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MOTIVATION Imaging flow cytometry (IFC) is a high-throughput microscopic technique that gathers multi-
parametric fluorescent and morphological data from individual cells. However, fluorescent staining is time
consuming, expensive, spectrally overlapping, and potentially harmful to cells. To reduce the number of
fluorescent stainings to the most informative ones, we introduce PXPermute, a model-agnostic method
that quantitatively guides IFC channel selection. Our approach streamlines workflows, reduces costs,
and assists in optimizing experimental designs, addressing the need for more efficient and effective IFC
analysis.
SUMMARY
Imaging flow cytometry (IFC) allows rapid acquisition of numerous single-cell images per second, capturing
information from multiple fluorescent channels. However, the traditional process of staining cells with fluo-
rescently labeled conjugated antibodies for IFC analysis is time consuming, expensive, and potentially harm-
ful to cell viability. To streamline experimental workflows and reduce costs, it is crucial to identify the most
relevant channels for downstream analysis. In this study, we introduce PXPermute, a user-friendly and
powerful method for assessing the significance of IFC channels, particularly for cell profiling. Our approach
evaluates channel importance by permuting pixel values within each channel and analyzing the resulting
impact on machine learning or deep learning models. Through rigorous evaluation of three multichannel
IFC image datasets, we demonstrate PXPermute’s potential in accurately identifying the most informative
channels, aligning with established biological knowledge. PXPermute can assist biologists with systematic
channel analysis, experimental design optimization, and biomarker identification.
INTRODUCTION

Imaging flow cytometry (IFC) is a high-throughput microscopic

imaging technique that captures multiparametric fluorescent

and morphological information from thousands of single cells.

This versatile method allows researchers to rapidly record and

analyze large cohorts of cells, providing valuable insights into

cell populations.1–3 IFC has been used for profiling complex
Cell Rep
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cell phenotypes and identifying rare cells and transition states,3

making it an indispensable tool for various applications such as

drug discovery,4 disease detection, diagnosis,3 and cell pro-

filing.5–8 Fluorescent staining of cells, while informative, is not

without its limitations. The panel design process for IFC can be

time consuming and expensive.9 Moreover, multiple stains can

introduce complications such as spectral overlaps and compen-

sation issues.9 Additionally, fluorescent staining can potentially
orts Methods 4, 100715, February 26, 2024 ª 2024 The Authors. 1
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harm cells, and artifacts may arise during the staining and sam-

ple preparation steps.4 To address these challenges, it is crucial

to carefully select a restricted number of stainings, simplify lab-

oratory procedures, reduce costs, preserve cell integrity, and

enable the evaluation of new fluorescent stainings. There is a

large body of literature10 on selecting multicolor fluorescent

stainings and panel optimization.11–16 However, they are all

mainly focused on flow and mass cytometry applications, and

a method specialized in analysis for IFC data is currently lacking.

Machine learning promises to deliver accurate, consistent,

fast, and reliable predictions for IFC.17–20 A few open-source li-

braries have recently been published specializing in machine

learning for IFC analysis.17,21–23 These libraries provide in-model

interpretability like random forest24 or post-model interpretability

using methods such as Grad-CAM25 for convolutional neural

networks. However, none them are designed specifically to eval-

uate the importance of fluorescent channels and require adapta-

tion to address this specific task.23,26–28

A natural solution to identify the most important fluorescent

stainings is to extract predefined features from each channel,

train an explainable classifier such as random forest, aggregate

the feature importances per channel, and compare them.27 In

this case, the quality of features highly matters, as it has

been shown that they can sometimes perform suboptimally

compared to deep convolutional neural networks.6,26,28 To

solve this problem, Kranich et al.28 proposed a convolutional

autoencoder (CAE) to learn a high-quality embedding from

the data. Each channel is embedded separately using an

encoder and one shared decoder in their design. The model

embeddings are then concatenated and passed to a random

forest classifier. However, this method has two main limitations:

(1) it is bound to the specific model architecture, and training

the CAE is only manageable if the number of channels is

limited, as training many separate encoders can be computa-

tionally very expensive; and (2) feature correlations across

channels are ignored by extracting features from each channel

separately, which can negatively affect model performance or

miss meaningful correlations among stainings.29,30 Nonethe-

less, in both cases, this model dependency can restrict the

analysis and prediction pipelines and prohibits using state-of-

the-art models such as deep convolutional neural networks.

Another solution to this issue is identifying the most important

fluorescent stainings by systematically removing single or mul-

tiple channels, retraining, and re-evaluating the prediction per-

formance.23,26 While this method provides a useful model-

agnostic solution for ranking the channel contributions to the

performance, it is time consuming and computationally costly,

as it requires a minimum of n + 1 model training and a

maximum of 2n � 1 for finding the best combination of chan-

nels, where n is the number of channels.

