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Abstract

Background and Aims: We demonstrated in the randomized 18-month

DIRECT PLUS trial (n = 294) that a Mediterranean (MED) diet,

supplemented with polyphenol-rich Mankai duckweed, green tea, and

walnuts and restricted in red/processed meat, caused substantial intra-

hepatic fat (IHF%) loss compared with 2 other healthy diets, reducing

NAFLD by half, regardless of similar weight loss. Here, we investigated the

baseline proteomic profile associated with IHF% and the changes in

proteomics associated with IHF% changes induced by lifestyle intervention.

Approach and Results: We calculated IHF% by proton magnetic

Abbreviations: CA5A, carbonic anhydrase 5A; CV, coefficient of variance; FDR, false discovery rate; green-MED, green-Mediterranean; HAOX1, hydroxyacid
oxidase 1; HbA1c, hemoglobin A1; HDG, healthy dietary guidelines; IHF%, intrahepatic fat; MED, Mediterranean; Met syn, metabolic syndrome; PCA, principal
component analysis; RMSE, root mean square error; T2D, type 2 diabetes; THBS2, thrombospondin-2.
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resonance spectroscopy (normal IHF% <5% and abnormal IHF% ≥5%). We

assayed baseline and 18-month samples for 95 proteomic biomarkers.Par-

ticipants (age = 51.3 ± 10.8 y; 89% men; and body mass index = 31.3 ±

3.9 kg/m2) had an 89.8% 18-month retention rate; 83% had eligible follow-up

proteomics measurements, and 78% had follow-up proton magnetic reso-

nance spectroscopy. At baseline, 39 candidate proteins were significantly

associated with IHF% (false discovery rate < 0.05), mostly related to

immune function pathways (eg, hydroxyacid oxidase 1). An IHF% prediction

based on the DIRECT PLUS by combined model (R2 = 0.47, root mean

square error = 1.05) successfully predicted IHF% (R2 = 0.53) during testing

and was stronger than separately inputting proteins/traditional markers (R2 =

0.43/0.44). The 18-month lifestyle intervention induced changes in 18 of the

39 candidate proteins, which were significantly associated with IHF%

change, with proteins related to metabolism, extracellular matrix remodeling,

and immune function pathways. Thrombospondin-2 protein change was

higher in the green-MED compared to the MED group, beyond weight and

IHF% loss (p = 0.01). Protein principal component analysis revealed differ-

ences in the third principal component time distinct interactions across

abnormal/normal IHF% trajectory combinations; p < 0.05 for all).

Conclusions: Our findings suggest novel proteomic signatures that may

indicate MRI-assessed IHF state and changes during lifestyle intervention.

Specifically, carbonic anhydrase 5A, hydroxyacid oxidase 1, and thrombo-

spondin-2 protein changes are independently associated with IHF% change,

and thrombospondin-2 protein change is greater in the green-MED/high

polyphenols diet.

INTRODUCTION

Proteomics has the potential to provide extensive insights
regarding an individual’s health status and the likelihood of
developing certain diseases,[1] while large-scale protein
scanning has become available to identify biomarkers
related to disease states[2] and specifically in the context of
NAFLD,[3] which is highly prevalent,[4] and can develop
from hepatic steatosis to NASH, fibrosis, and cirrhosis.[5,6]

Hepatic steatosis, the first stage of NAFLD, defined as
intrahepatic fat (IHF) content exceeding 5%,[7] is asso-
ciated with an increased risk of metabolic syndrome (Met
syn), type 2 diabetes (T2D), cardiovascular and kidney
disease, gut dysbiosis, and liver and other cancers.[8–16]

IHF% accumulation is typically asymptomatic, but
several biomarkers and noninvasive prediction tools for
NAFLD diagnosis and staging are being used and
investigated, as it is necessary to monitor the initiation
and evolution of the disease.[17–24] An encouragement for
combining omics with traditional biomarkers has recently
emerged to improve diagnostic performance.[17,23,24] In
NAFLD, omics have been explored in different study

settings, including cohorts, therapeutic interventions, and
following bariatric surgeries.[25–27]

Recently, we reported in the 18-month DIRECT
PLUS trial among 294 participants, with an NAFLD
prevalence of 62% at baseline, that a green-Mediterra-
nean (green-MED) diet, amplified with green plant–
based proteins/polyphenols such as Mankai, green tea,
and walnuts and restricted in red/processed meat can
increase IHF% loss more than other healthy nutritional
strategies and reduce NAFLD by half.[16] Here, we
aimed to identify, in the DIRECT PLUS lifestyle
intervention trial, whether novel proteomic signatures
may indicate an MRI-assessed IHF state and changes.

METHODS

Study population

This was a secondary analysis of the 18-month DIRECT
PLUS randomized controlled trial. The DIRECT PLUS
randomized controlled trial included 294 participants
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(age > 30 y) with abdominal obesity (waist circumfer-
ence: men >102 cm, women > 88 cm) or dyslipidemia
(TG > 150 mg/dL and HDL cholesterol ≤ 40 mg/dL for
men, ≤ 50 mg/dL for women) who were recruited from
an isolated workplace (Nuclear Research Center
Negev). The participants were randomized to 1 of 3
lifestyle interventions: healthy dietary guidelines
(HDGs), the Mediterranean (MED), or the green-MED
diet, all combined with physical activity, where a
monitored lunch was provided. Both MED diets were
similarly hypocaloric and included 28 g/d of walnuts.
The green-MED group further consumed green tea
(3–4 cups/d) and a Wolffia globosa (Mankai) plant
green shake.

