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Cellular energy regulates mRNA degradation in a
codon-specific manner
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Abstract

Codon optimality is a major determinant of mRNA translation and
degradation rates. However, whether and through which mechanisms
its effects are regulated remains poorly understood. Here we show
that codon optimality associates with up to 2-fold change in mRNA
stability variations between human tissues, and that its effect is
attenuated in tissues with high energy metabolism and amplifies with
age. Mathematical modeling and perturbation data through oxygen
deprivation and ATP synthesis inhibition reveal that cellular energy
variations non-uniformly alter the effect of codon usage. This new
mode of codon effect regulation, independent of tRNA regulation,
provides a fundamental mechanistic link between cellular energy
metabolism and eukaryotic gene expression.
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Introduction

Codons encode in three nucleotides 20 amino acids in a redundant
way. Importantly, codons coding for the same amino acid, or
synonymous codons, are not functionally equivalent. In particular,
codons differ on their optimality for being decoded by the
translation machinery, which not only affects the rate of protein
production but also the rate of messenger RNA (mRNA)
degradation (Hoekema et al, 1987), via a pathway termed codon
optimality-mediated mRNA degradation (COMD) (Bae and Coller,
2022). Mechanistically, it has been shown in yeast that a ribosome
dwelling at a given non-optimal codon not only delays its
translation but can also be recognized by the Ccr4-Not complex
triggering mRNA degradation (Buschauer et al, 2020).

Differences in optimality between codons have been suggested
to be mostly determined by variation in cognate tRNA

concentration (reviewed in Hanson and Coller (2018)). In light of
such an explanation, regulation of the tRNA pool composition
between cell types and conditions could differentially affect mRNA
translation and degradation. Consistent with this hypothesis,
associations between codon usage and differential expression
between tissues and conditions have been reported across
eukaryotes (Gingold et al, 2014; Burow et al, 2018a; Guimaraes
et al, 2020; Hernandez-Alias et al, 2020; Allen et al, 2022). However,
whether regulation of the tRNA pool is generally causing these
associations is debated. While variations of the tRNA pool have
been reported by some studies (Gingold et al, 2014; Goodarzi et al,
2016; Hernandez-Alias et al, 2020), other studies, including some
with advanced tRNA sequencing protocols (Schmitt et al, 2014;
Pinkard et al, 2020; Behrens et al, 2021), reported surprisingly
stable proportions of the tRNA pool per anticodon. Hence, under
which conditions and how codon optimality plays a role in
differential gene expression remains unclear.

Results

Here we analyzed the effect of codon optimality on differential gene
expression by first looking at mRNA stability. To this end, we
considered changes in the ratio between exonic and intronic RNA-
Seq read coverage as a proxy for the variation of mRNA stability
((Gaidatzis et al, 2015), Methods). We processed 7771 RNA-Seq
human post-mortem samples from the GTEx project spanning 49
tissues and 528 individuals (Fig. 1A; Appendix Fig. S1). Typically,
mRNA stability varied 2.7-fold between tissues (median fold
change between lowest and highest decile). In comparison, mRNA
abundance typically varied by 4.2-fold between tissues (transcript
per million median fold-change between lowest and highest decile).
This observation shows that mRNA stability variations substan-
tially contribute to between-tissue mRNA regulation and under-
scores the importance of post-transcriptional processes in gene
regulation, in agreement with previous studies (Rabani et al, 2011;
Duan et al, 2013).

As a first analysis, we aggregated all GTEx samples into tissues
in order to focus on tissue-specific rather than individual-specific
variations. To study mRNA stability regulation, we defined the
relative half-life as the ratio of the mRNA stability in a tissue to its
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Figure 1. Codon optimality associates with mRNA stability variations between tissues.

(A) Variations in mRNA stability for every gene are estimated using the ratio of the number of exonic reads, mostly reflecting the balance between mRNA synthesis and
degradation, to the number of intronic reads, mostly reflecting mRNA synthesis (Gaidatzis et al, 2015). We then investigated how those estimated variations in mRNA
stability associate with codon usage. (B) Association (regression slope, Appendix Fig. S2) between codon frequency (column) and relative mRNA half-life for each tissue
(rows), along with codon decoding rate measured in the HEK293 cell line (lower track), a measure of codon optimality. The tissues are ordered by increasing COMD
coefficient (right panel, Methods). (C) mRNA half-life ratio of suprapubic skin to frontal cortex against mRNA decoding rate. The mRNA decoding rates are expressed in
codons per second and computed using codon decoding rates measured in HEK293 cells (Methods). According to the linear regression (blue line), a decoding rate change
of 1 codon per second in HEK293 associates with 2.2-fold larger mRNA stability ratios (orange annotations). (D) COMD coefficient across tissues.
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mean across tissues (Methods). We observed strong associations
between codon frequencies and tissue-specific relative half-life
(Fig. 1B). Strikingly, in each tissue, the associations of codons with
mRNA half-life ranked according to various codon optimality
measures (Fig. 1B; Appendix Fig. S3). This suggested a global
modulation of codon optimality effects on mRNA half-life rather
than a regulation at the level of individual codons. We next asked
whether these codon-level associations were also reflected at the
mRNA level. To this end, we considered for each mRNA its
decoding rate in HEK293 cells as a codon optimality measure
(Dana and Tuller, 2015). Importantly, we did not assume that
decoding rates are conserved across tissues. Instead, we used the
HEK293 decoding rates as a measure of codon optimality and
investigated how this codon optimality measure associates with
relative mRNA half-life. The dynamic range of HEK293 mRNA
decoding rates spanned about 1 codon per second (difference
between the slower and the faster 4th percentile, Fig. 1C).
Remarkably, variation in this range was associated with changes
in half-life of surprisingly large amplitudes, including a 2.2-fold-
change between suprapubic skin and frontal cortex (Fig. 1C). These
results suggest that the amplitude of the effect of codon optimality
on mRNA degradation is modulated and is an important
contributor to mRNA regulation across human tissues.

