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A B S T R A C T   

Objectives: Post-therapy pneumonitis (PTP) is a relevant side effect of thoracic radiotherapy and immunotherapy 
with checkpoint inhibitors (ICI). The influence of the combination of both, including dose fractionation schemes 
on PTP development is still unclear. This study aims to improve the PTP risk estimation after radio(chemo) 
therapy (R(C)T) for lung cancer with and without ICI by investigation of the impact of dose fractionation on 
machine learning (ML)-based prediction. 
Materials and Methods: Data from 100 patients who received fractionated R(C)T were collected. 39 patients 
received additional ICI therapy. Computed Tomography (CT), RT segmentation and dose data were extracted and 
physical doses were converted to 2-Gy equivalent doses (EQD2) to account for different fractionation schemes. 
Features were reduced using Pearson intercorrelation and the Boruta algorithm within 1000-fold bootstrapping. 
Six single (clinics, Dose Volume Histogram (DVH), ICI, chemotherapy, radiomics, dosiomics) and four combined 
models (radiomics + dosiomics, radiomics + DVH + Clinics, dosiomics + DVH + Clinics, radiomics + dosiomics 
+ DVH + Clinics) were trained to predict PTP. Dose-based models were tested using physical dose and EQD2. 
Four ML-algorithms (random forest (rf), logistic elastic net regression, support vector machine, logitBoost) were 
trained and tested using 5-fold nested cross validation and Synthetic Minority Oversampling Technique (SMOTE) 
for resampling in R. Prediction was evaluated using the area under the receiver operating characteristic curve 
(AUC) on the test sets of the outer folds. 
Results: The combined model of all features using EQD2 surpassed all other models (AUC = 0.77, Confidence 
Interval CI 0.76–0.78). DVH, clinical data and ICI therapy had minor impact on PTP prediction with AUC values 
between 0.42 and 0.57. All EQD2-based models outperformed models based on physical dose. 
Conclusions: Radiomics + dosiomics based ML models combined with clinical and dosimetric models were found 
to be suited best for PTP prediction after R(C)T and could improve pre-treatment decision making. Different RT 
dose fractionation schemes should be considered for dose-based ML approaches.   

1. Introduction 

R(C)T is standard of care for locally advanced lung cancer treatment. 

The main dose limiting factor for thoracic RT is radiation induced lung 
injury, which reveals as PTP four to twelve weeks after RT and as lung 
fibrosis after months. The incidence of PTP is strongly dose dependent 
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and increases with increasing fraction dose and known DVH-based 
variables such as mean lung dose and lung volume receiving more 
than 20 Gy. 

Immunotherapy with ICI has essentially advanced lung cancer 
treatment by improvement of overall survival and local tumor control 
[1]. Consolidation immunotherapy after RCT for unresectable locally 
advanced non-small cell lung cancer (NSCLC) has become the standard 
of care. However, the combination of RT with immunotherapy has 
generated a gap of knowledge and an uncertainty in management of side 
effects, since some side effects as PTP may originate from both RT and 
ICI therapy due to interfering biological effects. Whereas the current 
data suggest no increase of severe pneumonitis due to the combination, 
there is evidence of increased all-grade pneumonitis [1–3]. The optimal 
effective and safe dose and fractionation schemes for radio
immunotherapy are yet unknown. 

If PTP after RT and ICI therapy is diagnosed early, ultimate lung 
tissue damage can be prevented by immediate administration of corti
costeroids and, depending on the etiology, discontinuation of ICI ther
apy. Thus, pre-treatment PTP prediction could support treatment 
decision making regarding dose and dose fractionation schemes in order 
to prevent PTP. 

Even though lung radiation dose is the most important risk factor for 
PTP development [4], dosimetric data from DVHs alone cannot account 
for the spatial distribution of dose. With advancement of ML in medical 
applications, prediction of numerous clinical endpoints such as survival, 
local tumor control, disease progression, tumor detection and the 
occurrence of side effects has been investigated [5–13]. 

The improvement of PTP prediction after RT by adding quantitative 
analysis of spatial features from the CT image and the dose distribution, 
referred to as radiomics or dosiomics, respectively, has been proven 
[14–18]. Prediction could even be improved by the combination of 
radiomics and dosiomics analysis [19–21]. However, all these studies 
investigated PTP prediction after RT or RCT. There is less evidence 
regarding radioimmunotherapy. In two retrospective studies, radiomics 
was tested to reveal the etiology of pneumonitis [22,23] and was found 
to be useful for differentiation in cases of non-conclusive radiological 
judgement. In a multicenter prospective trial, Tohidinezhad et al. 
confirmed the above mentioned findings [24]. 