IHF acquisition and quantification

The participants underwent MRI at baseline and at the
end of the intervention using proton magnetic reso-
nance spectroscopy, as detailed.[16] Briefly, localized,
single-voxel proton spectra were acquired using a
whole-body 3-Tesla MRI scanner (Philips Ingenia).
Data were analyzed using the Mnova software
(Mestrelab Research) by an experienced physicist
blinded to the intervention groups. The total hepatic fat
fraction in the image was determined as the ratio
between the sum of the area under all fat peaks
divided by the sum of the area under all fat and
water peaks.

We determined distinct trajectories of IHF% based on
the 18-month change: (i) normal-IHF% trajectory
included subjects with IHF% <5% at the baseline and
18-month timepoints; (ii) normal-to-abnormal-IHF% tra-
jectory included subjects with IHF% <5% at the
baseline and IHF% ≥ 5% at the 18-month timepoints;
(iii) abnormal-to-normal-IHF% trajectory included sub-
jects with IHF% ≥ 5% at the baseline and IHF% <5% at
the 18-month timepoints; and (iv) abnormal-IHF%
trajectory included subjects with IHF% ≥ 5% at the
baseline and 18-month timepoints.

Proteomic panel and classification

The protein panel was assessed using the proteomics
platform of Olink CARDIOVASCULAR II panel. The
Olink technique employs proximity extension assay
technology[28] in a homogenous 96-well plate format. It
incorporates 92 oligonucleotide-labeled antibody
probe pairs per panel that bind their target proteins
in serum. A PCR reporter sequence was formed,
amplified, and quantified by real-time PCR following a
proximity-dependent DNA polymerization event. Inter-
nal and external controls are used for data normaliza-
tion and quality control. Intra- and inter-coefficient of
variance (CV)% were based on control samples

(pooled plasma samples) included on each plate.
The average intra-assay CV% was 6% CV and the
inter-assay CV was 17%. This platform provides
normalized protein expression data on a log2 scale.
Further information regarding the Olink analysis can
be found in the Supplemental Methods, http://links.
lww.com/HEP/I360).

Three other proteins, high-sensitivity C-reactive
protein, Chemerin, and Fetuin-A, were also added to
the proteomic analyses on a log2 scale.

Based on prior literature (Supplemental Table S1,
http://links.lww.com/HEP/I361), we classified 95 proteins
according to the following pathway-related groups:
metabolism, blood coagulation, blood pressure regulation,
endothelial dysfunction, extracellular matrix remodeling,
heart functioning, and immune function (Supplemental
Table S1, http://links.lww.com/HEP/I361).

Data cleaning

We removed 5 proteins with more than 5% missing data
(BNP, ITGB1BP2, SERPINA12, STK4, and PARP1)
(Supplemental Figure S1, http://links.lww.com/HEP/I362),
considering the study design, including sample size and
experimental variables. We used the remaining protein
data for the baseline (N=242) and 18-month change
analysis (N=184, participants with complete data at
baseline and 18 mo).

Statistical analysis

The present study aimed to investigate the proteomic
profile associated with IHF% in the DIRECT PLUS
intervention trial. Baseline characteristics are presented
as sex-specific IHF% tertiles. Continuous variables are
presented as mean ± SD. The significance of trends
between tertiles was assessed using the Kendal-Tau
test. We used Spearman correlations to quantify the
associations between protein levels and IHF%. The
false discovery rate (FDR) was applied to correct for
multiple testing, with FDR <0.05 as the significance
threshold. The partial correlations were adjusted for age
and sex and in a subsequent analysis for age, sex, and
weight. For the 18-month change analysis, we adjusted
for age and sex and, in a subsequent analysis, for age,
sex, baseline weight, and weight loss. ANOVA and
ANCOVA were performed to examine the changes in
thrombospondin-2 (THBS2), hydroxyacid oxidase 1
(HAOX1), and carbonic anhydrase 5A (CA5A) proteins
between the 3 intervention groups (HDG, MED, and
green-MED), further adjusted for weight loss and IHF%
loss by ANCOVA. The change of markers and IHF was
calculated as the devision between 18-months time-
point values and values at baseline, unless otherwise
stated. Tukey multiple comparisons of means analysis
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was used as a post-hoc analysis. We performed
principal component analysis (PCA) and Linear Mixed
Effects Model to examine the differences in the
proteomic panel of distinct trajectories of IHF%,
including preintervention and postintervention time-
points. Also, a volcano plot was used to present the
differences in proteomics between different IHF%
trajectories. Paired t test or Wilcoxon signed-rank tests
were used to compare 18-month changes in proteomic
markers from baseline. The prediction of IHF% at
baseline was performed by elastic net regression
analysis where 10-fold cross-validation was used, with
a multivariate linear regression analysis performed to
assess the prediction of known variables taken from the
literature.[21] Baseline data from the DIRECT PLUS was
used as a training set. The DIRECT PLUS data at
18 months were used as a test set. We used the
CENTRAL trial baseline data[29] as a validation set. The
CENTRAL trial has proteomic measurements for 212
individuals by Olink platform with the additional proteins
(high-sensitivity C-reactive protein, Chemerin, and
Fetuin-A), with IHF% measured by the mDIXON
approach as described.[30] All variables were trans-
formed into a log2 scale except sex and age. Statistical
analysis was performed using R (Version 4.2.0).
Statistical significance was set at a 2-sided alpha value
of 0.05.