To systematically study variations of codon optimality effects on
mRNA half-life, we introduced a new metric termed codon
optimality-mediated mRNA degradation (COMD) coefficient.
The COMD coefficient quantifies how much the relative half-life
of an mRNA is predicted to change given a decoding rate increase
of 1 codon per second in HEK293. The higher the COMD
coefficient in a given sample, the more beneficial the usage of
optimal codons for mRNA stability. The COMD coefficient was
maximal in sun-exposed skin, reaching a value of 1.6-fold-change/
codon/s (Fig. 1D). Assuming causality, this suggested that recoding
an mRNA such that its decoding rate is 1 codon per second faster
in HEK293, could increase its half-life by 1.6-fold in sun-exposed
skin relative to the average tissue. The COMD coefficient was
minimal in several brain tissues with values of about 0.7-fold-
change/codon/s. Notably, the ranking of the tissue COMD
coefficients was similar when using decoding rates reported in cell
lines other than HEK293 (Appendix Fig. S4), showing that these
observations were qualitatively robust to the exact decoding rates
used as reference for defining the COMD coefficient.

We next asked which biological processes, if any, could cause
this apparent modulation of the effect of codon optimality on
mRNA degradation. Using the Gene Ontology, we found the
strongest associations for mitochondrial ATP synthesis pathways,
the expression of whose genes negatively correlated with the
COMD coefficient across tissues (Gene set enrichment analysis,
False Discovery Rate, FDR < 10-6 for Mitochondrial ATP synthesis
coupled electron transport and other mitochondrial ATP synthesis
related GO terms, Fig. 2A,B; Dataset EV1). Furthermore, this
negative correlation was also observed across individuals within the
same tissues (Fig. 2C; Appendix Fig. S5C). To assess the generality
of these observations beyond the GTEx dataset, we next processed
single-cell RNA-Seq data from 45,146 mouse cells (Almanzar et al,
2020) that we aggregated into 45 cell types. In mouse cells,
mitochondrial ATP synthesis genes also negatively correlated with
the COMD coefficient (Gene set enrichment analysis, FDR < 0.01,
Appendix Fig. 5A–C). Taken together, these observations suggest

that the more reduced the mitochondrial ATP synthesis, the more
beneficial to mRNA stability the usage of optimal codons.
Consistent with this hypothesis, we furthermore found that age,
which is linked with a decline in mitochondrial function (reviewed
in Sun et al (2016)), positively correlated with the COMD
coefficient (Fig. 2D, GTEx dataset).

Translation is one of the most energy-demanding processes in
the cell (Buttgereit and Brand, 1995). In order to decode one codon
at least 3 energy-carrier molecules are needed, 1 ATP and 2 GTP
(Dever et al, 2018; Gomez and Ibba, 2020). The previous
observations indicate a link between codon optimality and ATP
production. We then set out to test through perturbation analyses
whether this link was causal or merely correlative. The GTEx
dataset, consisting of post-mortem samples, provides data for
which Nature performed such a perturbation experiment. At death,
respiration and blood circulation cease, which deprives the body’s
cells of oxygen and impairs mitochondrial ATP synthesis. More-
over, the GTEx samples were stabilized at different times after
death, or ischemic times, allowing us to study the effects of varying
degrees of oxygen deprivation. We found the COMD coefficient to
increase with ischemic time adjusting for age and tissue (multi-
variate analysis Fig. 3A, stratification Fig. 3B, Appendix Figs.
S6–10). These results, which show that the effect of codon
optimality on mRNA stability is amplified upon oxygen depriva-
tion, agree with the role of ATP production implied by the previous
observations in GTEx and mouse.

However, ischemic times in the GTEx dataset span hundreds of
minutes. It cannot be excluded that mechanisms other than
intracellular ATP deprivation (Ferreira et al, 2018), including tRNA
regulatory response, could be occurring during these times. To address
this concern, we next performed an experiment to assay the short-
term response of codon optimality effects to ATP deprivation. To this
end, we performed 5′P sequencing (5PSeq) (Pelechano et al, 2016;
Zhang and Pelechano, 2021) on S. cerevisiae cultures following
exposure to antimycin A, a cellular respiration inhibitor (Fig. 3C).
5PSeq maps the 5′ ends of RNA fragments resulting from 5′ to 3′
degradation which is generally carried out by XRN1 and occurs
predominantly co-translationally (Pelechano et al, 2016). In this case,
the ribosome protects the RNA from XRN1 degradation, making
5PSeq a toeprinting assay for ribosome position mapping (Fig. 3D).
Variations in codon-associated 5Pseq coverage mostly come from
ribosome occupancy changes (Pelechano et al, 2016; Zhang and
Pelechano, 2021). We derived a measure, which we termed codon-
associated 5′ coverage, that captured how much each codon associates
with the abundance of 5′ RNA degradation intermediates correspond-
ing to its A-site position while adjusting for the 17-nt shift due to
ribosome protection as well as controlling for gene coverage, distance
to the start codon, and sequencing depth (Fig. 3D for raw data around
a non-optimal codon, Methods). As expected, these estimates of
codon-associated 5′ coverage were consistent with previously reported
decoding times and codon optimality in yeast (Appendix Fig. S11).
Notably, ratios in codon-associated 5′ coverage between optimal and
non-optimal codons negatively correlated with intracellular ATP
concentration over the time course (Fig. 3E,F). These results are
consistent with ATP concentration modulating the contribution of
codon optimality to translation and translation-related mRNA
degradation. Furthermore, these observations made within a few
minutes upon ATP deprivation, cannot be explained by a transcrip-
tional response of tRNA abundance.
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Our findings reveal a fundamental link between metabolism,
gene expression, and gene sequence, the consequences of which
need to be explored. As a first step in this direction, we asked
whether this phenomenon could constrain tissue-specific mRNA
isoform regulation. To this end, we considered cassette exons, i.e.
exons located in between two other exons, exhibiting a tissue-

specific inclusion pattern. In sun-exposed skin, a tissue with a high
COMD coefficient and low mitochondrial activity, we found that
cassette exons that were more often included used more optimal
codons compared to cassette exons that were more often skipped
(Fig. 4A). The opposite was observed in the cerebellar hemisphere,
a tissue with a low COMD coefficient and high mitochondrial

Figure 2. Mitochondrial ATP synthesis activity associates with the COMD coefficient between tissues and individuals.

