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Abstract
We establish the existence in the sense of sequences of solutions for a certain system
of integro-differential equations in a square in two dimensions with periodic boundary
conditions involving the normal diffusion in one direction and the superdiffusion in the
other direction in a constrained subspace of H2 for the vector functions via the fixed
point technique. The system of elliptic equations contains a second order differential
operator, which satisfies the Fredholm property. It is demonstrated that, under certain
reasonable technical conditions, the convergence in the appropriate function spaces
of the integral kernels implies the existence and convergence in H2

c (�,RN ) of the
solutions. We generalize our results derived in Efendiev and Vougalter (J Dyn Differ
Equ, 2022. https://doi.org/10.1007/s10884-022-10199-2) for an analogous system
studied in the whole R

2 which involved non-Fredholm operators. Let us emphasize
that the study of systems is more complicated than the scalar case.
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1 Introduction

We recall that a linear operator L acting from a Banach space E into another Banach
space F satisfies the Fredholm property if its image is closed, the dimension of its
kernel and the codimension of its image are finite. As a consequence, the problem
Lu = f is solvable if and only if φi ( f ) = 0 for a finite number of functionals φi from
the dual space F∗. Such properties of Fredholm operators are widely used in linear
and nonlinear analysis.

Elliptic problems considered in bounded domainswith a sufficiently smooth bound-
ary satisfy the Fredholm property if the ellipticity condition, the proper ellipticity and
the Shapiro–Lopatinskii conditions are fulfilled (see e.g. [2, 9, 25, 29]). This is the
main result of the theory of linear elliptic equations. In the case of unbounded domains,
these conditions may not be sufficient and the Fredholm property may not be satisfied.
For example, the Laplace operator, Lu = �u, in R

d does not satisfy the Fredholm
property when considered in Hölder spaces, L : C2+α(Rd) → Cα(Rd), or in Sobolev
spaces, L : H2(Rd) → L2(Rd).

For linear elliptic problems in unbounded domains the Fredholm property is sat-
isfied if and only if, in addition to the conditions given above, limiting operators are
invertible (see [30]). In certain simple cases, limiting operators can be constructed
explicitly. For instance, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

where the coefficients of the operator have limits at infinities

a± = lim
x→±∞a(x), b± = lim

x→±∞b(x), c± = lim
x→±∞c(x),

the limiting operators are

L±u = a±u′′ + b±u′ + c±u.

Since coefficients here are constants, the essential spectrum of the operator, that is the
set of complex numbers λ for which the operator L − λ does not have the Fredholm
property, can be found explicitly via the standard Fourier transform, such that

λ±(ξ) = − a±ξ2+ b±iξ + c±, ξ ∈ R.

Limiting operators are invertible if and only if the essential spectrum does not contain
the origin.

For general elliptic equations analogous assertions are valid. TheFredholmproperty
is satisfied if the origin does not belong to the essential spectrumor if limiting operators
are invertible. However, such conditions may not be written explicitly.

For non-Fredholm operators the usual solvability relations may not be applicable
and in a general situation solvability conditions are not known. But there are some
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classes of operators for which solvability relations were derived recently. Let us illus-
trate them with the following example. Consider the problem

Lu ≡ �u + au = f (1.1)

in R
d, d ∈ N, where a is a positive constant. The operator L here coincides with its

limiting operators. The corresponding homogeneous equation has a nonzero bounded
solution such that the Fredholm property is not satisfied. However, since the operator
in (1.1) has constant coefficients, we can apply the standard Fourier transform to
obtain the solution explicitly. The solvability conditions can be formulated as follows.
If f (x) ∈ L2(Rd) and x f (x) ∈ L1(Rd), then there exists a unique solution of this
problem in H2(Rd) if and only if

(
f (x),

eipx

(2π)d/2

)
L2(Rd )

= 0, p ∈ Sd√a a.e.

(see [35, Lemmas 5 and 6]). Here Sd√
a
stands for the sphere in R

d of radius
√
a

centered at the origin. Thus, despite the fact that the Fredholm property is not satisfied
for the operator, the solvability conditions are formulated analogously. Clearly, such
similarity is only formal since the range of the operator is not closed.

In the case of the operator involving a potential function,

Lu ≡ �u + a(x)u = f ,

the standard Fourier transform is not applicable directly. Nevertheless, solvability
relations in “R3 can be derived by a rather sophisticated application of the theory
of the self-adjoint Schrödinger type operators (see [33]). Similarly to the constant
coefficient case, solvability conditions are written in terms of orthogonality to the
solutions of the adjoint homogeneous problem. There are several other examples of
linear elliptic non-Fredholm operators for which solvability relations can be obtained
(see [13, 30–32, 35]).