Whereas the majority of studies investigates dosiomics analysis 
based on physical dose, there are only sparse data on the effect of dose 
fractionation on PTP prediction. In this study, we aim to investigate the 
impact of combined R(C)T with ICI therapy and of dose fractionation on 

the ML prediction of PTP. 

2. Methods 

2.1. Patient clinical factors 

We analyzed data from n = 100 lung cancer patients, who received 
normo- and hypofractionated R(C)T between 2010 and 2021 as depicted 
in Fig. 1. Out of these, 39 patients received additional ICI therapy. In 
total, 38 patients were diagnosed with PTP, 20 of whom received 
additional ICI therapy as indicated in Table 1. The majority of 89 pa
tients had stage IV lung cancer and 46 patients were treated in curative 
intent. From the 39 patients, who received additional ICI therapy, 17 
received Durvalumab maintenance therapy, 9 received Pembrolizumab, 
7 Atezolizumab and 6 Nivolumab. Patient characteristics included age, 
sex, Karnofsky performance index (KPI), tumor location, planning target 
volume size, former or concomitant chemotherapy and ICI therapy 
status. RT fractionation schemes varied with single doses ranging from 
1.8 Gy to 3.0 Gy and total doses from 30 Gy to 66 Gy. The occurrence of 
PTP was monitored based on clinical factors (coughing, dyspnea, pleural 
pain) from patient records and follow-up CTs and was graded according 
to the Common Terminology Criteria for Adverse Events version 5.0 
[25]. 

2.2. Volumetric CT and dose data 

Patients received a 4DCT prior to RT, which was used for definition 
of RT segmentation data. These data, together with dosimetric data 
including the mean lung dose, and the lung volume receiving at least 5 
Gy (V5), V10, V15, V20, V30, V40, V50, accordingly, were extracted 
from the treatment planning system and further processed using the 
open source platform 3D Slicer [2] and the radiotherapy toolkit [3]. 
Details on the method have been published previously [26] and are 
depicted in Fig. 2. In brief, the gross tumor volume (GTV) was defined on 
simulation CTs. During treatment planning an internal target volume 
(ITV) was defined and a planning target volume (PTV) was created by 
adding an isotropic margin of 5 mm. 

In order to analyze the impact of dose fractionation, physical doses 
were converted to EQD2 according to equation (1) based on the Linear 
Quadratic Model (LQM) [27], where D is the sum physical dose over all 
fractions, d is the fraction dose, and α/β is equal to 3 for lung tissue. 

Fig. 1. Patient data. Patient mean age and standard deviations are provided. Prescription doses are given in mean values and standard deviations of 2 Gy-equivalent 
doses for an α/β of 3 Gy (EQD23). The number of patients who received prior or concomitant chemotherapy is provided. 
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2.3. Feature processing 

Quantitative features from volumetric CT and volumetric RT dose 
data with Gy values treated as grey-levels (physical dose vs. EQD2) were 
extracted using the open-source library Pyradiomics in python [28,29]. 
For each volume of interest (lungs minus GTV, PTV + 2 cm, ipsilateral 
lung minus GTV), 104 radiomics and dosiomics features were extracted, 
respectively, leading to 312 features in total. Details on the feature 
extraction can be found in a previous study [26]. All 104 features used 
for feature extraction and the reduced extracted features for all models 
tested are provided in Supplement Tables 1 and 2, respectively. Feature 
reduction was conducted within 1000-fold bootstrapping combining 
Pearson-intercorrelation coefficient (cut-off 0.7) and the Boruta algo
rithm. For each bootstrap run the number of selected features and the 
selected features were recorded. The optimal number of features “n” was 
defined as the median number of selected features over all bootstrap 
runs. Finally, the top “n” listed features over all bootstrapping runs were 
selected for final model building. 

