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Abstract

Spatially resolved transcriptomics (SRT) is a pioneering method for simultaneously studying morphological contexts and gene expres-
sion at single-cell precision. Data emerging from SRT are multifaceted, presenting researchers with intricate gene expression matrices,
precise spatial details and comprehensive histology visuals. Such rich and intricate datasets, unfortunately, render many conventional
methods like traditional machine learning and statistical models ineffective. The unique challenges posed by the specialized nature
of SRT data have led the scientific community to explore more sophisticated analytical avenues. Recent trends indicate an increasing
reliance on deep learning algorithms, especially in areas such as spatial clustering, identification of spatially variable genes and data
alignment tasks. In this manuscript, we provide a rigorous critique of these advanced deep learning methodologies, probing into their
merits, limitations and avenues for further refinement. Our in-depth analysis underscores that while the recent innovations in deep
learning tailored for SRT have been promising, there remains a substantial potential for enhancement. A crucial area that demands
attention is the development of models that can incorporate intricate biological nuances, such as phylogeny-aware processing or
in-depth analysis of minuscule histology image segments. Furthermore, addressing challenges like the elimination of batch effects,
perfecting data normalization techniques and countering the overdispersion and zero inflation patterns seen in gene expression
is pivotal. To support the broader scientific community in their SRT endeavors, we have meticulously assembled a comprehensive

directory of readily accessible SRT databases, hoping to serve as a foundation for future research initiatives.
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INTRODUCTION

Multicellular organisms have diverse tissues composed of spe-
cialized cells that constantly divide and perform specific func-
tions [1]. Cell fate and behavior rely on communication with the
surrounding environment, and understanding the spatial organi-
zation within tissues is crucial for studying tissue function and
disease processes, such as autoimmunity and cancer [2]. Single-
cell RNA sequencing (scRNA-seq) has revolutionized genomics
by capturing gene activity at a high resolution, enabling the
study of heterogeneous cell populations in various disciplines [3].
However, scRNA-seq requires tissue dissociation, leading to the
loss of cell position, which is important for understanding tissue
functionality. Spatially resolved transcriptomics (SRT) provides a
solution by capturing gene expression and spatial information
simultaneously across tissues [4]. SRT methods can be divided
intoimage-based methods with high spatial resolution but limited
gene detection sensitivity; and sequencing-based methods with

lower spatial resolution but high-throughput messenger RNA
(mRNA) capture [5]. Image-based methods like in situ hybridiza-
tion (ISH) allow gene expression quantification at a sub-cellular
level, while sequencing-based methods rely on spatial barcoding
and sequencing [6].

SRT data, along with existing histology images and gene
expression data, have generated vast and complex datasets
[7] that require statistical and machine learning (ML) methods
for analysis. ML methods, particularly deep learning (DL), have
proven efficient in various biological tasks and are well suited
for handling the challenges of SRT datasets [8-18]. Conventional
(ML) methods in the SRT data analysis are mainly similar to
the statistical inference domain, in which there is a demand
for pre-existing knowledge about the data to estimate unknown
parameters in the model [19]. Consequently, the DL method does
not need to know the data-generation process to model data
and is more potent in extracting complex and high-dimensional
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features. DL models are more versatile for integrating histology
images, gene expression matrices and spatial information. Indeed,
DL paradigms have facilitated the handling of such complicated
datasets and related downstream analyses. Some efforts have
been made to review the computational challenges in the SRT
domain. Hu et al. [20] focused on the statistical and ML methods
to analyze SRT data. This work has focused on leveraging the
capabilities of histology images applicable to both imaging-based
and sequencing-based techniques. Zeng et al. [21] provided a
summary of the statistical and ML methods in the SRT domain
with more focus on the sequencing-based methods. Despite the
valuable information in these review papers, they did not provide
detailed information and discussion of the application of DL
models in SRT analysis. Although the review paper by Heydari
and Sindi [22] reviewed the application of DL in SRT analysis,
this work mainly focused on sequencing-based approaches.
In this technical review, we identified papers published on
applying ML methods focusing on DL models for analyzing both
imaging- and sequencing-based SRT data up to September 2023.
We present a comprehensive overview of the concepts, tasks,
DL models and associated findings in SRT data analysis, with
detailed information on current SRT datasets, evaluation metrics
and results. Our review aims to be a comprehensive reference
for future applications of DL in SRT data analysis and the
development of innovative methods. Figure 1 summarizes various
SRT methods related to the image-based and sequencing-based
approaches.

OVERVIEW OF COMMON DL MODELS FOR
SRT DATA ANALYSIS

In SRT exploration, different supervised and unsupervised learn-
ing methods are employed for various tasks. Supervised learning
is used for gene prediction and cell segmentation, while unsuper-
vised learning s applied to clustering, gene expression imputation
and dimension reduction. Table 1 provides a brief explanation
of DL models used for SRT data analysis, including deep neural
networks (DNNs), autoencoders (AEs), variational autoencoders
(VAEs), convolutional neural networks (CNNs) and graph neural
networks (GNNs)(For more detailed information regarding DL
models, refer to [30]). Figure 2 represents the surveyed DL mod-
els and pre-processing approaches for gene expression matrices,
spatial information and histology images. The mentioned models
can be categorized as sequential models, generating a sequence of
hidden states as a function of the previous hidden state. The prob-
lem of sequential mechanism is hindering parallelization within
training examples, which becomes critical at longer sequence
lengths in larger data sizes, leading to memory constraints [31].
Recently, attention mechanisms (HA) have been developed to
reduce the restriction of sequential computation by designing
dependencies without considering their distance in the input or
output sequences. Additionally, the multi-head attention mech-
anism (MHA) or transformer [31] is a robust model architecture,
allowing more parallelization in DNN-based methods. Since the
reviewed papers propose different architectures of DL models
and various loss functions, we will explain their topologies in
Section 3.

SURVEY OF DL MODELS FOR SRT ANALYSIS

We review 26 DL methods used in analyzing SRT data, categorized
into six sub-categories: spatial domain identification, spatially
variable genes (SVGs), missing gene imputation, enhancement

of gene expression resolution (GER), cell-cell interactions and
cell-type deconvolution. Figure 3 provides an overview of each
sub-category and the corresponding DL methods. Supplemen-
tary Tables S1 and S2 present metrics utilized for each category
and the datasets, respectively. Figure 3 illustrates the six sub-
categories of SRT and their applications.

