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The recovery of multivariate functions and estimating their integrals from finitely many samples 
is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities 
provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves 
on the 𝑞-dimensional sphere 𝕊𝑞 , and investigate how well continuous 𝐿𝑝-norms of polynomials 
𝑓 of maximum degree 𝑛 on the sphere 𝕊𝑞 can be discretized by positively weighted 𝐿𝑝-sum of 
finitely many samples, and discuss the distortion between the continuous and discrete quantities, 
the number and distribution of the (deterministic or randomly chosen) sample points 𝜉1, … , 𝜉𝑁
on 𝕊𝑞 , the dimension 𝑞, and the degree 𝑛 of the polynomials.

1. Introduction

A typical problem in science is to develop a model for a hidden process from observational data. More precisely, we are given 
a set of measurements {(𝑥1, 𝑓1), … , (𝑥𝑁 , 𝑓𝑁 )}, where we assume that the set of sampling nodes Ξ =

{
𝑥1,… , 𝑥𝑁

}
is a finite subset 

of a compact metric measure space 𝕏 with measure 𝜇 and metric 𝜌. The vector of sampling values 𝑆(𝑓 ) = (𝑓1, … , 𝑓𝑁 ) has real 
or complex components. It is usually assumed that the data generating process can be described by a complex-valued function 𝑓
defined on 𝕏, viz. 𝑓 (𝑥𝑗 ) = 𝑓𝑗 , or at least 𝑓 (𝑥𝑗 ) ≈ 𝑓𝑗 . In order to develop a mathematical method to approximate the function 𝑓
from its samples it is necessary to make suitable assumptions regarding the nature of 𝑓 . That is, we assume that 𝑓 belongs to a 
(smoothness) function space at least embedded into 𝐶(𝕏) in order to make function evaluation available. The question of which 
function space is suitable is not primarily a mathematical problem but depends more on the specific application. The mathematical 
problem is to determine an approximation 𝑃 ∈ Π𝑀 to 𝑓 from the given data with a certain accuracy, and to give error bounds for 
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this approximation. A common strategy is to project 𝑓 onto this finite-dimensional subspace Π𝑀 spanned by the first 𝑀 elements 
of an orthonormal basis 

{
𝜙𝑛 ∶ 𝑛 ∈ℕ

}
of 𝐿2(𝕏, 𝜇) by only using the above mentioned discrete information. This is usually done 

by interpreting the discrete information as “noisy” samples of a model function 𝑓 ∈ Π𝑀 and using a least squares approach for the 
recovery of the coefficients as soon as the sampling operator  ∶ Π𝑀 → ℂ𝑁 , (𝑃 ) = (𝑃 (𝑥1), … , 𝑃 (𝑥𝑁 )) is bounded and boundedly 
invertible on its range, i.e.,

𝑐1 ‖𝑃‖𝑝 ≤ ‖(𝑃 )‖𝑤,𝑝,ℂ𝑁 ≤ 𝑐2 ‖𝑃‖𝑝 (1.1)

for all 𝑃 ∈ Π𝑀 , where 0 < 𝑐1 ≤ 𝑐2, 1 ≤ 𝑝 ≤∞, ‖⋅‖𝑤,𝑝,ℂ𝑁 is a certain weighted discrete 𝐿𝑝-norm on ℂ𝑁 , and ‖⋅‖𝑝 is the 𝐿𝑝-norm 
on 𝕏.

The present paper is concerned with such inequalities on the 𝑞-dimensional unit sphere 𝕏 = 𝕊𝑞 in ℝ𝑞+1. Broadly speaking, 
inequality (1.1) is about the discretization of 𝐿𝑝-norms on Π𝑞

𝑛, i.e., polynomials on 𝕊𝑞 with maximum degree 𝑛, using point samples.

Inequalities of this type have been considered by Marcinkiewicz and Zygmund in their seminal paper [25] in relation to interpola-

tion problems for functions defined on the torus 𝕏 = 𝕊1 (resp. 2π-periodic functions) on equidistant nodes 𝑥𝑗 = 𝑗∕𝑁 . More precisely, 
the authors of [25] proved that for every trigonometric polynomial 𝑃 of maximal degree 𝑛 and every 1 ≤ 𝑝 ≤∞ the following chain 
of inequalities holds

(1 − 𝜀)

(
1
𝑁

𝑁∑
𝑗=1

|||𝑃 (𝑥𝑗 )|||𝑝
) 1

𝑝

≤ ‖𝑃‖𝑝 ≤(1 + 𝜀)

(
1
𝑁

𝑁∑
𝑗=1

|||𝑃 (𝑥𝑗 )|||𝑝
) 1

𝑝

, (1.2)

provided that the number 𝑁 of sampling points is strictly greater than (1 + 1
𝜀
)2𝑛 for some 𝜀 > 0.

Our results cover variants of this Marcinkiewicz–Zygmund inequality for both scattered (i.e., deterministically given) sampling 
points and randomly chosen ones. For scattered data on the 𝑞-sphere 𝕊𝑞 , we establish the following 𝐿𝑝-result by applying Riesz–

Thorin interpolation to the boundary cases 𝑝 = 1 and 𝑝 =∞. Here 𝐿𝑝-norms are computed with respect to the surface area measure 
𝜇𝑞 of 𝕊𝑞 , and the weights in the discretized norm are given by the surface areas of the patches 𝑍𝜉 of a partition of 𝕊𝑞 , to each of 
which exactly one sampling point 𝜉 ∈ Ξ belongs. (This one-to-one correspondence is roughly what we mean by saying that (Ξ, ) is 
a compatible pair.) The geometry of the partition enters through the partition norm ‖‖, i.e., the maximum geodesic diameter of its 
patches. In a sense, Theorem 4.1 can be considered a generalization of (1.2) on the 𝑞-sphere, which provides exact constants.

Theorem 4.1. Let 𝜂 ∈ (0, 1), and let (Ξ, ) be a compatible pair consisting of a finite set Ξ ⊆ 𝕊𝑞 and a partition  of 𝕊𝑞 . Assume that

6𝐶𝑞(𝑛+ 𝑞2)‖‖ ≤ 𝜂

with 𝐶𝑞 ∶= 3𝑞∕2 π + 2𝑞 + 3. Then, for all 𝑝 ∈ [1, ∞] and every 𝑃 ∈Π𝑞
𝑛, we have

(1 − 𝜂)‖𝑃‖𝜇𝑞 ,𝑝 ≤
(∑

𝜉∈Ξ
𝜇𝑞(𝑍𝜉) |𝑃 (𝜉)|𝑝)

1
𝑝 ≤ (1 + 𝜂)‖𝑃‖𝜇𝑞 ,𝑝 .

This theorem has an interesting consequence which we state in Corollary 4.7 below. Namely, if 𝑁 ≳ dim(Π𝑞
𝑛)𝜂−𝑞 , then we find a 

set Ξ =
{
𝜉1,… , 𝜉𝑁

}
of sampling points on 𝕊𝑞 such that the equally weighted Marcinkiewicz–Zygmund inequality

(1 − 𝜂)‖𝑃‖𝜇𝑞 ,𝑝 ≤
(
𝜔𝑞

𝑁

𝑁∑
𝑗=1

|||𝑃 (𝜉𝑗 )|||𝑝
) 1

𝑝

≤ (1 + 𝜂)‖𝑃‖𝜇𝑞 ,𝑝
holds true simultaneously for all 𝑝 ∈ [1, ∞] and 𝑃 ∈ Π𝑞

𝑛. The number 𝑁 of sampling points therefore scales at most like 𝜂−𝑞 with 
respect to the parameter 𝜂 ∈ (0, 1).

For 𝑝 = 2, this dependence can be improved to 𝜂−2 by using randomly drawn points at the expense of an additional logarithmic 
factor in the dimension of the vector space Π𝑞

𝑛. More precisely, we show the following 𝐿2-version of the Marcinkiewicz–Zygmund 
inequality for sampling points drawn independently and identically distributed according to the normalized surface area measure 𝜎𝑞 . 
As in [4] the problem boils down to the analysis of the extreme singular values of random matrices created from the orthonormal 
basis of the subspace evaluated at random points. It has been already observed in the 1990s that a logarithmic oversampling allows 
to control the singular values of random matrices, see for instance [30]. Here we use the more recent result by Tropp [33] together 
with the (3.4) which allows to consider complex random matrices and control the involved constants.

Theorem 3.2. Let 𝜂, 𝜀 ∈ (0, 1). Suppose 𝜉1, … , 𝜉𝑁 ∈ 𝕊𝑞 are drawn i.i.d. according to 𝜎𝑞 . If

𝑁 >
3dim(Π𝑞

𝑛)
𝜂2

log
(
2dim(Π𝑞

𝑛)
𝜀

)
,

2

then with probability exceeding 1 − 𝜀 with respect to the product measure ℙ = 𝜎⊗𝑁
𝑞 , we have
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(1 − 𝜂)‖𝑃‖2
𝜎𝑞 ,2

≤ 1
𝑁

𝑁∑
𝑗=1

|||𝑃 (𝜉𝑗 )|||2 ≤ (1 + 𝜂)‖𝑃‖2
𝜎𝑞 ,2

for all 𝑃 ∈Π𝑞
𝑛.

Also note that the addition formula (2.1) together with (3.4) implies a (2, ∞)-Nikolskii inequality which allows to utilize the 
results in [18, D.15] and [32, Section 6].

The last main result of the paper at hand is a combination of our deterministic Marcinkiewicz–Zygmund inequality in Theorem 4.1, 
the well-known coupon collector problem from probability theory [11, p. 36], and partitioning results for 𝕊𝑞 [22, Theorem 3.1.3]. 
This leads us to the following 𝐿𝑝-Marcinkiewicz–Zygmund inequality for sets of random sampling points and 1 ≤ 𝑝 ≤∞.

Theorem 5.2. Let 𝑛, 𝑞 ∈ ℕ, 𝜂, 𝜀 ∈ (0, 1), 𝜔𝑞 ∶= 𝜇𝑞(𝕊𝑞), 𝛼𝑞 ∶= 8 
(

𝜔𝑞𝑞

𝜔𝑞−1

) 1
𝑞

, and 𝐶𝑞 = 3𝑞∕2 π + 2𝑞 + 3. Choose 𝑁 ∈ ℕ large enough such 

that

6𝐶𝑞𝛼𝑞

(
𝑁

4 log(𝑁)

)− 1
𝑞

(𝑛+ 𝑞2) < 𝜂.