(A) Expression in transcripts-per-million (TPM) across major GTEx tissues of NDUFB3, a representative nuclear-encoded gene that encodes a protein of the mitochondrial
respiratory chain, against the COMD coefficient (Spearman’s rho = −0.62, P = 7.5 × 10-4). (B) Gene set enrichment analysis (Subramanian et al, 2005) for the Gene
Ontology biological process “mitochondrial ATP synthesis coupled electron transport” in human. (C) NDUFB3 expression (TPM) against the COMD coefficient across
GTEx individuals for 7 tissues. (D) COMD coefficient of GTEx individuals estimated adjusting for tissue (Methods) against age (Spearman’s rho = 0.33, P = 9 × 10−15).
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activity. Furthermore, the trend generalized to tissues with
intermediate COMD coefficient values (Fig. 4B). Hence, these
observations reveal an unanticipated codon usage bias for tissue-
specific exons. Moreover, our observations and experiments
provide an explanation for this: non-optimal codons are relatively
less likely to trigger mRNA degradation in tissues with high cellular
energy. Therefore, splice isoforms using non-optimal codons are
comparatively more stable in tissues with high cellular energy,
which is reflected in an increased abundance of cassette exons using
slow codons in the mRNA pool. Perhaps, even, these exons have
evolved to use codons suited to the metabolic state of the tissue they
are expressed in.

How could cellular energy mechanistically modulate how much
codon optimality impacts mRNA stability? Nearly all the energy
required by translation is consumed during elongation (Liu and
Proud, 2016) through ATP or GTP where it is used to power the
codon decoding steps and tRNA recharging. Mitochondria produce
energy in the form of ATP, which regenerates GTP (Boissan et al,
2018). We hypothesized that changes in ATP abundance, and
therefore GTP as well, alter the kinetics of the translation
elongation cycle unequally for different codons and consequently
how likely the Ccr4-Not complex gets recruited and triggers mRNA
degradation. To formally explore this hypothesis, we developed a
mathematical model of the translation elongation cycle (Fig. 5A,
Methods).

In a translation elongation cycle, the ternary complex (TC),
which is composed of one aminoacyl-tRNA, one GTP, and one
eukaryotic translation elongation factor 1A (eEF1A), is first loaded
into the A-site of a translating ribosome. Next, the amino acid is
added to the nascent polypeptide chain and the ribosome
translocates, freeing up the A-site for a new cycle (Dever et al,
2018). If TC loading is slow, the E-site can be freed while the A-site
remains empty, setting the ribosome into a conformation
recognized by the Ccr4-Not complex (Buschauer et al, 2020).
Hence, the faster the TC gets loaded on the ribosome, the less likely
mRNA degradation is triggered.

Our mathematical model predicts that higher amounts of ATP
increase the fraction of tRNAs in TC and, consequently, the TC
loading rate (Appendix Fig. S12). Moreover, the model describes
how this relationship depends on the overall abundance of the
tRNA. Non-optimal codons, for which the abundance of cognate
tRNAs is low (Bae and Coller, 2022), show a relatively higher TC
loading rate increase as ATP increases compared to optimal

codons. As a result, the TC loading rate ratio of optimal to non-
optimal codons decreases with ATP concentration (Fig. 5B). This
qualitative behavior was robust to choices of rate constants within a
broad range of plausible values (Fig. 5C). Altogether, these
theoretical investigations support a model in which cellular energy
attenuates the effects of codon optimality by dampening the impact
of overall cognate tRNA abundance variation on TC loading.

Discussion

Taken together, our results show that cellular energy regulates
the effect of codon optimality on mRNA stability. Codon
optimality matters more in conditions of scarcer energy, such as
tissues with low mitochondrial activity, older age, oxygen
deprivation, or exposure to specific drugs. In addition, we found
this effect to be reflected in the codon usage of tissue-specific
cassette exons.

Previous studies reported differences in the effect of codons on
gene expression for cells in distinct proliferation states (Guimaraes
et al, 2020; Gingold et al, 2014). However, regulation of the tRNA
pool as a driver of such differences, although observed, is not
consensual. Our study provides an explanation for the reported
attenuated effects of codon usage in proliferative cells in absence of
tRNA regulation (Guimaraes et al, 2020), as ATP concentration is
maximal at the G2/M phase (Marcussen and Larsen, 1996).

The experimental validations were conducted using yeast as a
model system, which may not properly capture the relevant biology
of human cells, posing a limitation to our study. Nevertheless, the
generality of our findings for diverse eukaryotes is supported by the
consistent association of the effects of codon optimality with
mitochondrial gene expression in human and mouse, as well as the
attenuated effects of codon optimality in brain and testis previously
reported for the fruit fly (Burow et al, 2018b; Allen et al, 2022)—an
observation for which we now provide an explanation.

A second limitation to our study is that we indirectly used the
expression of genes involved in mitochondrial ATP production as a
proxy for the cellular energy status when analyzing the human and
mouse transcriptome data. ATP concentration for different tissues
in humans are scarce and the reported values are highly variable
(Greiner and Glonek, 2021). Using yeast as a model organism
allowed us to probe a simpler organism where the ATP abundance
response to perturbations in ATP production has been well

Figure 3. Differences in the contribution to mRNA degradation of optimal and non-optimal codons depend on intracellular ATP concentration.