Thus, we have developed PXPermute, a model-agnostic post-

model deep learning interpretabilitymethod that identifies channel

importance and ranks channels according to their contributions to

a downstream task’s performance. We compare PXPermute with

adapted state-of-the-art post-model interpretability methods on

three publicly available IFC datasets. Our work identifies the

most important channels that align with each dataset’s biology.

PXPermute can also identify the least informative stainings, which
2 Cell Reports Methods 4, 100715, February 26, 2024
might be eliminated from the experiment without affecting model

performance. To the best of our knowledge, PXPermute is the first

interpretability method for deep learning that systematically

studies channel importance and can lead to optimized workflows

in multichannel fluorescent staining imaging experiments.

RESULTS

PXPermute: A model-agnostic post hoc interpretability
method for channel importance
Wepropose PXPermute as amodel-agnostic post hocmethod for

interpreting channel importance (Figure 1A). In our approach, we

work with a dataset of images x with CH channels

x˛X; x : fx1; :::; xCHg and their corresponding labels y from CL

classes (y˛Y ;Y : f y1;:::;yCLg). We assume the existence of a su-

pervised multiclass classifier model fðxÞ that is trained to predict

the label for each image: fðxÞ = by. During the test phase,weapply

PXPermute by randomly shuffling pixels in a given channel

(1% ch%CH) of each input image. We evaluate a performance

metric M (e.g., accuracy) for each class (1% cl%CL) based on

the classifier’s performance Mch;
cl . This process is repeated

iteratively for each channel of the input image, and we calculate

the differences between the original performance Mcl (without

shuffling any channels) and the new performance Mch
cl (DMch

cl =

Mcl � Mch
cl ). Finally, the channel importance is determined by

aggregating these difference values (e.g., using the median) for

each class fDMch
1 ;DMch

2 ; :::;DMch
CLg across all images (Figure 1B;

star methods).

We selected three publicly available IFC datasets to demon-

strate PXPermute’s potential to rank fluorescent stainings as well

as stain-free channels in multichannel images. The first dataset

contains 15,311 images of two classes, comprising 8,884

apoptotic cells and 6,427 non-apoptotic cells with only a bright

field (BF) and one fluorescent channel (Figure 2A; STARMethods).

The second dataset contains 5,221 images of lymphocytes that

form immunological synapses.23,31 Images contain a single cell,

two cells, or more than two cells. They are distributed into the

following nine classes: B cells, T cells without signaling, T cells

with signaling, T cell with smaller B cells, B and T cells in one layer,

synapse without signaling, synapse with signaling, no cell-cell

interaction, and multiplets. This dataset includes eight channels:

BF, antibody (Ab), CD18, F-actin, major histocompatibility com-

plex (MHC) class II, CD3, P-CD3z, and live/dead stainings (Fig-

ure 2B; STAR Methods). Considering that the dataset consists of

live T or B cells with no Abs, the Ab and live/dead channels do

not contain any relevant information. Therefore, they are used as

a sanity check in the channel importance analysis. Finally, the

white blood cell dataset18 includes 98,013 images with eight clas-

ses and twelve channels. The classes are CD14+ monocyte,

CD15+ neutrophil, CD19+ B cell, CD4+ T cell, CD56+ natural killer

(NK), CD8+ T cell, NK T cell, and eosinophil. The channels include

BF1, CD15, SigL8, CD14, CD19, dark field (DF), CD3, CD45, BF2,

CD4, CD56, and CD8 (Figure 2C; STARMethods).

PXPermute detects the most important channels in
alignment with biological knowledge
As a proof of concept, we used PXPermute on a ResNet1832 pre-

trained on ImageNet,33 a widely used deep learning model for
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Figure 1. PXPermute allows identifying the

most important fluorescent (FL) channels

in a multichannel imaging flow cytometry

experiment and thus reduces lab work and

expenses

(A) Schematic of a PXPermute embedded end-to-

end analysis. In the first part, biologists image

thousands of single cells using imaging flow cy-

tometry in different FL and bright-field (BF) chan-

nels. The second part, PXPermute, will select the

most important channels based on the task.

(B) Schematic of PXPermute, a simple yet

powerful method to find the most important

channels. In the first step, a performance metric

Mcl (such as accuracy or F1-score) is calculated

per class cl. Then, each channel Ch is shuffled,

and the performance per class cl is calculated as

MCh
cl . Finally, the difference between the original

performance and the permuted one is calculated.

