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Abstract: Background: Economic restrictions and workforce cuts have continually challenged conven-
tional autopsies. Recently, the COVID-19 pandemic has added tissue quality and safety requirements
to the investigation of this disease, thereby launching efforts to upgrade autopsy strategies. Meth-
ods: In this proof-of-concept study, we performed bedside ultrasound-guided minimally invasive
autopsy (US-MIA) in the ICU of critically ill COVID-19 patients using a structured protocol to obtain
non-autolyzed tissue. Biopsies were assessed for their quality (vitality) and length of biopsy (mm)
and for diagnosis. The efficiency of the procedure was monitored in five cases by recording the
time of each step and safety issues by swabbing personal protective equipment and devices for viral
contamination. Findings: Ultrasound examination and tissue procurement required a mean time
period of 13 min and 54 min, respectively. A total of 318 multiorgan biopsies were obtained from five
patients. Quality and vitality standards were fulfilled, which not only allowed for specific histopatho-
logical diagnosis but also the reliable detection of SARS-CoV-2 virions in unexpected organs using
electronic microscopy and RNA-expressing techniques. Interpretation: Bedside multidisciplinary
US-MIA allows for the fast and efficient acquisition of autolytic-free tissue and offers unappreciated
potential to overcome the limitations of research in postmortem studies.
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1. Introduction

Since the beginning of the SARS-CoV-2 pandemic, tremendous worldwide efforts
have helped develop treatment options for patients with COVID-19 and understand the
nature and possible long-term effects of infection with this new coronavirus [1,2]. The
severity of COVID-19 may vary according to different SARS-CoV-2 variants of concern
(VOC), ranging from typical pulmonary manifestations to the affection of extrapulmonary
sites such as cerebral, myocardial, renal, and gastrointestinal sites. These organ changes
may either deteriorate into acute multiorgan failure or lead to a chronic “Post-COVID-19”
syndrome [2–5]. Easy-to-implement genetic and molecular blood tests have helped predict
the organ-specific severity of the SARS-CoV-2 infection [6]. In contrast, to track the detailed
pathogenesis of COVID-19, multiorgan tissue analysis is still of prime importance.

Conventional autopsies helped at the beginning of the pandemic to define COVID-
19-related organ damage, such as thromboembolism and diffuse alveolar damage [7–10].
Despite these new insights, autopsy rates remained low during the pandemic, leaving our
knowledge of COVID-19 disrupted by considerable gaps [11,12].

This may be supported by the typical shortcomings of conventional autopsies, such
as the misperception of medical use and lack of universal standard operating procedures
(SOPs) [13]. In addition, improvements in imaging modalities, the growing body of
biomarkers, and molecular pathological and microbial research have contributed to this
development to track the biology of disease states in living organisms, facilitating theranos-
tics [14–16].

Alternative procedures for postmortem tissue sampling with a short postmortem
interval (PMI) are needed to use the improved methodology of DNA/RNA analyses, next-
generation sequencing (NGS), and cell culture experiments, including organoids, to track
diseases at the molecular level and adequately reevaluate the concepts of etiology and
pathogenesis [17]. In this context, minimally invasive approaches in combination with high-
end imaging techniques (especially ultrasound and computed tomography (CT)) are ideal
for obtaining postmortem specimens of such quality without spreading the environment
with a highly contagious new agent. Accordingly, a minimally invasive tissue sampling
(MITS) strategy has been advocated as a safe method.

Not only are tissue samples vital shortly after death (PMI: 1–8 h) in most cases, but
postmortem needle biopsies can reach almost any organ and structure under ultrasound-
guided visual control, enabling research on remote organs and body sites that are usually
not targeted during conventional autopsies (i.e., salivary and lacrimal glands, eye, conjunc-
tiva, and penis) [18,19]. In addition, this approach is faster and cheaper than conventional
autopsies when performed by a well-trained and experienced operator.

To highlight these benefits, we performed a proof-of-concept study in a multidisci-
plinary approach using bedside minimally invasive tissue sampling directly at the intensive
care unit (ICU) in critically ill COVID-19 patients in the nearest possible timeframe after
their death.