(A) COMD coefficient adjusted for age and tissue (Methods) against ischemic time (Spearman’s rho = 0.41 P < 10−15). Blue line marks linear trend obtained by
linear regression. (B) COMD coefficient against ischemic time for esophagus samples grouped by age category (Spearman’s rank correlation rho is statistically
significant (P < 0.05) for all age categories but 70–79). (C) Sampling design of 5PSeq profiling time course following addition of the cellular respiration inhibitor
Antimycin A on yeast cells. For each time point three biological replicates were generated. The corresponding intracellular ATP concentration was taken from
Walther et al, 2010. (D) Number of 5P-seq reads (in reads per million) per position relative to the GCG codons for the time points with maximum (−5 min) and
minimum (2 min) intracellular ATP concentration. 5PSeq predominantly maps the 5’ends of mRNAs co-translationally degraded by Xrn1, which are located 17
nucleotides 5′ of the ribosome A site (Pelechano et al, 2015). Hence, the peak located 17 nt 5′ of GCG codons is consistent with GCG being a non-optimal codon in
yeast. This peak is amplified at low ATP concentration (2 min time point). (E) Distribution of codon-associated 5′ coverage inferred from 5PSeq for non-optimal and
optimal codons (defined using first and fourth quartiles of occupancy in unperturbed cells). Values are expressed in fold-change relative to median codon effect in
unperturbed cells (Methods). P-values were obtained from double-sided Wilcoxon rank-sum tests (*<0.05, **<0.01, ***<0.001, ****<0.0001). For each boxplot:
Center line, median; box limits, first and third quartiles; whiskers span all data within 1.5 interquartile ranges of the lower and upper quartiles. The number of points
for each boxplot is n= 45. (F) Ratio of codon-associated 5′ coverage for each time point between non-optimal and optimal codons with error bars representing ±
1 standard deviation based on a permutation test (n = 1000 points from 1000 permutations), alongside its corresponding reported intracellular ATP concentration
(Walther, 2010).
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characterized. Moreover, using yeast made it possible to perform
5PSeq, a method to toeprint the ribosome in vivo without the need
for translation inhibitors. An alternative to 5PSeq for profiling
ribosome occupancies could have been ribosome sequencing (Ribo-
Seq). However, Ribo-Seq requires larger sample volumes, making
the study of rapid phenomena occurring difficult. In contrast,
5PSeq can be executed with just 1 mL of sample volume, enabling
the utilization of rapid, Eppendorf-based, collection methods.
Moreover, 5PSeq leverages the intrinsic toeprinting activity of
endogenous RNases active in the cell and does not require
polysome fractionation, in vitro RNA digestion, or other extensive
manipulations. Therefore, 5PSeq can be more easily performed at
very short times by using flash freezing followed by sequencing.
Hence, 5PSeq allowed us to profile reactions within minutes, before
widespread transcriptional response to the toxicity of ATP
production inhibition and before transcriptional response of tRNA
synthesis. One limitation of 5PSeq is that not all reads originate
from ribosome toeprinting. The coverage of 5PSeq along the coding
sequence also entails from RNA that are not co-translationally
degraded. Hence, increased translation-independent degradation
could make 5PSeq coverage less dependent on ribosome occupancy
and consequently on codon identity. Under this alternative model,
the attenuated effect of codon optimality for high ATP observed in
our 5PSeq experiment would be due to an increase in the strength
of translation-independent RNA degradation over COMD. Future

studies are needed to distinguish between a mechanism for which
ATP modulates the relative strength of COMD versus translation-
independent degradation on the one hand, and ATP-dependent
codon decoding rate as we mathematically modeled here on the
other hand.

A third limitation of our study is that we did not assay mRNA
stability variations directly. For the mammalian transcriptomes we
used fold-change of the exonic-to-intronic read count ratio as a
proxy. Tissue-specific increased persistence of intronic reads could
affect exonic-to-intronic read count ratio. Importantly, the COMD
coefficient remains unaffected assuming such factors are not gene-
specific and act multiplicatively. More complex non-multiplicative
relationships could exist, although it is unclear how they could take
shape. Also, we did not measure RNA stability changes in the yeast
experiment. On the one hand, measuring mRNA stability under
such dynamic and short time changes is technically
challenging (Uvarovskii et al, 2019). On the other hand, even if
it were technically feasible, ribosome occupancy changes may not
lead to measurable mRNA stability changes under this short time
period.

Our theoretical investigations suggest TC loading as one possible
biochemical pathway linking cellular energy to codon optimality. In
this mathematical model, the abundance of energy carrier molecules
differentially modulates the proportion of tRNAs in a ternary complex
which affects codon decoding. Ultimately, this would allow codon

Figure 4. Codon optimality of cassette exons increasingly included or skipped in a tissue relates to its COMD coefficient.

(A) Distribution of the decoding rate of cassette exons that are increasingly included (ΔΨ > 0.2) or skipped (ΔΨ < −0.2) in sun-exposed skin (left) and cerebellar
hemisphere (right) compared to other tissues. Exon decoding rates are expressed in codons per second and computed using codon decoding rates measured in HEK293
cells (Methods). P-values were obtained from a Wilcoxon rank-sum test. For each boxplot: Center line, median; box limits, first and third quartiles; whiskers span all data
within 1.5 interquartile ranges of the lower and upper quartiles. The number of points for each boxplot is indicated in the figure labels. (B) Codon decoding rate average of
increasingly skipped (left) and included (right) exons per tissue against the tissue’s COMD coefficient. One-sided Spearman’s rank correlation rho is statistically significant
for both panels (P = 0.018 and P = 0.007, one-sided P-value).
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decoding rates to be modulated despite reported stable proportions of
the tRNA pool per anticodon across tissues (Schmitt et al, 2014;
Pinkard et al, 2020; Behrens et al, 2021). Indeed, our mathematical
model shows that there is a gap between the total amount of tRNAs
and the proportion of tRNAs in a ternary complex and therefore ready
to be loaded in the ribosome. This is consistent with a previous study
in E. coli that reports that the proportion of tRNAs in a ternary
complex is highly variable and can range from 8% to 87% depending
on the tRNA (Rudorf and Lipowsky, 2015).

Importantly, our mathematical model does not exclude alter-
native mechanisms. As mentioned above, one possibility is that
higher cellular energy levels could increase the rate of translation-
independent mRNA degradation which would attenuate differences
arising from codon identity.

Another possibility would be that higher cellular energy levels
increase the sensitivity of ribosome pausing to degradation, making the
triggering of mRNA degradation less dependent on codon identity.
However, there is no report showing that monitoring of codon

Figure 5. Mathematical modeling predicts that ATP concentration modulates differences in decoding rates between codons.

(A) Reactions considered in our mathematical model of the eukaryotic translation elongation cycle (top to bottom): tRNA aminoacylation, ternary complex (TC) formation,
TC loading, ribosome translocation, and ATP to GTP conversion. The mRNA degradation is depicted but not included in the model. (B) Fast-to-slow TC loading rate ratio
against ATP concentration for a representative combination of plausible kinetic rate constants (Methods). The mathematical model predicts that the fast-to-slow TC
loading rate ratio is 40% lower for the maximal compared to the minimal ATP concentration. (C) Distribution of the relative difference between the minimal and maximal
ATP concentrations of the fast-to-slow TC loading rate ratio across combinations of plausible model parameter values. Across all parameter combinations, the TC loading
rate ratio is lower for maximal ATP concentrations.
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optimality is energy-dependent. Although to a lesser extent than for
translation elongation, ATP is also required in translation initiation
(Jackson et al, 2010), termination and ribosome recycling (Dever and
Green 2012), and by helicases that unwind RNA structures facilitating
translation initiation and potentially other translation steps (Parsyan
et al, 2011). One cannot exclude that effects of ATP variation on those
steps may be reflected in transcriptome-wide variation of codon-
specific ribosome occupancies. Moreover, dedicated pathways sensing
ATP levels involved in controlling translation may shape the effect of
codon optimality. This could be the case for the mTORC1 pathway,
which controls translation given diverse cellular cues such as energy
status, oxygen availability, and amino-acid levels (Laplante and
Sabatini, 2012; Darnell et al, 2018).

