –

blood pressure kidney transcriptome-wide association studies,
blood pressure kidney proteome-wide association studies and
rare variant analyses
ENPEP expression across human tissues. Expressionof ENPEP across
54 human tissues from theHPAwas based on the reclassifiedHPAgene
expression enrichment classification.

Association between kidney expression of ENPEP and urinary
sodium excretion. Using UK Biobank imputed genotype data147, we
generated GReX based on the validated kidney PUMICE-derived pre-
diction model for ENPEP. Urinary sodium excretion values (Data-Field
30530) from 326,986 unrelated UK Biobank individuals of white-
European ethnicity with surviving sample level quality control147 were
normalised using rank-based inverse normal transformation. We then
estimated the effect of ENPEP GReX on urinary sodium excretion by
regressing normalised values of the latter on ENPEPGReX adjusting for
age, sex, genotyping array and the top ten genetic principal compo-
nents in linear regression.

ENPEP gene expression, protein abundance and blood pressure –

multi-trait colocalisation. To assess shared genetic effects across
ENPEP expression and protein abundance and DBP, we conducted
multi-trait colocalisation using HyPrColoc178 (v.1.0.0) with default set-
tings. In brief, HyPrColoc implements an efficient deterministic Baye-
sian algorithm to detect colocalisation across multiple traits. The
colocalisation analyses were performed using summary statistics from
cis-eQTL (from HKTR, n = 478) and cis-protein quantitative trait loci
(pQTL) (from CPTAC, n = 72) of glutamyl aminopeptidase and meta-
analysis BP GWAS from UK Biobank and ICBP22 (n = ~750,000) in pre-
defined disjoint LD blocks151. Only cases with > 50 overlapping variants
were considered. Posterior probability > 0.8was considered as a signal
of colocalisation across traits consistent with all the traits sharing a
causal variant within the tested region.

The summary statistics for ENPEPmRNAexpressionwere collected
from cis-eQTL analysis conducted using 478 HKTR kidney samples, as
reported above. The summary statistics for protein abundance of

glutamyl aminopeptidase were obtained from cis-pQTL analysis of 72
CPTAC kidney samples with informative genotype and protein abun-
dance. The log-transformed protein abundance was regressed against
effect of allele dosage, age, sex, the top three genetic principal com-
ponents derived from genotyped autosomal variants and top ten
principal components derived from normalised protein abundance.
Only genetic variantswithminor allele count > 5,missingness rate <0.05
and within 500 kb from the transcription start site of ENPEP were
considered. A total of 2478 genetic variants satisfied these criteria and
were included in the cis-pQTL of glutamyl aminopeptidase.

Homologymodelling of truncated protein. All PDB structures linked
to the human ENPEP gene179 in the UniProtKB database (release
2023_01)180 (4kx7, 4kx8, 4kx9, 4kxa, 4kxb, 4kxc, 4kxd) were down-
loaded. All of them were resolved using X-ray crystallography, and
have a resolution between 2.15 Å and 2.40Å. The crystal structures
were assessed using MolProbity181–183: (1) hydrogens were added, (2)
Asn, Gln and His side-chain flips were allowed, and 3) the all-atom
contacts and the geometry of the optimised structures were analysed.
The structure with the fewer warnings in the different validation
categories, and the best MolProbity score was selected to be the
template for homology modelling: the optimised 4kx7 structure.

The protein sequences of the protein structure and the truncated
protein were aligned using the Smith-Waterman algorithm184 as imple-
mented in EMBOSS185. The default parameters (BLOSUM62 substitution
matrix, gap opening penalty = 10, and gap extension penalty =0.5)
were used.

Ten structural models were built using MODELLER (version
10.4)186. We used the option of slow (thorough) Variable Target Func-
tion Method and Molecular Dynamics optimisations. We repeated the
whole optimisation cycle twice.

All ten structural models were assessed using MolProbity as pre-
viously mentioned; briefly, 1) hydrogens were added, 2) flips were
allowed, and 3) the contacts and geometry were assessed. Again, the
model with the fewer warnings, and the best MolProbity score was
selected.

Analysis and visualisation of the model of the truncated protein.
Canonical and truncated protein structures were visualised with Chi-
meraX (version 1.6)187. CATH (version 4.3)188 annotations were used to
identify the different structural domains within the canonical and
truncated proteins. An assessment of the hydropathy of the surface of
the protein structures was performed by scoring each residue with the
Kyte and Doolittle scale189. The annotation on functional sites was
collated from the UniProtKB database180.