Draw points 𝜉1, … , 𝜉𝑁 ∈ 𝕊𝑞 i.i.d. according to 𝜎𝑞 . Then with probability ≥ 1 − 1
𝑁

with respect to the product measure ℙ = 𝜎⊗𝑁
𝑞 , there exists 

weights 𝑤1, … , 𝑤𝑁 > 0 such that 
∑𝑁

𝑗=1𝑤𝑗 = 1 and

(1 − 𝜂)‖𝑃‖𝜎𝑞 ,𝑝 ≤
(

𝑁∑
𝑗=1

𝑤𝑗
|||𝑃 (𝜉𝑗 )|||𝑝

) 1
𝑝

≤ (1 + 𝜂)‖𝑃‖𝜎𝑞 ,𝑝
for all 𝑝 ∈ [1, ∞] and all 𝑃 ∈Π𝑞

𝑛.

The original Marcinkiewicz–Zygmund inequality (1.2) has been generalized in many directions as to univariate and multivariate 
algebraic polynomials, to non-equidistant, scattered, or random samplings point sets, and to general manifolds. These generalizations 
have many applications in various fields in applied mathematics such as interpolation and approximation, quadrature and optimal 
design, sampling theory, and phase retrieval. The number of papers dealing with approximation problems on the sphere related to 
Marcinkiewicz–Zygmund inequalities is too large to present an exhaustive list here, exemplary we mention the papers [2,3,6–9,12–

16,18,20,21,23,24,26,27,31,32]. An elaborate discussion on the various relationships in the literature is given by Gröchenig [17]

and by Kashin et al. [18].

The reason for revisiting the problem of the Marcinkiewicz–Zygmund inequalities on the unit sphere 𝕊𝑞 in this paper is at least 
twofold. First, classical proofs of the Marcinkiewicz–Zygmund inequalities for cases 𝑝 = 1 and 𝑝 = ∞ are based on the Bernstein 
inequality. To get the intermediate cases 1 < 𝑝 <∞, commonly a Riesz–Thorin interpolation argument has been employed, see, e.g., 
[19, Theorem 1] and [27, Theorem 3.1]. However, there is a pitfall in this argument. The space Π𝑞

𝑛 does not contain the simple 
functions and therefore the use of the Riesz–Thorin interpolation theorem is not justified. The authors of [13] found a workaround 
to this problem in a rather abstract way. In the paper at hand, we present a more direct solution to this problem by constructing 
an operator related to the Marcinkiewicz–Zygmund inequalities which is defined on the entire space 𝐿𝑝 and for which the Riesz–

Thorin argument is justified, see Theorem 4.1. Second, we derive probabilistic Marcinkiewicz–Zygmund inequalities in Theorems 3.2

and 5.2. These are to some extent easier to set up because unlike in the deterministic version, no partition of the sphere is required.

We have organized the paper as follows. We start by collecting some basic material regarding the analysis on the 𝑞-dimensional 
unit sphere in Section 2. Section 3 is devoted to a first look to Marcinkiewicz–Zygmund inequalities for sets of random sampling 
points in the special case of 𝐿2. The entire Section 4 is concerned with the proof of the Marcinkiewicz–Zygmund inequalities for 
deterministic sets of scattered sampling points for 𝐿𝑝, 1 ≤ 𝑝 ≤∞. In Section 5 we consider the case of random point sets again and 
we show how to derive 𝐿𝑝-versions of the desired inequalities for those sampling sets and 1 ≤ 𝑝 ≤∞.

2. Preliminaries

We start with some notation and basic results on harmonic analysis on the sphere, which can be found, e.g., in [1]. Let 𝑞 ≥ 2 be 
an arbitrary but fixed integer. The 𝑞-dimensional unit sphere 𝕊𝑞 embedded in ℝ𝑞+1 is the set

𝕊𝑞 =
{
𝑥 ∈ℝ𝑞+1 ∶ |𝑥|2 = 1

}
,

where |𝑥|2 denotes the Euclidean norm of 𝑥 ∈ ℝ𝑞+1. For the inner product of two vectors 𝑥, 𝑦 ∈ ℝ𝑞+1 we write 𝑥 ⋅ 𝑦. The geodesic 
distance on 𝕊𝑞 is given by 𝑑(𝑥, 𝑦) = arccos(𝑥 ⋅ 𝑦). It defines a metric on 𝕊𝑞 . The surface measure on 𝕊𝑞 will be denoted by 𝜇𝑞 and we 
assume that

𝜇 (𝕊𝑞) = 2π
𝑞+1
2

=∶ 𝜔 .
3

𝑞
Γ( 𝑞+12 )

𝑞
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The spaces 𝐿𝑝(𝕊𝑞) ∶=𝐿𝑝(𝕊𝑞, 𝜇𝑞) are defined as usual. The inner product on the Hilbert space 𝐿2(𝕊𝑞) is given by

⟨𝑓 , 𝑔⟩ = ∫
𝕊𝑞

𝑓 (𝑥)𝑔(𝑥)d𝜇𝑞(𝑥).

Recall that using polar coordinates the 𝑘th component of the vector 𝑥 ∈ 𝕊𝑞 satisfies

𝑥𝑘 =
⎧⎪⎨⎪⎩
∏𝑞

𝑗=1 sin(𝜃𝑗 ) if 𝑘 = 1,
cos(𝜃𝑘−1)

∏𝑞

𝑗=𝑘 sin(𝜃𝑗 ) if 2 ≤ 𝑘 ≤ 𝑞,

cos(𝜃𝑞) if 𝑘 = 𝑞 + 1,

where 𝜃1 ∈ [−π, π] and 𝜃2, … , 𝜃𝑞 ∈ [0, π]. In polar coordinates the surface measure reads as

d𝜇𝑞 =
𝑞∏

𝑘=1
sin(𝜃𝑘)𝑘−1 d𝜃𝑘 = sin(𝜃𝑞)𝑞−1 d𝜃𝑞 d𝜇𝑞−1,

or equivalently

d𝜇𝑞 =𝑤𝑞(𝑡) d𝑡d𝜇𝑞−1,

with the Jacobi weight function 𝑤𝑞(𝑡) = (1 − 𝑡2)
𝑞
2 −1 and 𝑡 = cos(𝜃𝑞).

According to the weight 𝑤𝑞 the spaces 𝐿𝑤𝑞,𝑝
([−1, 1]) ∶= 𝐿𝑝([−1, 1], 𝑤𝑞(𝑡) d𝑡) are defined in the usual manner. Using the above 

decomposition of d𝜇𝑞 it can be easily seen that for any 𝜙 ∈𝐿𝑤𝑞,1([−1, 1]) and any 𝑦 ∈ 𝕊𝑞

∫
𝕊𝑞

𝜙(𝑥 ⋅ 𝑦)d𝜇𝑞(𝑥) = 𝜔𝑞−1

1

∫
−1

𝜙(𝑡)𝑤𝑞(𝑡)d𝑡.

Let 𝑛 ≥ 0 be a fixed integer. The restriction of a harmonic homogeneous polynomial of degree 𝑛 to 𝕊𝑞 is called a spherical harmonic

of degree 𝑛. Spherical harmonics of degree at most 𝑛 form a vector space Π𝑞
𝑛. The vector space of spherical harmonics of degree equal 

to 𝑛 shall be denoted by 𝑞
𝑛 . The spaces 𝑞

𝑛 are mutually orthogonal with respect to the inner product on 𝐿2(𝕊𝑞) and, moreover, we 
have the following decomposition Π𝑞

𝑛 =
⨁𝑛

𝓁=0𝑞

𝓁 . Clearly, the spaces 𝑞

𝓁 are finite-dimensional and the dimension of Π𝑞
𝑛 is given by 

the sum of the dimensions of the spaces 𝑞

𝓁 , 𝓁 = 0, … , 𝑛. More precisely,

dim(𝑞

𝓁) =
(2𝓁 + 𝑞 − 1)(𝓁 + 𝑞 − 2)

𝓁! (𝑞 − 1)!
=∶ ℎ𝑞(𝓁), dim(Π𝑞

𝑛) =
𝑛∑

𝓁=0
ℎ𝑞(𝓁) =∶ 𝑑𝑞(𝑛).

The dimension dim(Π𝑞
𝑛) of the space Π𝑞

𝑛 is therefore asymptotically equivalent to 𝑛𝑞 . Let 
{
𝑌𝑛,𝑘 ∶ 𝑘 = 1,… , ℎ𝑞(𝑛)

}
be an orthonormal 

basis for 𝑞
𝑛 . The following relation of the basis elements 𝑌𝑛,𝑘 to the ultraspherical polynomials, known as the addition formula, is 

of fundamental importance to our analysis

ℎ𝑞 (𝑛)∑
𝑘=1

𝑌𝑛,𝑘(𝑥)𝑌𝑛,𝑘(𝑦) =
ℎ𝑞(𝑛)
𝜔𝑞

𝑅
( 𝑞2 −1,

𝑞
2 −1)

𝑛 (𝑥 ⋅ 𝑦), (2.1)

where 𝑅
( 𝑞2 −1,

𝑞
2 −1)

𝑛 is the ultraspherical polynomial corresponding to the weight 𝑤𝑞 and normalized such that 𝑅
( 𝑞2 −1,

𝑞
2 −1)

𝑛 (1) = 1. The 
addition formula, the orthogonality relation

1

∫
−1

𝑅
( 𝑞2 −1,

𝑞
2 −1)

𝑛 (𝑡)𝑅
( 𝑞2 −1,

𝑞
2 −1)

𝑚 (𝑡) 𝑤𝑞(𝑡) d𝑡 =
𝜔𝑞

𝜔𝑞−1 ℎ𝑞(𝑛)
𝛿𝑛,𝑚

and the subsequent properties of these polynomials can be found in [10, Section 1.2]. In order to simplify the notation we will write 

𝑅𝑛 instead of 𝑅
( 𝑞2 −1,

𝑞
2 −1)

𝑛 .

The space 𝐿2(𝕊𝑞) can be decomposed in terms of the spaces 𝑞
𝑛 as

𝐿2(𝕊𝑞) = 𝑐𝓁
⨁
𝑛∈ℕ0

𝑞
𝑛 = 𝑐𝓁 span

{
𝑌𝑛,𝑘 ∶ 𝑛 ∈ℕ0, 𝑘 = 1,… , ℎ𝑞(𝑛)

}
.