Solvability relations play a crucial role in the analysis of nonlinear elliptic prob-
lems. When the operators without the Fredholm property are involved, in spite of
certain progress in understanding of linear equations, there exist only a few examples
where nonlinear non-Fredholm operators were analyzed (see [7, 8, 12–16, 34–37]).
Fredholm structures, topological invariants and their applications were considered in
[9]. The article [10] is devoted to finite- and infinite-dimensional attractors for evo-
lution equations of mathematical physics. The large time behavior of solutions of a
class of fourth-order parabolic equations defined on unbounded domains using the
Kolmogorov ε-entropy as a measure was studied in [11]. The attractor for a nonlinear
reaction-diffusion system in an unbounded domain in R

3 was investigated in [18].
The works [21, 27] are crucial for understanding of the Fredholm and properness
properties of quasilinear elliptic systems of second order and of operators of this kind
on R

N. The exponential decay and Fredholm properties in second-order quasilinear
elliptic systems were discussed in [22]. A local bifurcation theorem for C1-Fredholm
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maps was established in [19]. In [20] the authors developed a degree theory for C2-
Fredholm mappings of zero index between Banach spaces. Standing lattice solitons
in the discrete NLS equation with saturation were covered in [1]. The present work
deals with another class of the stationary nonlinear systems of equations, for which
the Fredholm property is satisfied:

∂2uk
∂x21

−
√

− ∂2

∂x22
uk +

∫
�

Gk(x − y)Fk(u1(y), u2(y), . . . , uN (y), y) dy = 0 (1.2)

with 1 � k � N , N � 2, x = (x1, x2) ∈ �, y = (y1, y2) ∈ � and the square
� ..= [0, 2π ]×[0, 2π ] with periodic boundary conditions specified further. Here and
below the vector function

u ..= (u1, u2, . . . , uN )T ∈ R
N . (1.3)

We generalize the results obtained for an analogous system in the wholeR2 studied in
[16]. It involved the non-Fredholm operators. For the solvability of single equations
of this kind, see [12, 17]. The novelty of such works is that in the diffusion terms we
add the free Laplacian in the x1 variable to the negative Laplace operator in x2 raised
to a fractional power 0 < sk < 1, 1 � k � N , N � 2 and defined via the spectral
calculus. As distinct from the analogous system of equations discussed in [16], in the
present article we restrict our attention to sk = 1/2 for all k. The models of this type
are new. They are not well understood, especially in the context of nonlocal reaction-
diffusion equations. The difficulty we have to overcome is that such problems become
anisotropic and it is more complicated to derive the desired estimates when working
with them. In the population dynamics in Mathematical Biology integro-differential
equations describe the models with the intra-specific competition and nonlocal con-
sumption of resources (see e.g. [3, 4]). It is crucial to consider the problems of this
type from the point of view of understanding of the spread of the viral infections, since
many countries have to deal with pandemias. We use the explicit form of solvability
conditions and establish the existence of solutions of our nonlinear system. In the case
of the standard Laplacian in the diffusion terms, the system of equations analogous
to (1.2) was covered in [37] (see also [34]) in the whole space and on a finite interval
with periodic boundary conditions. The solvability of the integro-differential prob-
lems involving in the diffusion terms only the negative Laplacian raised to a fractional
power was actively studied in recent years in the context of the anomalous diffusion
(see e.g. [15, 36]). The anomalous diffusion can be described as a random process of
the particle motion characterized by the probability density distribution of the jump
length. The moments of this density distribution are finite in the case of the normal
diffusion, but this is not the case for the anomalous diffusion. The asymptotic behavior
at the infinity of the probability density function determines the value of the power of
the Laplacian (see [26]). In [28] the authors discuss the mixed local-nonlocal semi-
linear elliptic problems driven by the superposition of Brownian and Levy processes
and establish the L∞-boundedness of any weak solution. The work [6] deals with a
new type of mixed local and nonlocal equations under the Neumann conditions. The
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spectral properties associated to a weighted eigenvalue problem are considered and a
global estimate for subsolutions is presented.

2 Formulation of results

Technical assumptions in the present work will be analoguos to the ones of [17],
adapted to the work with vector functions. Performing analysis in the Sobolev spaces
for vector functions is more difficult. For the nonlinear part of system of equations
(1.2) the following regularity conditions will be assumed. Here x = (x1, x2) ∈ �.

Assumption 2.1 Let 1 � k � N . Let functions Fk(u, x) : RN ×� → R satisfy the
Carathéodory condition (see [24]):

√√√√ N∑
k=1

F2
k (u, x) � K |u|RN + h(x) for u ∈ R

N, x ∈ �, (2.1)

with a constant K > 0 and h(x) : � → R
+, h(x) ∈ L2(�). Moreover, let they be

Lipschitz continuous functions such that for any u(1),(2) ∈ R
N, x ∈ �:

√√√√ N∑
k=1

(
Fk(u(1), x) − Fk(u(2), x)

)2 � L
∣∣u(1) − u(2)

∣∣
RN (2.2)

with a constant L > 0. Furthermore, for 1 � k � N ,

Fk(u, 0, x2) = Fk(u, 2π, x2) for u ∈ R
N, 0 � x2 � 2π,

and

Fk(u, x1, 0) = Fk(u, x1, 2π) for u ∈ R
N, 0 � x1 � 2π.

Here and further the norm of a vector function given by (1.3) is

|u|RN
..=

√√√√ N∑
k=1

u2k .