2.4. Machine learning models 

Six single predictive models (radiomics, dosiomics, clinics, DVH, 
chemotherapy, ICI) and five combinations (dosiomics + radiomics, 
DVH + clinical factors, radiomics + DVH + clinical data, dosiomics +
DVH + clinical factors, all) were tested using different ML algorithms 
including random forest (rf), logistic elastic net regression (glmnet), 
support vector machine (svmRadial), and logitBoost. The clinical model 
also included ICI and chemotherapy and were tested as single models, 
additionally. The ML prediction method has been described in detail 
[26], [30] and included 100 iterations of 5-fold nested cross validation 
[6], Synthetic Minority Oversampling Technique (SMOTE) resampling 
based on the R DMwR package to overcome class imbalance [31], and 
hyperparameter optimization using grid search (see Supplemental 

Table 1 
Patient characteristics.  

Characteristic Value Value [%] 

n 100 100 
Age [a]   
Mean ± SD 67 ± 10  
Range 43–90  
Sex   
Male 73 73 
Female 27 27 
KPI   
Mean ± SD 94 ± 9  
Range 50–100  
GTV size [mm3]   
Mean ± SD 201.0 ± 352.4  
Range 1.3–3190.0  
Location   
Right upper lobe 2  
Right middle lobe 27  
Right lower lobe 20  
Left upper lobe 18  
Left lower lobe 9  
Right central 16  
Left central 8  
RT þ ICI   
Yes 39 39 
No 61 61 
prior/concomitant Chemotherapy   
Yes 70 70 
No 30 30 
Stage   
I 0 0 
II 9 9 
III 48 48 
IV 43 43 
Treatment Intent   
curative 46 46 
palliative 54 54 
Pneumonitis  0 
Yes 38 38 
No 62 62  

Fig. 2. Workflow. Physical Doses Dphys are converted to 2-Gy equivalent doses (EQD2).  
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Table 3 for hyperparameter spaces and supplementary section 4 for 
calibration curves). Thus, within the 5-fold nested cross validation 
approach, the patient cohort was divided by 80:20 training/test patient 
ratio for the outer fold and 64/16 patients for the inner folds. Single 
feature models (ICI, DVH, chemotherapy) were tested using logistic 
regression and ICI and chemotherapy were additionally added into the 
clinical model. All other dose-based models were simulated twice with 
physical dose and EQD2 separately, leading to differing results also for 
none-dose based models. The predictive ability for each model and 
combinations were evaluated by the mean AUC on the test sets of the 
outer fold and a confidence interval with a confidence level of 95 %. 
AUC values were ranked for the four different models applied. Box and 
scatterplots are presented with each point representing the result of one 
outer validation fold. 

We present the results of the following article in accordance with the 
transparent reporting of a multivariable prediction model for individual 
prognosis or diagnosis (TRIPOD). A corresponding TRIPOD statement 
can be found in the Supplementary Material Table 5. 

3. Results 

3.1. Classifiers 

Comparing different classifiers revealed rf to perform best as depic
ted by AUC values ranked from 1 to 4 for the four different classifiers in 
Fig. 3. Fig. 4 shows all AUC values for all classifiers and shows the range 
of between 0.46 for not predictive models such as clinics and the com
bination of clinics and DVH features, and 0.77 for top performing models 
such as the combination of dosiomics and radiomics together with 
clinical and DVH models. Due to these findings, rf was chosen for all 
following analyses in this study. Models that might be impacted by 
shape features, were also run without shape features to quantify their 
influence. No specific trend was observed and results are presented in 
the supplementary material section 6. 

3.2. Feature extraction 

In total, five clinical features were extracted and ranked such as age, 
tumor size, tumor location, sex, and KPI. From DVH features, only V50 
was extracted from the EQD2 and physical dose features. The combined 
models resulted in the same features of both individual models together. 
The other models resulted in 19 to 39 and 21 to 40 features for physical 
dose and EQD2, respectively, as listed in Table 2. 

3.3. Machine learning PTP prediction 

All investigated models predicted PTP better than random (AUC >
0.5) using rf classifier as depicted in Table 3, apart from the chemo
therapy model (AUC = 0.42) and ICI model (AUC = 0.45). Across all 
results, the combination of all models performed best (AUC = 0.77 
(0.76–0.78)) for EQD2, followed by dosiomics + radiomics (AUC = 0.76 
(0.75–0.77)) and dosiomics + DVH + Clinics (AUC = 0.69 (0.68–0.7)) as 
depicted in Table 3. The addition of other features such as DVH and 
clinical factors slightly improved the predictive performance. Compared 
to all physical dose models, PTP prediction of EQD2 models was supe
rior. For physical dose models, the combined model of Radiomics +
DVH + Clinics performed best (AUC = 0.69 (0.68–0.70)). For the single 
models, Radiomics resulted in the highest predictive value (AUC = 0.68 
(0.67–0.69). 