Consequently, the orthogonal projection of 𝑓 ∈𝐿2(𝕊𝑞) onto 𝑞
𝑛 reads as

𝑛𝑓 (𝑥) =
ℎ𝑞 (𝑛)∑ ⟨

𝑓 , 𝑌𝑛,𝑘
⟩
𝑌𝑛,𝑘(𝑥) =

ℎ𝑞(𝑛)
𝑓 (𝑦)𝑅𝑛(𝑥 ⋅ 𝑦) d𝜇𝑞(𝑦),
4

𝑘=1 𝜔𝑞 ∫
𝕊𝑞
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where the second identity is an implication of the addition formula (2.1). The orthogonal projection onto the space Π𝑞
𝑛 is therefore 

given as

𝑛𝑓 (𝑥) =
𝑛∑

𝑘=0
𝑘𝑓 (𝑥) =

1
𝜔𝑞−1 ∫

𝕊𝑞

𝑓 (𝑦)𝐾𝑛(𝑥 ⋅ 𝑦,1) d𝜇𝑞(𝑦),

where

𝐾𝑛(𝑡, 𝑡′) =
𝑛∑

𝑘=0

‖‖𝑅𝑘
‖‖−22 𝑅𝑘(𝑡)𝑅𝑘(𝑡′) (2.2)

is the Christoffel–Darboux kernel for the ultraspherical polynomials and ‖‖𝑅𝑘
‖‖2 = (∫ 1

−1
||𝑅𝑘(𝑡)||2 d𝑡) 12 . In order to simplify our notation 

we will write 𝐾𝑛(𝑡) for 𝐾𝑛(𝑡, 1).
In the one-dimensional case, i.e., on 𝕊1 = 𝕋 = ℝ∕2πℤ, the (2𝑛 + 1)-dimensional polynomial spaces Π1

𝑛 = 𝑇 (𝑛) consists of the 
trigonometric polynomials 𝑓 ∶ 𝕋 → ℂ, 𝑓 (𝑥) =

∑𝑛
𝑘=−𝑛 𝑐𝑘 exp(i𝑘𝑥), where 𝑐−𝑛, … , 𝑐𝑛 ∈ ℂ. The well-known Bernstein inequality for 

trigonometric polynomials reads as follows, see [35, Theorem III.3.16].

Lemma 2.1. For 𝑝 ∈ [1, ∞] and 𝑃 ∈ 𝑇 (𝑛), we have

‖‖𝑃 ′‖‖𝕋 ,𝑝 ≤ 𝑛‖𝑃‖𝕋 ,𝑝 ,
where the 𝐿𝑝-norm of a function defined on the torus is given as

‖𝑓‖𝕋 ,𝑝 ∶={(
(2π)−1 ∫ π

−π |𝑓 (𝑥)|𝑝 d𝑥) 1
𝑝 if 1 ≤ 𝑝 <∞,

sup𝑥∈[−π,π] |𝑓 (𝑥)| if 𝑝 =∞.
(2.3)

Analogously to Equation (2.3), we may define

‖𝑓‖𝜇,𝑝 ∶={(∫𝕊𝑞 |𝑓 (𝑥)|𝑝 d𝜇(𝑥)) 1
𝑝 if 1 ≤ 𝑝 <∞,

𝜇- ess sup{|𝑓 (𝑥)| ∶ 𝑥 ∈ 𝕊𝑞} if 𝑝 =∞ ,

and

‖𝑥‖ℂ𝐷,𝑝 ∶=
⎧⎪⎨⎪⎩
(∑𝐷

𝑗=1
|||𝑥𝑗 |||𝑝) 1

𝑝
if 1 ≤ 𝑝 <∞,

sup
{||𝑥1|| ,… , ||𝑥𝐷||} if 𝑝 =∞ ,

for any measure 𝜇 on 𝕊𝑞 , 𝑓 ∶ 𝕊𝑞 →ℂ, and 𝑥 = (𝑥1, … , 𝑥𝐷) ∈ℂ𝐷 .

For our analysis it will be necessary to consider partitions of 𝕊𝑞 and related sets of points. A family  =
{
𝑍1,… ,𝑍𝑁

}
of 

measurable subsets 𝑍𝑘 ⊆ 𝕊𝑞 is called a partition of 𝕊𝑞 if their interiors are pairwise disjoint, i.e., int(𝑍𝑘) ∩ int(𝑍𝑘′ ) = ∅ for all 
𝑘, 𝑘′ ∈ {1,… ,𝑁}, and 𝕊𝑞 =

⋃𝑁
𝑘=1𝑍𝑘. An element 𝑍 ∈  is called a patch. A finite subset Ξ of 𝕊𝑞 is called compatible with the 

partition if there is precisely one element of Ξ in the interior of every patch of , viz. Ξ ∩𝑍𝑘 = {𝜉} for every 𝑘 ∈ {1,… ,𝑁}. We 
will call the pair (Ξ, ) compatible if the set Ξ is compatible with the partition  and we will write 𝑍𝜉 to indicate the patch from 
which contains the element 𝜉 ∈ Ξ, see Fig. 1. There are two parameters related to Ξ resp.  which will be relevant for our analysis. 
These are the mesh norm of Ξ defined as

𝛿Ξ ∶= max
𝑥∈𝕊𝑞

min
𝑦∈Ξ

𝑑(𝑥, 𝑦),

and the partition norm related to  given by

‖‖ ∶= max
𝑍∈ sup

𝑥,𝑦∈𝑍
𝑑(𝑥, 𝑦).

In view of the Marcinkiewicz–Zygmund inequality, we discretize a measure 𝜇 on 𝕊𝑞 using the data of a compatible pair (Ξ, ) by 
𝜇(Ξ, ) ∶=

∑
𝜉∈Ξ 𝜇(𝑍𝜉)𝛿𝜉 , where 𝛿𝜉(𝐴) ∶= 𝟏𝐴(𝜉) denotes the Dirac measure at 𝜉 ∈ Ξ.

Before we get to 𝐿𝑝-Marcinkiewicz–Zygmund inequalities for general 1 ≤ 𝑝 ≤∞ later, we have a look at the special case 𝑝 = 2
through the lens of random matrix theory in the next section. These proof techniques are tailored to the 𝑝 = 2 case, and yield a first 
5

version of the Marcinkiewicz–Zygmund inequality for randomly chosen sampling points.
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Fig. 1. Example of a compatible pair (Ξ,).

3. A first look at random points

In this section, we consider the following randomized setting. Denote by Ξ =
{
𝜉1,… , 𝜉𝑁

}
a set of points on 𝕊𝑞 drawn i.i.d. 

according to the normalized surface area measure 𝜎𝑞 =
1
𝜔𝑞

𝜇𝑞 on 𝕊𝑞 . The aim is to provide a relationship between the number 𝑁 of 
samples, the dimension 𝑞, the degree 𝑛 of the polynomials, and the parameter 𝜂 ∈ (0, 1) such that

(1 − 𝜂)‖𝑃‖2
𝜎𝑞 ,2

≤ 1
𝑁

𝑁∑
𝑗=1

|||𝑃 (𝜉𝑗 )|||2 ≤ (1 + 𝜂)‖𝑃‖2
𝜎𝑞 ,2

, (3.1)

holds with high probability for every 𝑃 ∈Π𝑞
𝑛.

To keep the notation simple we will write 𝑑 instead of 𝑑𝑞(𝑛) for the dimension of Π𝑞
𝑛. Let (𝑒𝑘)𝑑𝑘=1 be an orthonormal basis of Π𝑞

𝑛

with respect to the inner product

⟨𝑓 , 𝑔⟩ ∶= ∫
𝕊𝑞

𝑓 (𝑥)𝑔(𝑥)d𝜎𝑞(𝑥).

Parseval’s identity yields

‖𝑃‖𝜎𝑞 ,2 = ‖𝑢‖ℂ𝑑 ,2

where 𝑃 ∈Π𝑞
𝑛 and 𝑢 = (⟨𝑃 , 𝑒𝑘⟩)𝑑𝑘=1. Now consider

𝐿 =
⎛⎜⎜⎝
𝑒1(𝜉1) 𝑒2(𝜉1) ⋯ 𝑒𝑑 (𝜉1)
⋮ ⋮ ⋱ ⋮

𝑒1(𝜉𝑁 ) 𝑒2(𝜉𝑁 ) ⋯ 𝑒𝑑 (𝜉𝑁 )

⎞⎟⎟⎠ , (3.2)

and note that

(𝐿𝑢)𝑗 =
𝑑∑

𝑘=1
⟨𝑃 , 𝑒𝑘⟩ 𝑒𝑘(𝜉𝑗 ) = 𝑃 (𝜉𝑗 )

for 𝑗 = 1, … , 𝑁 . Thus the inequality (3.1) can be rewritten as

(1 − 𝜂)‖𝑢‖2ℂ𝑑 ,2 ≤
‖‖‖‖‖‖ 1√

𝑁
𝐿𝑢

‖‖‖‖‖‖
2

ℂ𝑁 ,2

≤ (1 + 𝜂)‖𝑢‖2ℂ𝑑 ,2 . (3.3)

Obviously, the best possible constants 1 ± 𝜂 in (3.3) are given by the minimal resp. maximal eigenvalue of 1
𝑁
𝐿∗𝐿. In [28, Theo-

rem 2.1], Moeller and Ullrich proved the following concentration inequality for the smallest and largest eigenvalue of such random 
Gram matrices. The result is based on Tropp [33].

Theorem 3.1. Let 𝑠, 𝑁, 𝑀 ∈ ℕ, 𝑡 ∈ (0, 1), Ω ⊆ℝ𝑠 a set, 𝜚 a probability measure on Ω and (𝑒𝑘)𝐷𝑘=1 be an orthonormal system in 𝐿2(Ω, 𝜚). 
Let 𝜉1, … , 𝜉𝑁 ∈ Ω be drawn i.i.d. according to 𝜚, 𝐿 = (𝑒𝑘(𝜉𝑗 ))

𝑁,𝐷

𝑗,𝑘=1, and ℙ = 𝜚⊗𝑁 the product measure. Then the following concentration 
6

inequalities for the extremal eigenvalues of 1
𝑁
𝐿∗𝐿 hold
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ℙ
(
𝜆min

( 1
𝑁

𝐿∗𝐿
)
< 1 − 𝑡

)
< (𝐷 + 1) exp

(
−

𝑁 log((1 − 𝑡)1−𝑡e𝑡)

sup𝑥∈Ω
∑𝐷

𝑘=1
||𝑒𝑘(𝑥)||2

)
,

ℙ
(
𝜆max

( 1
𝑁

𝐿∗𝐿
)
> 1 + 𝑡

)
< (𝐷 + 1) exp

(
−

𝑁 log((1 + 𝑡)1+𝑡e−𝑡)

sup𝑥∈Ω
∑𝐷

𝑘=1
||𝑒𝑘(𝑥)||2

)
.

