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Summary
Background With the ever-increasing amount of medical imaging data, the demand for algorithms to assist clinicians
has amplified. Unsupervised anomaly detection (UAD) models promise to aid in the crucial first step of disease
detection. While previous studies have thoroughly explored fairness in supervised models in healthcare, for UAD,
this has so far been unexplored.

Methods In this study, we evaluated how dataset composition regarding subgroups manifests in disparate perfor-
mance of UAD models along multiple protected variables on three large-scale publicly available chest X-ray datasets.
Our experiments were validated using two state-of-the-art UAD models for medical images. Finally, we introduced
subgroup-AUROC (sAUROC), which aids in quantifying fairness in machine learning.

Findings Our experiments revealed empirical “fairness laws” (similar to “scaling laws” for Transformers) for training-
dataset composition: Linear relationships between anomaly detection performance within a subpopulation and its
representation in the training data. Our study further revealed performance disparities, even in the case of
balanced training data, and compound effects that exacerbate the drop in performance for subjects associated with
multiple adversely affected groups.

Interpretation Our study quantified the disparate performance of UAD models against certain demographic sub-
groups. Importantly, we showed that this unfairness cannot be mitigated by balanced representation alone. Instead,
the representation of some subgroups seems harder to learn by UAD models than that of others. The empirical
“fairness laws” discovered in our study make disparate performance in UAD models easier to estimate and aid in
determining the most desirable dataset composition.
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Research in context

Evidence before this study
We searched PubMed, Scopus and Google Scholar for Machine
Learning and Deep Learning studies related to “unsupervised
anomaly detection”, “fairness”, “model bias”, and
“intersectionality” before August 2023. The list of
publications was complemented by the authors’ knowledge of
the body of literature and suggestions from colleagues.
Several of these prior works have investigated the fairness of
supervised classification models regarding protected
attributes, such as gender, age, or race, and how this
negatively affects patient care. Dataset composition, fairness
in population-wide studies, and the effect of intersectionality
(considering multiple protected attributes) have been
thoroughly investigated for this class of models. These studies
have found lower performances in under-represented or
socio-economically disadvantaged patient groups, as well as
disproportionate impacts in intersectional subgroups (i.e.,
individuals who share more than one sensitive trait).

Added value of this study
Unsupervised anomaly detection (UAD) differs from
supervised classification not only algorithmically but also
regarding the context in which it is applied: the main
application of UAD is pre-screening or triaging to support
clinicians in handling increasing amounts of imaging data,
and therefore has a distinct role. Since UAD models learn the
training data-generating distribution instead of an association

between input and output labels, the effects for under-
represented subpopulations are likely to be different from
supervised models. To this end, our work investigates and
quantifies fairness in UAD models. Our experiments reveal
empirical “fairness laws”—linear relationships between dataset
composition and subgroup performance that facilitate the a
priori estimation of subgroup performance. The presented
empirical results further show severe performance differences
for subgroups even under balanced training data, suggesting
that performance disparities in UAD can not be eliminated by
equal data representation alone. Lastly, we introduce
subgroup-AUROC (sAUROC) to better quantify performance
discrepancies for subgroups in machine learning models.

Implications of all the available evidence
This study shows that performance bias is not limited to
supervised classification models and further suggests
additional care and rigour will be necessary in designing and
deploying UAD algorithms to minimise excessive risk for
misdiagnosis of different subpopulations. This also implies
that new UAD models generally need to be evaluated
regarding their fairness. We have further shown that
performance bias behaves predictably in UAD. The above-
mentioned “fairness laws” render subgroup performance in
UAD more predictable and can help to guide data collection
towards more fair models.
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Introduction
In unsupervised anomaly detection (UAD), a machine
learning (ML) model is trained to capture a distribution
of training samples with the aim of being able to iden-
tify outliers/anomalies that do not stem from the dis-
tribution underlying the training data-generating
process. Within the medical domain, UAD serves as a
valuable tool for detecting pathological samples while
only requiring data derived from healthy patients
without any disease-specific labels.1–3 This approach al-
lows for making use of the vast amounts of clinically
unremarkable data acquired in hospitals on a daily basis.
In contrast to supervised methods, UAD, by construc-
tion, avoids the problem of class/label imbalance,
making it well-suited to identify even rare anomalies, for
which the collection of sufficient training data would
otherwise present a challenge. A UAD model Φ pro-
duces an anomaly score a for a data point x. Formally:
Φ(x) = a. The model assigns higher anomaly scores to
samples far from its learned distribution.