2. Material and Methods
2.1. Study Design

This proof-of-concept study evaluated the organizational feasibility, efficiency, and
safety of bedside postmortem minimally invasive tissue sampling in the intensive care unit
of Medizinische Klinik und Poliklinik II, Klinikum Rechts der Isar of the Technical Uni-
versity of Munich (TUM), a tertiary care center in Germany (Figure 1). Patient enrollment
for this study started on 10 December 2021, and ended on 15 January 2022. The inclusion
criteria were SARS-CoV-2 infection confirmed by reverse transcription polymerase chain
reaction (RT-PCR) on nasopharyngeal swabs or bronchoalveolar lavage during the hospital
stay and next of kin’s consent. Biopsy samples were assessed for tissue quality and diagno-
sis. The time span of each investigational step was recorded to monitor the efficiency of the
procedure. For safety reasons, viral contamination of personal protective equipment (PPE)
and devices was monitored using swabs at the end of the biopsy procedures. This study
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was approved by the ethics committee of the TUM (Ref. 225/20S; date: 13 December 2021)
and was performed in accordance with the ethical principles of the Helsinki Declaration.
The basis for conducting a clinical autopsy is the consent of the relatives, whereby there
are neither nationwide nor statewide uniform regulations regarding the specific procedure.
The consent process at the MRI involves informing and obtaining consent from the nearest
relative, which must be documented in writing by the relative’s signature on the corre-
sponding form. Deceased individuals without relatives or deceased individuals with legal
guardians without a guardianship directive beyond death cannot, in principle, undergo an
autopsy according to the specific local regulations of the München rechts der Isar (MRI).
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Figure 1. Study design. Investigational steps are marked as gray hexagons; key study objective
measurement parameters are marked as yellow boxes.

The consent of the next of kin for an autopsy of a deceased person due to COVID-19
may be given orally (e.g., over the phone) and does not require a personal signature. The
written documentation of consent may be carried out by the informing physician, providing
the name of the relative, contact information, and the date and time of the consent.

This procedure was confirmed during the COVID-19 pandemic situation by the local
ethics committee of the TUM (see above), Munich, Bavaria, Germany.

2.2. Logistical Aspects and Standard Operating Procedures

An interdisciplinary team of intensive care physicians, pathologists, and ultrasound
specialists defined the standard operating procedures. The minimal invasive autopsy (MIA)
was performed by the tissue procurement team (TPT), consisting of a pathologist (tasks:
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needle biopsy, macroscopic quality assessment, and microscopic pathology), an ultrasound
specialist (tasks: ultrasound examination and biopsy guidance), and a technician (tasks:
preparation of pseudonymized sampling protocols and biopsy containers and specimen
handling), and was on standby for 12 h (from 8 a.m. to 8 p.m.), 7 days a week. The
procedure was performed in the rooms of ICU patients at the deceased’s bedsides. After
each patient died, their relatives were informed of the procedure. After oral consent
was obtained, the TPT was informed, and patient-specific sampling protocols and biopsy
containers were prepared, including appropriate pseudonymization. Before the arrival
of the TPT in the ICU, the patient’s room was prepared using portable room dividers in
multibed rooms. Clinical, imaging, and laboratory data were obtained from the medical
charts and hospital information systems. Signs of death were ascertained and documented
by a physician who was not involved in this study.

Ultrasound examination and sampling protocol: A Siemens Acuson S 3000 ultrasound
system (Siemens Medical Solutions, Mountain View, CA, USA) with a 4–9 MHz linear
transducer and 1–4 MHz convex probe was used. The deceased patient remained in the
supine position during the procedure, and the arms were placed above the head to expose
the lateral thorax for sampling. Ultrasound examinations involve measuring organ size
using the leading-edge method and determining pathological changes. Lung ultrasounds
were performed according to a standardized protocol for COVID-19 patients [18]. Biopsies
were retrieved under full visual control in real time using an in-plane multi-angle needle
guidance system (Ultra-Pro II; Civco, Coralville, IA, USA). A single-use biopsy device
was used (14 G; 20 cm length; 2.2 cm stroke length; PlusSpeed®, Pflugbeil, Zorneding,
Germany). The ultrasound specialist localized the target to determine the needle trajectory
and indicated the correct position for launching the biopsy gun to the pathologist. Finally,
the pathologist evaluated biopsy adequacy by immediate macroscopic inspection to prompt
a rebiopsy when inadequate. Adequacy was assumed if the specimen size was satisfactory
for an analysis of 5–10 qm. Regularly sampled organs included the lungs (at least three
areas per side), liver (at least segments III, IV, and VIII), spleen, pancreas, kidneys, left
heart, abdominal aorta, parotid gland, conjunctival mucosa, lacrimal gland, skin, and bone
marrow. The conjunctival mucosa and lacrimal gland were obtained from the left lateral
oculi angulus using forceps and scissors, and the skin and bone marrow were sampled from
the left anterior iliac crest without ultrasound guidance. Further samples of the presum-
ably pathologically altered organs were collected based on abnormal imaging findings or
clinical information.

