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A B S T R A C T   

Cognitive deficits are a core symptom of schizophrenia, but research on their neural underpinnings has been 
challenged by the heterogeneity in deficits’ severity among patients. 

Here, we address this issue by combining logistic regression and random forest to classify two neuropsy-
chological profiles of patients with high (HighCog) and low (LowCog) cognitive performance in two independent 
samples. We based our analysis on the cortical features grey matter volume (VOL), cortical thickness (CT), and 
mean curvature (MC) of N = 57 patients (discovery sample) and validated the classification in an independent 
sample (N = 52). We investigated which cortical feature would yield the best classification results and expected 
that the 10 most important features would include frontal and temporal brain regions. The model based on MC 
had the best performance with area under the curve (AUC) values of 76% and 73%, and identified fronto- 
temporal and occipital brain regions as the most important features for the classification. Moreover, subse-
quent comparison analyses could reveal significant differences in MC of single brain regions between the two 
cognitive profiles. The present study suggests MC as a promising neuroanatomical parameter for characterizing 
schizophrenia cognitive subtypes.   

1. Introduction 

Cognitive impairment is a core symptom of schizophrenia causing 
poor clinical and functional outcome (Green et al., 2000). It is highly 
prevalent, stable during the course of the disease (Heilbronner et al., 
2016), and linked to genetic factors (Sabb et al., 2008), and thus, an 
important feature in neurodevelopmental etiology models (Howes and 
Murray, 2014). However, deficits’ severity is heterogeneous, prompting 
the need to characterize cognitive subtypes to understand the underly-
ing biological mechanisms (Carruthers et al., 2019). Previous studies 

linked different cognitive subgroups to neuroanatomical parameters 
such as grey matter volume (VOL, Wenzel et al., 2021) or cortical 
thickness (CT, Cobia et al., 2011). However, data on cortical curvature 
patterns within the distinctive cognitive profiles in schizophrenia are 
still scarce. 

Schizophrenia is a multifaceted disorder that might arise as a result 
of interaction between genetic, environmental, and neuro-
developmental factors (neurodevelopment hypothesis) (Howes and 
Murray, 2014; Weinberger, 1987). Cortical folding could be an indica-
tion of neurodevelopment since it takes place during the second and 
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third trimesters of pregnancy (Armstrong et al., 1995; Zilles et al., 2013). 
Indeed, abnormal gyrification as a result of early developmental insults 
is often observed in schizophrenia (Sasabayashi et al., 2021). An indi-
cator of gyrification could be mean curvature (MC), which describes the 
folding of the cortical surface of a specific brain region in the 
three-dimensional space, where a high value indicates a sharper, more 
pointed curve (Ronan et al., 2011) (Fig. 1). An increase in MC is 
considered a marker for a higher level of gyrification (Luders et al., 
2006), but could also reflect white matter atrophy (Deppe et al., 2014), 
and decreased cortical connectivity (Lubeiro et al., 2017). Several 
studies demonstrated larger MC values in both medicated (Lubeiro et al., 
2017) and non-medicated patients with schizophrenia compared to 
controls (Jessen et al., 2019a). Moreover, the pattern of increased MC 
and not of cortical thinning could be a core feature of a distinct bio-
logical subtype in schizophrenia, also characterized by altered brain 
metabolism and more prominent negative symptoms (Lubeiro et al., 
2016). Similarly, a recent study revealed unchanged CT but significantly 
higher MC in non-medicated patients with schizophrenia compared to 
healthy controls (Jessen et al., 2019b). Yet, previous work showed 
increased MC and simultaneously decreased CT in the parahippocampal, 
lingual, and V5/MT visual cortices (Schultz et al., 2010, 2013). More-
over, MC, surface area, and grey/white matter contrast contribute to 
regional discrepancies in grey matter VOL and CT findings in schizo-
phrenia, supporting the notion of a complex interplay between cerebral 
parameters (Kong et al., 2015). In addition, cortical curvature patterns 
are associated with altered connectivity in schizophrenia (White and 
Hilgetag, 2011), specifically short-range connectivity (Ronan et al., 
2012). Reduced fractional anisotropy values of the prefrontal cortex and 
its structural connections correlated with increased MC, suggesting it is 
affected by the integrity of short-range cortico-cortical connections 
(Lubeiro et al., 2017). Regarding cognition, higher MC values, especially 
in prefrontal structures, are associated with greater deficits (Jessen 
et al., 2019a; Lubeiro et al., 2017) and lower premorbid and current IQ 
values in patients with schizophrenia (Jessen et al., 2019b). Notably, 
data on cortical folding in schizophrenia are rather inconsistent with 
findings of increased, normal, and decreased gyrification indexes 
(Sasabayashi et al., 2021). This inconsistency might reflect differences in 