Recently, a lack of dataset diversity defined through,
e.g., age, sex, or ethnicity, has been recognised as an
important concern in medical imaging4 and beyond,5 as
ML models trained on such data often provide biased
predictions that result in poor performance on under-
represented subgroups. Furthermore, there is
unequivocal evidence that this bias is harmful to pa-
tients: In a diverse dermatology dataset, Dansehjou et al.
found that most state-of-the-art ML models used for skin
cancer detection exhibited significantly lower perfor-
mance than previously reported, particularly on dark
skin tones. In a clinical deployment setting, this can lead
to delayed or missed diagnoses for patients with darker
skin, potentially resulting in inadequate treatment and
poorer outcomes.6 This issue becomes even more pro-
nounced when taking intersectionality into account:
Both Seyyed-Kalantari et al. and Stanley and colleagues
independently reported that performance dispropor-
tionately worsens for patients belonging to multiple
subgroups already adversely affected.7,8

For UAD models, which are trained to learn a
“normal” distribution against which to contrast
“anomalies” (see Fig. 1), imbalanced training data is
particularly challenging. This is because subgroups
observed less frequently in the training data lack suffi-
cient representation for the UAD model to accurately
learn their normal patterns, resulting in higher anomaly
scores and, consequently, higher false-positive rates.
These can be detrimental in numerous ways, from un-
necessary diagnostic tests and interventions to the po-
tential for misdiagnosis or delayed diagnosis of true
findings. However, while the fairness of supervised ML
www.thelancet.com Vol 101 March, 2024
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Fig. 1: Supervised classification models (left) learn a mapping between input (samples) and (disease) labels and thus require annotated data. On
the other hand, UAD models (right) learn to capture the distribution of training samples (healthy), here visualised as cats for exemplary
purposes. If a subgroup is not adequately represented in the training data, the UAD model will assign data samples from that group higher
anomaly scores, resulting in more false positives at test time.
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models for clinical application has been increasingly
studied,4,7,9 and the problem has been occasionally dis-
cussed in the UAD literature,10,11 a thorough empirical
investigation of the matter for UAD models does not yet
exist.

The main contribution of our study is a thorough
investigation into the fairness of UAD models by
measuring how the proportion of a demographic sub-
group in the training data of UAD models affects the
resulting performance. We operationalise our findings
and introduce empirical “fairness laws”k (i.e., a linear
relationship between subgroup representation and per-
formance), which help to identify the optimal dataset
compositions for training fairer UAD models. Finally,
we introduced subgroup-AUROC (sAUROC) as a way to
better evaluate fairness in ML models.

Methods
Datasets
We utilised three large public chest X-ray datasets to
measure the fairness of UAD models regarding the
protected attributes sex, age, and race: MIMIC-CXR-JPG
(MIMIC-CXR),13 ChestX-ray14 (CXR14),14 and CheX-
pert.15 MIMIC-CXR contains 371,110 chest X-rays from
a cohort of 65,079 patients acquired at Beth Israel
Deaconess Medical Centre in Boston, Massachusetts,
USA, between 2011 and 2016. The CXR14 dataset,
collected from the NIH Clinical Centre in Bethesda,
Maryland, USA, between 1992 and 2015, includes
112,120 frontal-view chest radiographs from 30,805
distinct patients. The CheXpert database contains
224,316 chest radiographs of 65,240 patients acquired at
Stanford Hospital between October 2002 and July 2017.