Identifying spatial domain

Spatial domain identification is a crucial step in spatial tran-
scriptomics analyses, involving the recognition of spatially
coherent areas with consistent gene expression and histology.
Various platforms exist for spatial transcriptomics, with some
producing both tissue images and gene expression data such
as slide-seq [32]. Most approaches rely on clustering methods
using gene expression features alone to characterize cell types
(l.e. Seurat [33]). Traditional ML techniques like the hidden
Markov random field (HMRF) model [34] and Bayesian models
like BayesSpace [35] have been employed to incorporate tissue
heterogeneity and spatial information. Single-Cell Microscopy
Empirical Bayes [36] is also used for spatial domain identi-
fication which employs techniques like empirical Bayes and
expectation-maximization (EM) to predict labels. Liu et al.
[37] have identified that the common practice of sequentially
performing dimension reduction and spatial clustering is
not always accurate. Consequently, they introduced DR-SC, a
method that simultaneously addresses dimension reduction
and spatial clustering within a single joint model framework.
This approach primarily utilizes a probabilistic and hierarchical
model, centered around an HMRF model, to efficiently derive
low-dimensional embeddings. However, these ML approaches
make assumptions about the data-generating process and may
not be suitable with limited experimental control.

DL models have gained popularity for analyzing high-
dimensional spatial transcriptomics data, especially in sequencing-
based methods. DL methods such as SpaCell [38], stLearn [39],
SpaGCN [40], SEDR [41], STAGATE [42], RESEPT [43], ECNN [44],
JSTA [45], conST [46], CCST [47], GraphST [48], spatial-MGCN [49],
MGCN [50] and STGNNKs[51] utilize spatial data and histology
images for spatial domain identification. A summary of these DL
models is shown in Figure 4, with detailed explanations available
in the supplementary material.

Tan et al. [38] developed a DL model called SpaCell that com-
bines gene expression data and tissue images for cell-type clus-
tering. The model preprocesses images and count matrices sepa-
rately, dividing the images into 299 x 299 pixel tiles and normaliz-
ing them. The gene counts are mapped to each spot on the images.
The model utilizes ResNet50 [52], a pre-trained CNN, to extract
meaningful features from each tile. These features, along with the
corresponding gene counts vector, are fed into two AE networks,
and the resulting layers are merged to create a latent embedding
layer. K-means clustering is then applied to this layer. For disease-
stage classification, SpaCell employs the same images and a two-
layered DNN model to analyze pixel features and gene count
matrices, providing probabilities for four disease stages. However,
SpaCell has limitations: it does not utilize spatial information
in the embeddings and relies on a pre-training model trained
on non-histology images, potentially leading to uninformative
outcomes.

Inspired by SpaCell, Pham et al. [39] proposed stLearn, which
optimizes the integration of gene expression measurements,
spatial distance and tissue morphology in spatial transcriptomics.
stLearn normalizes gene expression matrices using histology
images, called SME normalization (Eq 1), considering neighboring
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Figure 1. Schematic overview of two SRT approaches. (A) Image-based methods: I. fluorescent in situ hybridization (FISH) approach: Probes labeled
with fluorophores are individually hybridized to predefined RNA targets, allowing visualization of gene expression in fixed tissue. This approach has
been enhanced with shorter probes, leading to quantitative measurements of transcripts (SmFISH) [23]. Sequential hybridizations (seqFISH) [24] were
introduced to expedite the process and multiplexed error-robust FISH (MERFISH) [25] utilized binary codes to distinguish targeted transcript. IL. In situ
sequencing methods (ISS): RNA sequencing is performed directly on the RNA content within the tissue using using padlock probes to target genes. STARmap
[26] is an ISS method, employing barcoded padlock probes and additional primers. Xenium [27] is a hybrid ISS and ISH platform that utilizes gene-
specific barcoded padlock probes, with the enzymatic amplification step employing the Rolling Circle Amplification technique for enhanced detection
sensitivity. (B) Sequencing-based methods: This category enables unbiased analysis of the complete transcriptome and can be divided into I.Array and
Bead-Based Technologies: In these methods the targeted tissue is placed on a microscopic slide with a barcoded array, capturing spatial information of
each probe. Probes containing spatial barcodes and RT primers are inserted into the tissue. After tissue removal, cDNA-mRNA complexes are extracted
for library preparation and next-generation sequencing readout. Gene expressions are measured in spots or beads, accompanied by a high-resolution
histology image obtained from stained tissue sections of the same tissue. Probes dimensions vary across technologies, such as 100 um (ST) or 55 um (10X
Visium), or utilizing ordered bead arrays (HDST) or barcoded beads (Slide-seq) of specific sizes (10 um). II. Microdissection-Based Approach: Laser Capture
Microdissection (LCM) [28] utilizes a concentrated infrared laser pulse for isolating a chosen region within a tissue sample. This technique ensures the
accurate extraction of specimens from targeted anatomical areas, effectively reducing the risk of contamination. It allows for the detailed analysis of
transcriptomes at the cellular level [29]. (Created with BioRender.com).

Table 1: Summary of DL models and formulas

Model  Explanation Formula Denotation

DNNs Feed-forward neural networks with multiple hidden layers and Yn = f(Xn—1 - W; + b) yn: output of neuron n, x,_1: output of
activation functions. Approximate nonlinear transformations for neuron (n — 1), wj: weight of neuron i, b:
specific goals. bias,f: activation function

AEs Deep generative models for dimensionality reduction. Encode input Z=EyX), X = Dy (2) 7: latent variable, Ey: encoder network, X:
data into latent variables and reconstruct input data. reconstructed input, Dy: decoder network

VAEs Encode inputs as distributions over the latent space. Learn latent Z~qo(ZIX), X = Dy(Z)  Z:latent variable, gy: conditional
features through multi-layer neural networks. distribution, X: reconstructed input

CNNs Supervised models for image processing. Extract features from S=XxW S: feature map, X: input matrix, W: kernel
multidimensional input data using convolutional and pooling layers.

GNNs Generalized models for graph data processing. Aggregate and transform H+D = f(HD A) H: hidden layer, I: layer, A: adjacency

node information through various network architectures like graph
convolution network (GCN) and graph attention network (GAT).

matrix, f: function that aggregates and
transforms the hidden state of nodes.
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Figure 2. Graphical representations of the A. Pre-processing step: For the gene expression matrix, preprocessing includes the elimination of genes with
expression below a certain threshold across a specified number of spots, followed by dimension reduction to simplify the data, and normalization,
which involves log-transformation and Z-transformation to standardize the expression levels. In parallel, spatial coordinates are utilized to construct
an adjacency matrix that captures the spatial relationships between different spots within the tissue—each spot is represented by a node, and the edges
reflect the spatial proximity to neighboring spots. For the histology image preprocessing, the original image is partitioned into patches, which allows for
a detailed analysis of the tissue’s histological features by breaking down the image into manageable segments for further computational processing.
B. Surveyed DL models in SRT: These methods include DNN, deep AE, VAE, CNN and GNN. The circled numbers adjacent to each model’s name indicate
the total number of papers that have employed the respective model up to September 2023.

spots with similar gene expression and morphology distance
(MD).
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where GE] is the normalized gene expression spot S;. GE; and GE;
are the raw gene expression for spot S; and its n neighbor spots
S;. It employs global and local unsupervised clustering, using PCA
or UMAP [53] methods, and a k-means clustering applied to a
KNN graph constructed based on Euclidean distance. Despite its
advances, stLearn uses an unrelated pre-training dataset and a
fixed radius for identifying neighboring spots. In contrast, Hu et al.
[40] developed SpaGCN to link the spatial domain with biological
functions, integrating SRT data types using a GCN. SpaGCN con-
structs an undirected graph (G(V, E) where each node’s feature is
the gene expression at each spot € V, and the edge’s value (w)
between two spots U1 and v, is determined via spatial coordinates
and histological features (Eq 2).