measurement techniques (Ronan et al., 2012), but also the neurobio-
logical variability within the disorder (Sasabayashi et al., 2021). There 
are several measures for gyrification, based on curvature and cortical 
surface morphology such as MC, local gyrification index (LGI), and the 
sulcal index (SI) (Sasabayashi et al., 2021). In the present work, we 
focused on MC, because it relates not only to gyrification, but also to 
other important for schizophrenia cortical features such as abnormal 
connectivity (Camchong et al., 2011; Lubeiro et al., 2017) and white 
matter atrophy (Deppe et al., 2014).). Moreover, it is sensitive to 
neurobiological heterogeneity and, thus, emerges as a promising 
parameter for further characterizing cognitive profiles. 

Cognitive impairment is a main feature of schizophrenia, with 80% 
of patients showing a significantly worse neuropsychological perfor-
mance than the general population (Keefe and Fenton, 2007). Yet, 
20–25% of patients show no cognitive deficits compared to healthy 
controls (Joyce and Roiser, 2007). Cognitive deficits are considered 
universally experienced, suggesting that all patients have a lower neu-
ropsychological performance than expected, considering premorbid in-
telligence and maternal education (Kremen et al., 2000). To address this 
heterogeneity, recent research has focused on defining homogenous 
subtypes and linking them to brain and genetic characteristics, aiming 
the development of individualized and more efficient treatment options 
(e.g. Green et al., 2020). The presence of at least two subgroups with 
relatively intact and globally impaired cognitive function and of further 
profiles with moderate or specific cognitive deficits has been identified 
(Carruthers et al., 2019). Patients with schizophrenia could be clustered 
in four profiles with impairments in verbal fluency (1), verbal memory 
and motor control (2), face memory and processing (3), and (4) general 
cognitive functioning (Geisler et al., 2015). The subgroups were linked 
to specific structural and functional brain alterations, including reduced 
CT in Wernicke’s area and lingual gyrus, reduced hippocampal grey 
matter VOL, and abnormal fronto-parietal activity (Geisler et al., 2015). 
Furthermore, a recent study applied cluster analysis to neuropsycho-
logical data of patients with schizophrenia, their siblings, and healthy 
controls and identified intact, intermediate, and cognitively impaired 
subgroups (Alkan and Evans, 2022). Moreover, significant differences in 
grey matter VOL of prefrontal, temporal, and insula structures between 
patients and controls disappeared after controlling for cognitive clusters, 
highlighting the association between neuropsychological performance 
and brain volume alterations (Alkan and Evans, 2022). Distinctive 
cognitive profiles are also characterized by altered connectivity in the 
salience network, fronto-parietal network, and the default mode 
network (Rodriguez et al., 2019). The application of machine learning 
(ML) could improve the characterization of schizophrenia subtypes. For 
instance, ML to whole-brain morphometry data could classify two 
cognitive subtypes from healthy participants with an accuracy of 
approx. 70% and indicate involvement of cortical (e.g. inferior temporal 
gyrus), subcortical (e.g. hippocampus) and cerebellar regions (vermis) 
(Gould et al., 2014). Similarly, recent onset psychosis patients with 
impaired cognitive functioning could be distinguished from healthy 
controls with approx. 60% accuracy, suggesting altered grey matter VOL 
of the fronto-temporo-parietal regions (Wenzel et al., 2021). However, 
in both studies, the classification accuracy patients with spared and 
compromised cognition based on neuroanatomical parameters was 
relatively small and did not reach significance (Gould et al., 2014; 
Wenzel et al., 2021). 

