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Abstract

Cardiovascular diseases (CVD) are closely linked to protein homeostasis (proteostasis)
and its failure. Beside genetic mutations that impair cardiac protein quality control,
obesity is a strong risk factor for heart disease. In obesity, adipose tissue becomes
dysfunctional and impacts heart function and CVD progression by releasing cytokines
that contribute to systemic insulin resistance and cardiovascular dysfunction. In
addition, chronic inflammation and lipotoxicity compromise endoplasmic reticulum
(ER) function, eliciting stress responses that overwhelm protein quality control
beyond its capacity. Impairment of proteostasis—including dysfunction of the
ubiquitin—proteasome system (UPS), autophagy, and the depletion of chaperones—is
intricately linked to cardiomyocyte dysfunction. Interventions targeting UPS and
autophagy pathways are new potential strategies for re-establishing protein
homeostasis and improving heart function. Additionally, lifestyle modifications such as
dietary interventions and exercise have been shown to promote cardiac proteostasis
and overall metabolic health. The pursuit of future research dedicated to proteostasis
and protein quality control represents a pioneering approach for enhancing cardiac
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health and addressing the complexities of obesity-related cardiac dysfunction.
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Obesity is a disease of excess dysfunctional
adipose tissue defined by a body mass in-
dex (BMI) of 30kg/m? or higher and is
closely linked to a plethora of comorbidi-
ties including type 2 diabetes and cardio-
vascular disease (CVD). The impact of obe-
sity on the cardiovascular system remains
particularly concerning, as obesity induces
metabolic and inflammatory changes, in-
creasing the risk for life-threatening ar-
rhythmias, atherosclerosis, and thrombo-
sis [1].

At the molecular level, the concept
of proteostasis—regulated homeosta-
sis of protein metabolism—is emerging
as a critical aspect in the context of
cardiometabolic diseases. Cellular pro-
teostasis is maintained by a tightly reg-

ulated network of molecular chaperones,
proteases, and various quality control
systems that collectively oversee protein
translation, folding, and degradation [2].
Proteostasis is highly adaptive and indis-
pensable for cellular function. However,
in obesity, factors such as lipotoxicity,
oxidative stress, and chronic inflamma-
tion impair this delicate balance, leading
to the accumulation of misfolded and
damaged proteins, particularly detrimen-
tal to cardiac structures and function
[3]. New therapeutic approaches aiming
at restoring proteostasis, including heat
shock proteins and proteasome inhibitors,
as well as non-pharmacological strategies
such as dietary restriction and exercise,
may have the potential to improve obe-
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sity-associated comorbidities. This review
discusses the complex relationship be-
tween obesity, CVD, and proteostasis,
highlighting the underlying basic biol-
ogy, pathophysiological mechanisms, and
therapeutic strategies.

Obesity-induced dysfunction of
the heart

Obesity, characterized by dysfunctional
adipose tissue, is an endocrine disorder
associated with a systemic inflammatory
state and cardiovascular consequences.
During excessive weight gain, adipose
tissue undergoes a transformation from
being a dedicated and safe lipid stor-
age organ with a favorable endocrine
profile to a major site of tissue inflam-
mation and detrimental cytokine secre-
tion. Adipocytes secrete various signaling
molecules and cytokines such as leptin,
adiponectin, and resistin, which normally
maintain metabolic balance. However, in
obesity, adipocytes become hypertrophic
and the secretome changes, directly con-
tributing to weight gain, metabolic stress,
and systemic inflammation [4, 5]. The
escalation of non-esterified fatty acid
release from hypertrophic adipocytes
further exacerbates metabolic stress by
promoting systemic insulin resistance and
ectopic lipid deposition in non-adipose
tissues such as the liver, muscle, and
particularly the heart, setting the stage
for cardiovascular dysfunction [6]. In the
cardiovascular system, the sequelae of
obesity also manifest as altered hemody-
namics, such as increased cardiac output,
heightened systemic vascular resistance,
and obesity-induced hypertension. This
link between metabolic disruption and
cardiovascular health is causal, as the
direct impact of obesity on cardiac struc-
ture and function is evident, alongside
the indirect effects mediated by obesity-
associated comorbidities [1].