RESULTS

Baseline characteristics

Participants’ baseline characteristics incorporates 242
subjects (mean age= 51.3±10.8 y; 89.25% men; mean
body mass index=31.3± 3.9 kg/m2; mean of IHF%
men=10.4± 8.3 or women = 10± 12.2). Among the
242 participants at the baseline, 149 (61.5%) individuals
with Met syn (assessed based on Huang PL,[31] Dis
Model Mech. 2009), 24 (10%) with T2D (fasting plasma
glucose levels ≥126 mg/dL or hemoglobin A1c levels
≥ 6.5% or if regularly treated with oral antihyperglycemic
medications or exogenous insulin), and 153 (63%)
exhibiting NAFLD. Thirty-five (14%) individuals were
using antihypertensive medications, 15 (6%) were
prescribed antiplatelets, 28 (12%) were undergoing
lipid-lowering therapy, 4 (2%) were receiving insulin
treatment, and 14 (6%) were administered oral glycemic
control medications.

Further characteristics at the baseline are shown in
sex-specific IHF% tertiles (Table 1). Age, cholesterol,
and LDL cholesterol levels were similar across sex-
specific IHF% tertiles. Individuals with a greater IHF%
had significantly higher body mass index and waist
circumference, markers of glucose metabolism, and
inflammatory markers (p of trend <0.05 for all).
Sex-specific IHF% tertiles stratified by body mass

index are presented in Supplemental Table S2,
http://links.lww.com/HEP/I362. Baseline characteristics
across DIRECT PLUS intervention groups among 242
and 184 participants are presented in Supplemental
Table S3, http://links.lww.com/HEP/I362.

Protein classification pathways and cross-
sectional associations of IHF% and
proteomic panel

Baseline correlation analysis revealed that 34 proteins
were significantly associated with IHF%. After adjust-
ments for weight, overall, 35 proteins were significantly
associated with IHF% at baseline. Several proteins
changed following the adjustments; the correlations of
LEP and TNFRSF11A with IHF% were attenuated,
while ADAM_TS13, MMP12, and hOSCAR were found
to correlate with IHF% (FDR <0.05). After adjustments
for age and sex, 39 candidate proteins were signifi-
cantly associated with IHF% at the baseline (Figure 1A;
FDR values are shown in Supplemental Table S4,
http://links.lww.com/HEP/I363). After adjustments for
age, sex, and weight, 36 proteins were significantly
associated with IHF% at the baseline overall. Several
proteins changed following the adjustments; the corre-
lations of TNFRSF11A, TRAIL_R2, and SLAMF7 with
IHF% were attenuated, while ADAM_TS13 was found
to correlate with IHF% (Figure 1B; FDR values are
shown in Supplemental Table S4, http://links.lww.com/
HEP/I363).

A literature-based classification of the 39 proteins
correlated with IHF% beyond age and sex. The proteins
correlated with IHF% beyond age, sex, and weight were
related to distinct pathways; 6 proteins related to
metabolism, 1 protein related to blood coagulation, 2
proteins related to blood pressure regulation, 3 proteins
related to endothelial dysfunction, 7 proteins related to
extracellular matrix remodeling, 1 protein related to
heart functioning, and 16 proteins related to immune
function (Figure 1B).

Prediction of IHF% at the baseline by the
proteomic panel and traditional variables

We constructed 3 models and used a published model
by Kotronen et al[21] to examine whether proteomics
only, known variables from the literature, or a combina-
tion of the proteomic panel with the literature variables
would enhance the prediction of IHF% (Table 2). Model
1 included only the proteomic panel (90 proteomics)
with an R2 value of 0.41 and root mean square error
(RMSE) of 1.11. Model 2 consisted of both proteomics
and known variables (90 proteomics + 5 literature-
known variables; aspartate transaminase, aspartate
transaminase/alanine transaminase ratio, fasting
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insulin levels, and the presence of T2D and Met syn,
input as forced covariates). Both models were
performed with elastic net regression. Model 3
(multivariate linear model) included 5 variables as
predictors of IHF%. A 10-fold cross-validation was
performed for all 3 models (Table 2). The values of R2

were calculated for all subjects at the baseline timepoint
of the DIRECT PLUS trial. This overall R2 value
describes the values received from all 10 models
trained in the 10-fold cross-validation for each of the 3
models. The R2 value for model 1 was higher than that
of model 3 (0.41 vs. 0.36), while the joint prediction
model (model 2) had the highest R2 value compared to
the other 2 models (0.47).