(2)

d(vz, v2)?
212 ’

w(v1,V2) = exp (—

where d(v1,V2) is the Euclidean distance between the two spots
and lis a hyper-parameter.

Unlike stLearn, SpaGCN incorporates all spots simultaneously
for gene expression aggregation. It employs PCA to reduce the
dimensionality of the gene expression matrix and utilizes a GCN
for node clustering. However, using RGB channels for dimension-
ality may yield inaccurate results due to image noise. On the other
hand, Fu et al. [41] proposed SEDR as an alternative to SpaGCN,
highlighting that the integration of histology images and spatial
information in SpaGCN is oversimplified. SEDR employs an AE
to learn a low-dimensional latent representation of gene expres-
sion and incorporates spatial data using the variational graph
autoencoder (VGAE) model. The resulting embeddings are con-
catenated into the final latent representation for spatial clus-
tering. While SEDR excludes histology images, both SpaCell and
stLearn have demonstrated the advantages of including them,
particularly in addressing tissue heterogeneity.

Dong et al. [42] then proposed STAGATE, a graph attention
(GAT) AE that corrects predefined similarity measurements in
SEDR, integrating spatial data and gene profiles to identify spatial
domains in SRT data. In preprocessing, tissue-external areas are
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Figure 3. SRT and its six sub-categories with corresponding applications. SRT combines gene expression profiling with spatial information in tissues.
Gene expressions are measured in spots, accompanied by high-resolution histology images of the same tissue section. The resolution of spots varies
based on the SRT technique, ranging from cellular to sub-cellular levels. DL methods have been employed to analyze SRT data in the following domains:
(1) Identifying spatial domains, (2) Identifying SVGs, (3) Imputing missing genes, (4) Enhancement of GER, (5) Cell-cell interactions and (6) Cell-type
deconvolution. Each model in the figure represents the SRT data used (blue: histology image, red: gene expression, cyan: spatial information).

removed, and log-transformed gene expressions serve as input.
STAGATE'’s novelty lies in its adaptive construction of a spatial
neighbor network via a standard adjacency matrix with spatial
data, radius as a predefined parameter, and through GAT using a
pre-clustered gene expression matrix. These modules can be alter-
nately chosen as input for the graph attention layer. STAGATE's
encoder consists of two neural layers, the first adopted to the
attention layer. The two layers can be obtained as

hi = Z att}ja(Wlh]Q), (layer1) (3)

JeSi

h? = o(W,h), (layer2), (4)

where h! is the input gene expression spot i, W is the trainable
weight matrix, S; is the neighboring set of spot i, o is the nonlinear
activation function and attj is the output of the graph attention
layer (refer to the supplementary data). It then applies mclust [54]
and Louvain clustering on labeled and unlabeled data’s learned

features, respectively. Despite STAGATE's success, its reliance on
a predefined radius parameter for identifying neighboring spots
is a limitation.

Changet al. [43] criticized SpaGCN [40] and stLearn [39] for lack-
ing spatial information in tissue architecture. They introduced
RESEPT, a DL method that reconstructs and segments RGB images
from spatial transcriptomics. RESEPT employs a graph AE with a
GCN to transform transcriptomics data into a three-dimensional
RGB latent space. It integrates a pre-trained ResNet101 backbone
network and utilizes a decoder module. However, RESEPT’s fixed
neighbor count in the adjacency matrix limits its learning ability
and introduces parameter bias.

Chelebian et al. [44] proposed ECNN, an adaptation of ensemble
CNN [55], to extract holistic features from histology images and
transcriptomics signatures. ECNN utilizes 30 Inception V3 [56]
models for prostate image classification, generating ensemble
latent feature vectors. UMAP downscales the vectors for unsuper-
vised clustering, reducing dimensions to three for visualization.
A relative mean intensity matrix confirms genetic relevance.
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Despite pre-training on related data, ECNN does not consider
spatial information in SRT data.

Littman et al. [45] responded to the limitations of RNA
hybridization-based methods by introducing JSTA, a DL-based EM
approach for enhanced RNA hybridization image segmentation.
JSTA uses two inputs: the gene expression level of cells and
pixels, described by matrices E. and E,. The watershed algorithm
is initially applied to E, for segmentation. A three-layer DNN
is used on E. to link each gene to the cell type with higher
likelihood. Another DNN is trained on E, to get each pixel’s cell
type probability. These steps form the E-step in the EM algorithm.
The M-step involves applying the trained pixel classifier to
border pixels for reclassification, followed by updating the
image segmentation and cell classifier. The cross-entropy loss
function is used in both classification models to minimize error.
The process repeats until convergence, improving optimization.
However, JSTA lacks generalizability as it is specific to RNA
hybridization-based methods. Zong et al. [46] presented conST,
a user-friendly multi-modal contrastive learning framework (in
preprint status as of 10 December) addressing challenges in SRT
research. It incorporates gene expression, spatial and morphology
information to learn low-dimensional embeddings for clustering.
The AE model initializes a general encoder ¢ in pre-training,
while contrastive learning is used in the main training stage.
conST employs a pre-trained masked AE [57] for morphological
features, a deep AE for gene expression embedding and VGAE
for spatial information. The combined embeddings maximize
mutual information. However, conST requires parameter tuning
and utilizes non-histology datasets for pre-training. Li et al. [47]