Lipotoxicity, a consequence of obesity,
is characterized by the harmful accumula-
tion of lipids within non-adipose tissues,
including the heart, where they harm
myocardial function. This lipotoxic envi-
ronment prompts myocardial injury and
triggers maladaptive cardiac remodeling,
manifesting as fibrosis and cardiomyopa-
thy, and compromising both diastolic and

systolic heart functions [7]. Coupled with
abnormal lipid profiles, obesity-related
stress on cardiomyocytes, attributed in
part to disturbed proteostasis, contributes
to a deleterious cycle. Disrupted endo-
plasmic reticulum (ER) function induces
astressresponse that, when overwhelmed,
leads to proteostasis imbalance, which is
integral to maintaining cell viability and
function. Given the robust epidemiolog-
ical evidence linking obesity and CVD,
a deeper understanding of the roles of ER
stress and proteostasis in this interplay is
warranted.

Activation of the integrated stress
response

Chronic metabolic overload and inflam-
matory stress disrupt ER function, an or-
ganelle pivotal in coordinating cellular me-
tabolism and stress responses [8, 9]. The
role of the ER in lipid and protein home-
ostasis is especially critical in cardiomy-
ocytes, which demand precise coordina-
tion of protein synthesis and folding to
sustain continuous cardiac function. En-
doplasmic reticulum stress triggers the in-
tegrated stress response (ISR), including
the unfolded protein response (UPR), ER-
associated degradation (ERAD), and the
ubiquitin-proteasome system (UPS). This
preserves proteostasis, enhancing protein
folding capabilities, regulating translation,
and facilitating the targeted degradation
of damaged proteins [10]. The role of
the ER extends to regulate lipid synthesis
and droplet formation, crucial for energy
storage and utilization [11]. Furthermore,
ER stress-induced lipotoxicity exacerbates
systemic metabolic dysfunction, culminat-
ing in whole-body insulin resistance and,
consequently, increased risk of develop-
ing CVD [7]. It is also noteworthy to men-
tionthat ER stress influences mitochondrial
function through direct and indirect mech-
anisms. The ER and mitochondria are phys-
ically and functionally connected through
structures known as mitochondria-associ-
ated ER membranes (MAMs). Disruptions
in the integrity of MAMs lead to mito-
chondrial dysfunction, further worsening
metabolic and cardiovascular outcomes
[12].

Autophagy is another line of defense
against ER stress in cardiomyocytes, or-

chestrating the degradation of protein
aggregates to preserve cellular health.
Autophagy is a multi-step cellular re-
cycling process, initiated through the
formation of a phagophore, a membrane
that sequesters damaged proteins and or-
ganelles. These autophagosomes migrate
and fuse with lysosomes, breaking down
complex proteins into amino acids and
other basic components [13]. The result-
ing macromolecular breakdown products
are then recycled, ready to be repur-
posed for the synthesis of new proteins
or to be utilized for energy production.
The integrity of this system is especially
vital in the context of cardiac physiol-
ogy. During states of metabolic stress,
such as those induced by obesity, the
autophagic-lysosomal pathway is upreg-
ulated as a compensatory mechanism.
It helps mitigate the accumulation of
misfolded proteins that disrupt cardiac
function, potentially leading to conditions
such as cardiomyopathy and heart failure
[14].