Furthermore, we used the coefficients of the pub-
lished variables by multivariate linear regression anal-
ysis for the prediction of IHF% (model 4) and found that

a model trained with the published variables on our data
(model 3) had a higher R2 value than the one published
previously (0.36 vs. 0.34).

Following the 10-fold cross-validations on the training
set, we chose the model with the highest R2 value from
all the 10 models created for each model (1, 2, and 3)
and presented the equations for the 3 best models
in Table 2. Further supplementary sheet shows all
the chosen proteins and their coefficients from the
10-fold cross-validation for each elastic net model in
Supplemental Table S5, http://links.lww.com/HEP/I364.

Next, we tested and validated the models presented
in Table 2 on different data points from the DIRECT
PLUS and CENTRAL trials. The models with the
highest R2 value from the 10-fold cross-validation in
the training set were used for prediction on the
validation sets (best R2 value for model 1: R2=0.55,

TABLE 1 Baseline characteristics of the DIRECT PLUS participants across sex-specific intrahepatic fat % tertilesa

Low IHF% tertile (n= 81) Intermediate IHF% tertile (n= 81) High IHF% tertile (n=80) P of trendb

IHF% men, % 2.90±1.27 7.96±2.17 20.30±5.42

IHF% women, % 1.66±0.89 4.14±0.85 23.59± 11.92

Age, y 52±12 52±11 50± 10 0.3

Weight, kg 89±9 91±13 100±16 <0.001

BMI, kg/m2 29.9±2.8 30.9±3.1 33.0±4.6 <0.001

WC, cm 106± 7 109± 8 114±12 <0.001

Systolic BP, mm Hg 126±12 131±15 133±13 0.001

Diastolic BP, mm Hg 79±10 81±11 82± 10 0.049

Fasting glucose, mg/dL 99±14 100±15 105±16 0.019

Insulin, μU/mL 10±5 14±6 20± 10 <0.001

HOMA-IR 2.57±1.35 3.47±1.43 5.24± 2.90 <0.001

HbA1c, % 5.37±0.48 5.43±0.46 5.59± 0.72 0.018

Cholesterol, mg/dL 185±35 195±32 191±31 0.5

Triglycerides, mg/dL 123±61 153±61 174±74 <0.001

HDL, mg/dL 50±12 47±12 42±9 <0.001

LDL, mg/dL 120±32 129±31 126±30 0.3

ALT, U/L 29±12 31±12 45± 21 <0.001

AST, U/L 25±8 24±6 29±9 0.001

ALKP, mg/dL 69±18 76±19 76± 21 0.021

Leptin, ng/mL 12±9 14±13 17± 13 <0.001

hsCRP, mg/L 2.49±1.99 2.90±1.78 3.86± 2.29 <0.001

IL6, pg/mL 3.20±1.79 3.51±1.58 4.03± 1.91 <0.001

Fetuin A, µg/mL 322±89 348±92 359± 100 0.02

Chemerin, ng/mL 186±36 209±34 223±51 <0.001

FGF21, pg/mL 172±170 195±130 234± 121 <0.001

Note: N= 242. Values are presented as mean±SD.
Bold values represent significance level below 0.05.
aSex-specific tertiles: Low tertile men ≤ 4.97%; women ≤ 2.64%; Intermediate tertile men: 5.05%–13.1%; women: 2.79%–5.17%; High tertile men ≥ 13.11%; women
≥ 7.49%.
bP of trend was analyzed using Kendall Tau test.
Abbreviations: ALKP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; BP, blood pressure; BMI, body mass index; HbA1c, hemo-
globin A1c; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; hsCRP, high-sensitivity C-reactive protein; IHF, intrahepatic fat; IL6, interleukin-6; WC,
waist circumference.
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RMSE=1.11, alpha= 0.7; best for model 2: R2=
0.73, RMSE= 0.85, alpha= 0.8; and model 3:
R2= 0.69, RMSE=0.91).

Extrapolating diabetes and Met syn status for the
CENTRAL participants resulted in a sharp decrease in
observations; as such, validation of models 2 and 3 on
CENTRAL was not possible. We validated model 1 at
the baseline timepoint of the CENTRAL trial for
proteomics-only prediction model (model 1), which
showed an R2 value of 0.43 (Figure 2A). In addition,
we tested models 1, 2, and 3 at the 18-month timepoint
of the DIRECT PLUS trial, which showed an R2 value of
0.43 for proteomic-only model (Figure 2B), 0.44 for the
traditional markers only (Figure 2C), and 0.53 for the
joint model (Figure 2D).

The dynamics of the proteomic panel with
IHF

For 39 candidate proteins significantly correlated with
IHF% after adjustments for age and sex at the baseline,
we calculated the associations between the 18-month
change of these proteins and the 18-month change of
IHF%. We found 18 proteins significantly associated
with IHF% change (FDR <0.05) after adjustments for
age and sex, as listed in Figure 3A: 5 proteins related to
metabolism, 1 protein related to blood pressure

regulation, 2 proteins related to endothelial
dysfunction, 3 proteins related to extracellular matrix
remodeling, and 7 proteins related to immune function
(Figure 3A). After adjustment for age, sex, baseline
weight, and weight change, 3 proteins (CA5A, THBS2,
and HAOX1) remained significantly associated with IHF
% change (p< 0.05) (Figure 3B).

