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SUMMARY

Next-generation whole-genome shotgun assemblies of complex genomes are highly useful, but fail to link
nearby sequence contigs with each other or provide a linear order of contigs along individual chromosomes.
Here, we introduce a strategy based on sequencing progeny of a segregating population that allows de
novo production of a genetically anchored linear assembly of the gene space of an organism. We demon-
strate the power of the approach by reconstructing the chromosomal organization of the gene space of
barley, a large, complex and highly repetitive 5.1 Gb genome. We evaluate the robustness of the new
assembly by comparison to a recently released physical and genetic framework of the barley genome, and
to various genetically ordered sequence-based genotypic datasets. The method is independent of the need
for any prior sequence resources, and will enable rapid and cost-efficient establishment of powerful
genomic information for many species.

Keywords: next-generation sequencing, genome assembly, genetic mapping, barley, Hordeum vulgare,
population sequencing, technical advance.

INTRODUCTION

Next-generation sequencing provides the opportunity to low-copy portion of the genome. Despite the limitations of
rapidly establish gene space assemblies for virtually any such assemblies, they have been widely proposed as surro-
species at relatively low cost. These assemblies consist of gates for draft genome sequences for the purposes of gene
tens to hundreds of thousands of short contiguous pieces isolation, genomics-assisted breeding and the assessment
of DNA sequence (contigs), and often represent only the of diversity within and between species (Brenchley et al.,
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2012; International Barley Genome Sequencing Consor-
tium, 2012; Guo et al., 2013; Xu et al., 2013). However, in
most cases, particularly those concerning large and com-
plex genomes, they remain disconnected collections of
short sequence contigs that are not embedded in a geno-
mic context. Bringing these together into a tentative linear
order, or even associating contigs with individual chromo-
somes or chromosome arms, has been a major and costly
undertaking. In a recent example, the International Barley
Genome Sequencing Consortium reported the develop-
ment and use of a BAC-based physical map, BAC end
sequences, survey sequences of flow-sorted chromosome
arms, fully sequenced BAC clones and conserved synteny
to fully contextualize only 410 Mb of genomic sequence
from the 5.1 Gb barley genome (International Barley Gen-
ome Sequencing Consortium, 2012). These genomic
resources provide an established path towards a reference
sequence by sequencing a minimum tiling path of overlap-
ping BAC clones hierarchically (Feuillet et al., 2012). Devel-
opment of the necessary resources requires a substantial
amount of time, labor and money, which makes this strat-
egy prohibitive for smaller and more poorly resourced
research communities, e.g. research in non-model organ-
ism or orphan crops. The establishment of a BAC-based
reference sequence of the maize genome took approxi-
mately 7 years, required the coordinated effort of several
laboratories, and cost approximately US $50 million (Chan-
dler and Brendel, 2002; Martienssen et al., 2004; Schnable
et al., 2009). Similarly, the reference sequence of a single
1 Gb chromosome of hexaploid wheat (Triticum aestivum)
has not been completed 5 years after publication of a phys-
ical map (Paux et al., 2008).

Emerging technologies such as longer sequence reads
(Schadt et al., 2010), optical mapping (Lam et al., 2012) and
novel assembly algorithms (such as ALLPATHS-LG, Gnerre
et al., 2011)) may speed up the process of data collection
and analysis, as well as increasing the contiguity and com-
pleteness of whole-genome shotgun (WGS) assemblies,
but their applicability to large genomes with abundant
sequence repeats (the bane of any assembler), arising from
paralogous duplications, repetitive elements, ancestral
duplications and polyploidy, remains to be assessed.

It has been common practice to associate mapped genetic
markers with sequence resources based on sequence simi-
larity in order to link genetic and physical maps (Chen et al.,
2002; Wei et al., 2007). While the number of BAC contigs on
a physical map is in order of thousands, next-generation
sequencing (NGS) technology produces hundreds of thou-
sands of sequence contigs. For example, the International
Barley Genome Sequencing Consortium (2012) reported an
assembly that consists of more than 350 000 contigs longer
than 1 kb. The number of markers afforded by conventional
genotyping strategies is simply not commensurate with the
large number of short sequence contigs.

Several methods for high-throughput genotyping of
genetic mapping populations using next-generation
sequencing technology have been developed. Genotyping
by shallow survey sequencing (0.05-0.1x) in the model
species rice (Oryza sativa) has been shown to yield genetic
maps of unprecedented density (Chandler and Brendel,
2002; Xie et al., 2010). However, the high resolution of
recombination breakpoints (approximately 40 kb) was pro-
vided by inferring marker order from a high-quality refer-
ence sequence. This approach cannot be applied to
species with genomes of draft or even pre-draft quality as
sequence contigs are not organized in pseudo-molecules
representing the linear chromosomes.