To apply this result to our case let 𝑠 = 𝑞 + 1, Ω = 𝕊𝑞 , 𝜚 = 𝜎𝑞 , and let (𝑒𝑘)𝑑𝑘=1 be an orthonormal basis of the Hilbert space 
(Π𝑞

𝑛, ‖⋅‖𝜎𝑞 ,2).
To compute the expression sup𝑥∈𝕊𝑞

∑𝑑
𝑘=1

||𝑒𝑘(𝑥)||2, note that orthonormal bases of (Π𝑞
𝑛, ‖⋅‖𝜎𝑞 ,2) are obtained from orthonormal 

bases of (Π𝑞
𝑛, ‖⋅‖𝜇𝑞 ,2) by multiplying each element by the constant scalar 𝜔

1
2
𝑞 . Using the addition formula (2.1) an easy computation 

shows that

𝑑∑
𝑘=1

||𝑒𝑘(𝑥)||2 = 𝑑 =
𝑛∑

𝓁=0

(2𝓁 + 𝑞 − 1)(𝓁 + 𝑞 − 2)!
𝓁!(𝑞 − 1)!

(3.4)

for every 𝑥 ∈ 𝕊𝑞 .

Theorem 3.2. Let 𝜂, 𝜀 ∈ (0, 1). Suppose 𝜉1, … , 𝜉𝑁 ∈ 𝕊𝑞 are drawn i.i.d. according to 𝜎𝑞 . If

𝑁 >
3𝑑𝑞(𝑛)
𝜂2

log
(2𝑑𝑞(𝑛)

𝜀

)
,

then with probability exceeding 1 − 𝜀 with respect to the product measure ℙ = 𝜎⊗𝑁
𝑞 , we have

(1 − 𝜂)‖𝑃‖2
𝜎𝑞 ,2

≤ 1
𝑁

𝑁∑
𝑗=1

|||𝑃 (𝜉𝑗 )|||2 ≤ (1 + 𝜂)‖𝑃‖2
𝜎𝑞 ,2

for all 𝑃 ∈Π𝑞
𝑛.

Proof. We will again use 𝑑 for 𝑑𝑞(𝑛). Let (𝑒𝑘)𝑑𝑘=1 be an orthonormal basis for (Π𝑞
𝑛, ‖⋅‖𝜎𝑞 ) and 𝐿 ∶= (𝑒𝑘(𝜉𝑗 ))

𝑁,𝑑

𝑗,𝑘=1. By Theorem 3.1 and 
(3.4), we have

ℙ
(
𝜆min

( 1
𝑁

𝐿∗𝐿
)
< 1 − 𝜂

)
< 𝑑 exp

(
−
𝑁 log((1 − 𝜂)1−𝜂e𝑡)

𝑑

)
(3.5)

and

ℙ
(
𝜆max

( 1
𝑁

𝐿∗𝐿
)
> 1 + 𝜂

)
< 𝑑 exp

(
−
𝑁 log((1 + 𝜂)1+𝜂e−𝜂)

𝑑

)
. (3.6)

For 𝜂 ∈ (0, 1), we have

max
{
log((1 − 𝜂)1−𝜂e𝜂), log((1 + 𝜂)1+𝜂e−𝜂)

} ≥ 𝜂2

3
,

so the right-hand sides of (3.5) and (3.6) are each ≤ exp
(
−𝑁𝜂2

3𝑑

)
. Note that 𝑁 >

3𝑑
𝜂2

log
(
2𝑑
𝜀

)
is equivalent to 𝑑 exp

(
−𝑁𝜂2

3𝑑

)
<

𝜀

2 . Thus

ℙ
(
𝜆min

( 1
𝑁

𝐿∗𝐿
)
< 1 − 𝜂

)
+ℙ

(
𝜆max

( 1
𝑁

𝐿∗𝐿
)
> 1 + 𝜂

)
< 2𝑑 exp

(
−𝑁𝜂2

3𝑑

)
< 𝜀.

This concludes the proof. □

Note that the statement of Theorem 3.2 holds verbatim for any direct sum 
⨁

𝓁∈𝐽 𝑞

𝓁 for some index set 𝐽 ⊆ ℕ in place of Π𝑞
𝑛, 

with 𝑑𝑞(𝑛) = dim(Π𝑞
𝑛) replaced by dim(

⨁
𝓁∈𝐽 𝑞

𝓁). Like in (3.4), this is due to fact that the addition formula for orthonormal bases 
holds true for the summands 𝑞

𝓁 , see again [15, equation (2.8)].

In order to illustrate Theorem 3.2 we fix 𝑞 = 2, 𝜂 = 0.9 and 𝜀 = 0.01, randomly draw 𝑁 = 3𝑑𝑞 (𝑛)
𝜂2

log
( 2𝑑𝑞 (𝑛)

𝜀

)
points 𝜉1, … , 𝜉𝑁 ∈ 𝕊𝑞

and compute the minimum and maximum eigenvalues 𝜆min and 𝜆max of the matrix 1
𝑁
𝐿∗𝐿. We repeated this 1000 times for different 

degrees 𝑛 of the polynomials and depicted in Fig. 2 the average minimum and maximum eigenvalues as well as the 1 and 99 percent 
7

quantiles. According to our experiment those are safely within the range [1 − 𝜂, 1 + 𝜂] as stated by Theorem 3.2.
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Fig. 2. Concentration of the minimum and maximum eigenvalues of the matrix 1
𝑁
𝐿∗𝐿 for random sample sets 𝜉1, … , 𝜉𝑁 ∈ 𝕊2 and different degrees 𝑛 of the 

polynomials. The number of sampling points 𝑁 is chosen according to the lower bound in Theorem 3.2, where we have used the constants 𝜂 = 0.9 and 𝜀 = 0.01. 
Displayed are the mean minimum and maximum eigenvalues as well as the 1 and 99 percent quantiles.

As a first step towards general 𝑝, we obtain the following statement when 𝑞 = 2 and 𝑝 is even.

Corollary 3.3. Let 𝜂, 𝜀 ∈ (0, 1), 𝑞 = 2, and let 𝑝 ∈ ℕ be an even number. Assume 𝜉1, … , 𝜉𝑁 ∈ 𝕊𝑞 are drawn i.i.d. according to 𝜎𝑞 . If

𝑁 >
3𝑑𝑞(𝑛𝑝∕2)

𝜂2
log

(2𝑑𝑞(𝑛𝑝∕2)
𝜀

)
,

then with probability exceeding 1 − 𝜀 with respect to the product measure ℙ = 𝜎⊗𝑁
𝑞 , we have

(1 − 𝜂)‖𝑃‖𝑝𝜎𝑞 ,𝑝 ≤ 1
𝑁

𝑁∑
𝑗=1

|||𝑃 (𝜉𝑗 )|||𝑝 ≤ (1 + 𝜂)‖𝑃‖𝑝𝜎𝑞 ,𝑝 ,
for all 𝑃 ∈Π𝑞

𝑛.

Proof. For abbreviation we put 𝑑 = 𝑑𝑞(𝑛𝑝∕2). Let (𝑒𝑘)𝑑𝑘=1 be the orthonormal basis (spherical harmonics) of the Hilbert space 
(Π𝑞

𝑛𝑝
2
, ‖⋅‖𝜎𝑞 ,2). Since the product of two spherical harmonics of degree 𝑛1 and 𝑛2 belongs to the span of the spherical harmonics up to 

degree 𝑛1 + 𝑛2, cf. [34, Section 5.6.2], we have 𝑃
𝑝
2 ∈ Π𝑞

𝑛𝑝
2

when 𝑃 ∈Π𝑞
𝑛.

Together with Theorem 3.2 this implies for 𝑁 >
3𝑑
𝜂2

log
(
2𝑑
𝜀

)
that

(1 − 𝜂)‖‖‖𝑃 𝑝
2 ‖‖‖2𝜎𝑞 ,2 ≤ 1

𝑁

𝑁∑
𝑗=1

|||𝑃 (𝜉𝑗 ) 𝑝2 |||2 ≤ (1 + 𝜂)‖‖‖𝑃 𝑝
2 ‖‖‖2𝜎𝑞 ,2

with probability ≥ 1 − 𝜀 with respect to the product measure ℙ = 𝜎⊗𝑁
𝑞 . This is equivalent to the assertion. □

In order to obtain Marcinkiewicz–Zygmund inequalities for random sampling points and general 𝑝 ∈ [1, ∞] we first reconsider 
the case were the sampling points are deterministic scattered points on 𝕊𝑞 .

4. Marcinkiewicz–Zygmund inequalities for scattered data

In this section, we give a proof for a deterministic Marcinkiewicz–Zygmund inequality on 𝕊𝑞 which holds for all 𝑝 simultaneously. 
Reasoning from the Riesz–Thorin interpolation theorem has been attempted in the literature several times, however (to our best 
knowledge) always fraught with problems. The authors of [13] are aware of this issue and prove deterministic Marcinkiewicz–

Zygmund inequality in a manifold setting by different means. The aim of this section is to provide a self-contained and rather 
elementary proof for the sphere by proper use of Riesz–Thorin interpolation, which, in addition, simplifies some of the technical 
calculations in [15,27]. The main theorem in this section reads as follows.

Theorem 4.1. Let 𝜂 ∈ (0, 1), and let (Ξ, ) be a compatible pair consisting of a finite set Ξ ⊆ 𝕊𝑞 and a partition  of 𝕊𝑞 . Assume that

6𝐶𝑞(𝑛+ 𝑞2)‖‖ ≤ 𝜂
8

with 𝐶𝑞 ∶= 3𝑞∕2 π + 2𝑞 + 3.
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Then, for all 𝑝 ∈ [1, ∞] and every 𝑃 ∈Π𝑞
𝑛, we have

(1 − 𝜂)‖𝑃‖𝜇𝑞 ,𝑝 ≤ ‖𝑃‖𝜇𝑞 (Ξ,),𝑝 ≤ (1 + 𝜂)‖𝑃‖𝜇𝑞 ,𝑝 .
The proof of Theorem 4.1 is essentially based on a generalized de la Vallée Poussin kernel 𝑣𝑛 ∶ [−1, 1] →ℝ, 𝑛 ∈ℕ, for the system 

of ultraspherical polynomials which was defined in [15] as

𝑣𝑛(𝑡) =
1

𝜔𝑞−1

𝐾⌊
𝑛
2

⌋(𝑡)𝐾⌊
3𝑛
2

⌋(𝑡)
𝐾⌊

𝑛
2

⌋(1) ,

where 𝐾𝑛 is the Christoffel–Darboux kernel defined in (2.2). The generalized de la Vallée Poussin kernel 𝑣𝑛 is a polynomial of degree 
2𝑛 that reproduces polynomials 𝑃 ∈Π𝑞

𝑛, up to degree 𝑛 viz.