We further investigated CA5A, HAOX1, and THBS2
changes between the 3 intervention groups (HDG,
MED, and green-MED). Unadjusted analyses showed
significant differences between the green-MED and the
MED/HDG groups. For THBS2, green-MED versus
MED, p= 0.005; green-MED versus HDG, p=0.02;
MED versus HDG, p=0.79. For CA5A, green-MED
versus MED, p= 0.018; green-MED versus HDG,
p= 0.05; MED versus HDG, p=0.84. For HAOX1,
green-MED versus MED, p=0.04; green-MED versus
HDG, p= 0.04; MED versus HDG, p= 0.99.

For all proteins, significant within-group differences
were evident for the green-MED group (p< 0.05 for all)
but not for the MED and HDG groups (p> 0.05 for both)
for CA5A and THBS2. For HAOX1, significant within-
group differences were evident also for the HDG group
(p< 0.05). Following weight loss and IHF% loss
adjustment, significantly greater decrease was
observed for THBS2 in the green-MED group compared
to the MED group (p=0.01 between groups)
(Figure 3C). No significant change was observed
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F IGURE 1 (A, B) Cross-sectional baseline correlations between the proteomic panel and IHF. (A). Circular heatmap: Spearman partial
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between the MED and HDG groups (p= 0.5) and
between the green-MED group compared to the HDG
group (p= 0.1). No statistical differences were found
between groups for CA5A (Figure 3D) (green-MED
versus MED, p=0.1; green-MED versus HDG, p= 0.6;
MED versus HDG, p=0.5). No statistical differences
were found between groups for HAOX1 (Figure 3E)
(green-MED versus MED, p= 0.32; green-MED versus
HDG, p=0.75; MED versus HDG, p=0.72).

We further explored these proteins by (i) examining
mediation of the proteins for the association between
the intervention groups and IHF% change and (ii)
assessing the interaction between each protein and
the intervention groups in a model predicting 18-month
changes in IHF%. No significant results were observed
for any of these analyses.

IHF trajectories and proteomic panel
differences

Next, we examined the distinct trajectories of IHF%
and their proteomic panel (Figure 4A): the normal-IHF%
trajectory (n=71), the normal-to-abnormal-IHF% trajectory
(n=13), the abnormal-to-normal-IHF% trajectory (n=45),
and the abnormal-IHF% trajectory (n=82). We examined
the differences in proteomics in each trajectory at the
baseline and 18-month timepoints (Figure 4B). Therefore,
we conducted PCA analysis (derived from PCA across
IHF% trajectories for the baseline and 18 months

separately before combining both timepoints to 1 merged
dataset) and discovered that the third principal component
(PC3) accounted for some of the variability in the proteins
(4.905% for baseline and 5.34% for 18 months) and was
significantly different between distinct subgroups.

The normal-IHF% trajectory was significantly differ-
ent from the abnormal-to-normal-IHF% and abnormal-
IHF% groups (p<0.001), while the difference was not
significant with the normal-to-abnormal-IHF% trajectory
(p= 0.16). The abnormal-IHF% trajectory differed signif-
icantly from the abnormal-to-normal-IHF% (p= 0.03)
and normal-to-abnormal-IHF% (p= 0.002) groups. The
normal-to-abnormal-IHF% trajectory was not signifi-
cantly different from the abnormal-to-normal-IHF%
trajectory (p= 0.10). The results also suggest that when
taking the time interaction with groups into account, the
normal-IHF% trajectory was significantly different from
abnormal-to-normal-IHF% (p<0.01), abnormal-IHF%
groups (p<0.001), and normal-to-abnormal-IHF% tra-
jectory (p<0.05). The abnormal-IHF% trajectory was
significantly different from the abnormal-to-normal-IHF
% (p<0.001) and normal-to-abnormal-IHF% (p= 0.01)
groups. The normal-to-abnormal-IHF% trajectory was
not significantly different from the abnormal-to-normal-
IHF% trajectory (p= 0.61).

To further distinguish between proteomics changes
related to distinct IHF% trajectories, we investigated the
18-month changes in proteins correlated with PC3
(correlation higher than 0.1) as it differed significantly
between the IHF% trajectories and found 34 correlated

TABLE 2 Intrahepatic fat % prediction by the proteomic panel and traditional variables at baseline

Model information R2a RMSE

Model 1: 10-fold CV: proteomics panel only 90 proteomics N=238 0.41 1.11

Model 2: 10-fold CV: proteomics panel + forced covariates: AST, AST/ALT ratio, insulin, type 2
diabetes (T2D), and metabolic syndrome (Met syn)

90 proteomics + 5
variables, N=238

0.47 1.05

Model 3b: 10-fold CV: Linear regression: AST, AST/ALT ratio, insulin, T2D, Met syn as predictors 5 variables, N=238 0.36 1.15

Model 4: Validating published coefficients (variables of model 3b) on the DIRECT PLUS data 5 variables, N=238 0.34 1.21