The present study aims to further characterize different cognitive 
profiles in schizophrenia by applying ML methods to the parameters MC, 
VOL, and CT. Specifically, we defined two subgroups with high (High-
Cog) and low (LowCog) neurocognitive performance based on a global 
cognition index in two independent patient samples. We then performed 
in the discovery sample several models combining random forest and 
logistic regression with MC, grey and white matter VOL, CT, de-
mographic and clinical data as predictors to classify between the 
cognitive profiles. All ML models were validated in an independent 
validation patient sample. We hypothesized that the ML model with the 

Fig. 1. Mean curvature (H) of a given vertexas the average of the two principal 
curvatures (C1 and C2), which are always orthogonal to each other. Curvature 
(C) at a single point of a curve is descripted by the inverse radius (r) of the 
osculating circle of that point. Mean curvature is calculated for each vertex. For 
details see (Ronan et al., 2011). Figure based on (Medic et al., 2019). 
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best classification performance would include MC data. 

2. Materials and methods 

2.1. Study sample 

The discovery sample consisted of 57 patients with schizophrenia 
from the observational case-control study MIMICSS (“Multimodal Im-
aging in Chronic Schizophrenia Study”). Data from MIMICSS were 
included in previous publications (Beller et al., 2019; Trossbach et al., 
2019). As a reference for cognitive performance we used performance 
data from 55 healthy controls (16 female, Mage = 32.69, SDage = 11.48) 
and 19 unaffected relatives (14 female, Mage = 36.63, SDage = 14.35). 
The main analysis was performed with patient data. The independent 
validation sample included baseline data from a multicenter, longitu-
dinal intervention study on the effects of aerobic endurance exercise in 
schizophrenia (Maurus et al., 2020; ClinicalTrials.gov identifier: 
NCT03466112). We included 52 patients with schizophrenia recruited 
at the Department of Psychiatry and Psychotherapy of the 
Ludwig-Maximilians-University in Munich, Germany. Participants from 
both samples were fully informed about the study procedures and gave 
their written informed consent. Both study protocols and their amend-
ments were written according to the rules of the Declaration of Helsinki 
of 1975, revised in 2008, and approved by the local ethics committee 
(Medical Faculty of the Ludwig-Maximillian-University Munich; Dis-
covery Sample Code 17-13; Validation Sample Code: 706-15). Descrip-
tive characteristics of the study samples can be seen in Supplementary 
Table S1. 

2.2. Clinical and cognitive measures 

We applied the Positive and Negative Syndrome Scale (PANSS, Kay 
et al., 1987), the Clinical Global Impression Scale (CGI, Guy, 1976), and 
the Global Assessment of Functioning Scale (GAF, Goldman et al., 1992) 
to assess the severity of schizophrenia symptoms. We further collected 
clinical and demographic data on medication (CPZ), age of onset, 
Duration of Illness (DOI), and years of education. 

Participants underwent neuropsychological testing on the domains 
(a) episodic verbal memory with the Verbaler Lern-und 
Merkfähigkeitstest (VLMT: Verbal Learning and Memory Test, Helm-
staedter and Durwen, 1990), the German version of the Rey Auditory 
Verbal Learning (Muller et al., 1997); (b) motor speed with Trail Making 
Test A (TMT-A, Tombaugh, 2004) and Digit Symbol Substitution Test 
(DSST, Tewes, 1994); (c) cognitive flexibility with the Trial Making Test 
B (TMT-B, Tombaugh, 2004) and (d) working memory with the Digit 
Span Test (DST, Tewes, 1994). Test scores were preprocessed, z-trans-
formed, and calculated to a weighted mean to build a composite score, 
our main measure of cognition (based on Hasan et al. (2016), for details 
see supplementary material S3). To discriminate between patients with 
good and bad cognitive performance, we set the cut-off value of 1.5 SD 
of the mean cognition index of the healthy controls and relatives in line 
with previous research (e.g., Keefe, 2014). 