The solvability of a local elliptic equation in a bounded domain in R
N was cov-

ered in [5]. The nonlinear function there was allowed to have a sublinear growth. To
demonstrate the existence of solutions of (1.2), we will use an auxiliary system with
1 � k � N , N � 2, x = (x1, x2) ∈ �, y = (y1, y2) ∈ �, namely

− ∂2uk
∂x21

+
√

− ∂2

∂x22
uk =

∫
�

Gk(x − y)Fk(v1(y), v2(y), . . . , vN (y), y) dy. (2.3)
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We denote

( f1(x1, x2), f2(x1, x2))L2(�)
..=

∫ 2π

0

∫ 2π

0
f1(x1, x2) f̄2(x1, x2) dx1dx2.

Let us use the Sobolev space

H2(�) ..=

⎧⎪⎨
⎪⎩φ(x1, x2) : � → R

∣∣∣∣
φ(x1, x2), �φ(x1, x2) ∈ L2(�), φ(0, x2) = φ(2π, x2),
∂φ
∂x1

(0, x2) = ∂φ
∂x1

(2π, x2), 0 � x2 � 2π,

φ(x1, 0) = φ(x1, 2π),
∂φ
∂x2

(x1, 0) = ∂φ
∂x2

(x1, 2π), 0 � x1 � 2π

⎫⎪⎬
⎪⎭ .

Here and further the cumulative Laplace operator is� ..= ∂2/∂x21 + ∂2/∂x22 .We intro-
duce the following auxiliary constrained subspace:

H2
0 (�) ..= {

φ(x1, x2) ∈ H2(�) | (φ(x1, x2), 1)L2(�) = 0
}
. (2.4)

Evidently, (2.4) is a Hilbert space as well (see e.g. [23, Chapter 2.1]). It is equipped
with the norm

‖φ‖2
H2
0 (�)

..= ‖φ‖2L2(�)
+ ‖�φ‖2L2(�)

.

The resulting space used to establish the existence of solutions u(x) : � → R
N of

system (2.3) will be the direct sum of the spaces

H2
c (�,RN ) ..=

N⊕
k=1

H2
0 (�).

The corresponding Sobolev norm of a vector function is given by

‖u‖2H2
c (�,RN )

..=
N∑

k=1

{‖uk‖2L2(�)
+ ‖�uk‖2L2(�)

}
, (2.5)

where u(x) : � → R
N . Let us also use the norm

‖u‖2L2(�,RN )
..=

N∑
k=1

‖uk‖2L2(�)
.

As seen from Assumption 2.1, we do not consider the higher powers of the nonlinear-
ities than the first one. This is restrictive from the point of view of applications. But
this guarantees that our nonlinear vector function is a bounded and continuous map
from L2(�,RN ) to L2(�,RN ). System of equations (2.3) involves the operator

Lr
..= − ∂2

∂x21
+

√
− ∂2

∂x22
: H2

0 (�) → L2(�). (2.6)
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Its eigenvalues are given by

λr ,n1,n2
..= n21 + |n2|, (n1, n2) ∈ Z×Z\(0, 0).

The corresponding eigenfunctions are

ein1x1√
2π

ein2x2√
2π

, (n1, n2) ∈ Z×Z\(0, 0).

Clearly, (2.6) is a Fredholm operator and its kernel is trivial. In the present work we
will establish that under certain reasonable technical assumptions system (2.3) defines
a map Tr : H2

c (�,RN ) → H2
c (�,RN ), which is a strict contraction.

Theorem 2.2 Let N � 2, 1 � k � N, Assumption 2.1 hold, the functions
Gk(x1, x2) : � → R be such that Gk(0, x2) = Gk(2π, x2) with 0 � x2 � 2π and
Gk(x1, 0) = Gk(x1, 2π) with 0 � x1 � 2π . Furthermore, let Gk(x1, x2) ∈ C(�)

and∂Gk(x1, x2)/∂x2 ∈ L1(�). We also assume that orthogonality conditions (4.7)
hold for 1 � k � N and that 2

√
2πNr L < 1.

Then the map Trv = u on H2
c (�,RN ) defined by system (2.3) has a unique fixed

point vr , which is the only solution of problem (1.2) in H2
c (�,RN ). This fixed point vr

is nontrivial provided the Fourier coefficients Gk,n1,n2Fk(0, x)n1,n2 
= 0 for a certain
1 � k � N and some (n1, n2) ∈ Z×Z.

Related to system of equations (1.2) in the square �, we study the following
sequence of approximate systems:

∂2u(m)
k

∂x21
−

√
− ∂2

∂x22
u(m)
k +

∫
�

Gk,m(x − y)Fk
(
u(m)
1 (y), u(m)

2 (y), . . . , u(m)
N (y), y

)
dy = 0, (2.7)

with 1 � k � N , N � 2,m ∈ N, x = (x1, x2) ∈ �, y = (y1, y2) ∈ �. Each sequence
of kernels {Gk,m(x)}∞m=1 tends toGk(x) asm → ∞ in the function spaces listed below.
We demonstrate that, under appropriate technical conditions, each of systems (2.7) has
a unique solution u(m)(x) ∈ H2

c (�,RN ), limiting system of equations (1.2) admits a
unique solution u(x) ∈ H2

c (�,RN ), and u(m)(x) → u(x) in H2
c (�,RN ) asm → ∞.