Note: The equations for the 3 best models are presented below (the best model was evaluated by the highest R2 value from all 10-fold cross-validations in each model).
Model 1 equation includes only the proteomic panel (presented by R2= 0.55, RMSE= 1.11, alpha= 0.7) including 41 variables not including intercept.
IHF% (%)= log2(−8.949105975 + 0.020982581 × CRP + 0.124064859 × Fetuin A + 0.257878897 × Chemerin + 0.105294496 × ACE2 + 0.003910084 × ADM−

0.140516871 × AGRP + 0.171705645 × AMBP + 0.093995263 × BOC + 0.036709717 × CA5A + 0.098918898 × CCL3 − 0.115518974 × CTSL1 −0.126018384 × CXCL1
+ 0.182515064 × FGF21 + 0.462583347 × FS − 0.080465904 × GH + 0.253853845 × GLO1 − 0.039272049 × GT + 0.079075909 × HAOX1 + 0.217665607 × HB EGF +
0.110859333 × IDUA + 0.246152831 × IL1ra − 0.217431847 × IL27 − 0.265710678 × IL 4RA + 0.119777214 × IL6 + 0.150230258 × KIM1 − 0.158423769 × LPL +
0.342213205 × MARCO + 0.038349936 × PD L2 + 0.074397322 × PDGF subunit B + 0.698262345 × PSGL 1 − 0.053068183 × PTX3 − 0.161383714 × RAGE −

0.409735013 × SCF + 0.089245470 × SLAMF7 − 0.155720892 × SRC + 0.102552593 × TGM2 + 0.272236204 × THBS2 − 0.012744240 × THPO − 0.112077212 × TIE2−
0.038506027 × TNFRSF10A − 0.341484947 × VEGFD).
Model 2 equation includes the proteomic panel combined with traditional variables (presented by R2= 0.73, RMSE= 0.85, alpha= 0.8), including 22 variables, not
including intercept.
Model 2 equation (alpha= 0.8) of the combined model which yielded the best prediction:
IHF% (%)= log2(−9.519305 + 0.4320752×AST −0.9110219 ×AST/ALT ratio + 0.4769744 × Insulin + 0.2635675 × T2D + 0.2085045 ×Met syn + 0.05490866 × CRP +
0.06058877 × Chemerin – 0.007101739 × AGRP + 0.1558187 × FGF21+ 0.3634254 × FS -0.01474900 × GH + 0.2265951 × GLO1 + 0.08827305 × IL6 +
0.001913739 × KIM1 − 0.00002970062 × LOX1 − 0.06997135 × LPL + 0.2034404 × MARCO + 0.4838826 × PSGL1 − 0.1823542 × SCF + 0.04138332 × SLAMF7 −

0.01380251 × SRC − 0.1199580 × VEGFD).
Model 3 equation includes only the traditional variables (presented by R2= 0.69, RMSE= 0.91 including 5 variables not including intercept: IHF% (%)= log2
(−2.2965238 + 0.4618139 × AST − 0.9570679 × AST/ALT ratio + 0.6211023 × Insulin + 0.3963679 × T2D + 0.4161643 × Met syn).
aThe values of R2 are for all subjects (N= 238).
bBased on Kotronen et al.[21].
Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; CV, cross-validation; IHF, intrahepatic fat; Met syn, metabolic syndrome; RMSE, root mean
square error.
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proteomics with the third component. We used a
volcano plot to explore from a comprehensive outlook.
We focused on the 34 proteins correlated with PC3 and
examined whether their 18-month changes would show
different patterns among individuals showing different
IHF% trajectories. We also assessed the percentage of
protein change relative to the baseline protein levels
and found that distinct IHF% trajectories differed in their
proteomic signatures (Figure 5). PC1, PC2, and PC3
across IHF trajectories were examined in Supplemental
Figure S2, http://links.lww.com/HEP/I362. The results
showed that only PC3 had significant differences
between IHF% trajectories. A post-hoc analysis showed
that there are significant differences between the
abnormal-IHF% and abnormal-to-normal-IHF%
(p=0.02) and between the normal-IHF% and abnor-
mal-to-normal-IHF% trajectories (p= 0.02). Results for
others were insignificant. We also explored 18-month
change analysis across IHF% trajectory groups for each
protein (Supplemental Table S6, http://links.lww.com/
HEP/I362). Furthermore, proportions of intervention in
the distinct IHF% subgroups are elaborated in Supple-
mental Results S1, http://links.lww.com/HEP/I362.

DISCUSSION

In the current study, we found that the state and the
changes in IHF% are associated with distinct proteomic
biomarkers in various protein-related pathways. We
further demonstrated that these combinations of pro-
teins with traditional variables may enhance IHF%
prediction. Also, we showed 3 protein changes: CA5A,
HAOX1, and THBS2 that were associated with IHF%
change following adjustments for age, sex, weight at
baseline, and weight loss, and that THBS2 protein
change was greater in the green-MED group, as
compared to the MED group following adjustments for
weight loss and IHF% loss. Moreover, we found that
IHF% trajectory groups differed by protein changes
across time, with each trajectory involving various
proteins. Our findings suggest novel proteomic signa-
tures that may indicate MRI-assessed IHF state and
changes during lifestyle intervention.