Maladaptation of cardiac
proteostasis

Cardiomyocytes, with their specialized
roles in electrical conduction and contrac-
tion, rely on the integrity of the proteome
for optimal heart function. Due to the
high metabolic demand of these cells,
maintaining proteostasis presents unique
challenges not commonly encountered
by other cell types [15, 16]. Functional
proteostasis is essential for a healthy heart,
whereas proteome imbalances, such as
misfolded proteins and aggregates, are
hallmarks of cardiac disease (B Fig. 1). The
protein quality control systems, including
the UPS and autophagy pathways, are
critical in eliminating deleterious proteins
and maintaining cellular integrity [17].
These systems are orchestrated by the
UPR and ERAD. The UPR sensors, such
as IRE-1, PERK, and ATF6, respond to ER
stress by activating adaptive pathways to
restore proteostasis [18]. They also serve
to rewire metabolism, as recently shown
in a mouse model for Barth syndrome,
in which activation of ATF4 compensated
for defects in mitochondrial uptake of
fatty acids to sustain energy production
and antioxidation [19]. However, when
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Fig. 1 A Cardiac proteostasis and its adaptation and dysfunction. Proteostasis describes a state of homeostatic protein pro-
duction and degradation, usually found in healthy individuals, stimulated by healthy diets and physical activity. The occur-
rence of proteotoxic stress, e.g., presence of misfolded proteins and damaged proteins or simply caused by changes in pro-
teome turnover are mitigated by the adaptive activation of the integrated stress response to restore homeostasis. If the pro-
teotoxic stress persists, the cell enters amaladaptive phase characterized by organelle stress, inflammation, and fibrosis, which
ultimately lead to cardiac dysfunction. Risk factors include aging, metabolic syndrome, and genetic predispositions. UPR un-
folded protein response, UPS ubiquitin-proteasome system

overwhelmed, these sensors may trigger
maladaptive responses, potentially lead-
ing to cardiac pathology as outlined here
(a¥Fig. 1).

The UPS is particularly sensitive to
metabolic conditions such as obesity. Dis-
ruptions in UPS, exemplified by studies
such as those involving PA28alpha (a pro-
teasome activator) knockout mice, lead
to the accumulation of polyubiquitinated
proteins and desmin-related cardiomy-
opathy [20]. Unresolved chronic ER stress
contributes to this by accumulating par-
tially unfolded or misfolded proteins.
Despite UPS activation in response to
obesity and heart dysfunction, its capac-
ity to mitigate proteotoxic stress may be
inadequate or even maladaptive. Some
of the detrimental outcomes of protea-
some dysfunction seem to be linked to
activation of ATF3 [21]. A key regulator of
fine-tuning proteasome function and UPS
is the NFE2-like bZIP transcription fac-
tor 1 (NFE2L1), a transcription factor that
regulates the expression of genes coding
of proteasome subunits and components
[22, 23]. In the absence of stress, NFE2L1
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is continuously degraded by a cascade
of events involving deglycosylation by
NGLY1 and proteolytic cleavage by DDI2
[24, 25]. However, during proteotoxic
stress, for example, in the presence of
chemical proteasome inhibitors or high
levels of ubiquitylated proteins, NFE2L1
evades degradation and upregulates pro-
teasome subunit production to counteract
the stress. Deficiency of NFE2L1 has been
linked to several physiologic and patho-
logic conditions, including compromised
tissue regeneration and response to injury
[26-28]. We and others have shown that
loss of NFE2L1 is linked to ferroptosis, a cell
death modality that involves lipid reactive
oxygen species (ROS; [29]). Conversely,
NFE2L1 overexpression enhances cardiac
repair and protects against ischemia/
reperfusion injury [28].