This is the so-called existence of solutions in the sense of sequences. In this case,
solvability relations can be formulated for the iterated kernels Gk,m . They yield the
convergence of kernels in terms of the Fourier transforms (see Appendix) and, as a
consequence, the convergence of solutions (Theorem 2.3). Similar ideas in the context
of the standard Schrödinger type operators were exploited in [13, 32]. Our second
main result is as follows.

Theorem 2.3 Let m ∈ N, N � 2, 1 � k � N, Assumption 2.1 hold, and the functions
Gk,m(x1, x2) : � → R be such that Gk,m(0, x2) = Gk,m(2π, x2) with 0 � x2 � 2π
and Gk,m(x1, 0) = Gk,m(x1, 2π) with 0 � x1 � 2π . Moreover, let

Gk,m(x1, x2) ∈ C(�), Gk,m(x1, x2) → Gk(x1, x2) in C(�) as m → ∞.
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In addition to that, let

∂Gk,m(x1, x2)

∂x2
∈ L1(�),

∂Gk,m(x1, x2)

∂x2
→ ∂Gk(x1, x2)

∂x2
in L1(�) as m → ∞.

We also assume that for each 1 � k � N, m ∈ N orthogonality condition (4.11)
is valid. Finally, we suppose that (4.12) holds for each m ∈ N with a certain fixed
0 < ε < 1.

Then each system of equations (2.7) admits a unique solution u(m)(x) ∈
H2
c (�,RN ), limiting system (1.2) has a unique solution u(x) ∈ H2

c (�,RN ) such
that u(m)(x) → u(x) in H2

c (�,RN ) as m → ∞.
The unique solution u(m)(x) of each system of equations (2.7) does not vanish

identically in � provided the Fourier coefficients Gk,m,n1,n2Fk(0, x)n1,n2 
= 0 for a
certain 1 � k � N and some pair (n1, n2) ∈ Z×Z. Analogously, the unique solution
u(x) of limiting system (1.2) is nontrivial in � if Gk,n1,n2Fk(0, x)n1,n2 
= 0 for some
1 � k � N and a certain pair (n1, n2) ∈ Z×Z.

Remark 2.4 In this article we deal with the real-valued vector functions under the
conditions imposed on Fk(u, x1, x2), Gk,m(x1, x2) and Gk(x1, x2) involved in the
integral terms of the approximate and limiting systems of equations discussed here.

Remark 2.5 The significance ofTheorem2.3 is the continuous dependence of solutions
with respect to the integral kernels.

3 Proofs of main results

Proof of Theorem 2.2 Let us first suppose that for a certain v(x) ∈ H2
c (�,RN ) there

exist two solutions u(1),(2)(x) ∈ H2
c (�,RN ) of system of equations (2.3). Then their

difference w(x) ..= u(1)(x) − u(2)(x) ∈ H2
c (�,RN ) will satisfy the homogeneous

system

− ∂2wk

∂x21
+

√
− ∂2

∂x22
wk = 0, 1 � k � N .

Clearly, the operator Lr : H2
0 (�) → L2(�) defined in (2.6) does not have any nontriv-

ial zero modes. Thus, the vector function w(x) vanishes identically in the square �.
We choose an arbitrarily v(x) ∈ H2

c (�,RN ). Let us apply the Fourier transform
(4.1) to both sides of system (2.3). This gives us for 1 � k � N , N � 2, (n1, n2) ∈
Z×Z that

uk,n1,n2 = 2π
Gk,n1,n2 fk,n1,n2

n21 + |n2|
,

(n21 + n22)uk,n1,n2 = 2π
(n21 + n22)Gk,n1,n2 fk,n1,n2

n21 + |n2|
.

(3.1)
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Here fk,n1,n2
..= Fk(v(x), x)n1,n2 . Evidently, from above we have the estimates

|uk,n1,n2 | � 2πNr ,k | fk,n1,n2 |,
∣∣(n21 + n22)uk,n1,n2

∣∣ � 2πNr ,k | fk,n1,n2 |

with 1 � k � N , (n1, n2) ∈ Z×Z. Obviously, all Nr ,k < ∞ due to Lemma 4.1 from
Appendix under the given conditions. This allows us to obtain the upper bound on the
norm as

‖u‖2H2
c (�,RN )

=
N∑

k=1

∑
(n1,n2)∈Z×Z

|uk,n1,n2 |2 +
N∑

k=1

∑
(n1,n2)∈Z×Z

∣∣(n21 + n22)uk,n1,n2
∣∣2

� 8π2
N∑

k=1

N2
r ,k‖Fk(v(x), x)‖2L2(�)

. (3.2)

Let us recall inequality (2.1) of Assumption 2.1. Hence, the right side of (3.2) is
finite for v(x) ∈ L2(�,RN ). Thus, for any v(x) ∈ H2

c (�,RN ) there exists a unique
solution u(x) ∈ H2

c (�,RN ) of system (2.3) such that its Fourier image is given
by (3.1). Therefore, the map Tr : H2

c (�,RN ) → H2
c (�,RN ) is well defined. This

allows us to choose arbitrarily the vector functions v(1),(2)(x) ∈ H2
c (�,RN ) such

that their images u(1),(2) ..= Trv(1),(2) ∈ H2
c (�,RN ). By means of (2.3), we have for