This study has several limitations, including the high
proportion of men participating, which limits our ability to
extrapolate our results to women. Participants were
abdominally obese or with dyslipidemia, with a high
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F IGURE 2 (A–D) Prediction results on the DIRECT PLUS test set and the CENTRAL validation set. (A) Model 1 evaluated the baseline
timepoint of the CENTRAL trial (n=130) as a validation set, including proteomics only. (B) Model 1 evaluated the 18-month timepoint of the
DIRECT PLUS trial (n=212) as a test set, including proteomics only. (C) Model 3 evaluated the 18-month timepoint of the DIRECT PLUS trial
(n= 212) as a test set, including proteomics and traditional markers (AST, ALT/AST ratio, insulin, type 2 diabetes, and metabolic syndrome status).
(D) Model 2 evaluated the 18-month timepoint of the DIRECT PLUS trial (n=212) as a test set, including proteomics and traditional markers (AST,
ALT/AST ratio, insulin, type 2 diabetes, and metabolic syndrome status). Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase;
IHF, intrahepatic fat; RMSE, root mean square error.
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proportion of NAFLD at the baseline, which further limits
generalizability. Also, a direct causal effect of the
change in proteomics on IHF% and vice versa cannot
be assessed, only the causal effects of the dietary
interventions. Furthermore, for simplification, the litera-
ture-based classifications of proteins distinguish each
protein into 1 related pathway and do not represent all
related pathways; in practice, each protein may be
involved in multiple pathways. The strengths of this
study include a high degree of compliance with the trial
intervention, a relatively large sample size, and long-
term intervention. We used an accurate imaging
technique for IHF% quantification,[32] which allowed us
both continuous measurement and distinct trajectory
group stratification of IHF%.

Our study explored various proteins correlated with
IHF% at baseline after adjustments for age, sex, and
weight. We revealed that most proteins were related to
immune function pathways, with others related to

extracellular matrix remodeling, metabolism, endothelial
dysfunction, blood pressure regulation, blood coagula-
tion, and heart functioning pathways. However, related
pathways should be interpreted with caution due to the
typical involvement of most proteins in several path-
ways in parallel. Some of the proteins were novel
biomarkers to our knowledge in relation to their
association with IHF% (eg, SCF, HAOX1, and PRELP).
We also validated other proteins previously found to be
associated with IHF% (eg, high-sensitivity C-reactive
protein[33] and Chemerin[34]). In addition, we showed
that the change in 3 proteins was directly correlated with
IHF% change: CA5, THBS2, and HAOX1. Some
varieties of carbonic anhydrases (Cas), which regulate
acid-base balance,[35] were associated with the devel-
opment of NAFLD.[36] CA5 is expressed in mitochondria
and involved in various metabolic pathways, including
the urea cycle, gluconeogenesis, and insulin
secretion.[35,37] CA5A, a specific isozyme of CA5, is
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F IGURE 3 (A–E) Correlations between the change of the candidate proteomics and IHF change induced by intervention and proteins’
changes between intervention groups. (A) Circular heatmap: Spearman correlation test between change of the candidate proteomics and IHF%
change following the intervention (n= 184). Circular bar plot: Significant partial correlation test adjusted for age and sex between the change of the
candidate proteomics and IHF% change classified by literature-based related pathways, FDR< 0.05 (n= 184). (B) Circular heatmap: Spearman
partial correlation test adjusted for age, sex, baseline weight, and weight loss between the change of the candidate proteomics and IHF% change
following the intervention (n=184). Circular bar plot: Significant partial correlations adjusted for weight loss between change of the candidate
proteomics and IHF% change classified by literature-based related pathways, FDR <0.05 (n=184). (C) THBS2 18-month change (%) between
intervention groups adjusted for weight loss and IHF% loss (n=184). (D) CA5A 18-month change (%) between intervention groups adjusted for
weight loss and IHF% loss (n= 184). (E) HAOX1 18-month change (%) between intervention groups adjusted for weight loss and IHF% loss
(n= 184). Abbreviations: CA5A, carbonic anhydrase 5A; HAOX1, hydroxyacid oxidase 1; HDG, healthy dietary guideline; IHF, intrahepatic fat;
MED, Mediterranean; THBS2, thrombospondin-2. P.adj: adjusted p value between groups, *p value<0.05 within groups (paired t test).
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distributed in the liver and was identified as a potential
target for treating NAFLD and NASH in a metabolite-
target-disease network analysis.[36] Here, we show that
the change of CA5 positively correlated with the change
of IHF% following the 18-month lifestyle intervention
following adjustments for age and sex; this association
persisted after further adjustment for weight at baseline
and weight loss. THBS2, a protein involved in cell-
extracellular matrix interactions, is a possible predictor
of NAFLD severity.[38–40] We found that the change of
THBS2 positively correlated with the change of IHF%
following adjustments for age and sex, and beyond
baseline weight and weight loss as well. HAOX1 is a
peroxisomal liver enzyme. HAOX1 negatively regulates
the inflammatory response of liver macrophages in
alcoholic liver disease through the NF-kB pathway and
the role of NF-kB in chronic liver diseases such as
steatohepatitis, fibrosis, and cancer has been widely
reported.[41] Here we found that HAOX1 change is
positively associated with the change of IHF% after
adjustments for age, sex, and further baseline weight
and weight loss.