The question of how several millions of markers pro-
vided by NGS technology may be used to bring contigs
into a linear order (a procedure commonly referred to as
anchoring) has only tentatively been raised. Andolfatto
et al. (2011) used digestion with a frequently cutting
restriction enzyme and subsequent multiplexed sequenc-
ing of a population of 94 individuals to assign 8 Mb of un-
assembled contigs to linkage groups. Similarly, a reduced-
representation genotyping-by-sequencing method (Poland
et al., 2012) has been instrumental in anchoring the barley
physical map to a genetic map (International Barley Gen-
ome Sequencing Consortium, 2012). However, genotyping
by WGS has not been used as a primary tool in de novo
development of linearly ordered draft genome assemblies.

In the absence of an appropriate molecular or analytical
method to establish short-range connectivity (i.e. to link
physically close sequence contigs), we used the power of
genetic segregation to directly and linearly arrange
sequence contigs into closely associated recombination
bins along a target genome. We show that whole-genome
survey sequencing of a small experimental segregating
population and genetic mapping of the millions of
observed single nucleotide polymorphisms (SNPs)
detected therein (Figure 1) vastly improves the quality and
utility of highly fragmented NGS shotgun assemblies. We
illustrate the approach using the complex 5.1 Gb genome
of cultivated barley (Hordeum vulgare L.) by comparing
the output with a gene space assembly that has been
partially ordered using extensive physical and genetic
mapping resources (International Barley Genome Sequenc-
ing Consortium, 2012). Our results are congruent with the
current sequence assembly (International Barley Genome
Sequencing Consortium, 2012) but increase the amount of
genetically anchored contig sequences by a factor of three.
Most importantly, the whole effort cost <$100K and was
completed in a matter of months. This new assembly has
greater value for comparative genetic studies, gene isola-
tion and genomics-assisted breeding compared to the pre-
vious anchoring effort (International Barley Genome
Sequencing Consortium, 2012) as more WGS contigs are
positioned genetically. In principle, the approach, which
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Figure 1. Schematic representation of POPSEQ.
(a) A segregating population (80-100 individuals) is constructed from a bi-parental ¢

ross.

(b) A whole-genome shotgun is generated for one parent, and used to construct a gene space assembly (alternatively, the POPSEQ data itself may be used for

this purpose). On this assembly, gene models (green arrows) are defined using R

NA-seq. In parallel, POPSEQ, and, if necessary, genotyping-by-sequencing

(GBS), is performed on the population, and a medium-density framework genetic map is calculated (thousands to tens of thousands of loci).
(c) SNPs detected and typed by POPSEQ along with associated WGS contigs are integrated into the framework map through nearest-neighbor search.
(d) The result of POPSEQ is a sequence assembly in linear order that contains comprehensive information on the gene space. It may be enhanced by performing

POPSEQ on additional populations.

we term POPSEQ, may be used for any species for which a
segregating population may be derived and maintained.

RESULTS
Whole-genome survey sequencing of genetic populations

We generated survey sequences from 90 individuals
(Table 1) of a population of recombinant inbred lines (RILs)
from a cross between barley cultivars Morex and Barke
(M x B). DNA from individual plants was fragmented and
bar-coded, and eight samples per lane were sequenced on
an lllumina HiSeq 2000 instrument (yielding approximately

© 2013 The Authors

1x coverage per line). We de-convoluted and mapped the
output reads against a 50x WGS sequence assembly of
the barley cultivar Morex (International Barley Genome
Sequencing Consortium, 2012) using BWA software (Li
and Durbin, 2009), and performed in silico variant calling
using SAMtools (Li, 2011) (see Experimental procedures).
This resulted in a set of SNP positions on the Morex WGS
assembly, and genotype calls (i.e. homozygous for one
parent or heterozygous) for each individual at each SNP.
After discarding variant positions with low quality or too
much missing data (Figure S1), 5.1 million SNPs with a
mean of 33 unambiguous genotypic calls across the popu-
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Table 1 Sequence data generated in this study

M x B WGS

OWB WGS

M x B GBS

Morex

Population Morex x Barke RIL Fg Oregon Wolfe Barleys DH Morex x Barke RIL Fg -
Sequencing technology Whole-genome shotgun; Whole-genome Genotyping-by-sequencing; Whole-genome shotgun;
HiSeq 2000 shotgun; HiSeq 2000 HiSeq 2000 HiSeq 2000