In the broader context, our findings relate to other studies
linking cell physiology and homeostasis with mRNA degradation.
In particular, mRNA degradation has been found to regulate
mRNA abundance either globally, to buffer changes in mRNA
abundance, or specifically to regulate sets of genes (Sun et al, 2012;
Swaffer et al, 2023; Eser et al, 2014; García-Martínez et al, 2021).
Whether and how our observations relate to these phenomena
remains to be investigated. For instance, the buffering of mRNA
levels seen upon transcriptional changes or in cells with higher
volumes could in part come from attenuated codon optimality
resulting in lower mRNA degradation under higher cellular energy.
Moreover, the potential biological mechanisms linking cellular
energy to codon optimality could take place to varying degrees and
are not mutually exclusive. Identifying which mechanisms take
place and delineating their contribution requires further research.

Altogether, our work uncovers a fundamental link between
cellular energy and eukaryotic gene expression, alternative or
complementary to tRNA pool regulation. The functional implica-
tions of this link extend beyond tissue and age specific to altered
energy metabolism states, such as in cancer and specific cellular
environments, potentially providing a novel way for these abnormal
states to shape gene expression.

Methods

GTEx exonic and intronic read counts

The BAM files for 7778 RNA-Seq samples, the gene-level and the
transcript-level TPM (transcript per million) values, as well as the sample
annotation of the GTEx v6 dataset, genome build hg19, were downloaded
from the GTEx portal on June 12, 2017, under accession number dbGaP:
phs00424.v6.p1. This RNA-Seq dataset is paired-end and unstranded.
Exonic coordinates of all protein-coding genes located in standard
chromosomes were extracted from the GENCODE annotation (Frankish
et al, 2021), release 19. Exonic and intronic read counts were obtained as
recommended by (Gaidatzis et al, 2015). Specifically, exonic coordinates
were flanked on both sides by 10 nt and were grouped by gene. Intronic
coordinates were obtained by subtracting the exonic coordinates from the
gene-wise coordinates. For each gene, exonic and intronic read counts
were obtained using the summarizeOverlaps function from the
GenomicAlignments package (Lawrence et al, 2013) v. 1.28.0 with the
mode parameter set to “IntersectionStrict” and the inter.feature parameter
set to FALSE to consider only reads that fully fall within the desired
genomic regions. Moreover, to be robust against noisy estimates based on

low read counts, in each sample genes with TPM < 1 were ignored (read
counts set as missing values). Finally, for each gene and each sample, the
log-transformed exonic-to-intronic read count ratio y was computed
using pseudocounts of 1:

y :¼ log2ðexonic countsþ 1Þ � log2ðintronic countsþ 1Þ:

Relative mRNA half-life

Next, we attributed those y values to the major isoform for each
sample, whereby the major transcript isoform was taken as the
transcript isoform with highest median TPM value across samples
of the same tissue. Transcripts with missing values in more than
one third of samples were discarded. For the remaining transcripts,
tissue-specific log-transformed exonic-to-intronic read count ratio
were calculated by taking the median of the y values over all
samples from the same tissue. We further filtered out transcripts
with missing values in more than 15% of the tissues.

Exonic and intronic read counts depend on gene-specific biases
including exonic and intronic length and GC-content. Following
(Gaidatzis et al, 2015), these biases are mostly multiplicative and therefore
cancel out when considering ratios between samples. We therefore use y
differences as estimates for mRNA half-life log-ratios between pairs of
samples or tissues. Following the same logic, the log2 relative mRNA half-
life eyij for transcript i in sample or tissue j was defined relatively to the
average across tissues or samples, respectively, i.e.:

fyi;j :¼ yi;j � yi

The entire procedure was applied at two levels of tissue
annotation granularity: the GTEx major tissues on the one hand,
and the GTEx subtissues on the other hand.

Transcript sequence features

Transcript sequences were retrieved using pyranges v0.0.84, kipoiseq
v0.4.1 from the release 19 of the GENCODE annotation of the human
genomic sequence GRCh37/hg19. Only coding sequences starting with
the start codon AUG were considered.

Codon effects

The estimated codon effect, sk,j, was obtained for each codon k and
tissue j separately by fitting a univariate linear regression of the type:

fyi;j ¼ sk;j fk;i þ εi;j;k;

where fk;i, is the proportion of codon k in the coding sequence of
transcript i. To this end, we used scikit-learn v0.22.2.

COMD coefficient

The COMD coefficient was obtained for each tissue or sample j by
fitting a linear regression of the type:

fyi;j ¼ αjri þ εi;j;
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where αj is the COMD coefficient for the sample or the tissue j and ri
is the geometric mean of the codon decoding rates of transcript i in
HEK293.

Generation of spliced and unspliced read counts ratio for
the mouse dataset

The BAM files and valid barcodes for the 28 scRNA-Seq samples
(using droplet-based 10x Genomics Chromium protocol) of 3-
month-old mice of the Tabula Muris Senis atlas dataset (Almanzar
et al, 2020) were downloaded from the public AWS S3 bucket
(https://registry.opendata.aws/tabula-muris-senis/). The reference
genome used to generate the BAM files did not contain
mitochondrial-encoded genes, therefore they were not considered
for our analysis. Sample annotations were downloaded from the
Gene Expression Omnibus under accession code GSM4505404,
specifically the file GSM4505404_tabula-muris-senis-droplet-offi-
cial-raw-obj.h5ad.

Loom files for each sample containing raw spliced and unspliced
counts were obtained by running the velocyto command-line tool
((La Manno et al, 2018), v0.17.17). In contrast to bulk RNA-Seq,
UMI-based scRNA-Seq (unique molecular identifier) allows
identifying whether reads originated from the same transcript.
The velocyto tool makes use of this and collectively marks reads of
the same transcript as unspliced if one of them aligns to an intronic
region or exon-intron junction. Conversely, if all reads of the same
UMI solely align to exonic regions, they are marked as spliced
reads. Equivalently to exonic and intronic reads, unspliced reads
are a proxy for premature mRNA and spliced reads a proxy for
mature mRNA, therefore their ratio is a proxy for mRNA stability
(Gaidatzis et al, 2015).