Biopsy processing protocol: Three needle passes were performed from each or-
gan/puncture site with a minimum distance of 1 cm from each other. One sample was
immediately fixed with 10% neutral-buffered formalin (at least 72 h for viral inactivation)
and paraffin-embedded (FFPE) for diagnostic purposes according to the standard proce-
dures of the institutes of pathology (DIN ISO 17020). Two other samples were collected
for biobanking and research purposes and preserved using the PAXgene® tissue system
(Qiagen, Hilden, Germany) and cryoconservation (−80 ◦C) according to the standard proce-
dures of the biobank of the Klinikum rechts der Isar, MTBio (DIN ISO 20387). FFPE biopsies
were sectioned and stained with hematoxylin and eosin (H&E), periodic acid-Schiff (PAS),
Elastica van Gieson’s stain (EvG), Ladewig, Prussian blue, Gomori, and chloroacetate
esterase. Immunostaining was performed for selected cases (CD34, CD68, CMV, HSV, and
CK7/p40). All slides were then digitized using a Leica GT450Dx device (Leica Biosystems,
Buffalo Grove, IL, USA) at 40× (0.25 µm/px). Some samples were investigated through
electron microscopy (EM) and for SARS-CoV-2 genomic RNA through in situ hybridiza-
tion. For EM tissues, they were post-fixed in 2.5% glutaraldehyde (Serva, Heidelberg,
Germany), followed by 1% osmium tetraoxide (Carl Roth, Karlsruhe, Germany), and em-
bedded in Epon resin (Agar Scientific, Stansted, UK). Images of 80 nm thin sections were
taken using the transmission EM JEM-1400 (Joel, Freising, Germany). In situ hybridiza-
tion was performed on FFPE samples using RNAscope® 2.5 HD Detection Reagents-RED
(Cat. No. 322350, Advanced Cell Diagnostics, ACD, Bio-Techne, Newark, CA, USA) and
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SARS-CoV-2 RNAscope® ISH Probe (21,631–23,303 Cat. No. 848561, ACD) according to the
manufacturer’s protocol. In brief, deparaffinized sections were subjected to target retrieval
for 20 min at 98–102 ◦C in 1× Target Retrieval Solution and to Protease Plus treatment
for 15 min at 40 ◦C in an HybEZ oven (ACD). A 50% gill hematoxylin I (Sigma-Aldrich,
St. Louis, MO, USA) staining solution was used for counterstaining for 2 min at room
temperature. Two samples were used as negative and positive probe controls to check
the assay’s specificity. Two general pathologists with expertise in autopsy pathology (GW
and JSH) analyzed the FFPE biopsies; EM was analyzed by a pathologist with special
expertise (SP).

2.3. Assessment Tools for Time Efficiency and Sample Quality

To address time efficiency, the following time points were documented: patient death,
consent obtained, TPT informed, ultrasound examination initiated, sampling initiated,
and tissue collection completed. The time between the patient’s death and the fixation of
the biopsy is referred to as the PMI. For quality control, the biopsy length (mm), signs of
autolysis (yes or no), and representativity were assessed. Representativeness was assumed
if organ-specific tissue of the target organ was captured.

2.4. Safety/Hygiene

The personnel involved wore protective equipment, including eye protection equip-
ment, two layers of gloves, plastic arm sleeves, shoe covers, and FFP2 or FFP3 masks.
During the procedure, the room was reserved for the MIA. After each biopsy, the biopsy
device was decontaminated using Incidin™ Plus (0.5%) immersion for 10–15 s and rinsed
in tap water. After the procedure, the personnel’s decontamination and the decontami-
nation of the devices used occurred according to standard hygienic protocols concerning
the handling of SARS-CoV-2-wetted materials. To assess SARS-CoV-2 contamination of
PPE or the devices used, swabs were taken after the completion of biopsy collection
and before decontamination. The (right-handed) sonographer, pathologist, and devices
were swabbed thoroughly in a meandering manner for at least 10 s at various sites (see
Figure 2 for the swab collection locations). Nasopharyngeal swabs from the deceased were
used as the controls. Commercially available swab sets (Clinical Virus Transport Medium;
Noble Biosciences) were used. Samples were stored in refrigerators at 4 ◦C until PCR
analysis. Detection of SARS-CoV-2 RNA was performed on a Roche Cobas 6800 analyzer
using a Cobas SARS-CoV-2 Test Kit (Roche Diagnostics, Mannheim, Germany). Results
were reported using the Cobas system as the threshold cycle (Ct) value for the targeted
SARS-CoV-2 ORF1/a and E genes. The viral load was quantified using a standard curve
determined according to the World Health Organization’s (WHO’s) International Standard
for SARS-CoV-2 RNA (WHO/BS/2020.2402).
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3. Results