introduced a method called CCST, utilizing GCNs to analyze
spatial gene expression data. CCST combines gene expression
profiles with spatial information to enhance cell clustering
and subtype discovery. It involves encoding spatial data into
matrices, using a hybrid adjacency matrix and a single-cell
gene expression profile matrix. These matrices are processed
through Deep Graph Infomax [58] networks to calculate cell
embedding vectors, integrating both spatial structure and gene
expression. The CCST approach’s two main drawbacks are its
high computational demands, stemming from the utilization of
four graph layers, and its challenges in accurately aligning with
pathological annotations. GraphST [48] introduces an approach
leveraging self-supervised learning (SSL) with a contrastive
loss function. This method aims to generate a corrupted gene
expression matrix by shuffling the feature matrix, intending
to widen the distance between the original and the corrupted
matrices. A graph, constructed with the three nearest neighbors,
integrates two GCN layers within the AE framework. The mclust
clustering algorithm is subsequently applied to the decoder’s
output, utilized as the latent space. However, using the decoder
output as the latent space might introduce limitations such as the
potential loss of essential data features and sensitivity to noise,
with these issues being contingent upon the decoder’s quality.
Furthermore, while GraphST proposes a novel loss function to
enhance model learning, it does not provide clear insights into
the distinctive impacts of employing SSL on the effectiveness
of their approach. Recent papers have introduced multi-view
graph learning as a novel approach in this field, aiming to obtain
latent embeddings by processing different views of input data
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within their models. For instance, Wang et al. [49] generate two
graphs from gene expression and spatial information, fusing these
representations to achieve a final embedding, which is then used
to reconstruct the gene expression matrix through a Zinb decoder.
Similarly, Shi et al. [SO] construct two graphs employing distinct
similarity metrics (Euclidean and Cosine similarity) and utilize
an attention mechanism to merge the two resulting embeddings.
Nevertheless, it is important to note that multi-view learning can
be computationally intensive and sensitive to parameter tuning.
This approach might also face alignment challenges between
different data views, posing risks of poor generalization to new
datasets. Building upon the concept of contrastive learning, Peng
et al. [51] introduced STGNNks, an AE model encompassing four
GCN layers. The model employs a hybrid adjacency matrix, a
fusion of an identity matrix and an initial adjacency matrix
Ay as defined by Eq 5. This matrix enhances the depiction of
the spatial distribution of gene expression. The researchers also
crafted a corrupted adjacency matrix by randomly eliminating
edges. The encoder’s embeddings are derived twice: once using
the hybrid matrix (h) and once with the corrupted version
(h). These embeddings are then fed to the readout function
S. The primary goal is to maximize the approximated mutual
information between h and the output of the readout function,
optimizing the learning of spot-specific embedding features.

A=rxI+(1-1A (5)

Identifying SVGs

SVG detection in tissue sections is a crucial task that aims
to identify spatial expression patterns. While some statistical
methods [59-61] have been developed, they overlook tissue
taxonomy and miss morphology-related markers. SVG detec-
tion approaches can be divided into cluster-based and whole
tissue-based methods. Cluster-based methods (e.g. SpaGCN,
STAGATE,MGCN and conST) employ statistical tests on spatial
domains derived from clustering algorithms, but they fail to
detect genes with gradient expression and samples resistant
to grouping. Whole tissue approaches are necessary in such
cases. ML methods for SVG detection can be spectral or deep-
based. Spectral methods, like RayleighSelection [62], calculate
the combinatorial Laplacian score (CLS) for each gene, where
lower CLS values indicate greater spatial variability. However,
spectral methods are computationally intensive and struggle with
large datasets. Zhang et al. [63] investigated the computational
efficiency of recent methods for detecting SVGs. They put forward
ScGCO, a novel approach that leverages a probabilistic graph
model to encapsulate both statistical and spatial characteristics
of the modeled variables in order to accurately identify SV genes.
Leveraging H&E-stained histology images, methods combining
SVG detection and these images are desirable. DL-based methods,
incorporating techniques like in situ hybridization and in situ
sequencing, have demonstrated superiority. DL methods such
as CoSTA, ST-NET, SPADE, HisToGene, CNNTL and DeepSpaCE
have been proposed for SVG detection in both cluster and
deep-based domains. Figure 5 provides an overview of distin-
guishing SVGs using DL models, as reviewed in this paper.

Hu et al. [40] introduced SpaGCN, a methodology devised for
identifying SVGs within certain clusters. The approach utilizes
the Wilcoxon rank-sum test to pinpoint SVGs, focusing on genes
with high expression levels within dispersed domains referred to
as ‘metagenes’. By modifying threshold values, selecting founda-
tional genes and managing the addition/subtraction of positive/
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negative genes, SpaGCN efficiently identifies metagenes specific
to target domains. The method also features a sub-cluster option
to articulate heterogeneity and demonstrates superior perfor-
mance compared with SPARK [61] and SpatialDE [60] in SVG detec-
tion, as assessed by Moran's I statistic [64]. Nonetheless, since
SpaGCN'’s primary function is to train deep models for clustering,
the marker genes it identifies might not accurately reflect tissue
heterogeneity.

In a similar vein, Zong et al. [46] employed conST for the
identification of spatial marker genes within clusters, leveraging
this as a subsequent task to validate the accuracy of cluster-
ing. conST mirrors SpaGCN’s approach, applying it to the latent
embeddings derived from its principal algorithm, and exhibits
enhanced performance in Moran’s I evaluations conducted on the
spatialLIBD dataset [65], especially at the boundary of the white
matter layer.

Another model, STAGATE, also aims to identify SVGs within
spatial domains, albeit without being specially trained for this
purpose. Like SpaGCN, it identifies SVGs that do not necessarily
correlate with the tissue morphology. STAGATE implements the
Wilcoxon test from SCANPY [66] to spotlight SVGs within each
spatial domain. When tested on the Slide-seqV2 dataset derived
from mouse olfactory bulb tissue, STAGATE identified a greater
number of genes within smaller tissue structures compared with
the SPARK-X algorithm.

Finally, MGCN [50] also identifies SVGs following the procedure
outlined in SpaGCN and contrasts its performance with both
SpaGCN and SpatialDE using Moran’s I statistic test. The results
indicate that MGCN can identify a larger number of SVGs than
the aforementioned methods. Instead, Xu et al. [67] proposed
CoSTA, a cluster-based approach which employs an unsuper-
vised CNN to learn spatial relationships between genes using
pixel position information from spatial transcriptomic images. Its
pre-processing includes pixel binning, gene matrix normalization
[60] and scaling. The method consists of two steps: clustering and
neural network training. Initially, CoSTA feeds normalized images
into a ConvNet, composed of three convolution boxes, each con-
taining convolution, batch normalization and max-pooling layers.
Post clustering, labels are generated for ConvNet training. During
the second step, a fully connected layer with a softmax activation
function is added, providing the probability of jth sample belong-
ing to the ith cluster by an auxiliary target distribution (Eq 6).

pi/fi

4= 75 6)
' i pizj/fl

where N is the total number of clusters and f; = zj“il pij, and p; is
obtained through Eq 7.

oL/d;

Z?Iﬂ el/d’

py=1l1x= 7)

where d; is Euclidean distances between sample i to cluster cen-
troids ¢;. This layer is only used during training and discarded
subsequently. CoSTA outperforms SpatialDE and Spark in identi-
fying gene similarities in the MERFISH dataset. It effectively iden-
tifies spatial pattern-dependent genes in Slide-seq data. However,
CoSTA requires extensive parameter tuning and is assessed only
on high-resolution SRT data. Meanwhile, ST-Net [68] combines
spatial transcriptomics with histology images to predict high-
resolution gene expression in breast cancer patients. It utilizes a
pre-trained DenseNet-121 CNN on ImageNet [69], achieving low
mean square error and high Pearson’s correlation on a breast can-
cer spatial transcriptomics dataset. However, ST-Net underutilizes
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Figure 5. SVGs detection with DL methods on a synthetic four-layered tissue, including four layers (i.e. spatial domains). (A) Some studies train a
deep model to predict marker gene values as a primary task. (B) Other studies use ML or statistical methods to detect SVGs in each spatial domain

determined by clustering algorithms.

available spatial data. Refer to the Supplementary material for
more details.