These differences are averaged and yield the

channel importance.
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image classification.34,35 Considering that this model was de-

signed originally for natural images with three channels, we re-

placed the first layer of the network by matching the number of

channels per dataset. Also, the classification layer was changed

based on the number of classes in each dataset (see STAR

Methods for details). We trained the ResNet18 on each dataset

to classify the cells into the given cell types and compared it to

the state-of-the-art performance. For the apoptotic vs. non-

apoptotic cells, the model reached the performance of F1-

macro = 0.97 ± 0.01 (mean and standard deviation from 5-fold

cross-validation). The model reached an F1-macro performance

of 0.95 ± 0.01 for the synapse formation dataset. Finally, for the

white blood cell dataset, our model reached 0.98 ± 0.01 of F1-

macro (STAR Methods).

Since no method has been developed for assessing channel

importance, we adapted existing pixel-wise interpretation

methods, including occlusion,36 DeepLift,37 Guided Grad-CAM,25

integrated gradients,38 and layerwise relevance propagation

(LRP)39 (Table 1; STAR Methods). We modified the occlusion

method to occlude the images channel-wise to replace the whole

channel with 0. Similar to PXPermute, the drop in model perfor-

mance is considered the channel importance (Figure S1A). The

other methods originally provided pixel-wise importance for each
Cell Report
image, typically visualized as a heatmap.40

We aggregate the pixel importance per

channel to adapt them to calculate a chan-

nel-wise importance score (Figure S1B).

Except for channel-wise occlusion, all

these methods are not model agnostic

and strongly depend on the quality of the

pixel importance estimation and its aggre-

gation to obtain a channel score.

We benchmarked all interpretation

methods on the trained models in the

next step. With each model training in

the cross-validation scheme, we also run

each interpretation method. Therefore,
we have five values per method for each channel. To provide a

comparative overview, we normalized each channel’s importance

to the intervals of 0 and 1 (Figure 3). Hence, the most important

channel obtained an importance score of 1, and the least impor-

tant channel had a score of 0. For simplicity, based on the number

of existing channels in the datasets and previous relevant works,

we only focus on the top 1 channel for the apoptotic cell dataset

and the top 3 channels for the synapse formation and the white

blood cell datasets.

We first applied the channel importance methods to the

apoptotic cells dataset. Kranich et al. previously showed on

this dataset that the fluorescent channel is more important

than the BF channel for predicting apoptotic cells.28 PXPermute,

channel-wise occlusion, and Guided GradCAM correctly identi-

fied the fluorescent channel as the most important channel for

predicting apoptotic cells, which aligns with previous work.28

In contrast, integrated gradients, DeepLift, and LRP identify BF

as the most important channel (Figures 3A and S2A), leading to

a false conclusion on this dataset.

For the synapse formation dataset, we previously showed that

the most important channels are CD3, MHC class II, and

P-CD3z.23,31 PXPermute identifies the top channels P-CD3z,

CD3, and MHC class II, in line with previous knowledge
s Methods 4, 100715, February 26, 2024 3
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Figure 2. Three datasets with various

numbers of images and channels are used

to evaluate PXPermute

Rows indicate classes, and columns indicate the

channels. Channels marked with an asterisk (*)

indicate that those channels have been identified

as the most important channels in previous works.

(A) Apoptotic cells: a dataset containing 15,311

images with one stain-free, BF, and an FL channel.

(B) Synapse formation: a dataset containing 5,221

images with one stain-free channel (BF) and seven

FL channels, namely antibody (Ab), CD18, F-actin,

MHC class II, CD3, P-CD3z and live/dead.

(C) White blood cells: a dataset containing 29,994

images with three stain-free channels, two BFs

(BF1 and BF2), a dark-field (DF), and nine stained

channels including CD15, SigL8, CD14, CD19,

CD3, CD45, CD4, CD56, and CD8.
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(Figures 3B and S2B). Channel-wise occlusion finds the same top

3 channels but in a different order. GradCAM identifies P-CD3z,

live/dead, and CD18 as the most important channels. This order

does not fit our prior knowledge because live/dead is an irrelevant

channel, as the original authors only annotated the live cells. Inte-

gratedgradients andDeepLift identifyCD3,P-CD3z, andBFas the

most important channels. Finally, LRP identifies CD3, BF, and Ab

as the most important channels. This contradicts our knowledge,

as no Ab exists in the dataset.