Six COVID-19 patients treated in the intensive care unit did not survive the infection
during this period. Informed consent from relatives for postmortem investigation was
denied in 1/6 of the cases, resulting in an acceptance rate of 84%. The baseline characteristics
of the patients are summarized in Table 1. The procedure was performed four times in a
single-bed room (cases #1–4) and once in a multibed room (case #5). The time intervals
of the action steps from the patient’s death until the end of sampling in the intensive care
unit are shown in Figure 3. The mean time from patient death to relatives’ consent was
32 min (24–39), and that from consent to informing the TPT was 8 min (4–15). The time
interval between the arrival of the TPT and the ICU was 162 min (129–210). The ultrasound
examination required a mean of 13 min (5–16), and the following biopsy procedure required
a mean of 54 min (44–75). The mean PMI was 215 min (case #1: 173, #2: 205, #3: 184, #4: 261,
and #5: 254). In total, 318 samples were obtained (62 samples per deceased, on average),
resulting in an average expenditure time of 50 s per biopsy.
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Table 1. Patient characteristics and clinical findings.

Case #1 Case #2 Case #3 Case #4 Case #5

Age (years), sex 75, male 65, male 78, male 73, female 87, male
BMI 27.1 29 25.5 24.8 24.5

ICU stay (days) 24 2 26 9 32
Hospital stay (days) 24 43 26 17 34

SOFA score 12 8 13 8 16
Mechanical

ventilation (days) 24 2 26 9 32

Vaccination status
until time of death 2×, BioNTech/Pfizer 2×, BioNTech/Pfizer 2×, BioNTech/Pfizer 2×, BioNTech/Pfizer 3×, BioNTech/Pfizer

COVID-19-specific
medication

Dexamethasone
and casirivimab/

Imdevimab

Dexamethasone and
casirivimab/
Imdevimab

Dexamethasone and
casirivimab/
Imdevimab

Dexamethasone and
casirivimab/
Imdevimab

Dexamethasone
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Table 1. Cont.

Case #1 Case #2 Case #3 Case #4 Case #5

Medical history

AH,
T2DM, and

FSGS (under therapy
with ciclosorin and

rituximab)

AH,
CHD, and

diverticuosis
history of DLBCL
(RD negative) and

tMDS/AML (under
therapy, RD negative)

T2DM,
CHD,

atherosclerosis, and
history of prostate

cancer (RD negative)

AH,
CHD,

idiopathic lung
fibrosis,

cardiac enlargement,
and idiopathic

MDS (high risk)

AH,
COPD,

thrombosis of left
saphenous vein and
intramuscular veins,

and
pulmonary artery

embolism

Imaging findings
(CT) CO-RADS 6

CO-RADS 6 (left
lung);

renal and
splenic infarctions

CO-RADS 6 CO-RADS 6
Suspicious for

COVID-19
(CO-RADS 4)

Clinical diagnosis
leading to death

COVID-19
pneumonia, ARDS,

and
hypoxaemia

COVID-19
pneumonia and
suspected fungal

infection

COVID-19
pneumonia, ARDS,
respiratory global

insufficiency,
suspected HSV, and

fungal infection

COVID-19
pneumonia and

septic multiorgan
failure

COVID-19
pneumonia, ARDS,
suspected bacterial
superinfection, and

hypoxaemia

ARDS, acute respiratory distress syndrome; AH, arterial hypertension; CHD, coronary heart disease; COPD,
chronic obstructive pulmonary disease; CO-RADS 6, typical COVID-19 findings on CT in association with positive
SARS-CoV-2; CO-RADS 4, suspicious but not extremely typical COVID-19 findings on CT; DLBCL, diffuse large
B-cell lymphoma; and FSGS, focal segmental glomerulosclerosis. ICU = intensive care unit; SOFA = sequential
organ failure assesment; T2DM = Type 2 diabetes mellitus; tMDS = therapy-related myleodysplastic syndrome;
RD = residual disease; AML = Acute myeloid leucemia; CT = computed tomography.

3.1. Quality Assessment

A total of 112 samples were formalin-fixed, paraffin-embedded, and assessed for
quality according to the quality criteria described above. The overall representativity for
standard organ samples was 96.4% (106/110), and the mean biopsy length was 11 mm
(4–25). Organ-specific results for representativity and biopsy length are presented in Table 2.
One puncture of the left lung did not retrieve the lung parenchyma but retrieved the
myocardial tissue (case #3). Tissue from the abdominal aorta and pancreas could not be
successfully retrieved in case #2, most likely due to the high abdominal circumference
(BMI 29) and insufficient length of the biopsy needle. No bone marrow was retrieved in
case #3. Six biopsies were punctured outside the standard protocol due to special clinical
questions or conspicuous imaging findings: tibial vein (suspected leg vein thrombosis),
coronary artery (coronary artery sclerosis), pulmonary artery (suspected pulmonary artery
embolism), arteria coronaria sinistra (coronary artery sclerosis), right atrium (thrombus),
and abdominal lymph nodes (lymphoma). One pancreatic puncture retrieved not only
pancreatic tissue but also gastric mucosa from the puncture channel. Organ-specific material
was obtained from all the punctures except the lymph nodes. All biopsies contained well-
preserved tissue without significant signs of autolysis under light microscopy (Figure 4B).
Tissue vitality was particularly evident in the pancreas and gastric mucosa, which are prone
to rapid postmortem autodigestion. Nevertheless, some samples from the kidneys, liver,
and lungs contained necrotic cells (tubular epithelium, hepatocytes, and pneumocytes,
respectively), which could be attributed to shock-related (kidney and liver) or disease-
related (lung and liver) cell death.