𝑃 (𝑥) = ∫
𝕊𝑞

𝑃 (𝑦)𝑣𝑛(𝑥 ⋅ 𝑦) d𝜇𝑞(𝑦),

as it does the Christoffel–Darboux kernel 𝐾𝑛. Additionally, the kernels 𝑣𝑛, 𝑛 ∈ℕ, have bounded 𝐿𝑤𝑞,1-norm

1

∫
−1

||𝑣𝑛(𝑡)|| (1 − 𝑡2)
𝑞
2 −1d𝑡 ≤ 3

𝑞
2

𝜔𝑞−1
(4.1)

and satisfy

sup
𝑡∈[−1,1]

||𝑣𝑛(𝑡)|| ≤ 1
𝜔𝑞−1

2−𝑞+1(
⌊
3𝑛
2

⌋
+ 𝑞)𝑞

Γ( 𝑞2 )Γ(
𝑞

2 + 1)
≤ 1

𝜔𝑞−1

2max{𝑛,2𝑞}𝑞

Γ( 𝑞2 )Γ(
𝑞

2 + 1)
. (4.2)

For the proof of these statements we refer to [15, Section 3.3]. We prepare the proof of Theorem 4.1 by first showing an integral 
bound of the derivative of the generalized de la Vallée Poussin kernel.

Lemma 4.2. For 𝑛, 𝑞 ∈ℕ with 𝑞 ≥ 2, the following estimate holds

π

∫
0

||𝑣′𝑛(cos(𝜏)) sin(𝜏)𝑞||d𝜏 ≤ 𝐶𝑞

𝑛+ 𝑞2

𝜔𝑞−1

where 𝐶𝑞 = 3𝑞∕2π + 2𝑞 + 3 as in Theorem 4.1.

Proof. Let 𝜃 ∶= 1∕ max{𝑛,2𝑞}. We split the integral over [0, π] into three parts

π

∫
0

||𝑣′𝑛(cos(𝜏)) sin(𝜏)𝑞||d𝜏 = ( 𝜃

∫
0

+

π−𝜃

∫
𝜃

+

π

∫
π−𝜃

) ||𝑣′𝑛(cos(𝜏)) sin(𝜏)𝑞||d𝜏.
By the trigonometric Bernstein inequality (Lemma 2.1) and Equation (4.2), we obtain for the first integral

𝐴1 ∶=

𝜃

∫
0

||𝑣′𝑛(cos(𝜏)) sin(𝜏)𝑞||d𝜏 =
𝜃

∫
0

|||(𝑣𝑛◦ cos)′(𝜏) sin(𝜏)𝑞−1|||d𝜏
≤ 2𝑛‖‖𝑣𝑛◦ cos‖‖𝕋 ,∞

𝜃

∫
0

𝜏𝑞−1d𝜏 ≤ 4𝑛
𝜔𝑞−1𝑞 Γ(

𝑞

2 )Γ(
𝑞

2 + 1)
≤ 2𝑛

𝜔𝑞−1
.

Thanks to symmetry the same upper bound is valid for the third integral

𝐴3 ∶=

π

∫
π−𝜃

||𝑣′𝑛(cos(𝜏)) sin(𝜏)𝑞||d𝜏.
Using the product rule followed by the triangle inequality we split the middle integral into

𝐴2 ∶=

π−𝜃||𝑣′ (cos(𝜏)) sin(𝜏)𝑞||d𝜏

9

∫
𝜃

𝑛
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≤
π−𝜃

∫
𝜃

|||((𝑣𝑛◦ cos) sin𝑞−1)′(𝜏)|||d𝜏
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐼1

+

π−𝜃

∫
𝜃

|||𝑣𝑛(cos(𝜏))(𝑞 − 1) sin(𝜏)𝑞−2 cos(𝜏)|||d𝜏
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐼2

Applying the trigonometric Bernstein inequality to (𝑣𝑛◦ cos) sin𝑞−1 we obtain in conjunction with Equation (4.1)

𝐼1 ≤ (2𝑛+ 𝑞 − 1)

π

∫
0

|||𝑣𝑛(cos(𝜏)) sin(𝜏)𝑞−1|||d𝜏 ≤ (2𝑛+ 𝑞 − 1) 3
𝑞
2

𝜔𝑞−1

and

𝐼2 = (𝑞 − 1)

π−𝜃

∫
𝜃

||𝑣𝑛(cos(𝜏))|| sin(𝜏)𝑞−1 |cos(𝜏)|sin(𝜏)
d𝜏

≤ (𝑞 − 1) π

2𝜃

π−𝜃

∫
𝜃

|||𝑣𝑛(cos(𝜏)) sin(𝜏)𝑞−1|||d𝜏 ≤ (𝑞 − 1) π

2𝜃
3

𝑞
2

𝜔𝑞−1
,

where we made use of |cos(𝜏)| ≤ 1 for all 𝜏 ∈ ℝ, 1
sin(𝜏) ≤ π

2𝜏 ≤ π

2𝜃 when 𝜃 ≤ 𝜏 ≤ π

2 , and 1
sin(𝜏) ≤ π

2(π−𝜏) ≤ π

2𝜃 when π2 ≤ 𝜏 ≤ π − 𝜃. 
Finally we arrive at

π

∫
0

||𝑣′𝑛(cos(𝜏)) sin(𝜏)𝑞||d𝜏 ≤𝐴1 +𝐴3 + 𝐼1 + 𝐼2

≤ 4𝑛
𝜔𝑞−1

+ 3
𝑞
2

𝜔𝑞−1

(
2𝑛+ (𝑞 − 1)

(
1 + πmax

(
𝑛

2
, 𝑞
)))

≤ 4 + 2 ⋅ 3
𝑞
2 + 𝑞−1

2 π

𝜔𝑞−1
𝑛+ 3

𝑞
2 (𝑞 − 1)(1 + π𝑞)

𝜔𝑞−1

≤ 3
𝑞
2 π+ 2𝑞 + 2

𝜔𝑞−1
(𝑛+ 𝑞2)

which concludes the proof. □

A key step in the proof of Theorem 4.1 is to show that for every compatible pair (Ξ, )

𝑇Ξ,,𝑛(𝑓 )(𝑥) ∶= ∫
𝕊𝑞

∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥)

(
𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦)

)
𝑓 (𝑦)d𝜇𝑞(𝑦), (4.3)

defines a bounded operator 𝑇Ξ,,𝑛 ∶𝐿𝑝(𝕊𝑞, 𝜇𝑞) →𝐿𝑝(𝕊𝑞, 𝜇𝑞) for all 𝑝 ∈ [1, ∞]. We concentrate on the extreme cases 𝑝 = 1 and 𝑝 =∞
in the following two lemmas and start with 𝑝 = 1.

Lemma 4.3. The mapping 𝑇Ξ,,𝑛 defines a bounded linear operator from 𝐿1(𝕊𝑞) to 𝐿1(𝕊𝑞) with norm

‖‖𝑇Ξ,,𝑛
‖‖1→1 ≤

(
2𝑞+4

𝑞Γ( 𝑞2 )Γ(
𝑞

2 + 1)
+ 4𝐶𝑞

)
(𝑛+ 𝑞2)‖‖ ,

provided that (𝑛 + 𝑞2) ‖‖ < 1.

Proof. Using the triangle inequality, Fubini’s theorem, and Hölder’s inequality, we obtain

‖‖𝑇Ξ,,𝑛(𝑓 )‖‖𝜇𝑞 ,1
= ∫

𝕊𝑞

|||||||∫𝕊𝑞
∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥)

(
𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦)

)
𝑓 (𝑦)d𝜇𝑞(𝑦)

|||||||d𝜇𝑞(𝑥)
≤ ∑

𝟏𝑍 (𝑥) ||𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦)|| |𝑓 (𝑦)|d𝜇𝑞(𝑦)d𝜇𝑞(𝑥)

10

∫
𝕊𝑞

∫
𝕊𝑞 𝜉∈Ξ

𝜉
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≤ ‖𝑓‖𝜇𝑞 ,1 ess sup
𝑦∈𝕊𝑞 ∫

𝕊𝑞

∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥) ||𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦)||d𝜇𝑞(𝑥).

Now fix 𝑦 ∈ 𝕊𝑞 . The fundamental theorem of calculus and the triangle inequality give

∫
𝕊𝑞

∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥) ||𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦)||d𝜇𝑞(𝑥)

= ∫
𝕊𝑞

∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥)

||||||| ∫
[𝑑(𝑥,𝑦),𝑑(𝜉,𝑦)]

(𝑣𝑛◦ cos)′(𝑡)d𝑡
|||||||d𝜇𝑞(𝑥)

≤ ∫
𝕊𝑞

∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥)

𝑑(𝑥,𝑦)+‖‖
∫

𝑑(𝑥,𝑦)−‖‖
||(𝑣𝑛◦ cos)′(𝑡)||d𝑡d𝜇𝑞(𝑥).

Now integration is independent of 𝜉, and since 
∑

𝜉∈Ξ 𝟏𝑍𝜉
(𝑥) = 1 for 𝜇𝑞 -almost all 𝑥 ∈ 𝕊𝑞 , this factor can be omitted. Parametrizing 

𝕊𝑞 with north pole 𝑦 yields

= 𝜔𝑞−1

π

∫
0

sin(𝜏)𝑞−1
𝜏+‖‖
∫

𝜏−‖‖
||(𝑣𝑛◦ cos)′(𝑡)||d𝑡d𝜏

where we only resolved the outer integral in the last step. Having in mind that ‖‖ <
π

2 , we split the integration over [0, π] into 
pieces:

π

∫
0

sin(𝜏)𝑞−1
𝜏+‖‖
∫

𝜏−‖‖
||(𝑣𝑛◦ cos)′(𝑡)||d𝑡d𝜏 =𝐵1 +𝐵2 +𝐵3.