1 � k � N , N � 2, x = (x1, x2) ∈ �, y = (y1, y2) ∈ �,

− ∂2u(1)
k

∂x21
+

√
− ∂2

∂x22
u(1)
k =

∫
�

Gk(x − y)Fk
(
v

(1)
1 (y), v(1)

2 (y), . . . , v(1)
N (y), y

)
dy, (3.3)

− ∂2u(2)
k

∂x21
+

√
− ∂2

∂x22
u(2)
k =

∫
�

Gk(x − y)Fk
(
v

(2)
1 (y), v(2)

2 (y), . . . , v(2)
N (y), y

)
dy. (3.4)

Let us apply the Fourier transform (4.1) to both sides of the equations of systems (3.3),
(3.4). This gives us for 1 � k � N , (n1, n2) ∈ Z×Z,

u(1)
k,n1,n2

= 2π
Gk,n1,n2 f

(1)
k,n1,n2

n21 + |n2|
, u(2)

k,n1,n2
= 2π

Gk,n1,n2 f
(2)
k,n1,n2

n21 + |n2|
, (3.5)

(
n21 + n22

)
u(1)
k,n1,n2

= 2π
(n21 + n22)Gk,n1,n2 f

(1)
k,n1,n2

n21 + |n2|
, (3.6)

(
n21 + n22

)
u(2)
k,n1,n2

= 2π
(n21 + n22)Gk,n1,n2 f

(2)
k,n1,n2

n21 + |n2|
. (3.7)

Here f (1)
k,n1,n2

and f (2)
k,n1,n2

stand for the images of Fk(v(1)(x), x) and Fk(v(2)(x), x)
respectively under transform (4.1). By virtue of (3.5), (3.6) and (3.7), we derive the
inequalities

∣∣u(1)
k,n1,n2

− u(2)
k,n1,n2

∣∣ � 2πNr ,k
∣∣ f (1)

k,n1,n2
− f (2)

k,n1,n2

∣∣,∣∣(n21 + n22)
[
u(1)
k,n1,n2

− u(2)
k,n1,n2

]∣∣ � 2πNr ,k
∣∣ f (1)

k,n1,n2
− f (2)

k,n1,n2

∣∣
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with 1 � k � N , (n1, n2) ∈ Z×Z. Hence,

∥∥u(1) − u(2)
∥∥2
H2
c (�,RN )

=
N∑

k=1

∑
(n1,n2)∈Z×Z

∣∣u(1)
k,n1,n2

− u(2)
k,n1,n2

∣∣2

+
N∑

k=1

∑
(n1,n2)∈Z×Z

∣∣(n21 + n22)
[
u(1)
k,n1,n2

− u(2)
k,n1,n2

]∣∣2

� 8π2N2
r

N∑
k=1

∥∥Fk(v(1)(x), x) − Fk(v
(2)(x), x)

∥∥2
L2(�)

,

with Nr defined in (4.6). We recall condition (2.2) of Assumption 2.1. Thus,

∥∥Trv(1) − Trv
(2)

∥∥
H2
c (�,RN )

� 2
√
2πNr L

∥∥v(1) − v(2)
∥∥
H2
c (�,RN )

. (3.8)

The constant in the right side of (3.8) is less than one as we assumed. Therefore, by
the Fixed Point Theorem, there exists a unique vector function vr ∈ H2

c (�,RN ) such
that Trvr = vr . This is the only solution of system of equations (1.2) in H2

c (�,RN ).
Let us suppose that vr (x) vanishes identically in �. This will contradict to the given
condition that the Fourier coefficients Gk,n1,n2Fk(0, x)n1,n2 
= 0 for some 1 � k � N
and a certain pair (n1, n2) ∈ Z×Z. ��

Let us proceed to establishing the solvability in the sense of sequences for our
system of integro-differential equations in the square �.

Proof of Theorem 2.3 By Theorem 2.2, each system (2.7) possesses a unique solution
u(m)(x) ∈ H2

c (�,RN ), m ∈ N. Limiting system of equations (1.2) admits a unique
solution u(x) ∈ H2

c (�,RN ) by Lemma 4.2 along with Theorem 2.2. Let us apply the
Fourier transform (4.1) to both sides of systems (1.2) and (2.7). Hence, for 1 � k � N ,
(n1, n2) ∈ Z×Z and m ∈ N, we obtain

uk,n1,n2 = 2π
Gk,n1,n2ϕk,n1,n2

n21 + |n2|
,

(
n21 + n22

)
uk,n1,n2 = 2π

(n21 + n22)Gk,n1,n2 ϕk,n1,n2

n21 + |n2|
,

u(m)
k,n1,n2

= 2π
Gk,m,n1,n2ϕ

(m)
k,n1,n2

n21 + |n2|
,

(
n21 + n22

)
u(m)
k,n1,n2

= 2π
(n21 + n22)Gk,m,n1,n2 ϕ

(m)
k,n1,n2

n21 + |n2|
.