The white blood cell dataset has the largest number of chan-

nels and the highest variation of the channel rankings. This data-

set had not been used for channel importance before. However,

from the work of Lippeveld et al.,18 it is possible to infer that CD3,

CD4, CD56, and CD8 are the most important channels. PXPer-

mute suggests that the top 3 channels are CD56, CD8, and

CD4, confirming Lippeveld et al.’s work. Channel-wise occlusion

suggests that CD56, CD3, and CD19 are the most important

channels. Guided GradCAM suggests that BF1, CD56, and

BF2 are the most important channels. Integrated gradients iden-

tified CD46, CD19, and BF1 as the most important channels.

DeepLift indicates that CD56, CD19, and BF1 are the most
4 Cell Reports Methods 4, 100715, February 26, 2024
important channels. Finally, LRP implies

that CD19, BF2, and BF1 are the most

important channels (Figures 3C and

S2C). Our method-identified channel

importance closely aligned with existing

baselines and expert findings.18,23,28

100 repetitions are enough for a
stable channel-order identification
We conducted an ablation study using k =

5, 10, 20, 30, 40, 50, 100, 200, 500, and

1,000 to determine the number of repeti-

tions required for PXPermute to yield stable

results. Our findings revealed that for

apoptotic cells, there was no change in

the channel order. However, we observed

a change in the channel order for k = 40

and 50 for the synapse formation dataset.
Similarly, a differencewas noted only for thewhite blood cell data-

set for k = 30. The most significant observation was that the chan-

nel order remained unchanged from k = 100 onwards for all data-

sets. Therefore, we recommend using k = 100 for PXPermute to

obtain reliable and robust results.

Identifying and removing unnecessary channels with
PXPermute
To validate channel importance rankings suggested by PXPer-

mute and the other methods, we applied the remove-and-retrain

principle41: first, we sorted image channels according to their

predicted importance score in ascending order, from the least

important channel to the most important. Then, we iteratively

removed channels from the dataset, from the least important

to the most important channel. Secondly, after each removal,

the classification model was retrained on the dataset containing

the subset of channels to perform the same classification task as

before. During the remove-and-retrain process, we fixed model

hyperparameters. We repeated this procedure for every channel

ranking (see Figure 3). In an ideal scenario, removing a channel

that is not important for the model prediction should not affect



Table 1. Adaptation of used methods for benchmarking

Method name Adaptation Advantages Disadvantages

PXPermute none + open source

+ model agnostic

+ simple concept

+ keeps the data distribution

+ no parameter tuning

� higher runtime

Channel-wise occlusion occluding channels instead

of pixels

+ rapid runtime

+ model agnostic

+ simple concept

+ no parameter tuning

� changes the data distribution

Guided GradCAM

(Selvaraju et al.25)

using the median of the values

per channel

+ rapid runtime

+ open source

� model specific

� requires parameter tuning

� needs adaptation

Integrated gradients

(Sundararajan et al.38)

using the median of the values

per channel

+ rapid runtime

+ open source

� model specific

� requires parameter tuning

� needs adaptation

DeepLift (Shrikumar et al.37) using the median of the values

per channel

+ rapid runtime

+ open source

� model specific

� requires parameter tuning

� needs adaptation

LRP (Bach et al.39) using the median of the values

per channel

+ rapid runtime

+ open source

� model-specific

� requires parameter tuning

� needs adaptation

Apart from PXPermute, designed for channel importance, all other methods were adapted from their original design. Their other advantages and dis-

advantages are based on model specificity, design complexity, runtime, and the need for tuning.
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model performance. Removing a channel that is important for

the model should highly affect its performance. Therefore, if

the performance of a model during the remove-and-retrain pro-

cess drops faster for a given sequence of channels than for

another sequence of channels, then it shows that the sequence

ordering was not optimal. To numerically compare the drops in

classification performance, we calculate the average F1-macro

across all the runs (see Figure 3).

For the apoptotic cell dataset, the order suggested by PXPer-

mute, channel-wise occlusion, and Guided GradCAM was the

optimal sequence. They showed the highest performance

(average F1-macro of 0.97 ± 0.01, n = 10 based on 5-fold

cross-validation and two channels). They were followed by LRP

(0.83 ± 0.14), integrated gradients (0.83 ± 0.15), and DeepLift

(0.82 ± 0.15) (Figure 4A; Table S1).

For the synapse formation dataset, PXPermute predicted the

best sequence of channels (average F1-macro = 0.92 ± 0.04,

n = 40 based on 5-fold cross-validation and eight channels).

It was followed by Guided GradCAM (0.90 ± 0.05), DeepLift

(0.89 ± 0.07), channel-wise occlusion (0.89 ± 0.08), integrated

gradients (0.88 ± 0.07), and LRP (0.86 ± 0.08) (Figure 4B;

Table S1).