Upper bounds for the summands

𝐵1 ∶=

2‖‖
∫
0

sin(𝜏)𝑞−1
𝜏+‖‖
∫

𝜏−‖‖
||(𝑣𝑛◦ cos)′(𝑡)||d𝑡d𝜏

≤ 2‖‖‖‖(𝑣𝑛◦ cos)′‖‖𝕋 ,∞
2‖‖
∫
0

sin(𝜏)𝑞−1d𝜏

≤ 4𝑛‖‖‖‖𝑣𝑛◦ cos‖‖𝕋 ,∞
2‖‖
∫
0

𝜏𝑞−1d𝜏

= 4𝑛‖‖‖‖𝑣𝑛◦ cos‖‖𝕋 ,∞ 𝑞−12𝑞 ‖‖𝑞
≤ 𝑛max{𝑛,2𝑞}𝑞 ‖‖𝑞+1 2𝑞+3

𝑞𝜔𝑞−1Γ(
𝑞

2 )Γ(
𝑞

2 + 1)

≤ (𝑛+ 𝑞2)𝑞+1 ‖‖𝑞+1 2𝑞+3

𝑞𝜔𝑞−1Γ(
𝑞

2 )Γ(
𝑞

2 + 1)

and likewise

𝐵2 ∶=

π

∫
π−2‖‖

sin(𝜏)𝑞−1
𝜏+‖‖
∫

𝜏−‖‖
|||| dd𝑡 (𝑣𝑛◦ cos)′(𝑡)||||d𝑡d𝜏

≤ 2‖‖‖‖(𝑣𝑛◦ cos)′‖‖𝕋 ,∞
π

∫
π−2‖‖

sin(𝜏)𝑞−1d𝜏

≤ (𝑛+ 𝑞2)𝑞+1 ‖‖𝑞+1 2𝑞+3

𝑞𝜔𝑞−1Γ(
𝑞

2 )Γ(
𝑞

2 + 1)
11

are due to Lemma 2.1, Equation (4.2), and sin(𝜏) ≤ 𝜏 for all 𝜏 ∈ℝ with 𝜏 > 0.
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Now, if 𝜏 − ‖‖ ≤ 𝑡 ≤ 𝜏 + ‖‖ and 2 ‖‖ ≤ 𝜏 ≤ π − 2 ‖‖, we have ‖‖ ≤ 𝑡 ≤ π − ‖‖, and thus

sin(𝜏) = sin(𝜏 − 𝑡+ 𝑡) = sin(𝑡) cos(𝜏 − 𝑡) + sin(𝜏 − 𝑡) cos(𝑡)

≤ sin(𝑡) + sin(‖‖) ≤ 2 sin(𝑡).

This yields the following upper bound for the third summand

𝐵3 ∶=

π−2‖‖
∫

2‖‖
sin(𝜏)𝑞−1

𝜏+‖‖
∫

𝜏−‖‖
||(𝑣𝑛◦ cos)′(𝑡)||d𝑡d𝜏

≤ 2

π−2‖‖
∫

2‖‖
𝜏+‖‖
∫

𝜏−‖‖
||(𝑣𝑛◦ cos)′(𝑡)|| sin(𝑡)𝑞−1d𝑡d𝜏

= 2

π−2‖‖
∫

2‖‖
‖‖
∫

−‖‖
||𝑣′𝑛(cos(𝑡+ 𝜏))|| sin(𝑡+ 𝜏)𝑞d𝑡d𝜏

= 2

‖‖
∫

−‖‖
π−2‖‖
∫

2‖‖
||𝑣′𝑛(cos(𝑡+ 𝜏))|| sin(𝑡+ 𝜏)𝑞d𝜏d𝑡.

Another change of variables and enlarging the integration interval yields

= 2

‖‖
∫

−‖‖
π−2‖‖+𝑡
∫

2‖‖+𝑡
||𝑣′𝑛(cos(𝜏))|| sin(𝜏)𝑞d𝜏d𝑡

≤ 2

‖‖
∫

−‖‖
π

∫
0

||𝑣′𝑛(cos(𝜏))|| sin(𝜏)𝑞d𝜏d𝑡.
= 4‖‖ π

∫
0

||𝑣′𝑛(cos(𝜏))|| sin(𝜏)𝑞d𝜏
≤ 4‖‖𝐶𝑞

𝑛+ 𝑞2

𝜔𝑞−1
,

where we used Lemma 4.2 for the last step. Using (𝑛 + 𝑞2) ‖‖ < 1, we obtain

‖‖𝑇Ξ,,𝑛(𝑓 )‖‖𝜇𝑞 ,1
≤ ‖𝑓‖𝜇𝑞 ,1𝜔𝑞−1

(
2(𝑛+ 𝑞2)𝑞+1 ‖‖𝑞+1 2𝑞+3

𝑞𝜔𝑞−1Γ(
𝑞

2 )Γ(
𝑞

2 + 1)

+ 4‖‖𝐶𝑞

𝑛+ 𝑞2

𝜔𝑞−1

)

= ‖𝑓‖𝜇𝑞 ,1 (𝑛+ 𝑞2)‖‖( 2𝑞+4

𝑞Γ( 𝑞2 )Γ(
𝑞

2 + 1)
+ 4𝐶𝑞

)
and the proof is finished. □

We now turn to the other boundary case 𝑝 =∞.

Lemma 4.4. The mapping 𝑇Ξ,,𝑛 is a bounded linear operator from 𝐿∞(𝕊𝑞) to 𝐿∞(𝕊𝑞) with norm
12

‖‖𝑇Ξ,,𝑛
‖‖∞→∞ ≤ 4𝐶𝑞(𝑛+ 𝑞2)‖‖ .
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Fig. 3. For non-antipodal points 𝑥 and 𝜉 on 𝕊𝑞 , the sets 𝑈1 and 𝑈2 each take two opposite quarters of the sphere. In the left panel the dashed thin line shows the sine 
of the geodesic distance to 𝜉 and the solid thin one depicts the sine of the geodesic distance to 𝑥. In the right panel, the dashed and solid thin lines show the boundary 
of 𝑈1 .

Proof. The triangle inequality yields

‖‖𝑇Ξ,,𝑛(𝑓 )‖‖𝜇𝑞 ,∞
= 𝜇𝑞- ess sup

𝑥∈𝕊𝑞
|||∫
𝕊𝑞

∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥)(𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦))𝑓 (𝑦)d𝜇𝑞(𝑦)

|||
≤ 𝜇𝑞- ess sup

𝑥∈𝕊𝑞
|||∫
𝕊𝑞

∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥)(𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦))d𝜇𝑞(𝑦)

||| ‖𝑓‖𝜇𝑞 ,∞
≤ 𝜇𝑞- ess sup

𝑥∈𝕊𝑞 ∫
𝕊𝑞

∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥) ||(𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦))||d𝜇𝑞(𝑦) ‖𝑓‖𝜇𝑞 ,∞ .

For 𝜇𝑞 -almost all 𝑥 ∈ 𝕊𝑞 , there exists a unique element 𝜉 ∈ Ξ with 𝑥 ∈ 𝑍𝜉 . For such pairs (𝑥, 𝜉), the integral

∫𝕊𝑞 ∑𝜉∈Ξ 𝟏𝑍𝜉
(𝑥) ||(𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦))||d𝜇𝑞(𝑦) reduces to

∫
𝕊𝑞

||𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦)||d𝜇𝑞(𝑦) = 2∑
𝑗=1

∫
𝕊𝑞

𝟏𝑈𝑗
(𝑦) ||𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦)||d𝜇𝑞(𝑦) (4.4)

where we split 𝕊𝑞 into the two sets 𝑈1 ∶= {𝑦 ∈ 𝕊𝑞 ∶ sin(𝑑(𝑥, 𝑦)) ≤ sin(𝑑(𝜉, 𝑦))} and 𝑈2 ∶= 𝕊𝑞 ⧵𝑈1, see Fig. 3 for an illustration.

Denoting by 𝑦(𝜏, 𝑦̃) = cos(𝜏)𝑥 + sin(𝜏)𝑦̃, 𝜏 ∈ [0, π], 𝑦̃ ∈ {𝑧 ∈ 𝕊𝑞 ∶ 𝑥 ⋅ 𝑧 = 0} ≅ 𝕊𝑞−1 the polar coordinates of 𝑦 ∈ 𝕊𝑞 with respect to 
𝑥 as the north pole we obtain

∫
𝕊𝑞

𝟏𝑈1
(𝑦) ||𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦)||d𝜇𝑞(𝑦)

= ∫
𝕊𝑞−1

π

∫
0

𝟏𝑈1
(𝑦(𝜏, 𝑦̃)) ||𝑣𝑛(𝑥 ⋅ 𝑦(𝜏, 𝑦̃)) − 𝑣𝑛(𝜉 ⋅ 𝑦(𝜏, 𝑦̃))|| sin(𝜏)𝑞−1d𝜏 d𝜇𝑞−1(𝑦̃)

= ∫
𝕊𝑞−1

π

∫
0

𝟏𝑈1
(𝑦(𝜏, 𝑦̃)) ∫

[𝑑(𝑥,𝑦(𝜏,𝑦̃)),𝑑(𝜉,𝑦(𝜏,𝑦̃))]

||𝑣′𝑛(cos(𝑡)) sin(𝑡)|| d𝑡 sin(𝜏)𝑞−1d𝜏 d𝜇𝑞−1(𝑦̃).
As the sine function is concave on [𝑑(𝑥, 𝑦(𝜏, 𝑦̃)), 𝑑(𝜉, 𝑦(𝜏, 𝑦̃))] ⊆ [0, π], it attains its minimum on the boundary, which is 𝑑(𝑥, 𝑦(𝜏, 𝑦̃)) = 𝜏

in the case of 𝑦(𝜏, 𝑦̃) ∈𝑈1, and thus sin(𝜏) ≤ sin(𝑡) for all 𝑡 ∈ [𝑑(𝑥, 𝑦(𝜏, 𝑦̃)), 𝑑(𝜉, 𝑦(𝜏, 𝑦̃))]. This leads to the upper bound

∫
𝕊𝑞−1

π

∫
0

∫
[𝑑(𝑥,𝑦(𝜏,𝑦̃)),𝑑(𝜉,𝑦(𝜏,𝑦̃))]

||𝑣′𝑛(cos(𝑡)) sin(𝑡)𝑞||d𝑡d𝜏d𝜇𝑞−1(𝑦̃)
≤ ∫
𝕊𝑞−1

π

∫
0

𝑑(𝑥,𝜉)

∫
0

||𝑣′𝑛(cos(𝑡+ 𝜏)) sin(𝑡+ 𝜏)𝑞||d𝑡d𝜏d𝜇𝑞−1(𝑦̃)
≤ 𝜔𝑞−1

π 𝑑(𝑥,𝜉)||𝑣′ (cos(𝑡+ 𝜏)) sin(𝑡+ 𝜏)𝑞||d𝑡d𝜏

13

∫
0

∫
0

𝑛
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= 𝜔𝑞−1

𝑑(𝑥,𝜉)

∫
0

π

∫
0

||𝑣′𝑛(cos(𝑡+ 𝜏)) sin(𝑡+ 𝜏)𝑞||d𝜏d𝑡.
Utilizing the periodicity of (𝑣′𝑛◦ cos) sin

𝑞 and Lemma 4.2, we obtain

= 𝜔𝑞−1

𝑑(𝑥,𝜉)

∫
0

π+𝑡

∫
𝑡

||𝑣′𝑛(cos(𝜏)) sin(𝜏)𝑞||d𝜏d𝑡
≤ 𝜔𝑞−1

𝑑(𝑥,𝜉)

∫
0

2π

∫
0

||𝑣′𝑛(cos(𝜏)) sin(𝜏)𝑞||d𝜏d𝑡
= 𝜔𝑞−1 ⋅ 𝑑(𝑥, 𝜉) ⋅ 2

π

∫
0

||𝑣′𝑛(cos(𝜏)) sin(𝜏)𝑞||d𝜏
≤ 2𝑑(𝑥, 𝜉)𝐶𝑞(𝑛+ 𝑞2).