Number of sequencing 12 12 1 2

lanes
Number of sequenced 90 (+ parents) 82 (+ parents) 92 (+ parents) 1

individuals
Approximate coverage 1x 1x 1x (10 Mb represented) 15x

per sample
Number of SNPs detected 5 123 696 6 543 684 21 397 -
Mean number of present 33 31 58 -

genotype calls per marker
Table 2 Anchoring statistics

M x B (iSelect)® OWB M x B(GBSmap) MxB + OWB IBSC

Number of SNPs used for anchoring 4 381 020 6 117 837 4 429 475 11 229 709 498 165
Framework map iSelect OWB GBS M x B GBS iSelect/OWB GBS iSelect
Number of anchored contigs 498 856 591 779 512 293 747 077 138 443
Size of anchored contigs (Mb) 927 (50%) 1000 (53%) 934 (50%) 1222 (65%) 410 (16%)
Median length of anchored contigs (bp) 1006 977 891 1431

16 682 (64%)
28 337 (56%)

Number of anchored HC genes?
Number of anchored LC genes®

15 743 (60%)
29 033 (565%)

16 729 (64%)
28 559 (56%)

20 932 (80%)
37 609 (71%)

15 719 (60%)
19 415 (36%)

*The Morex x Barke iSelect framework map is described in International Barley Genome Sequencing Consortium (2012) and Comadran

et al. (2012).

PHigh-confidence genes as described in International Barley Genome Sequencing Consortium (2012).
‘Low-confidence genes as described in International Barley Genome Sequencing Consortium (2012).

lation were considered for integration into a high-density
SNP-based genetic map of the same population con-
structed by array-based genotyping (Comadran et al.,
2012). We then used a heuristic algorithm to place the
newly discovered SNPs into this existing genetic frame-
work. Briefly, we performed a nearest-neighbor search,
querying the set of framework markers for elements with
minimal Hamming distance to a given SNP (i.e. the
minimum number of alternative SNP alleles required to
change an observed segregation pattern into the reference)
If several framework markers exhibited identical minimal
distances, we imposed a cutoff where >80% of the frame-
work markers had to lie on the same chromosome and the
median absolute deviation of their genetic positions was
less than five centiMorgans (cM). Using these thresholds
4.3 million SNPs (85.5% of all detected SNPs) could be
placed into the genetic map with less than two genotype
calls differing from their closest framework marker.

We then assigned the WGS sequence contigs that har-
bored mapped polymorphisms to their defined genetic
positions. As with positioning SNPs in a genetic map, we
imposed a rule that multiple SNPs found on the same
sequence contig were required to have concordant genetic
positions. Overall, 498 856 contigs with a cumulative
length of 927 Mb (49.5% of the total cv Morex WGS

sequence assembly) could be ordered along the genetic
map (Table 2), more than doubling the 410 Mb that was
anchored with the help of a genome-wide physical map to
the same genetic framework. Tables containing the
anchoring results are available for download from
ftp://ftp.ipk-gatersleben.de/barley-popseq/

Validation of population sequencing

We checked whether the genetic anchoring generated by
POPSEQ was consistent with available short-range connec-
tivity information. The (International Barley Genome
Sequencing Consortium, 2012) had sequenced 6278 bacte-
rial artificial chromosomes (BACs). Individuals BACs were
sequenced to ‘Phase 1 quality and consisted on average of
five to ten sequence contigs. From this set, we identified
3902 clones that harbored at least two WGS contigs that
were mapped by POPSEQ. Our hypothesis was that in the
majority of cases, pairs of contigs from the same BAC
clone (i.e. within a physical distance of less than 200 kb)
would exhibit the same genetic location. Using ultra-strin-
gent homology (100% identity over 1000 bp), 95% of the
contig pairs were placed within a 3 cM window on the
ordered assembly (Table S1). Discordant chromosome
assignments were found for only 1.7% of the contig pairs,
and a further 3.3% had a genetic distance larger than 3 cM.
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We inspected 17 BACs with at least five anchored WGS
contigs and discordant chromosome assignments. Nine of
these BACs had two groups of contigs anchored to differ-
ent locations and had either suspiciously large insert sizes
of >180 kb suggestive of chimeric inserts or showed evi-
dence of independent clones having been sequenced
under the same name.

We then compared the POPSEQ anchoring of WGS con-
tigs to a recently released integrated sequence-enriched
genetic and physical map of barley (International Barley
Genome Sequencing Consortium, 2012). More than 77 000
WGS contigs (representing 315 Mb of sequence) were
assigned by both methods to specific genetic positions.
Chromosome assignments disagreed in 2.2% of the cases,
and cM coordinates differed by more than 5 ¢cM in 7.0% of
the cases, similar to the 2-8% false-positive rate observed
in PCR-based screening of BAC libraries (International Bar-
ley Genome Sequencing Consortium, 2012). In general
terms, incongruence appears to occur largely in the highly
repetitive and extensive genetic centromeres. We believe
that this is most likely the product of misplaced repetitive
sequence-containing or chimeric BAC contigs in the barley
physical map. Thus, employing POPSEQ alongside a fully
sequenced minimum tiling path highlights errors in a
physical map and its associated anchoring information,
and may thereby be valuable in establishing a robust
clone-by-clone assembly of a target genome.