Baeetal. [70] proposed SPADE, a CNN model that combines gene
expression data with image patches to detect SVGs. SPADE utilizes
VGG-16 features and PCA for DR. Normalized genes (obtained by
Limma [71]) are fitted to PCA-processed image features through
linear regression. Genes are ranked based on their correlation
with PCA values, and spatial marker genes are selected using a
false discovery rate threshold and variance explained by principal
components. SPADE successfully identified tissue-specific mark-
ers in breast cancer, olfactory bulb and prostate cancer datasets.
However, Marker gene identification is influenced by spot density
and distance. Pang et al. [72] introduced HisToGene (in preprint
status as of 10 December) as a solution to the limitations of ST-
Net, which does not fully utilize spatial information in its CNN
model. HisToGene incorporates an AE with an attention-based
mechanism to predict gene expression values, taking into account
spatial location and histology images. The model undergoes pre-
processing steps such as gene removal, UMI count normalization
and transformation to a natural log scale. HisToGene extracts
patches from histology images, creating a new matrix that consid-
ers variations in spot numbers within tissues, analogous to sen-
tence lengths in natural language processing (NLP). The encoder
encodes the new image matrix and spatial coordinate through a
single layer, and the sum of these encoding matrices forms the
final embedding matrix. Multi-head attention layers, consisting of
eight layers and 16 attention heads, are then applied (see [31] for
attention model details). HisToGene consistently demonstrated
superior correlation compared with ST-Net in its evaluation on
high-resolution SRT data.

Abed-Esfahani et al. [73] proposed CNNTL, a CNN-based
method with contrastive loss, to embed gene expression patterns
from human brain images in the ISH method. CNNTL was
designed as an alternative to classification-based approaches
and employed triplet loss during training. It achieved a rank-1
accuracy of 38.3% on the Cortex dataset, outperforming single
ResNet and random models. However, CNNTL'’s application is
limited to a small subset of genes in brain layers and was pre-
trained on an unrelated dataset.

Monjo et al. [74] introduced DeepSpaCE, a CNN model
specifically tailored for in situ capturing technology in Spatial

Transcriptomics, with a focus on oncology. DeepSpaCE utilizes a
VGG16 network to predict the expression of 24 genes, including
breast cancer markers. When evaluated on a human breast
cancer dataset, DeepSpaCE showed a correlation coefficient
of 0.588 between measured and predicted values. However,
DeepSpaCE’s capacity is limited to predicting a specific number
of genes.

Imputing missing genes

scRNA-seq provides detailed gene expression profiles but lacks
spatial context [75, 76]. Alternatively, Spatial Transcriptomics
retains spatial context, but its resolution is limited. To address
these limitations in each technology, recent studies proposed
integrating scRNA-seq and SRT to predict unmeasured genes
[77-80]. ML methods, such as LIGER [77] and SpaGE [78], use joint
dimension reduction techniques, like NMF and PCA, respectively,
followed by linear models for joint embedding. GimVI, a joint non-
linear model, uses deep generative models for domain adaptation
[79]. However, as Shengquan et al. [80] noted, these methods
often rely on shared genes between the datasets and potentially
misleading metrics, like the Spearman correlation coefficient.
Therefore, they proposed an AE model, stPlus, which uses the
k-NN algorithm for gene prediction. stPlus outperformed SpaGE,
Seurat, Liger and gimVI across four clustering metrics: AMI, ARI,
Homo and NMI (Supplementary Table S1). In the following text,
we focus on the DL models and investigate the three DL models in
detail. Figure 6 represents the process of gene imputation along
with cell type deconvolution (refer to the next section) in SRT
data.

Lopez et al. [79] proposed gimVI (in preprint status as of 10
December), which employs a VAE model to analyze gene expres-
sion matrices from scRNA-seq and SRT experiments. It distin-
guishes between the two by utilizing a binary variable and gen-
erates a latent vector to represent cell types. gimVI incorporates
a K-NN algorithm in the latent space to impute missing genes. It
demonstrated superior imputation performance compared with
Liger and Seurat, although the results can be influenced by the
choice of K and evaluation limited to a fraction of genes in the
SRT dataset.

Biancalani et al. [81] developed Tangram, which uses DL for
mapping spatial information into scRNA-seq data and aligning
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Figure 6. Imputing missing genes and cell-type deconvolution with DL models on a synthetic tissue. This figure illustrates the use of DLmodels to
impute missing genes and decompose cell types in a synthetic tissue. While sequencing-based techniques only capture spot-specific transcriptomes,
single-cell sequencing covers all genes but loses spatial information due to tissue dissociation. By integrating SRT and scRNA-seq data from identical
tissues, DL models can detect unmeasured genes and determine cell proportions in each spot. (Created with BioRender.com).

histological data to anatomical positions. It employs noncon-
vex optimization to update the alignment based on an objective
function that compares cell-density distributions and evaluates
gene expression. While primarily designed for spatial map recon-
struction, Tangram also performs gene imputation effectively.
No quantitative comparison with other imputation methods was
provided in the original paper. A recent study [82] ranked Tangram
as the third-best imputation method, after stPlus and gimVI,
noting its longer running time.

Cell-type deconvolution

In spatial transcriptomics, transcripts are captured at spatial
locations or ‘spots’ [83] comprising mixed, low-resolution cells.
Spot-level cell composition identification is crucial due to
varying cell numbers from tissue heterogeneity or Spatial
Transcriptomics technology [84]. Computational methods for
this task fall into three categories: inference-based, multivariate
analysis/linear algebra-based and DL-based methods. Inference-
based methods like Stereoscope [85], RCTD [86], cell2location
[87], DestVI [88] and STdeconvolve [89] employ likelihood-based
approaches, assuming input data distribution. Multivariate anal-
ysis and linear algebra-based methods, such as SPOTlight [90] and
Spatial DWLS [91], incorporate both ML and statistical elements,
yet have limitations as outlined in Section 1). Meanwhile DL-
based methods like GIST, Tangram and GraphST estimate cell-
type proportions with DL models. Even though some methods
such as VAE are probability-based, they are still categorized as DL
methods in this paper. However, these methods also have real-
world application limitations.