2.3. Imaging data acquisition and analysis 

In both studies, MRI data were obtained using a Siemens 3.0 T 
MAGNETOM Skyra Scanner (Siemens Healthineers, Erlangen, Germany) 
with a 20-channel phased-array head and neck coil. To acquire high- 
resolution T1-weighted images, we used a 3D Magnetization Prepared 
Rapid Gradient Echo (MPRAGE) sequence with 0.8 mm isotropic voxel 
(for scanning paramaters see Supplementary Table S2. All images were 
visually controlled for low image quality and MR artifacts. For pre-
processing procedures, see (Karali et al., 2021). We used Freesurfer 
(Fischl, 2012; version 6.0, http://surfer.nmr.mgh.harvard.edu/) for 
cortical parcellation according to the Desikan-Killiany-Tourville-Atlas 
(Desikan et al., 2006; Fischl et al., 2004; Klein and Tourville, 2012) 

and for the calculation of MC, CT and grey and white VOL of all regions 
(Dale et al., 1999; Fischl et al., 1999; Fischl and Dale, 2000). For the 
complete list of regions, see (Klein and Tourville, 2012). 

2.4. Classification analysis 

To classify high and low cognitive performance in schizophrenia, we 
ran several ML models with (1) MC, CT, VOL; (2) only CT; (3) only VOL; 
(4) only MC; (5) CT and MC; (6) CT and VOL; (7) MC and VOL data. All 
models included the additional features: age, sex, total intracranial VOL, 
brain VOL without ventricles, school years, age of onset of disease, DOI, 
CPZ, smoking behavior, and German as a native language. We did not 
include other clinical data such as PANSS scores due to their short val-
idity period (7 days). Each classification model was performed in both 
the discovery and validation study. All models used the same algorithm, 
a combination of random forest (Breiman, 2001) and logistic regression 
(Dreiseitl and Ohno-Machado, 2002), and were implemented in Python 
v3.7 with Scikit-learn (Pedregosa et al., 2011). The logistic regression 
model was used as a penalty criteria for an elastic net approach that 
combines both Ridge and LASSO regressions (Zou and Hastie, 2005). 
The hyperparameter α governs the amount of blending between Ridge 
and LASSO regression (Ridge: α = 0, LASSO: α = 1). Hyperparameter 
tuning in random forest included the number of trees and a maximum 
number of features considered for splitting a node. Each model was 
derived and evaluated using 1000 data splits. A data split was defined as 
a random division of the entire discovery data set into 80% training and 
20% test data. All data were standardized before analysis. As a measure 
of feature importance, feature coefficients were used for logistic 
regression and impurity for random forest. The discovery dataset is 
standardized, and the most important features are depicted on the 
training set with random forest, based on impurity measurement, and 
with logistic regression based on the coefficient value of the logistic 
regression model. The algorithm was executed 1000 times, and the 
mean of each importance value of each feature of all runs was taken to 
estimate the overall importance of every feature in the training dataset. 
Hyperparameter optimization for the logistic regression and the random 
forest was conducted over a grid of different hyperparameter specifi-
cations and validated with 5-fold cross-validation. Each algorithm’s top 
5 most important features were merged to finally have 10 features. 
Using more than these top 10 features yielded worse classification re-
sults. The model for random forest and logistic regression was retrained 
on the training dataset and on the same grid of hyperparameter speci-
fications, but training and consecutive testing on the discovery dataset 
was done with only the 10 most important features estimated earlier. A 
voting classifier for the two algorithms was used, which predicts the 
class label based on the maximum of the sums of each predicted prob-
ability. Lastly, the model, including the 10 most important features 
derived from the discovery set, was run on the validation set with 
adjusted hyperparameters. By evaluating the model on 1000 data splits 
with mutually exclusive training and test data, a complete internal 
validation of the model was ensured. We estimated the models’ per-
formance by calculating the area under the curve (AUC) as a primary 
outcome. We also calculated accuracy (ACC), sensitivity and specificity 
values. 

2.5. Statistical analysis 

All data preparation for calculating the cognition index and further 
statistical analysis was conducted using SPSS 28 (IBM Inc.) for Windows. 
For all statistical tests, the alpha level was set at α = 0.05. Demographic 
and clinical differences between groups were assessed using χ2-tests and 
t-tests with between factors ‘study sample (discovery vs. validation set)’ 
or ‘cognitive profile (HighCog vs. LowCog). In case of violation of the 
assumption of normal distribution [Kolmogorov-Smirnov (K–S) test, p <
0.005], we applied the non-parametric Mann-Whitney-U test (M-W-U) 
for independent samples. To investigate how cognitive profiles 
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(HighCog vs. LowCog) differ in the most important features for the 
classification, we applied 10 t-tests or M-W-U in case of violated normal 
distribution for each feature as the dependent variable for both valida-
tion and discovery samples. To control for multiple testing, the signifi-
cance level was Bonferroni-adjusted to α = 0.05/10 = 0.005. Results of 
p > 0.005, but p < 0.05 were indicated as trends. 