Framework map construction by GBS

To further investigate the robustness of POPSEQ, we
assessed the effect of using a different genotyping platform
to construct the framework map. We genotyped the same
90 individuals using a two-enzyme genotyping-by-sequenc-
ing (GBS) approach (Poland et al., 2012) (Table 1). Prior to
sequencing, DNA was digested using a rarely and a
frequently cutting restriction enzyme, and only restriction

Assembly anchoring by population sequencing 5

fragments with two different restriction sites were
sequenced, thus reducing the targeted interval on the gen-
ome to approximately 10 Mb. Compared to array-based
genotyping, GBS has lower per-sample costs and does not
require any prior knowledge of polymorphisms between
the parents of the population. Instead, marker detection and
scoring occur simultaneously, making GBS suitable for spe-
cies without any genomic resources, or for which genomic
resources are poorly developed. We constructed a de novo
genetic map comprising 4056 bi-allelic SNP markers, and
placed WGS contigs into this map using the same algorithm
as described above. Altogether, 927 Mb of sequence repre-
sented by 512 293 sequence contigs was ordered (Table 2),
with 94.3% also linked to the iSelect framework (Comadran
et al., 2012). Importantly, the genetic coordinates of contigs
were consistent among the underlying framework maps
(Figure 2b): chromosome assignments were discordant in
0.1% of the cases, and the map position of only 0.6% of the
contigs differed by more than 5 cM. If we only used the
SNP markers (approximately 20 000) provided by GBS, we
were able to anchor only 49 Mb of sequence, because the
number of anchored contigs is limited by the number of
available SNPs.

Robustness of the linear assembly

To test the robustness of the M x B POPSEQ anchored
assembly, we constructed a de novo assembly of a second
population for comparison. We used the Oregon Wolfe
Barley (OWB) population, as a genetic map from GBS on
82 doubled haploid (DH) lines was already available
(Poland et al., 2012). We survey-sequenced these 82 indi-
viduals to approximately 1x whole genome coverage each
(Table 1), and, by performing the same steps as for M x B,
assigned genetic positions to 591 779 WGS contigs corre-
sponding to 1000 Mb of sequence. Of these contigs, 42%
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Figure 2. POPSEQ validation. WGS contigs anchored to three genetic maps. These plots show the colinearity of contigs anchored to the Morex x Barke iSelect
framework map and (a) the physical and genetic framework of barley (International Barley Genome Sequencing Consortium, 2012), (b) a Morex x Barke genetic
map constructed by genotyping-by-sequencing (GBS), (c) a GBS map (Poland et al., 2012) constructed in the OWB. WGS contigs are shown as dots, and are

mostly within 5 ¢cM of the diagonal: 90.8% in (a), 99.2% in (b) 93.2% in (c).
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framework. In most cases, these contigs either harbored
no polymorphism between Morex and Barke, or SNPs
were not assayed in a sufficient number of RILs to reach
our threshold for inclusion. Contigs anchored to both
M x B and OWB maps had highly congruent chromosome
assignments (99.6% agreement, Figure 2c). Only 6.4% of
all contigs were placed more than 5 cM apart in the two
anchored assemblies (falling to 2.1% if <7 cM). Given that
we were comparing populations constructed with different
parents and levels of recombination (approximately half in
a DH population compared to RILs), this was not com-
pletely unexpected. However, the use of independent pop-
ulations for anchoring has considerable value: the
cumulative length of contigs anchored to either the M x B
or OWB map is 1.22 Gb, an increase of one-third compared
to use of only a single population. Additional polymor-
phisms in OWB thus enabled placement of contigs that
were identical between Morex and Barke. More impor-
tantly, the POPSEQ ordered assembly positions an addi-
tional 5213 annotated high-confidence genes on the barley
genome compared to the International Barley Genome
Sequencing Consortium release.

Framework map construction using light shotgun
population sequencing

We then explored whether the POPSEQ data could be used
directly to construct a robust de novo genetic map without
reference to other datasets or genotyping methods. Briefly,
we identified a set of 65 357 contigs containing at least ten
Morex/Barke SNPs per contig, requiring that these contigs
be genotyped by shallow WGS sequencing in at least 75 of
the 90 individuals within our M x B mapping population
to avoid an excess of missing data points. Using stringent
controls on log-odds scores, 98.5% of these contigs were
readily clustered into seven major linkage groups and
ordered by MSTMap (Wu et al., 2008). The resulting frame-
work map has approximately 99% concordance with exist-
ing barley maps (Pearson correlation coefficient), and may
be used to place additional contigs with fewer SNPs and/or
more limited sampling using a majority rule approach as
described above. Thus POPSEQ data may be used directly
to generate a linear ordering of contigs, even in the
absence of an independent genetic map.