The same manipulations can be applied to the second summand in (4.4) but with 𝜉 as the north pole. We obtain

∫
𝕊𝑞

||𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦)||d𝜇𝑞(𝑦)
=

2∑
𝑗=1

∫
𝕊𝑞

𝟏𝑈𝑗
(𝑦) ||𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦)||d𝜇𝑞(𝑦)

≤ 4‖‖𝐶𝑞(𝑛+ 𝑞2).

This means that

‖‖𝑇Ξ,,𝑛(𝑓 )‖‖𝜇𝑞 ,∞ ≤ ‖𝑓‖𝜇𝑞 ,∞ 4𝐶𝑞(𝑛+ 𝑞2)‖‖
which finishes the proof. □

Remark 4.5. A modification of the technique used for the case 𝑝 = 1 in the second step of the preceding proof can also be applied to 
the case 𝑝 =∞. In contrast to the above strategy we would generate an additional summand of order (𝑛 ‖‖)𝑞+1.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We first show that|||‖𝑃‖𝜇𝑞 ,𝑝 − ‖𝑃‖𝜇𝑞 (Ξ,),𝑝
||| ≤ ‖‖𝑇Ξ,,𝑛(𝑃 )‖‖𝜇𝑞 ,𝑝 (4.5)

holds for all 1 ≤ 𝑝 ≤ ∞ and every 𝑃 ∈ Π𝑞
𝑛. For 1 ≤ 𝑝 < ∞, the triangle inequality, the reproducing property of 𝑣𝑛, and Hölder’s 

inequality give|||‖𝑃‖𝜇𝑞 ,𝑝 − ‖𝑃‖𝜇𝑞 (Ξ,),𝑝
|||

=

||||||||||
⎛⎜⎜⎜⎝
∑
𝜉∈Ξ

∫
𝑍𝜉

|𝑃 (𝑥)|𝑝 d𝜇𝑞(𝑥)⎞⎟⎟⎟⎠
1
𝑝

−
⎛⎜⎜⎜⎝
∑
𝜉∈Ξ

∫
𝑍𝜉

|𝑃 (𝜉)|𝑝 d𝜇𝑞(𝑥)⎞⎟⎟⎟⎠
1
𝑝
||||||||||

≤
⎛⎜⎜⎜⎝
∑
𝜉∈Ξ

∫
𝑍𝜉

|𝑃 (𝑥) − 𝑃 (𝜉)|𝑝 d𝜇𝑞(𝑥)⎞⎟⎟⎟⎠
1
𝑝

=
⎛⎜⎜∑∫

|||||∫ 𝑣𝑛(𝑥 ⋅ 𝑦)𝑃 (𝑦) d𝜇𝑞(𝑦) − ∫ 𝑣𝑛(𝜉 ⋅ 𝑦)𝑃 (𝑦) d𝜇𝑞(𝑦)
|||||
𝑝

d𝜇𝑞(𝑥)
⎞⎟⎟
1
𝑝

14

⎜⎝𝜉∈Ξ𝑍𝜉
||𝕊𝑞 𝕊𝑞 || ⎟⎠
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=
⎛⎜⎜⎜⎝
∑
𝜉∈Ξ

∫
𝑍𝜉

|||||||∫𝕊𝑞 (𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦))𝑃 (𝑦)d𝜇𝑞(𝑦)
|||||||
𝑝

d𝜇𝑞(𝑥)
⎞⎟⎟⎟⎠
1
𝑝

=
⎛⎜⎜⎝∫𝕊𝑞

|||||||∫𝕊𝑞
∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥)(𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦))𝑃 (𝑦) d𝜇𝑞(𝑦)

|||||||
𝑝

d𝜇𝑞(𝑥)
⎞⎟⎟⎠
1
𝑝

= ‖‖𝑇Ξ,,𝑛(𝑃 )‖‖𝜇𝑞 ,𝑝 .
If 𝑝 =∞, the same arguments yield|||‖𝑃‖𝜇𝑞 ,∞ − ‖𝑃‖𝜇𝑞 (Ξ,),∞

|||
≤ sup

𝜉∈Ξ
𝜇𝑞- ess sup

𝑥∈𝑍𝜉

|𝑃 (𝑥) − 𝑃 (𝜉)|
≤ sup

𝜉∈Ξ
𝜇𝑞- ess sup

𝑥∈𝑍𝜉

|||||||∫𝕊𝑞 (𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦))𝑃 (𝑦)d𝜇𝑞(𝑦)
|||||||

= 𝜇𝑞- ess sup
𝑥∈𝕊𝑞

|||||||∫𝕊𝑞
∑
𝜉∈Ξ

𝟏𝑍𝜉
(𝑥)(𝑣𝑛(𝑥 ⋅ 𝑦) − 𝑣𝑛(𝜉 ⋅ 𝑦))𝑃 (𝑦)d𝜇𝑞(𝑦)

|||||||
= ‖‖𝑇Ξ,,𝑛(𝑃 )‖‖𝜇𝑞 ,1

which proves (4.5).

In order to show that the linear operator 𝑇Ξ,,𝑛 ∶ 𝐿𝑝(𝕊𝑞, 𝜇𝑞) → 𝐿𝑝(𝕊𝑞, 𝜇𝑞) is bounded for every 𝑝 ∈ [1, ∞] with operator norm 
less or equal to 𝜂 we first note that this follows for 𝑝 = 1 and 𝑝 =∞ from Lemmas 4.3 and 4.4 and 6𝐶𝑞(𝑛 + 𝑞2) ‖‖ ≤ 𝜂. (Note that 

2𝑞+4
𝑞Γ( 𝑞2 )Γ(

𝑞
2 +1)

+ 4𝐶𝑞 < 6𝐶𝑞 for 𝑞 ∈ ℕ.) For 1 < 𝑝 <∞, the statement follows by the Riesz–Thorin interpolation theorem. We conclude 
that |||‖𝑃‖𝜇𝑞 ,𝑝 − ‖𝑃‖𝜇𝑞 (Ξ,),𝑝

||| ≤ 𝜂 ‖𝑃‖𝜇𝑞 ,𝑝
for all 𝑃 ∈Π𝑞

𝑛 whenever 6𝐶𝑞(𝑛 + 𝑞2) ‖‖ ≤ 𝜂. This is equivalent to the assertion. □

The condition 6𝐶𝑞(𝑛 +𝑞2) ‖‖ ≤ 𝜂 appearing in Theorem 4.1 gives a lower bound on the number 𝑁 of samples through volumetric 
arguments of the partition. Namely, if ‖‖ ≤ 𝜂

6𝐶𝑞 (𝑛+𝑞2)
=∶ 𝑟, then 𝜇(𝑍) ≤ 𝜔𝑞−1 ∫ 𝑟

0 sin(𝑡)𝑞−1d𝑡 for each 𝑍 ∈, and as  is a partition 
of 𝕊𝑞 , the cardinality of  is

𝑁 ≥ 𝜔𝑞(
𝜔𝑞−1 ∫ 𝑟

0 sin(𝑡)𝑞−1d𝑡
) ≳𝑞 𝑟

−𝑞 .

As a corollary, we obtain a seemingly partition-free variant of Theorem 4.1 with the upper bound on the partition norm ‖‖
replaced by an upper bound on the mesh norm 𝛿Ξ. It relies on the construction of a partition  from the sample set Ξ such that the 
partition norm and the mesh norm satisfy a two-sided inequality, and hiding the partition in the weights of the discretized norm.

Corollary 4.6. Let 𝑛, 𝑞 ∈ℕ and 𝜂 ∈ (0, 1). Let further Ξ ⊂ 𝕊𝑞 be a finite set satisfying

48𝐶𝑞𝑞
√
2𝑞(𝑞 + 1)(𝑛+ 𝑞2)𝛿Ξ ≤ 𝜂.

Then there exist non-negative numbers 𝑎𝜉 , 𝜉 ∈ Ξ, such that

(1 − 𝜂)‖𝑃‖𝜇𝑞 ,𝑝 ≤
(∑

𝜉∈Ξ
𝑎𝜉 |𝑃 (𝜉)|𝑝)

1
𝑝 ≤ (1 + 𝜂)‖𝑃‖𝜇𝑞 ,𝑝

for all 𝑝 ∈ [1, ∞] and 𝑃 ∈Π𝑞
𝑛.

Proof. Let Ξ =
{
𝜉1,… , 𝜉𝑁

}
⊆ 𝕊𝑞 . Then [27, Proposition 3.2] gives a partition  =

{
𝑍1,… ,𝑍𝑀

}
of 𝕊𝑞 for some 𝑀 ≤𝑁 such that 

there exists an 𝑀 -element subset Ξ0 of Ξ for which the pair (Ξ0, ) is compatible, and the inequality√

15

𝛿Ξ ≤ ‖‖ ≤ 8𝑞 2𝑞(𝑞 + 1)𝛿Ξ
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is satisfied. We plug this into 48𝐶𝑞𝑞
√
2𝑞(𝑞 + 1)(𝑛 + 𝑞2)𝛿Ξ ≤ 𝜂 to obtain 6𝐶𝑞 ‖‖ (𝑛 + 𝑞2) ≤ 𝜂. Set

𝑎𝜉 =

{
𝜇𝑞(𝑍𝜉) if 𝜉 ∈ Ξ0,

0 else,

and apply Theorem 4.1. □

Via equal-area partitions of the sphere, we can also get an equal-weight version of Theorem 4.1.

Corollary 4.7. Let 𝑛, 𝑞 ∈ℕ and 𝜂 ∈ (0, 1). For 𝛼𝑞 ∶= 8 
(

𝜔𝑞𝑞

𝜔𝑞−1

) 1
𝑞

and

𝑁 ≥
(
6𝐶𝑞(𝑛+ 𝑞2)𝛼𝑞

𝜂

)𝑞

,

there exists a finite subset Ξ =
{
𝜉1,… , 𝜉𝑁

}
of 𝕊𝑞 with

(1 − 𝜂)‖𝑃‖𝜇𝑞 ,𝑝 ≤
(
𝜔𝑞

𝑁

𝑁∑
𝑗=1

|||𝑃 (𝜉𝑗 )|||𝑝
) 1

𝑝

≤ (1 + 𝜂)‖𝑃‖𝜇𝑞 ,𝑝
for all 𝑝 ∈ [1, ∞] and 𝑃 ∈Π𝑞

𝑛.