All three datasets contain structured diagnostic labels
(12 labels for MIMIC-CXR and CheXpert, 13 for CXR14,
kSimilar to “scaling laws” for transformers in natural image processing
tasks.12
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excluding the “support devices” label) and a “no finding”
or “normal” label marking the absence of any other
identified diagnostic labels. These labels were automat-
ically derived from the associated radiology reports us-
ing natural language processing techniques. In addition,
demographic metadata about the patients’ age (MIMIC-
CXR: 60 ± 18, CXR14: 47 ± 17, CheXpert: 60 ± 18 years)
and their gender (MIMIC-CXR: 47.7%, CXR14: 43.5%,
CheXpert: 40.6% images of female and 59.4% of male
patientsl) was available. While the term gender was used
in the datasets, given the nature of the X-ray images
revealing anatomical traits inherent to biological sex, we
will use the term sex as a more precise descriptor in this
context. For MIMIC-CXR, additionally, the self-reported
race was available from Johnson et al.16 Here, 17.3% of
the patients identified as “Black” and 62.8% as “White”.
While information about ethnicity was also available for
CheXpert, the dataset sizes for the experiments
described in Section 2 were insufficient to adequately
train anomaly detection models (∼500 images for
training).

Dataset construction and inclusion criteria
To ensure consistency in the inclusion criteria, distinct
selection strategies were employed for all datasets. We
only considered frontal-view images without support
devices and further excluded those with all labels
marked as uncertain. Detailed dataset demographics can
be found in the Supplementary Material in Table S1. All
images were centre-cropped and resized to 128 × 128
pixels.

We constructed the training datasets using only the
“no finding” and “normal” labels. All other diagnostic
labels were consolidated into a “diseased” label. First,
validation and test sets were randomly generated with
equal representation of normal and abnormal classes
lCategories like diverse/intersex/non-binary were missing in the data.
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and equal distribution of the protected attributes. From
the remaining normal data, we created training sets
with varying proportions of the protected attribute sub-
groups (from 0% to 100%). In this process, the total
number of training samples was held constant (e.g., the
training set with 50% male and 50% female samples
contains the same number of samples as the one with
10% males and 90% females). The dataset construction
for CXR14 is illustrated in Fig. 2. For MIMIC-CXR and
CheXpert, the procedure was analogous. Importantly,
there was no patient overlap between the training, vali-
dation, and test sets. The numbers of samples in the
training, validation, and test sets of all considered
dataset and protected attributes can be found in the
Supplementary Material in Table S2.

We selected two variables for the protected attribute
race: white and black. The group white consists of the
variable “WHITE”. We accumulated four variations of
self-reported race into the group black: “BLACK/AFRI-
CAN AMERICAN”, “BLACK/CAPE VERDEAN”,
“BLACK/AFRICAN”, and “BLACK/CARIBBEAN IS-
LAND”. Further relevant subgroups, such as Asian or
Latin, were excluded due to the small number of avail-
able images. The categorisation along the sex dimension
was taken from the binary male and female values pro-
vided in the datasets. For the separation between young
and old patients, we opted for a data-driven approach,
dividing the patient pool into three age groups based on
the maximum age within the MIMIC-CXR dataset and
removing the centre group to ensure a sufficient age gap
between the patients in the two remaining groups. This
stratification resulted in individuals up to 31 years being
classified as young, while individuals aged 61 years and
above were categorised as old within our analysis.

We conducted additional experiments to examine
fairness in intersectional groups, controlling for mul-
tiple protected attributes (sex, age, and race) in the
MIMIC-CXR dataset. We constructed random test sets
for each possible combination of two protected attri-
butes (i.e., male and white, male and black, female and
white, etc.), each balanced in terms of both positive and
CXR14 (11

Normal (60,361 images)

Train

100% Female
0% Male

Train

0% Female
100% Male

Train

90% Female
10% Male

.  .  .