At the ultrastructural level, EM revealed signs of incipient autolysis, such as dis-
integration of cellular membranes (Figures 4B and 5). However, their degree was sig-
nificantly lower than that of the materials derived from conventional autopsies. For
example, in kidney samples, glomerular morphology was largely unaffected with par-
tially discernible podocyte foot processes, basement membranes, and endothelial fenestrae
(Figure 4B pictures).
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Figure 4. (A) Multiorgan sampling locations. (B) Exemplary microscopic morphology: (a) con-
junctiva, (b) lacrimal gland, (c) parotid gland, (d) skin, (e) bone marrow, (f) alveolar lung, (g) alveolar
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lung with ciliated bronchiolization, (h) intrapulmonal vessel with inflammation, (i) myocardial
lipofuscinosis, (j) abdominal aorta with intima fibrosis, (k,l) exocrine, endocrine, and ductal pancreatic
epithelium, (m,n) liver with acute congestion (m) and cholestasis (n), (o) splenic white pulp, (p) renal
tubular injury and microthrombi, (q,r) renal glomerulus, (s) renal glomerulus (electron microscopy),
and (t) gastric mucosa. Stains: H&E (a–i,k–q,s) and EvG (j).
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Figure 5. Electron microscopy detecting SARS-CoV-2 virions (yellow squares/insets) in case #3:
(a) ciliated epithelium of the olfactory mucosa (mag. 3000×), (b) glandular cell of the olfactory
mucosa (mag. 5000×), (c) pneumocyte type I (mag. 8000×), (d) alveolar macrophages (mag. 6000×),
(e) acinar cell in a parotid gland (mag. 10,000×), (f) endothelial cell of a kidney (mag. 20,000×),
(g) conjunctival epithelium (mag. 25,000×), and (h) pancreatic acinar cell (mag. 12,000×). Blue line
indicates diameter size of about 70 nm.

Table 2. Organ-specific results on representativity and biopsy lengths.

Organ/Target Representativity (%) Mean Length of Biopsy (mm)

Right lung 21/21 (100) 14 (8–20)
Left lung 15/16 (94) 10 (4–15)

Liver 15/15 (100) 14 (11–17)
Right kidney 8/8 (100) 11 (5–15)
Left kidney 5/5 (100) 14 (3–15)

Heart 9/9 (100) 13 (5–25)
Pancreas 5/6 (83) 10 (8–12)

Abdominal aorta 4/5 (80) 8 (4–10)
Spleen 5/5 (100) 14 (9–17)

Lacrimal gland/conjunctiva 5/5 (100) 8.8 (6–11)
Parotid gland 5/5 (80) 9.6 (7–12)

Skin 5/5 (100) 10 (8–14)
Bone marrow 4/5 (80) 12 (9–16)

Total 106/110 (96) 11 (4–25)