Proof. Using [22, Theorem 3.1.3], there exists a number 𝛼𝑞 (which may only depend on 𝑞) and a partition  =
{
𝑍1,… ,𝑍𝑁

}
of 𝕊𝑞 such that 𝜇𝑞(𝑍𝑗 ) =

𝜔𝑞

𝑁
and ‖‖ ≤ 𝛼𝑞𝑁

− 1
𝑞 . According to [5, Teorema 6], one may have 𝛼 = 8 

(
𝜔𝑞𝑞

𝜔𝑞−1

) 1
𝑞

. Plugging this into 

𝑁 ≥
(

6𝐶𝑞 (𝑛+𝑞2)𝛼𝑞
𝜂

)𝑞

, we get 6𝐶𝑞(𝑛 + 𝑞2) ‖‖ ≤ 𝜂. For assembling the set Ξ, just take one interior point of each 𝑍 ∈. It remains to 

apply Theorem 4.1. □

5. How good are random points?

In the previous section we have seen that the performance of sample points (regarding the distortion parameter 𝜂 > 0) im-

proves with smaller partition norm ‖‖ of the corresponding partition, or, differently, with a smaller mesh norm 𝛿Ξ. By [29, 
Corollary 3.3], the expected mesh norm of 𝑁 points on the sphere 𝕊𝑞 drawn independently and identically distributed according to 

𝜎𝑞 is asymptotically equivalent to 
(

𝑁

log(𝑁)

)−1∕𝑞
. In the present section, we show that, when drawing enough points, we obtain a good 

Marcinkiewicz–Zygmund inequality for all 1 ≤ 𝑝 ≤∞ simultaneously, with the parameter 𝜂 depending on 
(

𝑁

log(𝑁)

)−1∕𝑞
. Compared 

to the consideration in Section 3 we obtain a worse scaling of the number of points with respect to 𝜂. Note, that in Section 3 we 
considered only 𝑝 = 2 and observed a scaling of 𝜂−2 independently of the dimension 𝑞 and explicit constants at the price of an 
additional logarithm in the dimension.

The main result in this section (Theorem 5.2) utilizes insights about a classical problem of probability theory: the coupon collector 
problem. At each time step, the eponymous coupon collector receives a coupon, chosen at random among 𝑀 different types. Un-

surprisingly, the more coupons the collector receives, the higher the probability that the collection contains each type at least once. 
The time step after which the collector possesses each type at least once can be modeled as a random variable 𝑇𝑀 ∶ (Ω,  , ℙ) → ℝ, 
where (Ω,  , ℙ) is some probability space, see [11, p. 36]. As we do not know the number of draws a priori, we should therefore 
start with an infinite product of the uniform probability space over the set {1,… ,𝑀} of coupon types. To circumvent this, we raise 
the probability space to a sufficiently high power 𝑡, and model the event of not having all 𝑀 types of coupons after 𝑡 draws directly 
as a subset of a finite probability space.

Proposition 5.1. Let 𝜀 ∈ (0, 1), 𝑀, 𝑡 ∈ℕ, and 𝑡 >𝑀 log
(
𝑀

𝜀

)
. On the finite set Ω ∶= {1,… ,𝑀}𝑡, a probability measure ℙ is given by the 

𝑡-fold product measure on the uniform probability measure on {1,… ,𝑀}. Set

𝐴𝑡,𝑀 ∶=
{
(𝑥1,… , 𝑥𝑡) ∈ Ω ∶

{
𝑥1,… , 𝑥𝑡

}
= {1,… ,𝑀}

}
.

Then ℙ(Ω ⧵𝐴𝑡,𝑀 ) < 𝜀.

Proof. The assumption 𝑡 >𝑀 log
(
𝑀

𝜀

)
is equivalent to 𝑀 exp(− 𝑡

𝑀
) < 𝜀. Since (1 + 𝑎)𝑡 ≤ exp(𝑎𝑡) for all 𝑎, 𝑡 ∈ ℝ with 1 + 𝑎 ≥ 0, we ( )𝑡 ( )𝑡
16

have 𝑀 1 − 1
𝑀

≤𝑀 exp(− 𝑡

𝑀
) < 𝜀. Taking [11, p. 36] into account, we have ℙ(Ω ⧵𝐴𝑡,𝑀 ) ≤𝑀 1 − 1

𝑀
< 𝜀. □
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Now a probabilistic 𝐿𝑝-version of the Marcinkiewicz–Zygmund inequality can be given as follows.

Theorem 5.2. Let 𝑛, 𝑞 ∈ℕ, 𝜂 ∈ (0, 1), and set 𝛼𝑞 ∶= 8 
(

𝜔𝑞𝑞

𝜔𝑞−1

) 1
𝑞

. Choose 𝑁 ∈ ℕ large enough such that

6𝐶𝑞𝛼𝑞

(
𝑁

4 log(𝑁)

)− 1
𝑞

(𝑛+ 𝑞2) < 𝜂. (5.1)

Draw points 𝜉1, … , 𝜉𝑁 ∈ 𝕊𝑞 independently and identically distributed according to 𝜎𝑞 . Then with probability ≥ 1 − 1
𝑁

with respect to the 
product measure ℙ = 𝜎⊗𝑁

𝑞 , there exists weights 𝑤1, … , 𝑤𝑁 > 0 such that 
∑𝑁

𝑗=1𝑤𝑗 = 1 and

(1 − 𝜂)‖𝑃‖𝜎𝑞 ,𝑝 ≤
(

𝑁∑
𝑗=1

𝑤𝑗
|||𝑃 (𝜉𝑗 )|||𝑝

) 1
𝑝

≤ (1 + 𝜂)‖𝑃‖𝜎𝑞 ,𝑝
for all 𝑝 ∈ [1, ∞] and all 𝑃 ∈Π𝑞

𝑛.

Proof. Let 𝑀 ∶=
⌊

𝑁

2 log(𝑁)

⌋
. From 𝑀 ≤ 𝑁

2 log(𝑁) , we infer 𝑁 > 2𝑀 log(𝑁) > 2𝑀 log(𝑀). Furthermore, we have ⌊𝑧⌋ ≥ 1
2𝑧 for all 𝑧 ∈ℝ

with 𝑧 > 1. For 𝑧 = 𝑁

2 log(𝑁) , we obtain 𝑀 =
⌊

𝑁

2 log(𝑁)

⌋ ≥ 𝑁

4 log(𝑁) . Thus Equation (5.1) implies

6𝐶𝑞𝛼𝑞𝑀
− 1

𝑞 (𝑛+ 𝑞2) ≤ 𝜂.

Using [22, Theorem 3.1.3] and [5, Teorema 2.3], there exists a partition  =
{
𝑍1,… ,𝑍𝑀

}
of 𝕊𝑞 such that 𝜎𝑞(𝑍𝑗 ) =

1
𝑀

and ‖‖ ≤ 𝛼𝑞𝑀
− 1

𝑞 . It follows that

6𝐶𝑞(𝑛+ 𝑞2)‖‖ < 𝜂.

Thus the conditions of Theorem 4.1 are met if there is an 𝑀 -element subset Ξ ⊆
{
𝜉1,… , 𝜉𝑁

}
such that (Ξ, ) is compatible. For 

this, we use Proposition 5.1. It implies that after drawing 𝑁 > 2𝑀 log(𝑀) points 𝜉1, … , 𝜉𝑁 ∈ 𝕊𝑞 independently and identically 
distributed according to 𝜎𝑞 , the probability that each patch 𝑍𝑗 ∈  contains a non-zero number 𝑚𝑗 of the points 𝜉1, … , 𝜉𝑁 in its 
interior is ≥ 1 − 1

𝑁
. Collect one of the points in each patch in a set Ξ, and apply Theorem 4.1. This implies that, with probability 

≥ 1 − 1
𝑁

, we have

(1 − 𝜂)‖𝑃‖𝜎𝑞 ,𝑝 ≤
(

1
𝑀

∑
𝜉∈Ξ

|𝑃 (𝜉)|𝑝) 1
𝑝 ≤ (1 + 𝜂)‖𝑃‖𝜎𝑞 ,𝑝 (5.2)

for all 𝑝 ∈ [1, ∞] and all 𝑃 ∈Π𝑞
𝑛. This result is independent of which point from a given patch 𝑍𝑗 is put into the set Ξ. In particular, 

(5.2) holds true if 𝜉 ∈ 𝑍𝑗 is selected such that |𝑃 (𝜉)|𝑝 is smallest possible or largest possible. Therefore (5.2) will also hold if we 
replace the contribution |𝑃 (𝜉)|𝑝 from each patch by the average 1

𝑚𝑗

∑
𝜉∈𝑍𝑗∩

{
𝜉1 ,…,𝜉𝑁

} |𝑃 (𝜉)|𝑝, i.e.,

(1 − 𝜂)‖𝑃‖𝜎𝑞 ,𝑝 ≤⎛⎜⎜⎝ 1
𝑀

𝑀∑
𝑗=1

1
𝑚𝑗

∑
𝜉∈𝑍𝑗∩

{
𝜉1 ,…,𝜉𝑁

} |𝑃 (𝜉)|𝑝⎞⎟⎟⎠
1
𝑝

≤ (1 + 𝜂)‖𝑃‖𝜎𝑞 ,𝑝
or, equivalently,

(1 − 𝜂)‖𝑃‖𝜎𝑞 ,𝑝 ≤⎛⎜⎜⎝
𝑀∑
𝑗=1

∑
𝜉∈𝑍𝑗∩

{
𝜉1 ,…,𝜉𝑁

} 1
𝑀𝑚𝑗

|𝑃 (𝜉)|𝑝⎞⎟⎟⎠
1
𝑝

≤ (1 + 𝜂)‖𝑃‖𝜎𝑞 ,𝑝 .
Now set 𝑤𝑗 ∶=

1
𝑀𝑚𝑗

> 0 and observe that

𝑁∑
𝑗=1

𝑤𝑗 =
𝑀∑
𝑗=1

∑
𝜉∈𝑍𝑗∩

{
𝜉1 ,…,𝜉𝑁

} 1
𝑀𝑚𝑗

=
𝑀∑
𝑗=1

𝑚𝑗

𝑀𝑚𝑗

= 1. □

Data availability
17

Data will be made available on request.
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