Song et al. [92] proposed DSTG, a semi-supervised graph con-
volution network method for decomposing cell mixtures in SRT
data. It creates pseudo-ST data from scRNA-seq data, constructs
a linked graph and utilizes a GCN network with three convolution
layers to predict cell type proportions. DSTG outperforms the
SPOTlight [90] method on synthetic and real SRT datasets. How-
ever, comparing pseudo-ST and real-ST using Euclidean distance
may not provide a fair comparison.

Biancalani et al. [81] addressed the limitations of inference-
based deconvolution methods that overlook spatial information,

leading to flawed cell-type detection. They developed Tangram,
which performs deconvolution on ST/Visium technology, specif-
ically low-resolution SRT data. Tangram calculates cell counts
through initial segmentation and maps cell-type ratios consis-
tently in multiple datasets. However, the reliance on prior knowl-
edge about cell numbers for segmentation may be a drawback,
especially in high-density tissues like tumors [81].

Zubair et al. [93] proposed GIST, a joint model integrating
SRT and image-derived data to enhance cell-type deconvolution.
GIST utilizes DL on images to provide preliminary information
for cell type identification within a Bayesian framework. A CNN
model estimates cell-type abundance, particularly immune cells,
by processing JPEG images into encoded TIFF format and gener-
ating probability maps. Spot-level probabilities are calculated by
weighted summation of overlapping patches. GIST outperformed
the base model using only expression data in identifying immune
cells in breast cancer pathology. However, comparative evalua-
tions with Tangram and DSTG are needed to determine its relative
performance.

Long et al. [48] aim to derive a mapping matrix M that indicates
the cell percentage in each spot. Initially, they utilize an AE model
to obtain the reconstructed cell gene expression matrix He from
sCRNA-seq data and the reconstructed gene expression Hg from
ST data. Subsequently, they predict the spatial gene expression
matrix Hs by integrating it with the mapping matrix, expressed as
Hg = MT x Hc. The authors endeavor to learn the mapping func-
tion M through a mechanism of augmentation-free contrastive
learning.

Enhancement of GER

Improving GER in SRT data, often limited at the single-cell
level, has led to the proposal of various DL methods. These aim
to enhance GER in SRT data by borrowing information from
neighboring areas to fill gaps between spots (Figure 7). While
SRT technologies like Visium and SLIDE-seq [32] provide high-
resolution cell morphology information, statistical methods like
RCTD, which estimate cell-type-specific gene expression per
spot based on deconvolution probability, can be unreliable as
their accuracy depends on the deconvolution step. BayesSpace
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Figure 7. Enhancing GER and cell-cell interactions in SRT data. (A) Since the distances between spots are different based on the utilized sequencing-
based approaches, borrowing information from neighboring spots makes it possible to enhance the GER in empty areas between spots. (B) The spatial
location of each spot facilitates the understanding of finding ligand-receptor interactions of each cell in SRT data.

addresses this by dividing each spot into equal-size sub-spots
and inferring gene expression, keeping total expression constant.
However, the variability in splitting methods can lead to different
outcomes, complicating the determination of an optimal solution.
Given their ability to integrate multiple data, DL methods utilizing
histology images have been proposed to enhance GER, a tactic not
utilized by the aforementioned methods.

Bergenstrahle et al. [94] developed XFuse, a tool that inte-
grates low-resolution in situ sequencing gene expression data
with high-resolution histology images to infer high-resolution
spatial gene expression. XFuse assumes negative binomial and
Gaussian distributions for gene expression data and histology
images, respectively. It utilizes a convolutional generator network
to map parameters from the latent tissue state. Through vari-
ational inference, XFuse estimates the posterior of the latent
variable by minimizing the Kullback-Leibler divergence. Histology
images are mapped to the latent tissue state using a convolutional
recognition network. XFuse outperformed a method using non-
missing neighbors’ information and successfully revealed dis-
tinct patterns in mouse olfactory bulb and human breast cancer
datasets. It exhibited lower median RMSE, accurately predicted
unseen samples, and showed better prediction of gene expression
patterns compared with in situ hybridization data. However, XFuse
is limited to detecting genes with spatial patterns resembling the
histology images.

Pang et al. [72] extended their previous work on HisToGene to
develop HisToGenex, a super-resolution gene expression predic-
tion method using dense histology image patches. HisToGenex
applied the trained model to estimate spot-level resolution gene
expression by treating spots as sentences in NLP. Sub-patches
covering four patches each were created to predict higher resolu-
tion gene expression compared with the original spot. The results
showed that HisToGenesx predictions had higher correlations with
observed spot-level gene expression in 19 sections, while HisTo-
Gene showed superior correlations in six sections. HisToGenex

predicted gene sets demonstrated a direct link between thyroid
hormones and breast cancer risk [95], indicating the presence of
more biologically significant information.

Utilizing super-resolution techniques for spatial gene expres-
sion and tissue section imputation, Monjo et al. [74], employed
semi-supervised learning (SSL) to enhance prediction perfor-
mance. DeepSpaCE uses a trained model to estimate unmeasured
genes in images with inadequate gene expression. The method
was tested on a human breast cancer dataset with various tissue
sections, using certain sections for training and others for testing.
The model, acting as a ‘teacher’ in SSL, improved Pearson’s
correlation coefficients (PCC) between actual and predicted
expression when using unlabeled data from other sections.
Applying the SSL approach to ImageNet's cat and dog images
and the Cancer Genome Atlas (TCGA) dataset did not yield any
improvement.

Cell-cell interactions

Cell-cell interactions, a crucial extracellular communication
process involving ligand-receptor interactions (LRI), is a primary
focus in understanding intercellular communication [96]. Existing
computational methods often concentrate on intracellular
interactions or are limited to small-scale experiments. Spatial
transcriptomics, offering gene expression profiles in spatial
coordinates within cells, shows promise in predicting LRIs
(Figure 7). Giotto [97] is a comprehensive framework for analyzing
such data, including a cell-cell interaction module. Statistical
methods like Giotto and ML frameworks like MISTy [98] identify
cellular niche interactions by modeling expression of markers
and generating pairwise distances, respectively. MISTy uniquely
identifies interactions within specific regions, aiding marker inter-
action understanding, but it is computationally intensive. While
non-DL models’ performance is impacted by growing SRT data
diversity, DL methods can better identify cell interactions in large
SRT datasets. Pham et al. [39] developed stLearn, a method for
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Table 2: Independent benchmarking links for each category

Category Link

Identifying spatial domain Teng Liu et al. [102]
AndrewCheng [103]
Charitakis et al. [104]
Lietal. [105]

Yan and Sun [106]
Avsar and Pir [82]

Liu et al. [107]

Identifying SVG
Cell-type deconvolution

Gene expression imputation
Cell-cell interaction

analyzing cell type diversity and identifying receptor-ligand
interactions (RLIS) in tissue sections. It involves quantifying cell-
type diversity and calculating co-expression of ligand-receptor
pairs using CellPhoneDB [99]. A significant ligand-receptor pair
matrix (CCI matrix) is created, and tissue regions with similar
co-expression are clustered. stLearn combines cell density and
CCI measures to identify areas with high cell-cell interaction
probability. Validated on a breast cancer dataset, stLearn revealed
significant interactions between tumor and immune cells.