In order to have enough cells for pseudo-bulking, we filtered out
cell types (“cell_ontology_class”) that had less than 150 cells using
scanpy (Wolf et al, 2018), v1.8.2). For the remaining 45 cell types, we
computed pseudo-bulk aggregates by summing all counts of cells per
cell type for spliced and unspliced counts independently. To only
consider genes that are expressed across multiple cell types, we filtered
out genes with less than 3000 counts shared across spliced and
unspliced counts and all cell types. We normalized both spliced and
unspliced counts by dividing them by the total number of spliced and
unspliced counts, respectively, over all genes per cell type. Per gene
spliced-to-unspliced ratios were computed as log10(spliced counts +
1)− log10(unspliced counts + 1). Spliced-to-unspliced ratios were
centered across cell types for each gene. As gene expression, we used
the normalized and log-transformed spliced counts.

Transcript sequence features for the mouse dataset

Transcript features for mouse were retrieved as described for
human. For mouse, we used release 25 of the GENCODE
annotation (Frankish et al, 2021) of the mouse genomic sequence
GRCm38/hg38.

Major transcript isoform selection for the mouse dataset

Since the 10x single-cell technology does not produce full-length
transcript coverage, the major transcript of a gene was defined as
the transcript with the highest support. We considered the tags of
each transcript (GENCODE, release 25) and calculated the support

by summing up the following categories: being part of the
GENCODE basic annotation (tag “basic”), being tagged as the
principal isoform according to APPRIS database (tag “appris_-
principal_1”, (Rodriguez et al, 2013)), being a member of the
consensus CDS gene set (tag “CCDS”, (Pujar et al, 2018)), and
having an Ensembl transcript support level of 1 (“transcript_sup-
port_level”). A transcript could therefore have a support between 0
and 4 and for each gene we chose the transcript with the highest
support. If there were ties, one transcript was randomly chosen.

Gene set enrichment analysis

Gene set enrichment analysis (Subramanian et al, 2005) was
performed on the genes scored by their Spearman correlation
between their TPM values and the COMD coefficient across
tissues using GSEApreranked with package gseapy v1.0.0. Only
genes with TPM > 1 in all tissues were considered. Within-tissue
correlation between the COMD coefficient and gene expression
(TPM) followed by GSEA was computed as before. Only genes
with TPM > 1 in at least two-thirds of the samples were
considered.

In mouse, we considered genes whose log-transformed and
normalized spliced counts were greater than 0 across all cell types
(6051 genes). As in human, gene set enrichment analysis was
performed on the genes scored by their Spearman correlation.

For all GSEA analyses, only pathways with FDR ≤ 0.01 were
considered significantly enriched.

Individual’s COMD coefficient

We fitted a linear regression predicting the COMD coefficient of
each sample as the sum of an individual’s effect (which we defined
as the individual’s COMD coefficient) and a tissue effect.

Overview of the elongation cycle model

We developed a simplified steady-state model of one translation
elongation cycle to assess how variations in ATP and GTP
abundance can change the rate of ternary complex loading into
the ribosome for given tRNA and ribosome concentrations. We
modeled the 2-1-2 pathway of E-site tRNA release, because, unlike
the 2-3-2 pathway, it includes the state of the ribosome in which
both the A-site and the E-site are free (Chen et al, 2011), which is
the substrate for the Ccr4-Not complex (Buschauer et al, 2020).

In our simplified model, we considered the ribosome in two
states: free A-site or occupied A-site. The free A-site state
corresponds to the point where the ribosome is ready to accept
its cognate ternary complex. In this state the ribosome has finished
translocation, the P-site is occupied and both the A-site and the
E-site are free.

The occupied A-site state represents the point where the
ribosome is ready to translocate. In this state, the tRNA has already
been accommodated into the A-site (following GTP hydrolysis) and
the new peptide bond formed. In this state, both the A-site and the
P-site are occupied and the E-site is free.

The transition between the free and the occupied A-site states
described above is characterized by a series of intermediate states,
such as peptide-bond formation and ribosome conformation
changes (reviewed by Dever et al (2018)), that do not depend on
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the variables of interest: tRNA, ribosome, GTP and ATP
concentrations. Therefore, under changes in these variables, the
rate of transition between such intermediate states gives a constant
contribution to the rate of transition between the free and occupied
A-site states. Following from this, we considered the following
reactions: tRNA aminoacylation, ternary complex formation,
ternary complex loading, ribosome translocation (Fig. 2E).

tRNA aminoacylation

tRNAs are charged with amino acids by the aminoacyl-tRNA-
synthetase in a two-step reaction, where ATP is hydrolyzed to AMP
and one amino acid is loaded into the tRNA (reviewed by Gomez
and Ibba (2020)). We modeled tRNA aminoacylation with an
overall irreversible reaction:

tRNAfree þ ATPþ aa ! aa-tRNAþ AMPþ PPi

where tRNAfree represents the pool of uncharged tRNAs available to
be aminoacylated.

Assuming law of mass action, we modeled the rate of tRNA
aminoacylation as:

vtRNA aminoacylation ¼ kch½ATP� tRNAfree½ �; (1)

where kch is the rate constant of the tRNA aminoacylation reaction
under a given concentration of amino acids.

Ternary complex loading

The ternary complex, composed of one aminoacyl-tRNA, one GTP,
and one eukaryotic translation elongation factor 1A (eEF1A) binds
in the A-site of the ribosome, where the aminoacyl tRNA is
accommodated after the hydrolysis of GTP followed by the release
of eEF1A-GDP (Dever et al, 2018). We modeled the TC binding to
the A-site of the ribosome and the subsequent tRNA accommoda-
tion as a single irreversible reaction which we termed TC loading:

TCþ Ribosome freeA-site ! Ribosomeoccupied A-site þ eEF1A-GDPþ Pi

We assumed law of mass action kinetics, i.e:

vTC loading ¼ kl½TC� Ribosome free A-site½ �; (2)

where kl is the rate constant of the TC loading reaction.