Patient clinical factors model performed worse and was slightly 
better than random with AUC = 0.52 (0.62–0.53) for EQD2 and physical 
dose. ICI therapy had no impact on PTP prediction with AUC = 0.45 
(0.44–0.46) for both, EQD2 and physical dose. 

4. Discussion 

Our results show the impact of dose fractionation on the volumetric 
dose-based ML prediction of PTP after RCT. Concomitant ICI therapy did 
not influence PTP prediction. 

Like in previous studies, our results reveal good predictive capability 
of dosiomics-based prediction models with an AUC of 0.68 for EQD2. 
The study of Liang et al. revealed slightly better results with an AUC 
value of 0.78 for dosiomics feature analysis, which was superior to 
normal tissue risk model and dosimetric feature analyses [17]. In our 
study, predictive capability could even be improved by combining 
dosiomics with radiomics based models, indicated by an AUC value of 
0.67 and 0.76 for physical dose and EQD2, respectively. These findings 
are well in line with the current evidence from literature. In two similar 
approaches, AUC values of 0.68 and 0.88 for the combination or 
radiomics and dosiomics feature models were found [19,32]. Jiang et al. 
even found improved prediction for a combination of radiomics, dos
iomics, age, and T stage models with an AUC value of 0.94 for prediction 
of acute radiation pneumonitis after RCT for lung cancer [18]. In a 
combination of retrospective and prospective data cohort of lung cancer 
patients, Zhang et al. recently confirmed best predictive results for the 
combination of radiomics and dosiomics with clinical parameters [20]. 

Compared to the above-mentioned studies, our approach gained 
additional value by analyzing the impact of different fractionation 
schemes on PTP prediction. As has been shown before, the fraction dose 
is an important risk factor for the development of pneumonitis [4]. We 
found all dose-based prediction models to result in improved prediction 
for EQD2 doses, indicating that fractionation should be considered for 
dose-based prediction strategies. Similar findings have been demon
strated by Zhou et al. [33], who investigated the influence of fraction 
doses of 1.5 Gy to 2.75 Gy on the prediction of radiation pneumonitis ≥
grade 1 based on 91 NSCLC patients. The authors found significant 
improvement when an EQD2-based dosiomics was applied. 

Another aspect of this study focused on the influence of ICI therapy 
on pneumonitis prediction for combined radioimmunotherapy. With 
increasing use of immunotherapy for lung cancer treatment, interfer
ence of immunological and radiation induced biological effects become 
relevant with regard to side effects. Whereas data from clinical trials 
point to no increased risk for severe pneumonitis after R(C)T and 
consolidation ICI therapy, there might be an increased risk for all-grade 
pneumonitis with impact on clinical decision making [2,3,34]. More
over, differentiation between radiation-induced or ICI therapy-related 
PTP is challenging due to similar radiological features. However, 
distinction between these could influence clinical management. Thus, 
differentiation between the etiology of the PTP, as well as pre-treatment 
PTP risk prediction can be of importance for practical clinical decision 

Fig. 3. Box and Scatterplots showing area under the receiver operating char
acteristic curves (AUCs) ranked values (lower being better) for different clas
sifiers used over all datasets and repetitions. 
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making. In previous works, CT-based radiomics models have been found 
capable to differentiate between radiation- and ICI-induced PTP with 
AUC values ≥ 0.76 [22–24]. Chen et al. revealed radiological differences 
of these etiologies and found bilateral PTP extension, including at least 3 
lobes, to be characteristic for ICI-associated PTP [22]. In a multicenter 
prospective trial, Tohidinezhad et al. found the line of immunotherapy 
to be predictive for PTP development, indicating that the patients who 
received immunotherapy as the first-line treatment were at higher PTP 
risk [24]. 

Whereas the above-mentioned studies focused on the use of ML for 
differentiation between the etiology of PTP, our study investigated the 

influence of ICI therapy on the occurrence of PTP. In this study, ICI 
therapy did not show a predictive value for the development of pneu
monitis with an AUC value of 0.45. Previous and concomitant chemo
therapy was not found to be predictive for PTP. As a consequence, 
patient-inherent anatomic-biological factors captured by CT-based 
radiomic features and the three-dimensional RT dose distribution are 
thought to be of higher relevance for the development of PTP. 