Yuan and Bar-Joseph [100] proposed GCNG, a graph convolu-
tional network for gene expression, to overcome limitations in
extracellular interaction detection from Spatial Transcriptomics
data (like Giotto). GCNG takes spatial cell locations and gene
expression pairs as inputs, constructing an adjacency matrix
based on Euclidean distance. The model maps the matrices’ prod-
uct to an embedding vector, enabling investigation of interactions
between indirectly linked cells. GCNG outperformed other models,
achieving high AUROC/AUPRC values. However, its predefined
distance criteria for neighbor cell selection may introduce biases.
Lastly, conST leveraged the advantages of clustering, SVG detec-
tion, and trajectory inference. This method identified target recep-
tors on breast cancer cells and analyze their microenvironment in
IDC regions. Initially, it derives latent features from the dataset
and segregates them into 20 clusters. It then identifies three
clusters containing significant lesion areas and applies trajectory
inference for pseudotime ordering. The SVG detection algorithm is
used to identify marker genes responsible for the tumor microen-
vironment. Finally, cross-cluster CCI analysis is performed using
TraSig [101], and within-cluster analysis is carried out by label
transfer from Seurat to identify active ligand-receptor pairs. The
results showed conST’s capability to detect IDC, DCIS and edge
tumor cell regions and active L-R pairs within IDC regions.

DISCUSSION AND FUTURE LOOK

In this study, we delve into the strengths and limitations of DL
methods for analyzing spatial transcriptomics data. Our in-depth
technical overview provides insights into the performance of each
method. The analysis of SRT data is a swiftly progressing area
featuring a wide array of methods and applications across various
categories. To ensure an unbiased comparison of these methods
regarding their applicability, it is crucial to explore independent
benchmarking techniques. Such an approach allows for an equi-
table assessment of these methods, especially considering how
the benchmarks themselves are executed. Consequently, we have
compiled a list of the latest benchmarking methods, categorized
accordingly, in Table 2.

We also comprehensively summarized the reviewed DL algo-
rithms proposed for SRT data analysis in Table 3, providing an
opportunity to readers to quickly overview each method.

To underscore the efficacy of DL methods in processing SRT
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data, we contrast them with non-DL techniques. It is important
to note that the success of many downstream tasks is contingent
on the effective functioning of individual components within the
overall workflow. For instance, the identification of SVGs hinges
on the clustering algorithm, meaning any overlooked biologi-
cally relevant feature could hinder downstream analysis. Con-
sequently, we propose incorporating ‘pathway information’ into
SRT data via phylogeny-aware clustering techniques [108], which
are becoming increasingly prevalent in the analysis of biological
datasets. This could involve integrating KEGG-level pathways or
other reference assignments into the effect size of a gene. Such
an approach helps recognize that the impact of changes in two
genes functioning within the same pathway is less significant
overall compared with alterations in genes from entirely different
pathways.

Despite the abundant information in SRT data, we found that
the current techniques do not fully exploit the rich information
in SRT data. There is a clear need for robust DL methods that uti-
lize spatial data, scRNA-seq and high-resolution histology image
data together. While CNNs have shown promise in analyzing
SRT data, challenges arise due to the unique, complex nature of
histology images, especially when combined with spatial data.
We advocate for proof that features extracted by deep models
hold biological significance. For instance, ECNN [44] and ST-NET
[68] have visualized features from intermediate or latent vec-
tors. Additionally, CCST [47] has incorporated cell cycle phase
identification as a means to verify the biological relevance of
clustered cell groups, using differential expression analysis and
Gene Ontology (GO) term enrichment. The clusters were mapped
to different cell cycle phases, providing a biologically meaningful
interpretation of the clustering results. Dealing with large histol-
ogy images also requires novel methods to unify small patches,
akin to words in NLP techniques [72]. Although HisToGene [72]
has linked patches through an attention-based model, most tech-
niques do not account for the relationship between patches,
leading to batch effect sensitivity in CNN-based models. Future
approaches could consider patches as time-series problems, lever-
aging DL methods on sequential data, like RNN, LSTM [109] and
transformers.

Another essential issue in SRT data processing is the batch
effects, which amplified by the volume of spatial transcriptomic
datasets, remain a significant challenge. While DL methods have
been developed to address this in scRNA-seq [110, 111], the
problem is more complex in SRT due to spatial dependency
and the association with histology images. SEDR [41] and
STAGATE [42] represent initial efforts to mitigate batch effects,
but neither account for histology images, necessitating methods
that evaluate gene expression and histology images together.
SRT, allowing analysis of imaging and molecular features,
could significantly advance disease diagnosis. Both SpaCell and
CNNTL [73] exemplify the use of image and gene expression
data in disease classification. As SRT technology evolves and
data generation costs drop, its use in routine disease diagnosis
could be transformative, particularly when capturing parallel
biological variables like sex, race and age. Such inclusion in SRT
data could revolutionize disease identification. Pre-processing
is another critical step in SRT data analysis, impacting the
results significantly. The gene expression matrix generated from
sequencing machines constitutes compositional data, describing
gene abundance as proportions to other genes within a sample
[112]. Instead of residing in Euclidean space, these compositional
data lie within a subspace called the simplex [113]. While
Aitchison distance is proposed within the simplex, methods
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like log-ratio transformation map data to real space, making
Euclidean distance relevant and preventing data misinterpre-
tation [113]. Although the majority of reviewed techniques
use Euclidean distance for spatial coordinates appropriately,
applying PCA or clustering algorithms on untransformed data
contradicts the compositional data hypothesis. Only 13 methods
of those reviewed considered log-transformation on the gene
expression matrix. For example, stLearn employs SMEClust
normalization, executing PCA and UMAP on normalized genes
sans transformation. It is recommended that future work
considers gene expression matrix compositionality and explores
other transformation and normalization approaches.