3.2. Imaging and Histopathological Findings

The postmortem ultrasound and histopathological findings are summarized in Table 3.
Typical ultrasound findings of COVID-19 (peripheral consolidation and B-lines) were ob-
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served in all the cases. The histomorphology of the lung samples (N = 37) revealed various
stages of diffuse alveolar damage, microthrombi, metaplasia, and bacterial superinfection.
Signs of shock-related multi-organ failure of the liver and kidneys (general hyperemia,
necrotizing liver congestion, cholestasis, bile cast nephropathy, and acute tubular injury)
were observed in all cases. Alongside the typical COVID-19-associated changes, we de-
tected a fungal infection in case #2, causing renal and splenic infarctions with microscopic
signs of Aspergillus spp. sepsis. Apart from the signs of acute disease, we also observed
additional organ changes, such as lymphocyte depletion of the white pulp in the spleen in
all cases (5/5), inflammation of the conjunctiva and skin, and parotid lipomatosis (3/5).
Exemplary ultrasound pathologies and the corresponding histopathological findings are
shown in Figure 6. In case #3, a high viral load was observed at the time of death. To study
the distribution of SARS-CoV-2, samples from the lungs, pleura, liver, kidneys, parotid
gland, conjunctiva, and skin were analyzed independently of microscopic pathologies.
SARS-CoV-2 could be detected in different organs and cell types by EM and RNA in situ
hybridisation, particularly in the lungs (pneumocyte type 1, alveolar macrophages, en-
dothelium, and mesothelium) as well as in unexpected organs/cells such as acinar cells
of the parotid gland and pancreas, kidneys (endothelium and tubular epithelium), and
conjunctival epithelium. Exemplary EM images are illustrated in Figure 5.
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Figure 6. Exemplary ultrasound images and corresponding histopathological findings. (a) Peripheral
lung consolidation (arrows) and pleural effusion, (b–d) lung biopsy with proliferative DAD (H&E),
(e) pancreatic cyst (arrows), (f–h) pancreatic intraepithelial neoplasia 1a (H&E), (i) retroperitoneal
hematoma (arrows), (j–l) skeletal muscle with hemorrhage (H&E), (m) vein thrombosis (arrows),
(n–p) intramuscular vein thrombosis with organization ((n,o), H&E and (p), EvG)), (q) kidney
infarction (arrows), and (r–t) a kidney with intravascular fungi (H&E).
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Table 3. Postmortal ultrasound and histomorphological findings.

Ultrasound Pulmonary
Histomorphology Extrapulmonary Histomorphology

Case #1

Bilateral pleural effusions.
Bilateral multiple
peripheral lung
consolidation.

Hepatomegaly.
Hepatic steatosis grade 1.

Hydrops of the
gallbladder.

Extensive DAD
(mainly proliferative;
partly exudative) and

microthrombi.

Subacute and acute hepatic congestion; non-alcoholic
fatty liver disease (5%).

Interstitial pancreatic fibrosis; pancreatic acinar atrophy.
Pancreatic intraepithelial neoplasia (low grade).

Splenic red pulp expansion; white pulp hypoplasia.
Acute renal tubular injury, microthrombi, and minimal

focal segmental glomerulosclerosis.
Myocardial interstitial fibrosis.

Chronic conjunctivitis.
Parotid lipomatosis.

Dermal perivascular lymphocytic inflammation.

Case #2

Pleural effusion (right);
small lung consolidations

(left).

Ascites.
Hepatomegaly and

aerobilia.
Liver cyst (9 mm).

Bilateral kidney and
spleen infarctions.

Beginning DAD
(exudative).

Microthrombi.
Mild interstitial fibrosis.

Anthracosis.
Emphysema.

Fungal sepsis (Aspergillus spp.) with the colonization of
renal infarctions.

Hepatocellular and canalicular cholestasis, chronic
portal inflammation, hemosiderosis,

bile cast nephropathy, acute renal tubular injury,
splenic hemosiderosis, white pulp hypoplasia,

myocardial interstitial fibrosis (infarct-like)
bone marrow hypoplasia, edema, and hemosiderosis.

Case #3

Pleural effusion (right);
bilateral multiple
peripheral lung
consolidation

Aerobilia.
Pancreatic lipomatosis.

Aortic sclerosis.
Retroperitoneal

hematoma.

Extensive DAD
(exudative and
proliferative).

Interstitial fibrosis.
Bacterial superinfection.

Microthrombi.
No HSV or fungi.

Hepatocellular single cell necrosis, cholestasis,
sinusoidal neutrophils, and non-alcoholic fatty liver

disease (5%).
Splenic red pulp expansion; white pulp hypoplasia.

Acute renal tubular injury.
Renal interstitial fibrosis; focal global glomerulosclerosis.

Pancreatic lipomatosis.
Retroperitoneal hematoma.

Parotid lipomatosis.
Lymphocytic inflammation of conjunctiva and lacrimal
gland dermal perivascular lymphocytic inflammation.

Case #4

Bilateral pleural effusions.
Bilateral multiple
peripheral lung
consolidation.

Ascites.
Hepatomegaly; aerobilia;

splenomegaly.
Pancreatic lipomatosis.
Pancreatic cyst (5 mm).

Extensive DAD (exudative
and proliferative);

microthrombi
pulmonary congestion.

Acute hepatic congestion; sinusoidal neutrophils.
Non-alcoholic fatty liver disease (5%).

Pancreatic intraepithelial neoplasia (low grade).
Splenic red pulp expansion; white pulp hypoplasia.

Acute renal tubular injury.
Myocardial hypertrophy.

Myelodysplastic syndrome with blast excess 2 (18%
blasts).

Chronic conjunctivitis.
Dermal perivascular lymphocytic inflammation.

Parotid lipomatosis.