For thewhite blood cell dataset, PXPermute, channel-wise oc-

clusion, and DeepLift predicted the best sequence of channels

(average F1-macro = 0.97 ± 0.02, n = 60 based on 5-fold

cross-validation and 12 channels). It was followed by integrated

gradients (0.96 ± 0.02), Guided GradCAM (0.94 ± 0.06), and LRP

(0.90 ± 0.05) (Figure 4C; Table S1). The same pattern could be

observed for average F1-micro and accuracy. Therefore, PXPer-

mute is the only method that correctly detects the order of the

importance of the channels in all datasets (Figure 4).
PXPermute finds the optimal panel with a minimal
number of stainings
Identifying a minimal set of stainings required for a downstream

task has manifold advantages, such as the potential to reduce

staining artifacts and save cost and time in sample preparation.

It also allows adding new, more meaningful stainings to the

panel. Therefore, identifying the minimum set of channels a

model requires to deliver optimal performance is highly benefi-

cial. To investigate this effect, we compared the model’s perfor-

mance in three scenarios: (1) the model was trained with only

non-stained channels (no florescent channels), (2) it was trained

with only the most important channels according to PXPermute

plus the non-stain channels (minimal number of florescent chan-

nels), and (3) it was trained with all the fluorescent and non-stain

channels. We conducted these experiments on the synapse for-

mation and the white blood cell dataset (Figure 5) and skipped

the apoptotic cell dataset, as it has only two channels.

For the synapse formation, the stain-free selection of channels

(BF) achieves 0.78 ± 0.09 F1-macro in a 5-fold cross-validation

setup. Adding the suggested channels fromPXPermute, namely,

MHC class II, CD3, and P-CD3z, improves the classification to

0.93 ± 0.01 F1-macro, which is not so different from 0.94 ±

0.01 F1-macro, which is the accuracy when using all channels.

For the white blood cell dataset, the stain-free selection of chan-

nels (BF1, BF2, and DF) achieves 0.84 ± 0.04 F1-macro. By

adding only the three most important channels identified by

PXPermute, namely CD4, CD56, and CD8, the classifier archives

the performance of 0.97 ± 0.01 F1-macro, which is not signifi-

cantly less than a model trained on all channels, reaching

0.97 ± 0.00 F1-macro.We have shown that PXPermute can iden-

tify the most important channels for a cell classification task. The
Cell Reports Methods 4, 100715, February 26, 2024 5
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Figure 3. PXPermute robustly identifies the most important channels

Each dataset’s channel importance is normalized between zero and one for PXPermute and five other methods, including channel-wise occlusion, Guided

GradCAM, integrated gradients, DeepLift, and layerwise relevance propagation (LRP). The error bars are based on a 5-fold cross-validation scheme, representing

themeanwith a 95%confidence interval. Channelsmarkedwith an asterisk (*) indicate that those channels have been identified as themost important channels in

previous works. Note that PXPermute channel rankings align better with the findings from previous studies than any other method.
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required channels can be halvedwithout significantly decreasing

the model’s performance.

DISCUSSION

In this study, we introduced PXPermute, a post-model interpret-

ability method that assesses the impact of fluorescent stainings

on cell classification. By applying PXPermute to three publicly

available IFC datasets, we demonstrated its efficacy in accu-

rately identifying the most significant channels in accordance

with biological principles. Moreover, PXPermute can facilitate

panel optimization by recommending fewer stainings that main-

tain comparable performance to using all channels.

While multicolor fluorescent staining panel optimization for

flow and mass cytometry is a well-established research field,10

there is little systematic analysis and methodology for IFC, with

only a handful of works touching upon its significance. These

works either use a feature importance from an explainable clas-

sifier such as random forest27,28 or a greedy search by trying

combinations of channels to find the most important chan-

nels.23,26 Although these methods can be powerful tools, the

former prohibits using deep learning algorithms, and the latter

can be exhaustive and computationally costly. PXPermute
6 Cell Reports Methods 4, 100715, February 26, 2024
addresses these limitations and provides a model-agnostic

interpretability method for feature ranking that can be applied

independently of the number of channels or model architecture.

Additionally, our research represents one of the first comprehen-

sive investigations into systematically exploring channel and

staining importance for imaging data.