(3.9)
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In formulas (3.9), ϕk,n1,n2 and ϕ
(m)
k,n1,n2

stand for the Fourier images of Fk(u(x), x) and

Fk(u(m)(x), x) respectively under transform (4.1). Clearly,

∣∣u(m)
k,n1,n2

− uk,n1,n2
∣∣ � 2π

∥∥∥∥Gk,m,n1,n2

n21 + |n2|
− Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

|ϕk,n1,n2 |

+ 2π

∥∥∥∥Gk,m,n1,n2

n21 + |n2|
∥∥∥∥
l∞

∣∣ϕ(m)
k,n1,n2

− ϕk,n1,n2

∣∣

so that

∥∥u(m)
k − uk

∥∥
L2(�)

� 2π

∥∥∥∥Gk,m,n1,n2

n21 + |n2|
− Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

‖Fk(u(x), x)‖L2(�)

+ 2π

∥∥∥∥Gk,m,n1,n2

n21 + |n2|
∥∥∥∥
l∞

∥∥Fk(u(m)(x), x) − Fk(u(x), x)
∥∥
L2(�)

.

We recall bound (2.2) of Assumption 2.1. Hence,

√√√√ N∑
k=1

∥∥Fk(u(m)(x), x) − Fk(u(x), x)
∥∥2
L2(�)

� L‖u(m)(x) − u(x)‖L2(�,RN ). (3.10)

Thus, using (4.9) and (4.10), we derive

∥∥u(m)(x) − u(x)
∥∥2
L2(�,RN )

� 8π2
N∑

k=1

∥∥∥∥Gk,m,n1,n2

n21 + |n2|
− Gk,n1,n2

n21 + |n2|
∥∥∥∥
2

l∞
‖Fk(u(x), x)‖2L2(�)

+ 8π2 [N(m)
r ]2L2

∥∥u(m)(x) − u(x)
∥∥2
L2(�,RN )

.

By (4.12), we obtain

∥∥u(m)(x) − u(x)
∥∥2
L2(�,RN )

� 8π2

ε(2 − ε)

N∑
k=1

∥∥∥∥Gk,m,n1,n2

n21 + |n2|
− Gk,n1,n2

n21 + |n2|
∥∥∥∥
2

l∞
‖Fk(u(x), x)‖2L2(�)

.

Inequality (2.1) of Assumption 2.1 yields that all Fk(u(x), x) ∈ L2(�) for u(x) ∈
H2
c (�,RN ). Hence, under the given conditions

u(m)(x) → u(x), m → ∞, (3.11)
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in L2(�,RN ) by Lemma 4.2 of Appendix. Formulas (3.9) yield

∣∣(n21 + n22
)
u(m)
k,n1,n2

− (
n21 + n22

)
uk,n1,n2

∣∣
� 2π

∥∥∥∥ (n21 + n22)Gk,m,n1,n2

n21 + |n2|
− (n21 + n22)Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

|ϕk,n1,n2 |

+ 2π

∥∥∥∥ (n21 + n22)Gk,m,n1,n2

n21 + |n2|
∥∥∥∥
l∞

∣∣ϕ(m)
k,n1,n2

− ϕk,n1,n2

∣∣

so that

∥∥�u(m)
k (x) − �uk(x)

∥∥
L2(�)

� 2π

∥∥∥∥ (n21 + n22)Gk,m,n1,n2

n21 + |n2|
− (n21 + n22)Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

× ‖Fk(u(x), x)‖L2(�)

+ 2π

∥∥∥∥ (n21 + n22)Gk,m,n1,n2

n21 + |n2|
∥∥∥∥
l∞

× ∥∥Fk(u(m)(x), x) − F(u(x), x)
∥∥
L2(�)

.

Inequality (3.10) allows us to derive the estimate

∥∥�u(m)
k (x) − �uk(x)

∥∥
L2(�)

� 2π

∥∥∥∥ (n21 + n22)Gk,m,n1,n2

n21 + |n2|
− (n21 + n22)Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

× ‖Fk(u(x), x)‖L2(�)

+ 2π

∥∥∥∥ (n21 + n22)Gk,m,n1,n2

n21 + |n2|
∥∥∥∥
l∞

× L‖u(m)(x) − u(x)‖L2(�,RN ).

Let us recall Lemma 4.2 of Appendix along with statement (3.11). We obtain that
�u(m)

k (x) → �uk(x) in L2(�) as m → ∞ for 1 � k � N . By definition (2.5) of the
norm, we have u(m)(x) → u(x) in H2

c (�,RN ) as m → ∞.
Let us suppose the solution u(m)(x) of system (2.7) discussed above vanishes iden-

tically in the square � for some m ∈ N. This will contradict to the posed condition
that the Fourier coefficients Gk,m,n1,n2Fk(0, x)n1,n2 
= 0 for some 1 � k � N and a
certain pair (n1, n2) ∈ Z×Z. A similar argument is valid for the solution u(x) of the
limiting problem (1.2). ��

4 Appendix

Let the function Gk(x1, x2) : � → R be such that Gk(0, x2) = Gk(2π, x2) with
0 � x2 � 2π and Gk(x1, 0) = Gk(x1, 2π) with 0 � x1 � 2π . Its Fourier image on
the square equals to
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Gk,n1,n2
..=

∫ 2π

0

∫ 2π

0
Gk(x1, x2)

e−in1x1
√
2π

e−in2x2
√
2π

dx1dx2, (n1, n2) ∈ Z×Z, (4.1)

with

Gk(x1, x2) =
∑

(n1,n2)∈Z×Z

Gk,n1,n2
ein1x1√
2π

ein2x2√
2π

, (x1, x2) ∈ �.