Ribosome translocation

Translocation of the ribosome requires the binding of eEF2-GTP to
the A-site of the ribosome which is followed by the hydrolysis of
GTP and subsequent release of eEF2-GDP. After translocation, the
deacylated tRNA on the E-site is released from the ribosome (Dever
et al, 2018). We modeled this process as a single irreversible
reaction combining the recharging of eEF2 with GTP and its
subsequent binding to the ribosome A-site followed by GTP

hydrolysis, which results in ribosome translocation. Furthermore,
we combined together ribosome translocation and the release of
tRNA from the E-site:

RibosomeoccupiedA-site þ eEF2þ GTP ! Ribosome free A-site
þ tRNAfree þ eEF2-GDPþ Pi

We assumed law of mass action kinetics, i.e.:

vtranslocation ¼ ktr½GTP� RibosomeoccupiedA-site
� �

; (3)

where ktr is the rate constant of the translocation reaction under a
constant concentration of eEF2.

Ternary complex formation

Aminoacyl-tRNAs (aa-tRNAs) are bound to the ribosome in a
ternary complex (TC) with GTP and eEF1A (elongation factor 1A).
eEF1A is charged with GTP by the exchange factor eEF1B
(Dever et al, 2018). We modeled the eEF1A charging with GTP
and subsequent binding to aa-tRNA into a single reversible
reaction:

aa-tRNAþ eEF1Aþ GTP Ð TC

We assumed law of mass action kinetics, i.e.:

vTC formation ¼ kTC GTP½ � aa-tRNA½ � (4)

and

vTCdissociation ¼ kTCrev ½TC�; (5)

where kTC and correspond to the rate constant of the TC formation
and TC dissociation reactions, respectively, under a constant
concentration of eEF1A.

Steady-state solution

Assuming steady state, we symbolically solved the resulting system
of equations in Wolfram Mathematica v13.0.0.0. This led to the
following expression for the rate of TC loading as a function of
ATP, GTP, tRNAtotal, Rtotal and all rate constants considered above:

vTC loading ¼ 1
A

Bþ C þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ ðBþ CÞ2

q� �
; (6)

where:

A ¼ 2½ATP�kchkl kTC þ kTCrev
½GTP�

� �

B ¼ �½GTP�kTCktr ½ATP�kch þ kl RTotal½ �ð Þ
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C ¼ �½ATP�kch kTCrevktr þ kl kTC þ ktrð Þ RTotal½ � � klkTC tRNATotal½ �ð Þ

D ¼ 2kchkTCktr½ATP�½GTP� tRNATotal½ �A

the total number of ribosomes is:

RTotal ¼ RibosomeoccupiedA-site þ Ribosome free A-site; (7)

and the total number of tRNAs is:

tRNATotal ¼ tRNAfree þ aa-tRNAþ TCþ Ribosomeoccupied A-site: (8)

The order of magnitude of each rate constant was estimated
based on previous reports and mostly taken from S. cerevisiae when
possible. To ensure our results are not qualitatively sensitive to the
choice of rate constant, we considered multiple values spanning 2–3
orders of magnitude around the ones based on literature.

In S. cerevisiae, the rate of tRNA aminoacylation is in the order
of magnitude of 1 tRNA per second (Chu et al, 2011) and ATP
concentration can vary between 2 and 6 mM (Takaine et al, 2022).
Following Eq. 1, we can infer that kch ≈ 103 s−1 M−1.

From (Trösemeier et al, 2019) the rate constant of ternary complex
loading into the ribosome in S. cerevisiae is kl ≈ 107 s−1 M−1.

The rate of translocation for one ribosome is vtranslocation ≈ 102 s−1

(Trösemeier et al, 2019). Given the concentration of GTP ≈ 0.1 mM
(Koç et al, 2004), BNID 101420 (Milo et al, 2010) and considering
the previously derived expression for translocation rate velocity,
kt ≈ 106 s−1 M−1.

The rate of ternary complex association for one aminoacyl-
tRNA was estimated to be vTC ≈ 101 s−1 in E. coli (Rudorf and
Lipowsky, 2015) assuming a constant concentration of the required
elongation factor (EF-Tu) in its normal range. Given the
concentration of GTP ≈ 0.1 mM and the previously derived
expression for the rate of TC formation, vTC, kTC ≈ 105 s−1 M−1.

The concentration of tRNAs in yeast commonly varies between
0.1 μM and 1 μM (Trösemeier et al, 2019). The total concentration of
ribosomes is in the range 1–10 μM (Trösemeier et al, 2019). Assuming
that between 1% and 10% of the ribosomes translate one specific codon,
the concentration of ribosomes translating it is in the range 0.01–1 μM.
In Fig. 2F,G, the slow codon has a ratio between the total number of
tRNAs and total number of ribosomes of 1:4, and their concentration is
0.2 μM and 0.8 μM, respectively. For the fast codon, the ratio between
the total number of tRNAs and total number of ribosomes is 4:1, and
their concentration is 0.4 μM and 0.1 μM, respectively.

GTP concentration is found to be one order of magnitude below
ATP concentration according to data from Koç et al (2004) and
Takaine et al (2022). As an approximation, we assumed a GTP
concentration proportional to ATP concentration in 1:10 ratio.
Finally, the relative difference between the minimal and maximal
ATP concentrations of the fast-to-slow TC loading rate ratio was
computed using Eq. 6, for combinations of rate constants between
102–104 for kch, 107–108 for kl, 104–106 for kTC, 105–107 for ktr, and
10−3–10−1 for kTC rev. For each interval, we considered all possible
values in steps of 0.1 in the order of magnitude. The fast-to-slow

TC loading rate ratio was then computed for every parameter value
combination (over 2.1 million combinations).

Ischemic time analysis

The sample ischemic time in minutes is defined by GTEx as “the
interval between actual death, presumed death, or cross clamp
application and final tissue stabilization” and was obtained from the
GTEx sample annotation file, column “SMTSISCH”. The ischemic time
was compared to the COMD coefficient adjusted for age and tissue,
defined as the residual of the linear regression predicting the sample
COMD coefficient as a linear combination of the age and a tissue effect.

Yeast strains and culture conditions

The strain used in this study was BY4741 Mat a ura3 met1 his3 leu2
background (referred to as wild type). S. cerevisiae were grown in
trehalose-containing medium as the non-fermentable carbon
source at 30 °C. Trehalose-containing medium includes 20 g/l
trehalose, 6.7 g/l YNB + (NH4)2SO4 (yeast nitrogen base without
amino acids; Difco), amino-acid supplements at a final concentra-
tion of 100 mg/l to complement the auxotrophies of the strains. The
medium was buffered at pH 4.8 by adding 14.6 g/l succinic acid and
6 g/l NaOH (Walther, 2010). Pre-cultures were grown overnight in
250 mL flasks and agitated at 150 rpm. The next day, pre-cultures
were diluted to OD600 = 0.05 and grown until an OD600 of ~0.5 was
reached. To block mitochondrial function, antimycin A was added
to a final 2 μg/ml to the medium and incubated for 0, 2, 5, and
10 min (Walther, 2010). Cells were fast spun down for 15 s at
13,000 × g in a microcentrifuge and flash-frozen in liquid nitrogen.