Effect of rs33966350 on ENPEP mRNA expression, protein abun-
dance, urinary sodium excretion and disease endpoints from
FinnGen. We first collected phenome-wide association results for
variant rs33066350 from the FinnGen release R9 (r9.finngen.fi), which
includes data from 377,277 individuals and 2269 disease endpoints.
Effect of rs33066350 on each of the disease endpoint was
estimated under the additive GWAS model containing age, sex,
ten genetic PCs and genotyping batch as covariates. The correction
for multiple testing was calculated using Bonferroni-adjusted
P-value < 0.05 after adjustment for the total number of disease
endpoints.

We used linear regression to assess the effect of rs33966350 on
urinary excretion of sodium in 326,986 biologically unrelated white-
European individuals who survived sample level quality control147 in UK
Biobank. Urinary sodium excretion (Data-Field 30530) underwent rank-
based inverse normal transformation. We then regressed normalised
urinary sodium excretion on genotype of rs33966350 (under additive
model of inheritance) adjusting for age, sex, genotyping array and the
top ten genetic PCs generated from autosomal genotype data.

Article https://doi.org/10.1038/s41467-024-46132-y

Nature Communications |         (2024) 15:2359 23



We next estimated the effect of rare loss-of-function variant
(rs33966350) on ENPEP mRNA expression in 478 individuals from
HKTR. In the absence of carriers of AA genotype in this dataset, we
regressed the RNA-sequencing-derived normalised renal ENPEP
expression on rare allele dosage adjusting for age, sex, tissue source
(nephrectomy/biopsy), the first three genetic principal components,
the 100 PEER hidden factors and seven cell-type proportions. The
normalised ENPEP expression values were derived by logarithmic
transformation, quantile normalisation and rank-based inverse normal
transformation. We also evaluated the effect of rs33966350 on ENPEP
mRNA expression in an independent cohort (CPTAC, n = 60) by
regressing the normalised renal ENPEP expression on genotype of
rs33966350 (under additive model of inheritance) adjusting for age,
sex, the top three genetic principal components derived from geno-
typed autosomal variants and top ten principal components derived
from normalised gene expression. The normalised ENPEP expression
values in CPTAC were obtained by logarithmic transformation.

We assessed the effect of rs33966350 on glutamyl aminopepti-
dase protein in the same cohort (CPTAC, n = 67) by regressing the
normalised renal glutamyl aminopeptidase protein abundance on
genotype of rs33966350 (under additive model of inheritance)
adjusting for the same covariates as above (i.e. those used in the
analysis of rs33966350 effect on ENPEP mRNA expression in CPTAC).
The normalised glutamyl aminopeptidase protein abundance in
CPTAC were derived by logarithmic transformation.

UK Biobank ethical compliance. UK Biobank has approval from the
NorthWestMulti-centre Research Ethics Committee (MREC) to obtain
and disseminate data and samples from the participants, and these
ethical regulations cover the work in this study. Written informed
consent was obtained from all participants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The PUMICE-derived TWAS, microRNA-TWAS and PWAS summary
statistics generated in this study are available in the Supplementary
Data 6, 14 and 22, respectively. Bulk RNA-seq data TCGA, CPTAC and
GTEx can be accessed from Genomic Data Commons (GDC) Data
Portal (https://portal.gdc.cancer.gov/) and GTEx portal (https://
gtexportal.org/home/). The normalised kidney gene expression,
miRNA expression data and urinary transcriptomic data from HKTR
are archived at https://doi.org/10.48420/24871785. Full summary sta-
tistics of blood pressure GWAS using 337,422 unrelated white Eur-
opean individuals from UK Biobank are available at https://doi.org/10.
48420/24851436. The sample-size-balancedGTEx v8 TWASmodels are
available at https://doi.org/10.48420/24871794. The kidney PUMICE
model is available at https://github.com/ckhunsr1/PUMICE/tree/
master/model_HKTR. Source data are provided with this paper.

Code availability
Our studies make use of well-established computational and statistical
analysis software, and these are fully referenced in the main text and
Methods. All software used to perform these studies is publicly
available.
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