3. Results 

3.1. Demographics, clinical data 

There were significant differences between the discovery and vali-
dation sample regarding gender (p = 0.001) and smoking behavior (p =
0.028), both factors are included as co-founders in the ML analysis. 
Moreover, the validation sample showed less severe psychopathology as 
measured by CGI, GAF, and PANSS (all p < 0.005) and better cognitive 
performance (p = 0.029). Differences in psychopathology do not affect 
ML analyses since they are conducted separately for both samples. Pa-
tients were assigned to HighCog and LowCog based on their cognitive 
performance and the cut-off value was set at − 0.29 (1.5 SD below mean 
cognition index of the reference samples). In the discovery sample, 
HighCog (n = 25) had significantly less PANSS negative symptoms (p =
0.004) than LowCog (n = 32). In the validation sample, HighCog (n =
30) had higher GAF values (p = 0.042) and more school years (p =
0.003) than LowCog (n = 22). In both samples, cognitive profiles did not 
differ in age, gender, CPZ, DOI, and severity of positive symptoms (all p 
> 0.05). For details, see Table 1. 

3.2. ML classification 

The model based on MC data showed the best classification perfor-
mance with an AUC of 76% in the discovery and 73% in the validation 
samples compared to the other models. Notably, the second-best model 
was based on CT with an AUC of 71% (discovery sample) and 69% 

(validation sample). Table 2 shows the performance values for the 
different models. As expected, the model based on MC indicated brain 
regions of the prefrontal, temporal, and occipital regions as most 
important for classifying both cognitive subtypes. Moreover, six were 
among the top 10 most important features in the model based on CT, 
MC, and VOL, which further underlines the advantage of MC as a 
parameter for the classification of HighCog and LowCog. The top 10 
most important features are presented in Table 3 and Fig. 2. No de-
mographic or clinical data were among the most important features. 
Moreover, enforcement of using the features “age”, “gender”, “CPZ”, 
“DOI”, “school years”, “smoking”, and “native German language” as 
input for the classification led to a worse AUC of 62% in the discovery 
and 60% in the validation sample. Furthermore, using more than 10 

Table 1 
Descriptive statistics of the two cognitive profiles (LowCog, HighCog) across the discovery (N = 57) and validation (N = 52) samples. 
*p < 0.05; **p < 0.01; ***p < 0.001; #Mann-Whitney-U-test.   

Discovery Sample (N = 57) Validation Sample (N = 52) 

LowCog HighCog LowCog vs. HighCog LowCog HighCog LowCog vs. HighCog 

(n = 32) (n = 25) χ2 (df) p (n = 22) (n = 30) χ2 (df) p 

Gender (m: f) 27 : 5 20 : 5 0.19 (1) 0.667 10 : 12 18 : 12 1.08 (1) 0.299 
Hand 

preference 
(r: l: b) 

29 : 2: 1 23 : 2: 0 0.85 (2) 0.655 19 : 2: 1 24 : 5: 1 0.65 (2) 0.722 

Native 
Language 
(German: 
other) 

27 : 5 21 : 4 <0.01 (1) 0.969 13 : 9 24 : 6 2.70 (1) 0.100 

Smoker (y: n) 20 : 12 15 : 10 0.37 (1) 0.847 11 : 11 20 : 10 1.46 (1) 0.226  

M (SD) M (SD) t/M-W- 
U 

(df) p M (SD) M (SD) t/M-W- 
U 

(df) p 

Age 36.56 (12.10) 34.08 (10.00) 0.83 55 0.411 39.73 (13.39) 35.70 (11.26) 1.18 50 0.245 
Onset 26.91 (8.11) 25.50 (9.32) 335.50#  0.299 27.86 (12.02) 25.43 (9.43) 310.50  0.717 
DOI 9.56 (9.81) 8.58 (8.281) 378.00#  0.723 11.86 (7.64) 10.27 (9.73) 0.64 50 0.526 
CPZ 501.43 (361.78) 473.76 (287.81) 390.50#  0.878 433.38 (180.49) 339.34 (251.66) 1.49 50 0.142 
School Years 11.06 (2.29) 11.76 (1.90) 303.00#  0.113 10.45 (1.70) 12.17 (3.11) 144.50#  0.003** 
Cognition 