POPSEQ does not require long mate-pair libraries

The set of whole-genome contigs (the ‘reference assembly’)
used in the present study had been assembled from Illu-
mina libraries with fragment sizes of 350 bp and 2.5 kb
(International Barley Genome Sequencing Consortium,
2012). Although large-insert mate-pair libraries may be used
to establish links between contigs, and may be required
input for some assemblers (Gnerre et al., 2011), the con-
struction of such libraries is not straightforward and often
yields sub-optimal results, such as a high fraction of PCR

duplicates or short-insert read pairs. We therefore explored
how POPSEQ performed using an assembly comprising
only short-insert paired reads. We sequenced the same
350 bp insert libraries used for construction of the current
barley reference assembly (International Barley Genome
Sequencing Consortium, 2012) on two HiSeq lanes, yielding
approximately 15x haploid genome coverage (Table 1),
and assembled the reads using the same program as previ-
ously (International Barley Genome Sequencing Consor-
tium, 2012). As the read coverage was approximately three
times lower than used by International Barley Genome
Sequencing Consortium (2012) and did not utilize mate-pair
information, we expected the assembly to be of worse qual-
ity. The cumulative length of the resulting assembly was
shorter (1.6 Gb versus 1.9 Gb), and the contig N50 (a
weighted average contig size that is commonly used as a
measure of assembly contiguity) was smaller (1238 bp ver-
sus 1450 bp). However, contigs of this size are sufficient to
function as a reference for read mapping and to enable
structural gene annotation via RNA sequencing (RNA-seq)
as well as SNP detection. Notably, almost half of the contigs
(49.8%) anchored to the M x B iSelect framework are
shorter than 1000 bp. In species with smaller and less repet-
itive genomes, WGS assembly is expected to yield fewer
and longer contigs that potentially yield a higher number of
SNPs per contig (depending upon the level of polymor-
phism in the POPSEQ population). Alternatively, larger con-
tigs may compensate for lower levels of polymorphism.

DISCUSSION

Low-coverage (approximately 0.05-0.1x) NGS survey
sequencing of the small genome (0.4 Gb) of the model
crop plant rice has previously been used as a tool to gener-
ate many thousands of genetic markers for both bi-paren-
tal linkage studies and GWAS (Huang et al., 2009, 2010).
The effectiveness of this ‘genotyping by re-sequencing’
was afforded by the availability of high-quality reference
sequences, a small target genome with comparatively few
repeats, and innovative statistical approaches to data
analysis. Here, we have explored a fundamentally different
application of NGS combined with classical genetic analy-
sis that should find application in many species, particu-
larly those with recalcitrant, large or poorly characterized
genomes, among them economically important species
such as wheat, sugarcane, pine or Miscanthus.

We explored POPSEQ as a method for genetically anchor-
ing and ordering de novo NGS assemblies, and have dem-
onstrated its potential by re-synthesizing and improving a
recently released sequence assembly of the large (5.1 Gh)
and complex (> 80% repetitive sequence, ancestrally dupli-
cated) barley genome. We used sequence data from two
mapping populations, and used the large number of
detected SNPs to integrate the sequence assembly with two
established framework maps as well as genetic maps

© 2013 The Authors
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computed from GBS or WGS data. At its core, POPSEQ
exploits the power of genetic segregation combined with
shallow (1-2x per line) survey sequencing of one or more
small experimental populations to genetically anchor NGS
sequence assemblies. It is independent of physical map-
ping and all other genomic resources typically developed in
large genome sequencing projects, and should be amena-
ble to application in most population types.

We show that POPSEQ is both robust and reproducible.
Using various genetic maps and mapping population, we
obtain comparable results with a concordance of approxi-
mately 95%. Thus, POPSEQ is neither dependent upon the
choice of mapping population nor the genotyping platform
used for framework map construction. If more extensive
short-range connectivity is established by longer sequence
contigs or scaffolds (set of ordered sequence contigs with
gaps between them), a sliding window approach (Huang
et al., 2009) may be used for genotype calling and frame-
work map construction from POPSEQ data alone, avoiding
the need for GBS or SNP mapping platforms. In addition,
partitioning of polymorphic sites according to their paren-
tal origin may be performed prior to de novo assembly, for
example by using the colored de Bruijn graph method (Ig-
bal et al., 2012). The raw sequence reads from POPSEQ
(the equivalent of 50x for each parent) should then be suf-
ficient to compute the reference sequence assemblies that
will ultimately be ordered along the genetic map.