In humans, Predmore et al. reported
reduced UPS activity in cardiac tissue sam-
ples obtained from patients with heart
failure or hypertrophic cardiomyopathy,
providing clinical evidence of proteostasis
dysfunction in these heart diseases [30].
Furthermore, in a prospective study con-

ducted by Makris et al.,, treatment with
clinical proteasome inhibitors was asso-
ciated with deteriorated cardiac function,
reinforcing the significance of UPS in main-
taining cardiac health. The study revealed
left ventricular dysfunction and a deterio-
ration of left atrial remodeling in these pa-
tients [31]. Heart diseases such as atrial fib-
rillation show impaired proteasome func-
tion, where sustained cardiomyocyte stress
leads to dysfunctional autophagy and pro-
tease activity, resulting in contractile and
electrophysiological deficits. Thisimpaired
proteostasis, observed in conditions of car-
diac hypertrophy due to pressure overload,
manifests as autophagic degradation and
protein aggregation when these degrada-
tion systems are overwhelmed [32]. More-
over, a study of a population in south-
ern Taiwan illustrated a notable decline
in plasma ubiquitin and 20S proteasome
levels in obese individuals compared to
normal controls [33]. This intersection of
UPR, ERAD dysfunction, and the result-
ing disruption of proteostasis are evident
in progressive CVD and offer potential



biomarkers for assessing obesity-related
cardiovascular risk.

Genetic impact on cardiac
proteostasis

Cardiomyopathies are not only shaped by
lifestyle factors but also by a spectrum of
genetic mutations that directly influence
cardiomyocytes proteostasis. Mutationsin
genes coding for valosin-containing pro-
tein (VCP) and BCL2-associated athano-
gene 3 (BAG3) primarily impact the pro-
teasome. These VCP mutations lead to
aberrant protein and RNA quality control,
contributing to multisystem proteopathy
with cardiac involvement [34]. The BAG3
mutations are implicated in dilated car-
diomyopathy, affecting the chaperone-as-
sisted selective autophagy (CASA) com-
plex, crucial for proteasomal degradation
of mechanically strained proteins in car-
diomyocytes [35].

Lysosomal-associated membrane
protein-2 (LAMP2) mutations result in
Danon disease, characterized by lysoso-
mal dysfunction and impaired autophagy,
often presenting with hypertrophic car-
diomyopathy [36]. The disruption of
autophagic processes is a common theme
in cardiomyopathies, highlighting the
critical role of lysosomal degradation
pathways in cardiac proteostasis. Dys-
trophin (DMD) gene mutations, causing
Duchenne muscular dystrophy, lead to
compromised sarcolemma integrity and
secondary proteostasis imbalance, culmi-
nating in dilated cardiomyopathy [37].
Similarly, titin (TTN) truncating mutations
disrupt sarcomere function due to the role
of titin as a molecular spring, essential for
the mechanical stability and proteostasis
of cardiomyocytes [38]. Genetic variants
in alpha-actinin-2 (ACTN2) are associated
with several forms of cardiomyopathy,
featuring protein aggregation, hypertro-
phy, myofibrillar disarray, and activation
of both the ubiquitin-proteasome system
and the autophagy-lysosomal pathway
[39]. Filamin C (FLNC) mutations lead to
diverse cardiomyopathic outcomes. Ag-
gregation-prone mutations in FLNC result
in hypertrophic cardiomyopathy or my-
ofibrillar myopathies, whereas mutations
leading to haploinsufficiency are mainly
associated with dilated cardiomyopathy

and cardiac arrhythmias [40]. Also, these
genetic factors delineate a complex land-
scape where the precise regulation of
protein turnover is fundamental for car-
diac function. Collectively, these clinical
observations and experimental data con-
verge to highlight the critical association
between UPS and cardiomyopathies.

Future directions in cardiovascular
proteostasis management

Several therapeutic agents are in devel-
opment that target protein quality con-
trol pathways, presenting new avenues
for treating cardiomyopathies, including
UPS and the autophagy pathway. While
proteasome inhibition in cancer therapy
is associated with cardiovascular side ef-
fects, there is potential for therapeutic
applications in certain cardiac conditions,
as restoring dystrophin complexes offers
a new therapeutic strategy for muscular
dystrophies such as Duchenne muscular
dystrophy. The ability of the proteasome
inhibitor bortezomib to mitigate progres-
sive muscle degeneration could provide
a significant benefit in preventing devel-
opment of dilated cardiomyopathy and
heart failure [41].