Index 
− 0.95 (0.48) 0.11 (0.32) <0.01#  <0.001*** − 0.77 (0.29) 0.18 (0.33) − 10.80 50 <0.001*** 

CGI 4.06 (0.95) 4.00 (0.88) 381.00#  0.958 3.73 (0.70) 3.47 (0.73) 272.00#  0.240 
GAF 54.22 (8.83) 56.60 (10.71) − 0.91# 54 0.366 58.45 (10.60) 64.30 (9.46) − 2.09 50 0.042* 
PANSS Total 64.06 (17.83) 59.00 (14.57) 333.00#  0.398 51.50 (13.86) 46.20 (9.18) 1.66 50 0.103 
PANSS 

Positive 
14.03 (6.47) 14.42 (4.47) 332.50#  0.392 12.05 (3.75) 10.83 (3.28) 268.00#  0.248 

PANSS 
Negative 

18.66 (4.79) 14.79 (4.65) 3.02 54 0.004** 13.05 (5.89) 11.53 (3.71) 93.00#  0.490 

PANSS 
General 

31.38 (9.12) 29.79 (7.26) 355.00#  0.631 26.41 (6.65) 23.83 4.51 1.66 50 0.102  

Table 2 
AUC, ACC, sensitivity and specificity values of the different classification models 
in both the discovery (N = 57) and the validation sample (N = 52).  

Model N 
Features 

Discovery Sample (N = 57) Validation Sample (N =
52)   

AUC ACC (sensitivity/ 
specificity) 

AUC ACC (sensitivity/ 
specificity) 

MC, CT 
and 
VOL 

446 65% 73% (67%/80%) 61% 70% (75%/67%) 

MC *** 148 76% 82% (80%/83%) 73% 80% (80%/80%) 
VOL 148 69% 69% (60%/67%) 66% 70% (80%/60%) 
CT 150 71% 74% (64%/67%) 69% 72% (63%/65%) 
VOL and 

CT 
298 69% 76% (73%/74 %) 67% 77% (69%/71%) 

VOL and 
MC 

296 70% 76% (71%/75%) 68% 74% (69%/72%) 

MC and 
CT 

298 67% 72% (72%/69%) 64% 70% (71%/66%) 

Abbreviations: AUC: area under the curve; ACC: accuracy; MC: mean curvature; 
CT: cortical thickness, VOL: volume. *** the model with the highest AUC values. 

I. Papazova et al.                                                                                                                                                                                                                               



Journal of Psychiatric Research 173 (2024) 131–138

135

features in the validation sample led to worse classification results. 
Consequent group comparison analyses for the top 10 features 

revealed significant results for individual brain regions. In the discovery 
sample, HighCog had lower MC values of the right transverse temporal 
sulcus (p = 0.002) and of the left superior frontal sulcus (p = 0.039, 
trend), and the left inferior occipital gyrus and sulcus (p = 0.038, trend) 
than LowCog. In addition, MC values of the left inferior frontal sulcus 
were slightly higher in the HighCog (p = 0.047, trend). In the validation 
sample, the MC of the left intraparietal sulcus and precuneus transversal 
region was significantly higher in the LowCog than in the HighCog (p =
0.001). There was a statistical trend for the left inferior occipital gyrus, 
but in the opposite direction, where MC values were higher in the 
HighCog group (p = 0.025, trend). For detailed descriptive and t-test 
statistics, see Supplementary Table S4. 

4. Discussion 

In the present study, we demonstrated that two cognitive profiles in 
schizophrenia can be successfully categorized using MRI-derived 
anatomical features. Specifically, we performed several combinations 
of ML algorithms including MC, CT, and VOL to differentiate between 
patients with high and low cognitive performance in two independent 

cohorts. The model based on MC achieved the best classification accu-
racy with an AUC of 76% and 73%. We identified 10 critical brain re-
gions including fronto-temporal, parietal, and occipital areas as the 
primary distinguishing features for classification. Subsequent compari-
son analysis indicated significant differences in MC of the right trans-
verse temporal sulcus, the left intraparietal sulcus, and the transversal 
precuneus between the two cognitive profiles. 