POPSEQ performs effectively with highly fragmented
sequence assemblies from short-insert libraries. We were
able to construct a de novo WGS assembly from short
Illumina reads that showed assembly statistics comparable
to an assembly that incorporated mate-pair information.
POPSEQ thus avoids the technical difficulties associated
with construction and characterization of large-insert
libraries. The simultaneous use of several mapping popula-
tions through sequence-based consensus map construction
is straightforward, with the same caveats as observed in any
genetic map integration. The outcome is not merely an ultra-
dense genetic map of anonymous loci: at each genetic posi-
tion, comprehensive information on the gene space may be
obtained through RNA-seqg-based structural annotation.

The POPSEQ resource we developed here both repro-
duces and substantially improves the multi-layered gene
space assembly that was the result of a large collaborative
effort by the International Barley Genome Sequencing
Consortium over many years. By comparison, POPSEQ is
inexpensive, rapid and conceptually simple, the most
time-consuming step being the construction of a mapping
population. In relation to the latter, while we used both DH
lines and RILs, other population types including early-gen-
eration inbred lines (e.g. F4 individuals) would also be suit-
able. Subsequent steps including sequence assembly from
short-insert  libraries,  genotyping-by-sequencing  (if
required) and integrative computational analyses may be

© 2013 The Authors
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performed quickly. We stress that we do not advocate aban-
donment of on-going genome projects that are pursuing a
clone-by-clone strategy. On the contrary, we believe these
may profit from POPSEQ. BAC contigs may be validated
though genetic mapping of each single clone, and the high
number of mapped genetic markers should allow virtually
any fully sequenced physical contig to be accurately placed.

Having performed a proof of principle in barley, the
notion of advancing the closely related bread wheat gen-
ome (Paux et al., 2008) by adopting POPSEQ is of particular
interest. Wheat will be the last of the world’s major crops to
be fully sequenced. The cost-efficient construction of high-
density genetic maps is routine in hexaploid wheat (Poland
et al., 2012), and the challenge of distinguishing homoeolo-
gous sequences has been largely overcome: sub-genome-
specific shotgun assemblies have been released recently
(Brenchley et al., 2012), and chromosome-specific survey
sequences have also been generated (Hernandez et al.,
2012). Furthermore, several populations of recombinant
inbred lines are already available within the academic and
commercial sectors, and are ripe for exploitation (Nelson
et al., 1995; Manickavelu et al., 2011). While the ultimate
goal should be a clone-by-clone sequence of the wheat gen-
ome with a quality on par with that of the the maize gen-
ome, POPSEQ opens the way to obtain, with comparative
ease, an effective surrogate that would be valuable for basic
research and breeding applications. In addition to wheat,
many non-model species, orphan crops and old genetic
models such as pea (Pisum sativum), have not yet benefited
much from the genomics era. With moderate effort, POPS-
EQ could allow the generation of highly useful sequence
resources for these and many other species.

For an uncharacterized >5 Gb diploid genome, between
14 and 30 HiSeq lanes are required for (i) producing a de
novo sequence assembly for read mapping (two to eight
lanes; not required if POPSEQ data itself is used to produce
the ‘reference’ sequence assembly); (ii) genotyping-by-
sequencing for map construction (one lane; not required if
POPSEQ is used to construct the reference map); (iii) shal-
low population sequencing (minimum 12 lanes for each
population of approximately 90 lines, although the depth
may be varied); (iv) deep RNA-seq for structural gene anno-
tation (more than two lanes) amounting to $50 000-
$100 000 in sequencing costs. Together with a medium-
sized computer server (32 CPU cores, 512 GB RAM, 3 TB of
disk space), it is possible to generate a de novo linear gene
space assembly.

The accuracy of POPSEQ may be improved if the mem-
bers of the population are sequenced to higher depth. With
the sequencing depth used in this study (1-2x), the
sequencing reads of each individual cover only approxi-
mately 50% of the assembly. Doubling the amount of
sequencing data per individual would result in genome
coverage of approximately 80% according to the model of
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Lander and Waterman (1988) (Figure S2), thus reducing the
number of missing genotype calls per individual. An
increase in sequencing depth is mandatory for highly het-
erozygous populations such as F, populations in selfing
organisms or F; populations in outcrossing species in
order to correctly type heterozygous SNPs. Using an
improved assembly with longer contigs or contigs orga-
nized into physically close scaffolds would benefit the
analysis, as more SNPs could be used to place each
sequence contig. An increase in the number of sequenced
individuals (resulting in a proportional increase in the
sequencing load) may improve the genetic resolution of
the framework map.