Fig. 2: Exemplary flowchart of the procedure to gene
negative samples, and all considered protected attri-
butes. The remaining normal data was used to form
the training set. While this training set was unbalanced
regarding the protected attributes, it approximates the
population of the originating hospital. Details about the
dataset sizes for this experiment are in the
Supplementary Material in Table S3.

Disease prevalence is unequal in the subgroups
defined above. This prevalence shift is known to cause
disparities in many metrics, such as the receiver oper-
ating characteristics (ROC) curve.17 Since we intend to
measure model performance bias in this study, we
corrected for unequal prevalence while constructing our
validation and test sets. Since the prevalence in the
datasets considered suffer from selection bias and, thus,
likely do not represent the true prevalence in many real-
world scenarios, we chose an arbitrary but consistent
prevalence of 0.5 in the test sets.

Statistics
Since samples of under-represented subgroups are
likely to yield higher anomaly scores and, consequently,
are more often falsely flagged as positive (c.f. Section 1),
we considered predictive equality (or false positive error
rate balance) as the most relevant measure to assess
(group-) fairness in the context of UAD.

While the effect of generally higher or lower anomaly
scores for a subgroup could potentially be partially
mitigated post hoc by selecting a unique threshold for
each group, this solution can not be used in many cases
where the association of a sample to a particular varia-
tion is unavailable, for example in retrospective cases.
The amount of required thresholds further grows
combinatorically with the number of protected variables
in intersectional subgroups, while the number of avail-
able samples to estimate this threshold shrinks simul-
taneously.7 Thus, when evaluating an anomaly detection
model’s fairness regarding multiple subgroups, metrics
such as the false positive rate at a minimally required
true positive rate (FPR@x%TPR) cannot be calculated
separately for each group. Instead, the threshold
2,120 images)

Abnormal (51,759 images)

Val

50% Female, 50% Male
50% Healthy, 50% Diseased

Test

50% Female, 50% Male
50% Healthy, 50% Diseased

rate training, validation, and test sets for CXR14.
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necessary to achieve the minimum TPR must be
computed across the entire dataset, while the resulting
FPRs should be determined individually for each sub-
group.17 Similarly, the area under the receiver operating
characteristics curve (AUROC) can not be computed for
each group separately, as the minimum and maximum
anomaly scores for both groups are likely significantly
apart. To alleviate this issue, we propose the subgroup-
AUROC (sAUROC), which can be viewed as a
threshold-free extension of the FPR@x%TPR metric.

For a subgroup s ∈ S in the overall population P ,
the sAUROC is calculated as follows: For every decision
threshold t, the TPR is computed over the whole pop-
ulation, but the FPR only over the specific subgroup.
Mathematically, sAUROC can be described as:

TPRP (t) = TPP (t)
TPP (t) + FNP (t)

FPRP (t) = FPP (t)
FPP (t) + TNP (t) ,

where TP(t), FN(t), FP(t), and TN(t) are the numbers of
true positives, false negatives, false positives, and true
negatives at threshold t, respectively, and the subscripts
P and s denote if all samples are considered, or only the
ones from the subgroup s, respectively. Finally, the
sAUROC is computed as

sAUROC(s) = ∫1

0
TPRP (FPR−1

s (x))dx .

sAUROC paints a thorough picture of performance
differences between subgroups of a population. We ran
each experiment ten times with different random seeds.