Obvious limitations of our study include a limited amount of patient 
data. Development of ML models with a dataset of 100 is challenging, 
however we applied a multi-step approach to overcome these limitations 
including the following steps: 1) cross validation to obtain measures of 

Fig. 4. Area under the receiver operating characteristic curves (AUC) values for all classifiers and models tested. Subscripted D and EQD2 refer to physical dose and 
2 Gy-equivalent dose (EQD2), respectively. Darker colors indicate higher AUC values and better prediction performance. 

Table 2 
Top three features ranked in the order of frequency and the frequency, with which they have been selected after feature reduction for all models, that have been 
processed by feature reduction. Subscripted D and EQD2 refer to physical dose and 2 Gy-equivalent dose (EQD2), respectively. CT refers to CT-based features, D refers 
to dose-based features, PTV refers to planning target volume, IL to ipsilateral lung and TL to total Lung.  

Model Ranked reduced features Frequency 

RadiomicsD CT_PTV_ngtdm_Strength 765  
CT_IL_shape_Sphericity 690  
CT_IL_glcm_Idn 629 

DosiomicsD D_TL_firstorder_InterquartileRange 640  
D_PTV_gldm_DependenceNonUniformityNormalized 626  
D_TL_shape_Sphericity 609 

DosiomicsEQD2 D_PTV_glszm_GrayLevelNonUniformity 657  
D_PTV_glrlm_RunEntropy 560  
D_IL_shape_Sphericity 553 

RadiomicsD þ Dosiomics D CT_PTV_ngtdm_Strength 754  
CT_IL_glcm_Idn 617  
CT_PTV_glcm_ClusterProminence 587 

RadiomicsEQD2 þ Dosiomics EQD2 CT_PTV_ngtdm_Strength 750  
D_PTV_glszm_GrayLevelNonUniformity 632  
CT_IL_glcm_Idn 607 

RadiomicsD þ ClinicsD þ DVHD CT_PTV_ngtdm_Strength   
CT_IL_shape_Sphericity   
CT_IL_glcm_Idn  

RadiomicsEQD2 þ ClinicsEQD2 þ DVHEQD2 CT_PTV_ngtdm_Strength   
CT_IL_shape_Sphericity   
CT_IL_glcm_Idn  

DosiomicsD þ ClinicsD þ DVHD D_TL_firstorder_InterquartileRange   
D_PTV_gldm_DependenceNonUniformityNormalized   
D_TL_shape_Sphericity  

DosiomicsEQD2 þ Clinics þ DVH D_PTV_glszm_GrayLevelNonUniformity   
D_PTV_glrlm_RunEntropy   
D_IL_shape_Sphericity  

RadiomicsD þ DosiomicsD þ ClinicsD þ DVHD CT_PTV_ngtdm_Strength   
CT_IL_glcm_Idn   
CT_PTV_glcm_ClusterProminence  

RadiomicsEQD2 þ DosiomicsEQD2 þ ClinicsEQD2 þ DVHEQD2 CT_PTV_ngtdm_Strength   
PTV_glszm_GrayLevelNonUniformity   
CT_IL_glcm_Idn   
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statistical variance, 2) SMOTE to reduce the influence of imbalanced 
datasets, 3) multi-step feature reduction, 4) no beforehand feature 
number assumption, 5) nested-cross validation allowing for multiple 
testing on unseen datasets. However, our models were not tested on 
external datasets, which could have demonstrated the reproducibility 
and will be conducted in a future study. 

As the patient dataset was rather small with an imbalance towards a 
smaller group receiving ICI therapy (39 vs. 61), we found increased 
pneumonitis rate in the RT + ICI group compared to the RT only group 
(50 % vs. 30 %). Obviously, the rates of pneumonitis are increased in 
both groups compared to the data from the literature, which is most 
likely due to the inclusion of all grades of pneumonitis in our study, 
whereas the majority of studies focusing on clinical data provide data 
only with pneumonitis grade ≥ 2. We decided to investigate grade 1 
pneumonitis as well to account for all, even if unknown, effects of 
combined radioimmunotherapy including different radiological fea
tures, as there is an indication that ICI therapy might lead to increased 
all-grade PTP [34,35]. 

5. Conclusions 

We showed superiority of combined radiomics and EQD2-based 
dosiomics, together with clinical and dosimetric ML models for PTP 
prediction without an impact of ICI therapy. These results suggest to 
consider fractionation schemes for dose-based prediction strategies. 
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