We propose that POPSEQ may contribute substantially
to fundamental research in plant genetics as well as in
crop improvement (for examples, see Figure S3, Appendix
S1 and Methods S1). However, its application is not
restricted to plants. The fast and steady advances in
sequencing technology will further increase the power of
POPSEQ, allowing deeper coverage of larger and outbred
populations. As long as the inherent complexity of
genomes restricts the assembly of pseudo-molecules by
shotgun sequencing, POPSEQ provides a rapid, low-cost
and effective method for developing a highly useful
‘interim reference’ genome sequence in most species for
which it is possible to construct a genetic map.

EXPERIMENTAL PROCEDURES
Whole-genome shotgun sequencing

Illumina paired-end libraries(fragment size approximately 350 bp)
were generated from fragmented genomic DNA of 90 individuals
from the Morex x Barke RIL population and 82 individuals of the
OWSB population. Individual libraries were bar-coded prior to com-
bining in pools of eight and sequencing on lllumina HiSeq 2000
instruments (http://www.illumina.com). The iSelect framework
was available from a previous study (Comadran et al., 2012).

Read mapping and SNP calling

Sequencing reads were quality trimmed and mapped against the
Morex WGS assembly (International Barley Genome Sequencing
Consortium, 2012) using BWA version 0.6.2 (Li and Durbin, 2009).
The command ‘bwa aln’ was used with the parameter ‘-q 15’ for
quality trimming, otherwise default parameters were used. After
removing duplicate reads using the SAMtools (Li, 2011) command
rmdup, variant positions and genotypes of individuals at variant
positions were called using the SAMtools mpileup/bcftools pipe-
line version 0.1.18 (Li, 2011) with default parameters. Additionally,
the parameter ‘-D" was used for SAMtools mpileup to record per-
sample read depth. The resulting VCF file was filtered using a cus-
tom AWK script. The script removed SNPs with a SAMtools qual-
ity score below 40, and further filtered SAMtools genotype calls: a
homozygous genotype call was retained if there was at least one
read supporting it and its SAMtools genotype quality was at least
3. In the M x B data, a heterozygous call was retained if there
were at least three supporting reads and its score was at least 5.
In the OWB DH population, heterozygous calls were always dis-
carded. Genotype calls not matching the specified criteria were

set to a missing value. A variant position was removed if more
than 10% of all samples were called heterozygous, there were
more than 80% missing data, or the minor allele frequency (in the
non-missing data) was smaller than 5%.

Mapping SNPs and WGS contigs to the framework map

The nearest neighbors of SNPs detected in the WGS shotgun data
were searched for using a heuristic algorithm implemented in
GNU C. The source code is available from ftp://ftp.gatersleben.de/
barley-popseq/. As a metric, we used the minimum Hamming
distance. The nearest neighbors were searched for in the set of (i)
1723 non-redundant iSelect SNPs, (ii) 4056 GBS SNPs used for con-
struction of the M x B GBS map, and (iii) 4632 non-redundant OWB
GBS SNPs meeting these criteria described below. A SNP was con-
sidered redundant if there was another SNP with the same geno-
type (on the non-missing data) and the same genetic position.

SNPs were used to anchor WGS contigs if they were scored
unequivocally on more than 20% of the individuals in the popula-
tion, the Hamming distance (number of different, non-missing
genotypes) to their nearest SNPs was not larger than 2, at least
80% of all nearest SNPs lay on the same chromosome, and the
median absolute deviation of the cM positions (on the chromo-
some with most markers) was <5 for the OWB map and the M x B
iSelect framework. As we used the population type DH for the
M x B RlILs (as required for advanced RiLs), the M x B GBS map
over-estimated the map length by a factor of approximately 3, and
we allowed a maximal median absolute deviation of 15. The cM
coordinate of a SNP meeting these criteria was defined as the
median cM position of its nearest neighbors. A WGS contig was
assigned to a genetic position if at least 80% of all SNPs located
on it had been mapped to the same chromosome and the median
absolute deviation of the cM coordinates of the SNPs was <5 (15
for M x B GBS). The ¢cM position of a contig was set to the
median cM position of all SNPs located on the contig.

Estimation of the error rate

WGS contigs were compared using MegaBLAST version 2.2.26
(Zhang et al., 2000) to 6278 fully sequenced BACs. Under stringent
criteria, we required 100% identity and a minimum alignment
length of 1000 bp for each BLAST High Scoring Pair. Under
relaxed criteria, we required 99% identity and 200 bp minimum
alignment length. The genetic positions of all pairs of contigs on
the same BAC were compared (Table S1). BACs with discordant
chromosome assignments and with hits to at least five anchored
contigs were further analyzed. For each BAC, the chromosome
assignments of its contigs were tabulated. If at least 30% of all
contigs on a BAC were anchored to the chromosome with the sec-
ond highest number of contigs, the BAC was deemed problematic,
and we checked whether it had been sequenced twice or its length
(the cumulative length of its assembled sequence contigs) was
unusually large (>180 kb).