Traditional antimalarials, chloroquine
and hydroxychloroquine, known for their
anti-inflammatory effects, are being re-
purposed to inhibit autophagy, potentially
mitigating autophagic vacuole accumu-
lation in lysosomal disorders like Danon
disease, where dysfunctional autophagy
leads to pathological cardiac hypertrophy
[42]. Conversely, spermidine has cap-
tured attention as an autophagy activator,
with its selective induction of autophagy
considered crucial for the clearance of
aggregated proteins in cardiomyocytes,
potentially improving cardiac outcomes
in cardiomyopathies [43]. Additionally,
molecules designed to enhance UPS func-
tion, such as USP14 inhibitors, are being
developed to expedite the degradation
of misfolded proteins, aiming to restore
proteostasis [44].

Transthyretin stabilizers such as tafamidis
and diflunisal present a novel approach
to prevent the misfolding and aggrega-
tion of proteins implicated in amyloid
cardiomyopathy [45]. Complementary to
this, the chemical chaperone 4-phenylbu-

tyrate (4-PBA) is explored for its ability to
enhance protein folding, potentially re-
ducing the cardiac burden of proteotoxic
stress [46]. Additionally, geranylgerany-
lacetone (GGA) is being studied for its
capacity to induce heat shock proteins,
a natural defense against misfolded pro-
teins, offering protection in the context
of cardiac proteostasis [47]. Taurour-
sodeoxycholic acid (TUDCA), with its
chemical chaperone activity, is of interest
for its potential to alleviate ER stress and
modulate apoptotic pathways, which are
critical in cardiomyocyte viability [48].

Complementing these pharmacologi-
cal interventions, lifestyle modifications
such as dietary restriction and regular ex-
ercise have been substantiated to ben-
eficially modulate proteostasis. Dietary
restriction, characterized by a controlled
reduction in caloric intake that avoids mal-
nutrition, orchestrates a cellular stress re-
sponse pivotal for bolstering proteostasis.
This adaptive response involves the up-
regulation of molecular chaperones that
facilitate accurate protein folding, along-
side the activation of proteolytic pathways
crucial for the clearance of misfolded and
potentially toxic proteins, thereby prevent-
ing protein aggregation and maintaining
cellular homeostasis [49]. Complementar-
ily, physical exercise exerts a cardiopro-
tective effect by fostering adaptations of
the cardiovascular system. One of the key
mechanisms underlying this benefit is the
activation of autophagy. Exercise-induced
autophagy has been linked to enhanced
cardiac function, attenuation of oxidative
stress, and a deceleration of the age-asso-
ciated decline in proteostasis, highlight-
ing its role in the preservation of cardiac
integrity [50]. Together, these strategies
illustrate a concerted, pathway-oriented
effort to combat cardiac diseases, spot-
lighting the integral role of protein quality
control in the pathogenesis and treatment
of cardiomyopathies.

Conclusion

Obesity-induced heart disease represents
a spectrum of immunometabolic cellular
changes linked to increased risk for cardio-
vascular disease (CVD). This underscores the
need for a deeper understanding of the nu-
anced mechanisms contributing to obesity-
related cardiovascular complications, espe-
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cially as the prevalence of obesity rises glob-
allyamong aging populations. At the heart of
these mechanisms lies proteostasis, the deli-
cate equilibrium of protein synthesis, folding,
and degradation, which is essential for car-
diac function. Perturbations in this system
are increasingly recognized as precipitating
factors in the development and progression
of cardiomyopathies, not only tied to obesity
but as a generalizable key element of heart
biology. In light of these findings, it will be
relevant to intensify research into novel in-
terventions that bolster proteostasis. As we
advance our understanding of proteostasis in
the context of cardiac health, the potential to
devise more effective treatments for obesity-
related CVD becomes increasingly tangible.
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