Anomaly detection model
In our experiments, we employed the Structural Feature
Autoencoder (FAE) by Meissen et al.,18 the best per-
forming method among contemporary state-of-the-art
techniques in a recent comparative analysis by Lago-
giannis et al.3 Model optimisation was performed using
the Adam optimiser, with a learning rate of 0.0002, for
10,000 iterations. Each experiment was run with ten
different random seeds to compute confidence intervals
using a Gaussian-based approximation and to perform
statistical significance tests. To validate that our findings
are not specific to the chosen model, we validated our
results with the Reverse Distillation model (RD) by
Deng et al.19—the second-best model in Lagogiannis
et al.3 The settings for both models were preserved at
their default parameters. These can be found in the
Supplementary Material in Tables S4 and S5. For details
regarding the two models, we refer the reader to the
original works.
www.thelancet.com Vol 101 March, 2024
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submit for publication.
Results
Subgroup representation and performance are
linearly correlated
Fig. 3 shows a significant correlation between the rep-
resentation of a subgroup in the training dataset and the
subsequent performance for that subgroup (Pearson
correlation coefficients of 0.979 ± 0.011, 0.971 ± 0.016,
and 0.682 ± 0.331 in the sex, age, and race experiments
respectively). This relationship was linear in all experi-
ments, which allowed us to accurately estimate the
sAUROC-performance for training with any composi-
tion of patients regarding a protected attribute, using
linear interpolation from the extreme values (0% and
100%)—with a mean absolute error of 0.0061 ± 0.0029
for age, 0.0063 ± 0.0015 for sex, and 0.0045 ± 0.0025 for
race. Only in the race-controlled experiments on
MIMIC-CXR, the influence of the dataset composition
on the performance outcome for patients from the white
group was much weaker (Pearson correlation coefficient
0.398 ± 0.241). The detailed results of all experiments
and the correlation coefficients per subgroup and class
are provided in the Supplementary Material in
Tables S6–S8 and Table S9, respectively. The results of
the RD model in the Supplementary Material, Fig. S1
and Tables S10–S13, showed the same linear behaviour.

While the overall anomaly detection performance
varies between datasets, the above-described effect is
consistent for each demographic subgroup. The slopes
of the regression lines are 0.050 ± 0.004 for
male, −0.089 ± 0.024 for female, 0.040 ± 0.003 for old,
and −0.074 ± 0.008 for young, respectively. Notably, the
slopes for female, young, and black are steeper than for
male, old, and white, respectively.

Unfairness exists with balanced training data
The experiments in Fig. 3 also revealed that male sub-
jects consistently received significantly higher scores
across all datasets, even under balanced conditions,
where both subgroups are equally represented in the
training data (Welch’s t-test, N = 10 different runs,
p < 0.01). This pattern also held true for old patients,
except for the MIMIC-CXR dataset, where young
individuals obtained significantly higher scores
5
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a

b

Fig. 3: a) A linear relationship between the representation of a subgroup in the training dataset and its performance was observed across all
datasets and subgroups. Equal representation of subgroups did not produce the most group-fair results. Experimental results for the FAE on the
MIMIC-CXR, CXR14, and CheXpert datasets trained under different sex, age, or race imbalance ratios. Each box extends from the lower to upper
quartile values of ten runs with different random seeds with a line at the median. Regression lines along the different imbalance ratios are
additionally plotted. The exact numbers can be found in the Supplementary Appendix. b) The mean absolute errors (MAE) between the real
subgroup performances and those estimated using the “fairness laws” for each dataset and protected variable. Each box again shows the results
over ten runs with different random seeds.
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(Welch’s t-test, N = 10 different runs, p < 0.01). Only
when the protected variable was the patients’ self-
reported race, balanced training data did not lead to
significant unequal performance in the FAE model
(Welch’s t-test, N = 10 different runs, p ≥ 0.01).

Unfairness is amplified in intersectional subgroups
Our intersectional experiments’ outcomes are illus-
trated in Fig. 4. Given that the training dataset was not
controlled for any protected variable, the findings
presented here revealed potential unfairness within
a population representative of the Beth Israel
Deaconess Medical Centre. Here, male patients
received higher scores than female patients, and young
patients achieved higher scores than their old coun-
terparts. The performance of white and black patients
appears to be equivalent. This pattern is also consis-
tently observable in the intersectional subgroups
featured in the lower row of the figure, although black
patients.