Genetic map construction from M x B GBS data

GBS library production and sequencing for M x B populations
were performed as described previously (Poland et al., 2012).
Reads were deconvoluted using a custom AWK script. Adapter
sequences were removed using cutadapt version 1.1 (http:/
code.google.com/p/cutadapt). Trimmed reads shorter than 30 bp
were discarded. Read mapping, SNP and genotype calling, and fil-
tering were performed essentially as described above for the WGS
data. As only single ends were used, the BWA command samse
was used for alignment. Additionally, only SNPs meeting the

© 2013 The Authors

The Plant Journal © 2013 John Wiley & Sons Ltd, The Plant Journal, (2013), doi: 10.1111/tpj.12319


http://www.illumina.com
ftp://ftp.gatersleben.de/barley-popseq/
ftp://ftp.gatersleben.de/barley-popseq/
http://code.google.com/p/cutadapt
http://code.google.com/p/cutadapt

following criteria were considered for genetic map construction:
no more than 10% missing data, no more than 10% heterozygous
genotypes, |A+B|/(A+B)<0.7, where A and B indicate the
counts of the parental alleles; in the absence of heterozygous
calls, this corresponds to a minimum minor allele frequency of
17.6%. For M x B, 4058 SNPs passed these filters. Genetic map
construction was performed using MSTMap (Wu et al., 2008) with
the following parameters: population type DH; distance function
kosambi; cut_off_p_value 0.00001; no_map_dist 20; no_map_size
2; missing_threshold 0.8; estimation_before_clustering no;
detect_bad_data yes; objective_function COUNT. The resulting
map contained seven linkage groups with more than one marker.
Two markers formed a linkage group of their own and were dis-
carded. According to the obtained orders, orientations and dis-
tances between markers, the linkage groups corresponded to the
seven barley chromosomes. The relationship between genetic
positions in the new map and the iSelect map was obtained
through Loess regression [R (http://www.r-project.org) function
loess, smoother span 0.3]. Interpolation into the iSelect map of
WGS SNP positions integrated to the GBS framework was
performed using the loess model with the R function predict.

De novo map construction from POPSEQ

To build an independent genetic map from the POPSEQ data with-
out reference to existing maps or other marker data, we restricted
our attention to the 115 258 sequence contigs that span at least
ten SNPs that are polymorphic between the two parents Morex
and Barke. For the purposes of developing a framework map, we
further restricted our attention to contigs with highly concordant
SNP genotype calls. We therefore set aside contigs that had two
or more SNP genotype calls from both parents, indicating the pos-
sibility of mis-genotyping through incorrect SNP calls and/or lim-
ited cross-contamination between individuals. The resulting
80 189 contigs were then genotyped as either Morex or Barke
based on the consensus of their genotyped SNPs, requiring at
least three SNP calls. Finally, for the framework map, we only con-
sidered contigs that could be consensus genotyped in at least 75
of the 90 individuals. This left us with 66 357 contigs that could be
reliably genotyped with limited missing data. We computed the
recombination rate and logarithm of odds (LOD) score between
each pair of contigs, and clustered contigs with LOD > 10 to form
linkage groups: 64 476/65 357 (98.7%) of contigs formed 14 link-
age groups, with approximately 98.87% of contig length placed in
seven major linkage groups, corresponding to the seven barley
chromosomes.

Integration of WGS SNPs to the OWB GBS bin map

A bin map (Poland et al., 2012) had previously been constructed
from GBS data of 82 OWB DH lines. GBS marker sequences (64 bp
long) were aligned against the Morex WGS assembly using the
BWA command ‘aln’ and the command ‘samse’. Only alignments
with the best possible mapping score of 37 were considered.
SNPs with missing data for the parents or more than 10% missing
data on the DH lines were not considered for the nearest-neighbor
search. The anchoring of SNPs and contigs has been described
above.

De novo assembly

Illumina paired-end libraries (insert size 350 bp) for barley cultivar
Morex had been constructed previously (International Barley Gen-
ome Sequencing Consortium, 2012). Sequencing on the Illumina
HiSeq 2000 was performed according to the manufacturer’s proce-
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dures (http://www.illumina.com). Sequencing reads were quality
trimmed and assembled using CLC assembly cell 3.2.2 (http://
www.clcbio.com).
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