SRT data’s gene expression matrix is sparse, presenting signif-
icant overdispersion and zero values, which poses challenges for
count data modeling. Given that many statistical and DL models,
like VAE models, directly engage with count data, understanding
gene expression’s overdispersion and zero inflation patterns is
crucial. It helps determine whether sparsity arises from platform-
based issues necessitating imputation or from tissue location-
based gene expression heterogeneity requiring overdispersion and
zero inflation management. Poisson or negative binomial models
are preferable for most SRT technologies [114], handling overdis-
persion without additional zero inflation term. Excessive zero
count potentially signifies biological variation, where imputa-
tion might introduce noise through non-zero values, negatively
affecting analysis. We highly recommend reassessing existing
imputation methods like gimVI and Tangram, considering these
limitations.

All the methods we have mentioned are reference-based,
requiring a matching scRNA-seq dataset from the same tissue
to estimate cell proportions. Chen et al. [115] evaluated the
impact of gene-subset selection and the effectiveness of decon-
volution methods using both internal and external inference.
They found Tangram and DSTG performed best with perfectly
matched internal references and that gene selection can impact
deconvolution performance. In particular, top cell-type marker
genes outperformed highly variable gene subsets for external
reference use. Many studies treated dimension reduction methods
as error-free techniques to obtain low-dimensional features.
However, we suggest future studies to develop a unified loss
function for dimension reduction and clustering and evaluate
the performance of dimension reduction approaches [37].

In Liu et al.’s [107] recent research, the focus was on exploring
the impact of spatial distances on CCI analysis. The findings
underscored the value of combining various data types, such as
SRT and scRNA-seq, to improve the accuracy of CCI predictions.
The study highlighted a significant limitation in current ST
approaches, particularly the spatial resolution constraints.
These limitations tend to cause a mix of gene expression
patterns from different cell types within the same spatial
location, thereby affecting the precision of CCI predictions.
Consequently, there is a necessity to use scRNA-seq data as
a reference for discerning cell types in ST-guided CCI studies.
The introduction of some SRT technologies, like Stereo-seq
[116], which provide single-cell resolution, marks a significant
advancement. However, the development of effective downstream
analytical methods for technologies like Stereo-seq remains
a work in progress. With the ongoing advancements in high-
resolution SRT data, there is an expectation for the emergence of
more sophisticated CCI tools. These tools would be capable of ana-
lyzing single-cell SRT data without relying on scRNA-seg-based
approaches, paving the way for more accurate and detailed CCI
studies [107].
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Assay for Transposase Accessible Chromatin with high-
throughput sequencing [117] provides genome-wide chromatin
accessibility profiling, and its single-cell variant, scATAC-seq,
offers single-cell resolution. Despite several spatial chromatin
accessibility profiling advancements [118, 119], existing epige-
nomic methods lack spatial resolution. VAEs have recently been
employed for tasks like gene imputation, such as in gimVI, and
understanding the interplay between gene expression and TCR
sequence [120]. There is growing interest in integrating multi-
omics data, including transcriptional and chromatin landscapes
of single cells [121-123]. Therefore, it is suggested that developing
DL models for integrating scATAC-seq and spatial ATAC-seq to
jointly learn the latent embedding could be innovative [124].
Lastly, the computational demands of DL methods in spatial
transcriptomics are significant, as shown by Liu et al’s [102]
comprehensive evaluation. This study analyzed the efficiency of
various GNN-based approaches in spatial domain identification
across multiple datasets. It highlighted the high resource
requirements of methods like CCST, which, even with a high-
end GPU, faced memory issues with complex datasets like Slide-
seqV2 and seqFISH. Similarly, GraphST and conST, integrating
multiple neural networks, needed more computational resources,
resulting in increased runtimes and memory usage. Also, in
another benchmarking study by Cheng et al. [103] various
ML and DL methods used in spatial transcriptomics were
compared for computational efficiency across seven different
datasets. SpaCell showed the lowest memory usage, followed
by SpaGCN and Seurat. BayesSpace and stLearn, which account
for spatial locations, were more memory-intensive. Regarding
runtime, Seurat, SpaGCN and Giotto had similar efficiencies,
with most methods showing a linear increase in runtime as
dataset size grew. However, Giotto runtime significantly increased
with larger datasets. These findings underscore the substantial
impact that both dataset characteristics and the architectural
complexity of GNNs exert on the computational demands of
spatial transcriptomics analyses.

Building on the previously discussed challenges and advance-
ments in spatial transcriptomics, particularly those related to
computational demands and accuracy, it becomes essential to
delve deeper into the specifics of cell segmentation. This aspect is
especially critical in image-based techniques within the field.
Recent attempts to refine cell segmentation can be broadly
divided into two main categories. The first category includes
methods that solely rely on imaging, like Watershed algorithms
[125] and CellPose [126]. These approaches, while useful, often
face limitations due to the inherent noise in images and labels.
Furthermore, as they typically focus on nuclei staining, they
tend to capture nuclear boundaries more accurately than the
actual cell boundaries [127], making them less suitable when
transcriptomic data are not incorporated. The second category
encompasses methods that integrate spatial positioning of RNA
sequences to infer cell boundaries. This group includes innovative
techniques such as JSTA, Baysor [128] and GeneSegNet [127].
As the volume of genes captured increases and computational
methods continue to evolve rapidly, there is a growing need for
efficient, capable methods. These methods must not only handle
the large sizes of image and spatial data but also adapt to the
intricacies of spatial transcriptomic analysis.

CONCLUSION

In conclusion, this paper exhaustively reviewed the DL methods
for addressing the analysis challenges in SRT data. DL algorithms
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excel atrecognizing complex patterns and processing large, multi-
modal data, making them ideal for the increasingly diversified
SRT data. Methods were categorized into six tasks: identifying spa-
tial domains, identifying SVGs, imputing missing genes, enhanc-
ing GER, analyzing cell-cell interactions and performing cell-type
deconvolution. We aim for this review to guide the use of DL in SRT
analysis and inspire collaborations to create innovative methods
integrating gene expression, spatial information, single-cell data
and digital pathology.

Key Points

e Spatially resolved transcriptomics is a new technology
providing the position of captured expression across the
tissue at single-cell level resolution.

e A total of 26 deep learning-based methods are sys-
temically reviewed in this paper and categorized into
six main groups based on the tasks and downstream
analyses.

e A brief discussion of the current machine learning
approaches is presented for each category to assess the
advantages of deep learning models proposed for that
category in comparison with the traditional machine
learning models.

e A unified description of the model and result corre-
sponding to each deep learning model is presented, and
the mathematical model is also discussed in the supple-
mentary section.

e Lastly, a comprehensive summary of the deep learn-
ing algorithm, evaluation metrics and datasets by each
approach is tabulated.
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