Scored slightly lower in these cases. Moreover, the
score disparity (Δ) between male and female patients was
more pronounced among old individuals compared to
their young counterparts (Δ0.085 and Δ0.042, respec-
tively). Similarly, the score disparity between old and
young patients was larger among female patients in
comparison to male patients (Δ0.112 and Δ0.068,
respectively).

Naive AUROC fails to capture “fairness laws”
To put the sAUROC results in perspective, we addi-
tionally show the anomaly scores, FPR@0.95TPR, and
naive AUROC for different dataset compositions on
CXR14 in Fig. 5. The anomaly scores for a subgroup
increased as their representation in the training data
shrank. FPR@0.95TPR exhibited analogous behaviour.
www.thelancet.com Vol 101 March, 2024
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Fig. 4: In the MIMIC-CXR dataset, representative of the Beth Israel Deaconess Medical Center, Boston, USA, diseases were detected better in male
than female patients and in young than old patients. When considering a second demographic variable, these differences were amplified, e.g., the
difference between male and female subjects is larger among older patients than younger ones. Top row: male vs. female, old vs. young, and
white vs. black. Bottom row: intersectional subgroups. Each bar shows the mean and standard deviation over ten runs with different random
seeds.
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For AUROC, an increase in samples from one sub-
population did not improve scores for that group.
Instead, an increase in male or old patients resulted in
similar or worse scores for all groups.
Discussion
It has been shown that an embedded ethics and social
science approach is helpful when analysing complex,
interdisciplinary problems like the one discussed in
this work.20,21 We, therefore, drew on the interdisci-
plinary expertise of the authors in the discussion of the
results, combining technical, social, and medical
perspectives.

The experiments in Section 3 have unveiled “fairness
laws” for UAD models: linear relationships between the
representation of a subpopulation in the training data
and the performance of that group (c.f. Fig. 3). These
relationships enable practitioners to accurately predict a
subgroup’s performance using only two points of mea-
surement and linear inter- or extrapolation. This implies
that the optimal dataset combination under any fairness
www.thelancet.com Vol 101 March, 2024
constraints can be easily estimated beforehand based on
the above described linear relationship.

However, like supervised methods,8 UAD models
suffered from compounding adverse effects in inter-
sectional subgroups (c.f. Fig. 4). For example, the dif-
ference we found in model performance between male
and female patients was larger in old patients than in
young ones, resulting in old female patients being at a
particular disadvantage.

Our experiments demonstrated substantial perfor-
mance disparities among subgroups, even when they
were equally represented in the training data. For
instance, male patients on CXR14 consistently received
significantly higher scores than their female counter-
parts (male: 0.71, female: 0.60), and young patients out-
performed old ones on MIMIC-CXR (young: 0.73, old:
0.63). Notably, the dataset compositions that yield the
most group-fair results—as measured by predictive
equality—were often situated towards the extremes of
the dataset composition spectra. In CheXpert and
MIMIC-CXR, optimal sAUROC parity was achieved
with a 70% and 80% female patient representation,
7
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Fig. 5: The representation of a subgroup in the training dataset had a strong influence on its anomaly scores, the false positive rate at a
minimally required true positive rate, and our proposed sAUROC (c.f. Fig. 3). The naive computation of AUROC did not capture this relationship.
Anomaly scores (left), FPR@0.95TPR (middle), and naive AUROC (right) for different compositions of sex (top) and age (bottom) on the CXR14
dataset.
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respectively, whereas for CXR14, the composition that
led to the most group-fair outcome did not include any
male samples. This leads us to the hypothesis that there
might be subgroup-specific differences that cause some
subgroups to be easier to represent by the UAD model
than others, as discussed by Nalisnick et al.22 Further
potential reasons for this performance gap are sum-
marised in a recent review by Petersen et al.23 Among
them are systematic labelling errors, as well as potential
inherent task difficulty differences between groups. Our
findings, therefore, highlight the need for medical
expertise in evaluating these models and their potential
performance biases.