Although rarely used by previous research, we demonstrated that MC 
as a gyrification marker could be more precise for characterizing 
different cognitive profiles in schizophrenia than CT and VOL. This 
finding align with previous observations of neuropsychological perfor-
mance in schizophrenia negatively correlating with MC of the prefrontal 
cortex (Jessen et al., 2019a, 2019b; Lubeiro et al., 2017). Moreover, our 
results support the neurodevelopmental hypothesis (Howes and Murray, 
2014; Weinberger, 1987), postulating schizophrenia as a consequence of 
impaired neurodevelopment during critical stages, especially during 
early brain maturation, when cortical folding occurs (Armstrong et al., 
1995; Zilles et al., 2013). In accordance, prior research indicated gyr-
ification as a more suitable measurement for these early insults (Sasa-
bayashi et al., 2021), suggesting it is more stable during the lifespan and 
less susceptible to duration of illness and medication (Zilles et al., 2013) 
than CT (van Haren et al., 2011) and VOL (Fusar-Poli et al., 2013; Guo 
et al., 2015). Linking MC to cognition further supports the neuro-
developmental hypothesis, where neuropsychological deficits are seen 
as premorbid signs of schizophrenia (Howes and Murray, 2014), since 
they are observed before the onset of the disease (Lencz et al., 2006). 
However, alterations in neurodevelopment and gyrification patterns are 
not specific to schizophrenia but also observed in other psychiatric 
disorders such as major depression, autism, and bipolar disorder 
(Sasabayashi et al., 2021). Moreover, previous research demonstrated 
non-linear changes in gyrification with aging that differed between 
healthy and psychiatric populations (Cao et al., 2017; Pham et al., 
2021), prompting the need for longitudinal studies. In addition, MC as a 
cortical surface parameter is just one of many possible gyrification 
measures and some studies suggested that is less specific than the local 
gyrification index (Shimony et al., 2016). Therefore, future research 
should include several curvature markers such as Ricci curvature (Yadav 
et al., 2023), and gyrification index to further investigate the neuro-
developmental hypothesis in schizophrenia. 

The model based on MC identified only neuroanatomical features as 
most important for the classification. Remarkably, demographic and 
clinical data like age, education, and medication were not among the top 
features. However, they are associated with cognition (Han et al., 2012) 
and neuroanatomical abnormalities (Hashimoto et al., 2018) in schizo-
phrenia. Moreover, when enforced as features, they led to poorer clas-
sification results. This surprising finding could be explained by the high 
similarity of the cognitive profiles since they did not differ in most de-
mographic and clinical data. As expected, we identified structures of the 
fronto-temporal, parietal, occipital, and insular cortex, all of which have 

Table 3 
Comparisons of the top 10 features of importance between the machine learning 
model based on volume, cortical thickness and mean curvature and the model 
based on mean curvature.  

Rank of 
importance 

Model based on volume, cortical 
thickness, and mean curvature 

Model based on mean 
curvature 

1 Subcallosal gyrus (right) [MC] Subcallosal gyrus (right) 
[MC] 

2 Inferior frontal sulcus (right) 
[MC] 

Transverse temporal sulcus 
(right) [MC] 

3 Transverse temporal sulcus 
(right) [MC] 

Inferior frontal sulcus (right) 
[MC] 

4 Inferior frontal triangular gyrus 
(left) [CT] 

Inferior frontal sulcus (left) 
[MC] 

5 Inferior supramarginal gyrus 
(right)[VOL] 

Superior frontal sulcus (left) 
[MC] 

6 Superior and transversal 
occipital sulcus (left) [MC] 

Inferior occipital gyrus und 
sulcus (left) [MC] 

7 Inferior frontal sulcus (left) 
[MC] 

Intraparietal sulcus and 
Precuneus transversal (left) 
[MC] 

8 Inferior occipital gyrus and 
sulcus (left) [VOL] 

Superior and transversal 
occipital sulcus (left) [MC] 

9 Medial orbital sulcus/olfactory 
sulcus (right) [CT] 

Long gyrus and Central sulcus 
of insula (right) [MC] 

10 Intraparietal sulcus and 
Precuneus transversal (left) 
[MC] 

Subcallosal gyrus (left) [MC] 

Abbreviations: MC: mean curvature; CT: cortical thickness, VOL: volume. 