HT-5PSeq library preparation

HT-5PSeq libraries were prepared as previously performed (Zhang and
Pelechano, 2021). Briefly, 6 μg RNA was used for DNase treatment,
then DNA-free total RNA were directly ligated with RNA/RNA oligo
containing UMI (RNA rP5_RND oligo). Ligated RNA was reverse
transcribed and primed with Illumina PE2 compatible oligos contain-
ing random hexamers and oligo-dT. RNA in RNA/DNA hybrid was
depleted by sodium hydroxide within 20 min at 65 °C incubation.
Ribosomal RNAs were depleted using DSN (Duplex-specific nuclease)
with the mixture of ribosomal DNA probes. Samples were amplified by
PCR and sequenced in an Illumina NextSeq 2000 instrument using
55 sequencing cycles for read 1 and 55 cycles for read 2.

HT-5PSeq analysis

HT-5PSeq reads were trimmed 3′-sequencing adapter using cutadapt
V1.16 (Martin, 2011). The 8-nt random barcodes on the 5′ ends of
reads were extracted and added to the header of the fastq file as the
UMI using UMI-tools. 5′P reads were mapped to the S. cerevisiae
reference genome (SGD R64-1-1) using STAR 2.7.9a with the
parameter --alignEndsType Extend5pOfRead1 to exclude soft-
clipped bases on the 5′ end. After removing PCR duplicates by
UMI-tools 1.0.0 (Smith et al, 2017), analysis of 5′ ends positions was
performed using the Fivepseq package (Nersisyan et al, 2020),
including the relative distance to start and stop codons. Specifically,
the unique 5′mRNA reads in biological samples were merged. The
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third replicate sample from the −5 min time point was discarded due
to significantly lower 5PSeq coverage compared to other samples.

5PSeq modeling

We considered all 5PSeq reads located 17 nt 5′ of in-frame codons. To
avoid possible confounding effects due to translation initiation and
termination, we did not consider the start codon and the second codon,
nor we considered the stop codon and its preceding codon. For robustness,
we further did not consider genes with less than 10 reads mapping to all
considered codons. Furthermore, genes encoded in mitochondrial DNA
were discarded because they use a different genetic code.

We started by isolating the contribution of the codon-specific
ribosome dwelling to the 5PSeq coverage from factors independent of
translation elongation. The 5PSeq read coverage can depend on how
frequently the corresponding mRNA is degraded, its expression and
how frequently translation is initiated. Furthermore, as Xrn1 follows
the last translating ribosome, the position of the codon in the coding
sequence could potentially impact the 5PSeq coverage. Hence, we
modeled the reads in gene g and distance d from the start codon in
order to isolate the effect of the A-site codon on the 5PSeq reads from
gene, position, and sequencing depth effects. For each sample
(belonging to a batch and time point) we modeled the read coverage
yg;d on gene g at distance d from the start codon (adjusting for the 17
nt shift) using a generalized linear model with a negative binomial
distribution and the log link function:

yg;d � NBðμg;d; θÞ

logðμg;dÞ ¼ αg þ βkðg;dÞ þ γd þ s;

Where αg is a gene effect, βkðg;dÞ is the codon-associated 5′
coverage for the A-site codon located at distance d on gene g, and s
(or size factor) is a sample-specific intercept.

The model was fitted using the package statsmodels v0.12.0. Due
to memory limitations, the model was fitted separately on three-
thirds of the data for each sample, and the coefficient estimates
averaged over the three-thirds.

To define optimal and non-optimal codons for the yeast 5PSseq
time course, we considered the samples harvested prior to
application of the drug. Next we averaged βk for every codon k
across these samples and defined the optimal codons as the codons
from the first quartile and the non-optimal codons as the codons
from the fourth quartile.

To relate intracellular ATP concentration with the 5P-seq
readouts at time point 0 while accounting for centrifugation and
sample stabilization of the 5PSeq protocol, we considered the
intracellular ATP concentrations reported by (Walther, 2010) at
30 s. For the later time points (2 min, 5 min, 10 min), we used the
very same time points of Walther.

Cassette exons

Exon annotations and percent-spliced-ins (PSI) were obtained from
the ASCOT annotation (Ling et al, 2020). We filtered for cassette
exons according to ASCOT (i.e. feature cassette_exon=Yes) that
belong to genes of the consensus CDS gene set of the GENCODE
release 25 (build GRCh38). We further restricted the analysis to
such cassette exons that fully overlap a coding sequence. This

resulted in 29,417 cassette exons. The decoding rate of each coding
cassette exon was then calculated as the geometric mean of the
HEK293 decoding rates (Dana and Tuller, 2015) of the codons fully
contained in the exon. A cassette exon was considered tissue-
specifically differentially spliced if its PSI was at least 20 percent
points above or below its average PSI across tissues.

Data availability

The datasets and computer code produced in this study are
available in the following databases: 5PSeq data: NCBI’s Gene
Expression Omnibus (Edgar et al, 2002) accessible through GEO
Series accession number GSE216524. GTEx RNA-seq samples:
Authorized researchers can access the BAM files for 7778 RNA-Seq
samples, the gene-level and the transcript-level TPM (transcript per
million) values, as well as the sample annotation of the GTEx v6
dataset from the GTEx portal. We are requesting permission from
the GTEx project to share the exonic-to-intronic read count ratios,
as these are computed from the non-publicly accessible BAM files.
The BAM files of the Tabula Muris Senis atlas dataset
(Almanzar et al, 2020) can be downloaded from the public
AWS S3 bucket (https://registry.opendata.aws/tabula-muris-senis/).
The code developed for the analysis is available at
https://github.com/gagneurlab/Cellular_energy_codon_analysis.
All other data are available in the manuscript or the supplementary
materials (Presnyak et al, 2015; Roux and Topisirovic, 2012; Wu
et al, 2019).

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00026-9.
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