Disease detection is the central first step in the
diagnostic process.24 Coupled with the increasing de-
mand for medical imaging, UAD models fill a relevant
clinical need. In this pivotal role, unfairness in UAD,
perhaps even more so than “downstream”, more speci-
alised models, has significant potential to negatively
affect patients. Our experiments revealed that UAD
models produce elevated false-positive rates for some
subgroups (c.f. Fig. 5). False positives can cause serious
harm to patients, such as unnecessary follow-up tests
(and costs),25 harm from unnecessary treatment, and
psychological distress,26 and can generally cause distrust
in the model or ML techniques in general.

The results in Fig. 5 show why sAUROC is a more
suitable measure to assess the fairness of ML models.
The figure displays a linear relationship between
anomaly scores and dataset composition, indicating
that, as groups get less represented in the training data,
they are flagged as “more anomalous” by the model.
These relationships were also reflected in the
FPR@0.95TPR and sAUROC. The naive, individual
calculation of AUROC for each subpopulation, however,
did not exhibit this expected pattern. While the anomaly
scores clearly showed disparities but were missing in-
formation about the resulting classification performance
differences and FPR@0.95TPR is only a point measure
considering only a single decision threshold, sAUROC
painted a more comprehensive picture by considering
all possible thresholds while capturing disparate
performances.

The findings of our work need to be viewed with an
awareness that the categories of human differences we
are working with are complex and historically formed.
We could not find comprehensive information about
how subjects were assigned labels of sex and race in the
datasets. This leaves us unclear about what social and
biological aspects were included in these categories,
important information for nuanced analyses that take
into account how human bodies are shaped by both
social and biological factors.27,28 Further, the labels of
the datasets used for evaluation in this study are at risk
of being biased. Reasons for that reach from biases of
medical professionals in the creation of the radiology
reports29 to the automatic label extraction from these
reports using a rule-based natural language processing
system, which is known to generally contain high levels
of label noise, especially in the oldest patient group.30
www.thelancet.com Vol 101 March, 2024
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Although UAD models only require minimal labels
during training (healthy vs. diseased) and thus are
presumably less susceptible to systematic labelling er-
rors during training than supervised models, such er-
rors might have an effect on our experimental results
when they occur in the evaluation data. Due to the small
sample sizes of many ethnic subgroups in the available
databases, our analysis of the race dimension was
restricted to the categories white and black to guarantee
meaningful insights of our results. While we assume
analogous effects on other racial categories like asian,
latin, etc., the shortage of available data prevented us
from empirically substantiating this hypothesis. This
limitation reflects the bias against under-represented
racial groups that exists in current public medical data
sets. In conclusion, this study represents an effort to
quantify fairness in UAD on a large scale, including the
results of 1560 trained models. Our extensive experi-
ments on various large-scale datasets and protected at-
tributes confirmed that a demographic subpopulation’s
anomaly detection performance strongly depends on its
representation in the training data and can be efficiently
estimated, simplifying the task of identifying the fairest
composition. Our experiments further showed that
disparate performance between two subgroups can not
solely be explained by the under-representation of one
subgroup. Instead, some subgroups seemed to be
harder to learn by the UAD models than others and,
thus, were generally flagged as “more anomalous”.
While this study has found performance disparities
existing along the three considered variables, likely,
more of them exist (for example, people with disabil-
ities). Thus, enhancing model fairness is a significant
yet unresolved requirement for the safe implementation
of UAD models. Towards this end, the sAUROC pre-
sented here is a relevant contribution, as it facilitates the
quantification of performance bias in UAD models. We
emphasise that sAUROC is also relevant for supervised
classification models where disparities between sub-
groups also manifest in TPR/FPR shifts.7,17 Considering
the severe implications that over-diagnosis can have on
both society and individual patients, we believe the
quantification of existing bias mechanisms in this work
presents a vital step towards a fairer future in
healthcare.
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