Case #5

Bilateral multiple
peripheral lung
consolidation.

Hepatic steatosis grade 1.
Aortic sclerosis.

Muscle vein thrombosis
(M. soleus).

DAD (exudative and
proliferative);

microthrombi; infarct-like
hemorrhage; bacterial

superinfection

Severe acute hepatic congestion, sinusoidal neutrophils,
and hepatocellular cholestasis.

Non-alcoholic fatty liver disease (2%).
Acute renal tubular injury, focal global

glomerulosclerosis, and renal microthrombi.
Pancreatic lipomatosis.

Splenic red pulp expansion; white pulp hypoplasia.
Chronic and acute conjunctivitis.

Dermal perivascular lymphocytic inflammation.
Aortic sclerosis.

Muscle vein thrombosis in organization.

DAD = diffuse alveolar damage, HSV = Herpes simplex virus, and spp. = species.
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3.3. Safety (Hygiene Control)

During the hospital stay, the patients were considered infectious, and SARS-CoV-2
was detected by repeated swabs. The last positive swabs (tracheal fluid) documented ante
mortem (a.m.) were as follows: case #1 < 500 Geq/mL (6 days a.m.); case #2, 1950 Geq/mL
(day of death); case #3, 700 Geq/mL (6 days a.m.); case #4, 18,347 Geq/mL (12 days a.m.);
and case #5 < 500 Geq/mL (41 days a.m.). After death, SARS-CoV-2 was detected in
(deep) nasopharyngeal swabs: case #1, 4786 GeQ/mL; case #2, 5491 Geq/mL; case #3,
16.613 Geq/mL; and case #4, 885 Geq/mL. Case #5 was negative (ORF/CT > 40). To
evaluate the hygienic safety of the postmortem biopsy procedure, 60 swabs were collected
after the procedure. No macroscopically visible contamination on the surface was visible
to the naked eye. Among the 55 localizations, 54 were negative for SARS-CoV-2 with an
ORF/CT > 40. In case #4, viral RNA was detected at a very low level (84 Geq/mL, CT/ORF
37.22) from the ultrasound transducer.

4. Discussion

Data on ultrasound-guided minimally invasive autopsy (US-MIA) in deceased criti-
cally ill COVID-19 patients are scarce. In our proof-of-concept study using MIA directly in
the ICU, we demonstrated the feasibility of obtaining non-autolyzed material bedside from
deceased critically ill patients for further advanced investigation.

Despite the benefits of clinical autopsies in diagnostics and research, not only in novel
ways but also in describing new aspects of other infectious diseases such as influenza
or yellow fever, a continuous decline in clinical autopsies over the last decades has been
observed [13,20]. This development is partly due to new advancements in imaging tech-
nologies, easy-to-process biomarkers, and genetic material. This contrasts with the need for
any novel disease to obtain information on organ involvement and pathogenesis to develop
adequate therapies. To comply with these requirements, high-throughput multiorgan anal-
yses of proteomics, genomics, and microbiomics are the most appropriate tools [21]. This
need was apparent during the COVID-19 pandemic for depicting SARS-CoV-2 interactions
between host organs and tissues. Conventional autopsy has the potential to provide a
large-scale analytical approach to uncovering the pathogenesis of many acute and chronic
diseases. Owing to the lack of conventional autopsy studies over the last few decades,
studies on the mechanisms underlying COVID-19 pathogenesis are scarce [22]. In a recent
plea, Layne et al. remind us of the dire need of the medical research community to prioritize
autopsies for direct tissue studies that will help “to understand how SARS-CoV-2 causes
severe disease” [23].

Traditional, century-old laborious autopsy practices represent a major disincentive;
lack of standard operating procedures (SOPs), workforce cuts (pathologists and technical
personnel), economic restrictions, strengthened safety regulations for infectious diseases,
and concerns of patients/relatives regarding autopsies may explain the decline of conven-
tional autopsies. Additionally, long postmortem intervals (PMI—the time between death
and autopsy) are often more than 24–48 h, resulting in advanced autolysis and reduced
usability for techniques such as electron microscopy, molecular assays (e.g., genomics, pro-
teomics, and microbiomics), and cell culture models (e.g., spheroids and organoids) [21].

This contrasts with autopsy initiatives, coined as rapid research autopsy programs
(RAP), which focus on beneficial, structured, and strengthened autopsy procedures [24].
Although RAP is labor-intensive and difficult to implement owing to logistics challenges,
it has paved the way for another new autopsy approach. Bedside MIA represents a
strategy for postmortem tissue procurement that complies with the above-mentioned
requirements and offers hitherto unrecognized potential for scientific investigation. The
US-MIA approach replaces the laborious opening and closing of major body cavities and
organ preparation [25–27].