Obviously, the upper bound

‖Gk,n1,n2‖l∞ � 1

2π
‖Gk(x1, x2)‖L1(�) (4.2)

is valid with ‖Gk,n1,n2‖l∞ ..= sup(n1,n2)∈Z×Z |Gk,n1,n2 |. Evidently, (4.2) yields

‖n2Gk,n1,n2‖l∞ � 1

2π

∥∥∥∥∂Gk(x1, x2)

∂x2

∥∥∥∥
L1(�)

. (4.3)

Furthermore, for a function continuous in the square �, the inequality

‖Gk(x1, x2)‖L1(�) � ‖Gk(x1, x2)‖C(�)(2π)2 (4.4)

is valid with ‖Gk(x1, x2)‖C(�)
..= max(x1,x2)∈� |Gk(x1, x2)|. Let us introduce the

following technical quantities:

Nr ,k
..= max

{∥∥∥∥ Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

,

∥∥∥∥ (n21 + n22)Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

}
, (4.5)

with 1 � k � N , N � 2. Under the assumptions of Lemma 4.1, all the expressions
(4.5) will be finite. Thus,

Nr
..= max1�k�NNr ,k < ∞. (4.6)

The auxiliary statements below are the adaptations of the ones used in [17] to study
the single integro-differential problem with mixed diffusion, analogously to system
of equations (1.2). Let us provide them for the convenience of the readers.

Lemma 4.1 Let N � 2, 1 � k � N, the functions Gk(x1, x2) : � → R be such
that Gk(0, x2) = Gk(2π, x2) with 0 � x2 � 2π and Gk(x1, 0) = Gk(x1, 2π) with
0 � x1 � 2π . Moreover, let Gk(x1, x2) ∈ C(�) and ∂Gk(x1, x2)/∂x2 ∈ L1(�). Then
Nr ,k < ∞ if and only if

(Gk(x1, x2), 1)L2(�) = 0. (4.7)
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Proof Let us first demonstrate that under the given conditions

(n21 + n22)Gk,n1,n2

n21 + |n2|
∈ l∞.

Clearly, by (4.2) and (4.4),

∣∣∣∣n
2
1Gk,n1,n2

n21 + |n2|
∣∣∣∣ � ‖Gk,n1,n2‖l∞ � 2π‖Gk(x1, x2)‖C(�) < ∞

as we assume. By (4.3), we have

∣∣∣∣n
2
2Gk,n1,n2

n21 + |n2|
∣∣∣∣ � ‖n2Gk,n1,n2‖l∞ � 1

2π

∥∥∥∥∂Gk(x1, x2)

∂x2

∥∥∥∥
L1(�)

< ∞

as assumed. Thus, (n21 + n22)Gk,n1,n2/(n
2
1 + |n2|) is bounded. We can write

Gk,n1,n2

n21 + |n2|
= Gk,n1,n2

n21 + |n2|
χ{(n1,n2)∈Z×Z | n1=n2=0}

+ Gk,n1,n2

n21 + |n2|
χ{(n1,n2)∈Z×Z | n1=n2=0}c .

(4.8)

Here and further down χA will stand for the characteristic function of a set A ⊆ Z×Z

and Ac will denote the complement of A. Obviously, the second term in the right side
of (4.8) can be estimated from above in the absolute value by means of (4.2) along
with (4.4) as

|Gk,n1,n2 | � 2π‖Gk(x1, x2)‖C(�) < ∞

via one of our assumptions. Evidently, the first term in the right side of (4.8) is bounded
if and only if Gk,0,0 vanishes. This is equivalent to orthogonality relation (4.7). ��

Let us note that the proof of the lemma above uses only on a single orthogonality
condition for each 1 � k � N , N � 2, as distinct from the analogous case in the
whole R2 considered in [16].

For the purpose of the studies of systemsof equations (2.7),wewill use the following
auxiliary expressions:

N
(m)
r ,k

..= max

{∥∥∥∥Gk,m,n1,n2

n21 + |n2|
∥∥∥∥
l∞

,

∥∥∥∥ (n21 + n22)Gk,m,n1,n2

n21 + |n2|
∥∥∥∥
l∞

}
, m ∈ N, (4.9)

where 1 � k � N , N � 2. Under the conditions of Lemma 4.2, all expressions (4.9)
will be finite. This will enable us to introduce

N(m)
r

..= max
1�k�N

N
(m)
r ,k , m ∈ N. (4.10)

123



On solvability of some systems of Fredholm… Page 15 of 19    18 

The final statement of the article is as follows.

Lemma 4.2 Let m ∈ N, N � 2, 1 � k � N, let the functions Gk,m(x1, x2) : � → R

be such that Gk,m(0, x2) = Gk,m(2π, x2) with 0 � x2 � 2π and Gk,m(x1, 0) =
Gk,m(x1, 2π) with 0 � x1 � 2π . Furthermore, let

Gk,m(x1, x2) ∈ C(�), Gk,m(x1, x2) → Gk(x1, x2) in C(�) as m → ∞.