To demonstrate PXPermute’s robustness, we applied it to

three different publicly available datasets. We identified that

the fluorescent channel is more important than the BF channel

for the apoptotic vs. non-apoptotic cells, which aligns with the

previous work.28 MHC class II, CD3, and P-CD3zwere identified

in the synapse formation study to detect immunological synap-

ses, again in alignment with the original study.23 While other

methods also found a high-performing combination of channels,

none aligned with underlying biology, and they were probably

only hinting at possible artifacts in the dataset. Finally, the au-

thors did not provide a clear channel importance ranking for

the white blood cell dataset.18 However, it was possible to infer

from their work that adding CD4, CD56, and CD8 can improve

the classification performance significantly. This is the same

combination as suggested by PXPermute. An essential point to

consider is that these fluorescent channels are shown to be

important for their respective downstream task, and their
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Figure 4. PXPermute outperforms other methods in identifying the correct channel ranking based on a remove-and-retrain procedure

The remove-and-retrain based on the channel ranking is performed on the apoptotic cell (2 channels), synapse formation (8 channels), and white blood cell (12

channels) datasets. The error bars represent themeanwith a 95% confidence interval. In each case, the channels are sorted in ascending order according to their

predicted importance score, from the least important channel to the most important. Then, the channels are iteratively removed from the dataset, from the least

important to the most important channel. After each removal, the classification model was retrained on the dataset containing the subset of channels to perform

the same classification task as before. Methods with better rankings would stay higher throughout the plot. PXPermute performed better than other methods in

finding the optimal channel rankings.
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importance can change for a different task. Finally, apart from

the current datasets, PXPermute can potentially be used on

other data modalities, such as multiplex IF images42–44 and mul-

tiplexed protein maps,45,46 where the data include multiple fluo-

rescent stainings with complex morphologies.

To effectively utilize PXPermute in laboratory conditions, we

recommend performing a small experiment with all possible

stainings and applying PXPermute to the data. After the post

hoc analysis, the main experiment can be conducted using the

selected channels. For example, let us assume the objective of

optimizing the panel for a particular use case with 20 candidate

markers. Considering that a machine like Amnis can capture ten

fluorescent channels at a time, the experimental approach can

be divided into three stages: in the first stage, an initial set of

ten markers is examined, followed by an assessment of the re-

maining ten markers in the second stage. Upon completion of

these preliminary runs, the top 5 markers in each experiment

are identified. In the final stage, the experiment is conducted

with the union of those top 5 markers, selected based on the re-

sults from the initial two stages (2 3 5 = 10). Again, PXPermute

can be applied to find the best combination of markers.

A potential limitation in this work is the need to repeat the

execution of PXPermute multiple times to enhance its robust-

ness. This iterative process can be time consuming depending

on the dataset size and the number of channels involved. None-

theless, PXPermute is still faster than the leave-one-channel-out

strategy. PXPermute takes 65 ± 10 min with 5-fold cross-valida-

tion for the white blood cell dataset with 12 channels on a ma-

chine with a GPU and 16 CPUs. We observed that training a
ResNet18 model on the same data and hardware takes

28 ± 1 min. For the leave-one-channel-out strategy, one must

train 13 independent models, which takes approximately 13 3

28 = 364 min, more than five times more than PXPermute. In

the case of finding the best combination of channels, one needs

to train 212 � 1 = 4,095 different models, which is highly exhaus-

tive. Furthermore, it is worth noting that PXPermute has been

designed to support parallelization, enabling significant acceler-

ation of the calculations and mitigating this limitation. Another

limitation is that PXPermute is designed for a supervised learning

setup where experts must annotate the images. This process of

annotation can be time consuming and, hence, challenging.

Therefore, finding an unsupervised method for evaluating fluo-

rescent stainings can be an attractive area for research.

In summary, PXPermute is the first method that systematically

studies channel importance for deep learning models and can

potentially lead to optimizing the workflow of biologists in the

lab. PXPermute can be implemented for panel optimization

and can benefit biologists in their lab work.

Limitations of the study
Notably, PXPermute must be executed multiple times to obtain

robust results. This can be time consuming, especially with

many channels. However, our approach is still faster than the

baseline leave-one-channel-out strategy (see discussion). A

general limitation is that PXPermute is designed for supervised

learning scenarios and relies on annotated data. This limits the

application of PXPermute for scenarios where sufficient high-

quality annotations are available.
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Figure 5. PXPermute finds an optimal channel selection that per-

forms similarly to using all the channels

For the synapse formation (A) and white blood cell (B) datasets, the model was

trained on the stain-free channels (lower bound), stain-free + top 3 channels

identified by PXPermute, and all channels (upper bound). The error bars

represent the mean with a 95% confidence interval. PXPermute rankings lead

to fewer stainings (3 out of 7 in A, 3 out of 8 in B) without a significant loss in

performance.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Apoptotic cells dataset Kranich et al.28 https://doi.org/10.1080/20013078.2020.1792683

Synapse formation dataset Essig et al.23,31 https://doi.org/10.5061/dryad.ht76hdrk7

White blood cell dataset Lippeveld et al.18 https://doi.org/10.1002/cyto.a.23920

Software and algorithms

PXPermute Current work https://doi.org/10.5281/zenodo.10495259

https://github.com/marrlab/pxpermute

scifAI Shetab Boushehri et al.23,31 https://github.com/marrlab/scifAI
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Carsten

Marr (carsten.marr@helmholtz-munich.de).