Another benefit is that ultrasound examinations and expertise are part of the daily
routine in several clinical disciplines, including ultrasound-guided biopsies of the liver
and kidneys. Thus, in combination with the broad availability of ultrasound machines,
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there is potential for a new way to obtain specific postmortem materials in specific contexts,
such as cancer research. Notably, the procedure is faster than a conventional autopsy, and
an increased frequency of repeated handling operations over time may enable quick and
appropriate manual and technical procedures. Therefore, the MIA procedure saves time
and workforce while preventing the spread of microorganisms during the procedure.

Additionally, high acceptance rates (84% in our study) for MIA stand out among
relatives compared with conventional autopsies [28]. US-MIAs were first performed in
countries with limited access to “health resources” in Africa and South America [25].
The potential of MIAs has been proven by studies on infectivity, diagnostic validity, and
resource savings [25,28]. During the COVID-19 pandemic, MIA was also practiced in
other countries, often with the adjunction of ultrasound to guide tissue sampling [29,30].
Histopathology of biopsies retrieved by MIA showed tantamount diagnoses compared
to the results from conventional autopsies. Additionally, postmortem core biopsies have
excelled in tissue preservation, which is advantageous for COVID-19 research. However,
most MIA approaches do not follow structured sampling or tissue-handling protocols.
In this study, we aimed to develop an interdisciplinary MIA approach to refine targeted
tissue sampling using ultrasound guidance combined with a standardized tissue processing
protocol. To minimize the PMI, US-MIA was conducted directly at the bedside of the ICU
for critically ill COVID-19 patients who died.

The evaluation of this novel approach includes general feasibility, efficiency, safety,
and sample quality. The feasibility analysis showed that the study protocol fit well with
the clinical conditions. The acceptance of US-MIA by relatives exceeded our expectations,
probably because of the less invasive nature of the procedure and the cogency of the doctors
in charge who were acquainted with the details of the procedure. The efficiency of the
method was broken down to the evaluation of tissue quality, which, owing to short PMIs,
showed optimally preserved morphology at the cellular and subcellular levels, allowing
viral detection using EM (SARS-CoV-2) and the RNAScope assay [31].

The safety of the procedure for viral contamination was tested by using multiple swabs
at the end of each US-MIA. Except for one positive swab from the ultrasound transducer
that had been in direct contact with the deceased patient’s puncture sites, all other swabs
were virus-negative, which is in accordance with a previous study on the risk of SARS-
CoV-2 contamination during autopsies of COVID-19 patients [32]. The diagnostic output
of our bedside US-MIA revealed COVID-19-specific and non-specific organ pathologies
similar to those detected by conventional autopsies. The postmortem US findings were
comparable to those detected in patients with COVID-19. In some cases, postmortem US
has detected previously unknown pathologies. Finally, we detected SARS-CoV-2 in various
unexpected organs and cell types of deceased COVID-19 patients, such as the parotid
gland, conjunctival mucosa, and pancreas, raising the possibility of viral persistence, a
finding similar to other RNA viruses such as influenza, where the virus persists in various
organ niches.

5. Conclusions

Our proof-of-concept study underlines the feasibility of obtaining vital materials for
further investigations using bedside US-MIA in deceased critically ill COVID-19 patients.
The success of bedside US-MIA relies on interdisciplinary collaboration, rapid communica-
tion, and the use of clinical resources in a postmortem context.

6. Research in Context
6.1. Evidence before This Study

We searched PubMed for articles using the search terms “COVID-19”, “critically ill”,
and “minimally invasive autopsy”. This search yielded case reports and case series de-
scribing minimally invasive autopsy (MIA) approaches for COVID-19 patients. However,
a systematic proof-of-concept study in postmortem critically ill COVID-19 patients eval-
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uating bedside MIA techniques in the nearest possible time frame after death in the ICU
is missing.

6.2. Added Value of This Study

This proof-of-concept study used US-MIA performed on postmortem critically ill
COVID-19 patients directly bedside in the ICU. We registered a high acceptance rate among
the relatives. A short time frame between the patient’s death and the start of MIA is feasible,
and autolytic-free tissues can be efficiently obtained from multiple organ sites, including
atypical locations such as the parotid gland. These autolytic-free materials make it possible
to use deep analysis diagnostics, such as electronic microscopy and RNA-expressing
techniques, for the detection of SARS-CoV-2 in unexpected organs.

6.3. Implications of All the Available Evidence

Minimally invasive approaches can help to maintain declining autopsy rates. More-
over, bedside tissue sampling is an efficient and safe method for obtaining high-quality
vital tissues for diagnostic and research purposes, not only for future pandemics but also
for cancer research and new technologies, such as organoids.
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