Additionally,

∂Gk,m(x1, x2)

∂x2
∈ L1(�),

∂Gk,m(x1, x2)

∂x2
→ ∂Gk(x1, x2)

∂x2
in L1(�) as m → ∞.

We also suppose that for all 1 � k � N, m ∈ N,

(Gk,m(x1, x2), 1)L2(�) = 0 (4.11)

holds. Finally, we assume that

2
√
2πN(m)

r L � 1 − ε (4.12)

is valid for each m ∈ N with some fixed 0 < ε < 1.
Then, for all 1 � k � N, we have

Gk,m,n1,n2

n21 + |n2|
→ Gk,n1,n2

n21 + |n2|
, m → ∞, (4.13)

(n21 + n22)Gk,m,n1,n2

n21 + |n2|
→ (n21 + n22)Gk,n1,n2

n21 + |n2|
, m → ∞ (4.14)

in l∞ so that

∥∥∥∥Gk,m,n1,n2

n21 + |n2|
∥∥∥∥
l∞

→
∥∥∥∥ Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

, m → ∞, (4.15)

∥∥∥∥ (n21 + n22)Gk,m,n1,n2

n21 + |n2|
∥∥∥∥
l∞

→
∥∥∥∥ (n21 + n22)Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

, m → ∞. (4.16)

Moreover,

2
√
2πNr L � 1 − ε (4.17)

holds.

Proof Evidently, under the stated assumptions all N(m)
r ,k are finite by Lemma 4.1, so

N
(m)
r < ∞, m ∈ N.
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It can be easily verified that the limiting kernels are periodic functions as well.
Indeed, for 0 � x2 � 2π , we obtain

|Gk(0, x2) − Gk(2π, x2)| � |Gk,m(0, x2) − Gk(0, x2)|
+ |Gk,m(2π, x2) − Gk(2π, x2)|

� 2‖Gk,m(x1, x2) − Gk(x1, x2)‖C(�) → 0, m → ∞,

due to our assumptions. Hence,

Gk(0, x2) = Gk(2π, x2) for 0 � x2 � 2π,

with 1 � k � N . Analogously, for 0 � x1 � 2π ,

|Gk(x1, 0) − Gk(x1, 2π)| � |Gk,m(x1, 0) − Gk(x1, 0)|
+ |Gk,m(x1, 2π) − Gk(x1, 2π)|

� 2‖Gk,m(x1, x2) − Gk(x1, x2)‖C(�) →0, m→∞,

as we assumed. Thus,

Gk(x1, 0) = Gk(x1, 2π) for 0 � x1 � 2π,

where 1 � k � N . Let us demonstrate that the limiting orthogonality relations

(Gk(x1, x2), 1)L2(�) = 0, 1 � k � N , (4.18)

are valid. With the help of (4.11), we derive

|(Gk(x1, x2), 1)L2(�)| = ∣∣(Gk(x1, x2), 1)L2(�) − (Gk,m(x1, x2), 1)L2(�)

∣∣
� ‖Gk,m(x1, x2) − Gk(x1, x2)‖C(�)(2π)2 → 0, m → ∞,

via one of our assumptions, so (4.18) holds.
Hence, by Lemma 4.1, all Nr ,k are finite, so Nr < ∞ as well.
Let us recall orthogonality conditions (4.18) and (4.11) along with the definition of

the Fourier transform (4.1). Clearly, we have

Gk,0,0 = 0, Gk,m,0,0 = 0, 1 � k � N , m ∈ N.

Then due to bounds (4.2) and (4.4), we arrive at

∥∥∥∥Gk,m,n1,n2

n21 + |n2|
− Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

� 2π‖Gk,m(x1, x2) − Gk(x1, x2)‖C(�) → 0, m → ∞,

as we assumed, so (4.13) is valid. Note that (4.15) is an immediate consequence of
(4.13) due to the standard triangle inequality.
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Obviously, the estimate

∣∣∣∣ (n
2
1 + n22)Gk,m,n1,n2

n21 + |n2|
− (n21 + n22)Gk,n1,n2

n21 + |n2|
∣∣∣∣

� ‖Gk,m,n1,n2 − Gk,n1,n2‖l∞ + ‖n2[Gk,m,n1,n2 − Gk,n1,n2 ]‖l∞

holds. Using formulas (4.2), (4.3) and (4.4), we derive the upper bound

∥∥∥∥ (n21 + n22)Gk,m,n1,n2

n21 + |n2|
− (n21 + n22)Gk,n1,n2

n21 + |n2|
∥∥∥∥
l∞

� 2π‖Gk,m(x1, x2) − Gk(x1, x2)‖C(�)

+ 1

2π

∥∥∥∥∂Gk,m(x1, x2)

∂x2
− ∂Gk(x1, x2)

∂x2

∥∥∥∥
L1(�)

→ 0, m → ∞,

due to our assumptions. Hence, (4.14) is valid. Let us use the standard triangle inequal-
ity to establish that (4.16) follows easily from (4.14).

An easy limiting argument basing on (4.5), (4.6), (4.9), (4.10), (4.12), (4.15) and
(4.16) yields (4.17). ��
Remark 4.3 The existence in the sense of sequences of solutions of systemof equations
(1.2) involving the transport terms will be considered in one of our future articles.
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