Materials availability
This study did not generate or use any biological samples or generate new unique reagents.

Data and code availability
d All datasets in this study are from public data. All the links and required information are provided in the Methods section. Addi-

tionally, the DOIs are listed in the key resources table.

d The code and instructional notebooks on running the code and building analysis pipelines are here: https://github.com/

marrlab/pxpermute with the DOI: https://doi.org/10.5281/zenodo.10495259

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Datasets
All data studied in this work was acquired through imaging flow cytometry. For model training and testing, brightfield and fluorescent

channels were used. In the datasets with a strong imbalance, the training set was oversampled by randomly selecting indices from

minority classes with replacement. All images were rescaled to 0 and 1 using the minimum and maximum of the datasets.

Apoptotic cells dataset -

This dataset was published by Kranich et al.,28 who not only solved the binary classification task (apoptotic vs. non-apoptotic cell) but

also studied the channel importance directly. Each class is represented by only two channels, one fluorescent (Figure 2A). The im-

ages were cropped to 32x32. The dataset was accessed here: https://github.com/theislab/dali/tree/master/data.

Synapse formation dataset -

Shetab Boushehri and Essig et al. published this dataset23,31 to study the process of synapse formation using IFC. Their dataset in-

cludes nearly 2,8 million images containing T cells and B-LCL cells or their conjugates; only 5,221 are labeled by an expert. Each

image contains eight channels containing brightfield (BF, stain-free), antibody (Ab, fluorescent), CD18 (fluorescent), F-actin (fluores-

cent), MHCII (fluorescent), CD3 (fluorescent), P-CD3z (fluorescent), and Live/Dead (fluorescent) (Figure 2B). This annotated subset

only contains images of live cells with no antibodies. Therefore, Ab and Live/Dead channels are redundant. Moreover, they showed

that for the classification of synapses, the most important channels are MHCII, CD3, and P-CD3z. Since the images are in different

sizes, they have been padded to 128x128 to prepare them for training. The dataset was accessed here: https://doi.org/10.5061/

dryad.ht76hdrk7.

White blood cell dataset -

The white blood cell dataset18 (WBC) contains 98,013 IFC images, each with twelve channels, which were obtained from two whole

blood samples of patients. In each image, a single cell is contained, with eight classes (Figure 2C): natural killer (NK) cells (669 sam-

ples), neutrophils (18,325 samples), eosinophils (1,537 samples), monocytes (1,282 samples), B cells (889 samples), T cells CD8+
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(1,788 samples) and CD4+ (4,476 samples), natural killer T (NKT) cells (1,028 samples), and a separate class comprising unidentifiable

cells (1,286 samples). All images were reshaped to 64x64. The channels comprise two brightfield channels, one dark field channel,

and nine stained channels. Lippeveld et al.18 have shown that stain-free data suffices to classify monocytes and neutrophils, but to

classify others reliably, the dataset must include stained channels. The dataset was accessed here: https://cloud.irc.ugent.be/

public/index.php/s/assnP3Z2FjTbztc.

Classification models
In this work, we analyzed a commonly used deep learning classifier. The models’ decision-making process cannot be interpreted

without applying explainability methods.We selected ResNet18 (16) from all image classificationmodels due to its good performance

reported in the previous works.18,23,34 We used weights pre-trained on ImageNet33 implemented in the PyTorch package.47 To utilize

the scikit-learn48 pipeline for the deep learning model, we used the model wrapper from the Skorch library.49 The pipeline comprises

the data transformation step, which includes normalizing samples with the 1st and 99th percentile of images for each dataset,

random vertical and horizontal flips, and random noise. To evaluate and compare model accuracy, we have used the F1-score.

The model was trained with the cross-entropy loss and AdamW optimizer, with a batch size of 128. The learning rate was set to

0.001 when initializing a new model before starting the training and was kept decreasing by a factor of 0.5 if there was no improve-

ment in the F1-macro score of the validation set for five epochs straight.We have also applied the early stopping technique, abrupting

the training if the same metric stays constant ±0.0001 for 50 epochs.

Model interpretation
To the best of the authors’ knowledge, no methods can be directly applied to the pre-trained model to evaluate the channel impor-

tance. However, some methods evaluate the importance of a single or set of pixels. Thus, our first approach was to aggregate their

results per channel. The aggregation method takes the median of the pixel values per channel.