Fig. 2. Depicted in yellow, the 10 most important brain regions for the classification between schizophrenia patients with high and low cognitive performance based 
on mean curvature. 
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been associated generalized cognition (Colom et al., 2010) and with 
structural and functional abnormalities and cognitive deficits in 
schizophrenia (e.g. Antonova et al., 2004; Barch and Ceaser, 2012; 
Sasabayashi et al., 2017; Sheffield and Barch, 2016; Sheffield et al., 
2021). Furthermore, the comparison analyses showed significant dif-
ferences between the cognitive profiles for the right transverse temporal 
sulcus in the discovery sample and the left intraparietal sulcus and 
transversal precuneus in the validation sample. In line with previous 
heterogeneous results of increased and decreased gyrification in 
schizophrenia (Sasabayashi et al., 2021), we could not find a clear di-
rection of abnormalities in MC. In addition, the subtle differences in 
diverse brain structures support the notion that cognitive functions rely 
not on single specific regions but instead on whole neuronal networks 
(Lynn and Bassett, 2019). Our findings could also be explained with the 
method of assignment to HighCog or LowCog using a theory-based 
cut-off value of 1.5 SD (Keefe, 2014) that like a median split could 
overestimate group differences (MacCallum et al., 2002). Future 
research could achieve clearer results by defining cognitive profiles 
based on other methods such as clustering or extreme groups from a 
larger patient sample. 

A major advantage of the present study is the application of ML that 
both allows group classification and the ranking of the most important 
factors out of a large number of heterogeneous variables and overcomes 
the limitations of traditional regression models (Dwyer et al., 2018). We 
applied two established ML algorithms in psychiatry, logistic regression 
and random forest, since a combination of ML was proven to improve 
classification results (de Filippis et al., 2019). In addition, we validated 
our classification model in an independent sample, as suggested by 
previous work (Tandon and Tandon, 2019). We used an identical grid of 
hyperparameters for both datasets but retrained on this grid for the 
validation dataset. This was necessary to better represent the individual 
cohort’s characteristics but could have limited our results’ generaliz-
ability. Further advantages of our study are the use of several neuro-
anatomical parameters, the inclusion of demographic and clinical data 
in the classification analysis, and the well characterized schizophrenia 
study sample. 

Although our study sample size is comparable with previous work in 
the field (see Arbabshirani et al., 2017), it is still rather small for an ML 
analysis. Indeed, previous research has demonstrated the crucial role of 
sample size in classification analysis, especially in a heterogeneous study 
cohort such as schizophrenia (Schnack and Kahn, 2016). Furthermore, 
despite our classification results being rather high compared to previous 
research on cognition subgroups in schizophrenia (e.g. Gould et al., 
2014), they could still be improved by the inclusion of further modalities 
such as fMRI (de Filippis et al., 2019). Third, we used a literature-based 
cut-off value to define the cognitive profiles. As previously suggested, a 
data-driven approach such as exploratory clustering could be better for 
exploring the heterogeneous cognitive data in schizophrenia and yield 
more homogenous subgroups (e.g. Carruthers et al., 2019). Lastly, we 
assessed cognition with standard and widely used but less specific tests 
(Snyder et al., 2015). Thus, we might have condensed cognitive subtypes 
defined by impairment of specific domains (e.g. processing speed, face 
memory, Geisler et al., 2015) into one group, reducing the precision of 
our characterization. Applying more specific instruments for different 
cognitive domains could lead to defining more distinctive cognitive 
subgroups. 

In conclusion, we demonstrated that MC as a neurodevelopmental 
marker emerges as a promising parameter for characterizing specific 
cognitive profiles in schizophrenia. However, future research using ML 
algorithms on multimodal data in large patient cohorts is needed to 
resolve the heterogeneity of cognitive deficits in schizophrenia to create 
novel and individualized approaches for their treatment. 
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Reichenbach, J.R., Sauer, H., Schlösser, R.G., 2010. Increased parahippocampal and 
lingual gyrification in first-episode schizophrenia. Schizophr. Res. 123, 137–144. 

Schultz, C.C., Wagner, G., Koch, K., Gaser, C., Roebel, M., Schachtzabel, C., Nenadic, I., 
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