In this study, we have used the following pixel-wise interpretation methods to analyze the channel importance.

PxPermutes -

Analog to pixel-wise interpretation, channel importance can be estimated via conducting sensitive analysis: measuring changes in

the model output caused by changes in input. However, our method permutes pixels in the channel compared to occlusion,36 which

replaces a specific pixel area with an occluding mask. We avoid violating the critical principle of machine learning, which states that

training and test sets must be drawn from the same distribution.

Permuting pixels per channel destroys the structural information contained in contours, edges, or areas. It can still be guaranteed

that the degradation in the model performance was not due to the artifacts in the pixel intensity distribution.

PXPermute augments each image channel in a dataset by permuting the pixels of each channel k times. For a dataset with N im-

ages, PXPermute generatesN � kmodified multichannel images; see Figure 1B. The user can define the parameter k: a larger k leads

to more robust results but requires more computational resources. For a very large k, the algorithm’s complexity increases and ap-

proaches the brute force search approach, in which the model is retrained and re-evaluated for all possible channel combinations.

We test PXPermute on a single-cell classification task, measuring the drop in the F1-score as our metric for performance evaluation.

PXPermute design is inspired by the previous works on feature importance as well as interpretability of CNN models,36,50,51 which

tries to solve the disadvantages of the other interpretability methods and combine all the strengths, such as independence on the

model architecture, preserving the same train/test pixel intensity distribution, and simplicity in one method.

Occlusion

Zeiler et al.36 introduced the idea of estimating the importance of the part of the scene by replacing it with a gray square and observing

the classifier’s output. Such a technique was called sensitive analysis or occlusion sensitivity. Later, Zintgraf et al. initiated removing

the information from an image completely and calculating the effect. In addition, the authors proposed optimizing the occluding strat-

egy by introducing themarginalization of the occluded pixel. Finally, themethodwas studied further and formalized by Samek et al.52:

Ri = fðxÞ � fðx ⨀ð1 � miÞÞ, where R is a heatmap, f is a classifier function, m is an indicator function for removing the patch or

feature, and ⨀ denotes the element-wise product. As a result, the heatmap highlights the patches (pixels) stronger if their removal

affected the classifier results more. Due to its mechanism, the method is referred to as the perturbation-based forward propagation

method.

Despite the simplicity of the concept, the method has its disadvantages. One of them is computational complexity. Every time one

pixel or patch is occluded, the outputmust be recomputed. The computational time can rapidly become infeasible if the input is huge.

Another problem of the approach is the saturation effect. It occurs when removing only one patch at a time does not affect the output,

but removing multiple patches simultaneously does. This leads to misinterpretation and wrong conclusions. In addition, occluding

the test image changes its pixel intensity distribution, which can lead to a corrupted interpretation.

Guided Grad-CAM

another way of interpreting a model is backpropagating an important signal from the output toward the input. If occlusion requires

perturbing and passing the input forward multiple times, this approach needs to do a backward pass only once, making it compu-

tationally efficient. Nevertheless, gradient-based backpropagation methods have drawbacks, including the saturation effect and be-

ing designed for convolutional neural networks only.
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Guided Grad-CAM is an element-wise product of the results of two other interpretational approaches: Guided Backpropagation

and Grad-CAM.25 On the one hand, Grad-CAM uses the last convolutional layer’s gradient information to evaluate each neuron’s

importance for a specific class. On the other hand, Guided Backpropagation isn’t class-discriminative but rather highlights details

of an image by visualizing gradients in high resolution. Thus, fusing both methods results in high-resolution class-discriminative sa-

liency maps.

DeepLift

with this method, authors addressed the saturation problem by considering gradient-based interpretation approaches.37 Instead of

propagating the gradients, this approach suggests propagating the difference from a reference. For example, the reference input can

be blurred images or images containing only the background color. Consequently, themethod’s output strongly depends on the defi-

nition of reference input, which requires data or domain knowledge.

Layer-wise relevance propagation (LRP) -

the idea is to calculate the relevance of input features to the particular prediction.39 The relevance is propagated from the output back

to the input layers by distributing the output value into relevance scores for each underlying neuron sequentially based on themodel’s

weights and activations. So that the neuron with a positive contribution receives a proportionally bigger relevance score. Themethod

applies the set of propagation rules depending on the activations and layers, making this method more difficult to implement and

more computationally expensive if applied to a large-scale model.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analysis can be found in the text and figure legends. All necessary information, including the number of

samples and the quantity measured, is reported in the corresponding section in the text or figure legend.
Cell Reports Methods 4, 100715, February 26, 2024 e3
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