Further analyses adjusted for weight loss and IHF%
loss showed that CA5A and HAOX1 protein change did
not differ between intervention groups, suggesting a
possible role of weight and IHF% on these proteins. In
addition, the change of THBS2 protein was significantly
higher in the green-MED group than in the MED group
following 18 months of intervention. This may indicate
that the green-MED diet had an impact on THBS2
protein levels beyond weight loss and IHF% loss. These
results may encourage further exploration of potential
mechanisms by which IHF% changes, and specifically,

how the green-MED diet might induce this change
through THBS2 protein.

While the cost factor of MRI versus blood metabolic
panels and proteomics assays might be a consideration, it
is important to note that a comprehensive understanding
of IHF% changes requires a multifaceted approach. While
liver MRI assesses IHF% percentage, it does not offer
insights into the underlying metabolic processes. Proteo-
mics and metabolomics provide a robust framework as
metabolite concentrations are directly regulated by pro-
teins and enzymes in their metabolic pathways. Thus,
using protein markers may enhance our ability to explore
and predict pathophysiology and mechanistic pathways in
a more holistic manner. It is important to acknowledge that
using cardiometabolic proteins may introduce a broader
spectrum of information beyond IHF%-specific markers. In
this study, we also used known traditional markers linked
to IHF% to explore broader markers, including more
specific ones. Prediction models incorporating proteomics
alongside traditional measures could provide a more
comprehensive assessment, especially in scenarios
where frequent MRIs might not be feasible. Furthermore,
the recognition of novel omics biomarkers is expanding as
the interest in precision nutrition strategies rises with the
encouragement of omics combinations for diagnostic
performance improvement.[17,23,24] Thus, exploring prote-
omic biomarkers may help find new markers, which,
combined with existing clinical measurements, could
improve the prediction of IHF%. A previous
publication[42] created a serum protein diagnostic model
for NAFLD composed of 20 protein peaks, with a
sensitivity of 89% and a specificity of 83%. One recent
study[27] used serum protein scanning to identify
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F IGURE 4 (A, B) Distinct IHF trajectories during the DIRECT PLUS trial and their proteomics panel. (A) IHF% dynamics during the DIRECT
PLUS trial sorted by groups of the normal-IHF% trajectory included subjects with IHF% <5% at the baseline and 18-month (T18) timepoints
(n= 71), the normal-to-abnormal-IHF% trajectory included subjects with IHF% <5% at the baseline and IHF% ≥5% at the 18-month timepoint
(n= 13), the abnormal-to-normal-IHF% trajectory included subjects with IHF% ≥5% at the baseline and IHF% <5% at the 18-month timepoint
(n= 45), and the abnormal-IHF% trajectory included subjects with IHF% ≥5% at the baseline and 18-month timepoints (n=82) (overall n=211).
(B) PCA analysis for proteomics in distinct IHF% subgroups, including baseline (T0) and 18-month timepoints (T18). PC1 and PC3 are presented
with n=154 for the abnormal-IHF% group, n= 86 for the abnormal-to-normal-IHF% group, n=23 for the normal-to-abnormal-IHF% group, and
n=127 for the normal-IHF% group. Abbreviations: IHF, intrahepatic fat; PCA, principal component analysis.

NOVEL PROTEOMIC SIGNATURES MAY INDICATE INTRAHEPATIC FAT | 207



signatures corresponding to the key components of liver
biopsy in NAFLD and could also detect changes induced
by therapeutic interventions. Additional studies showed
proteome profiling holds great potential in generating
novel insights into disease mechanisms and discovering
new biomarkers for different stages in NAFLD.[3,25,26]

In this study, we combined variables from the
previously published liver fat percentage prediction
model[21] with our proteomic panel to examine whether
combining proteomics with traditional variables
(aspartate transaminase, aspartate transaminase/ala-
nine transaminase ratio, fasting insulin levels, and the
presence of T2D and Met syn) would improve the
prediction of IHF%. Those variables were previously
found to be associated with NAFLD.[43–45] Further-
more, Met syn and T2D are closely related comorbid-
ities associated with NAFLD,[13,14] which are also
evident in the recent dispute regarding renaming
NAFLD into metabolic-associated fatty liver
disease.[46] We found that the combined model
yielded the best prediction as the addition of omics,
specifically proteomics, increased the performance of
the predictive models.

The PCA analysis of the protein panel suggests
that the third principal component plays a role in the
difference between groups with distinct IHF% trajec-
tories while considering the interaction with time,
though the power is limited. Further exploration of the
proteomics correlated with PC3 revealed several
combinations of proteins that might change differently
in each IHF% trajectory. For instance, while IDUA
significant protein change was consistently involved in
all IHF% trajectories, several other proteins’ signifi-
cant change presence changed by different trajecto-
ries (eg, BOC, LEP, and Chemerin). In addition, this
exploratory analysis enables a comprehensive out-
look on a set of proteins simultaneously. For example,
the abnormal IHF% trajectory includes significant 18-
month changes in IDUA, BOC, HAOX1, LEP, SORT1,
DKK_1, TM, HB_EGF, and BMP_6 while the normal-
IHF% trajectory includes IDUA, BOC, HAOX1, LEP,
DKK_1, Chemerin, GH, VEGFD, DCN, and VSIG2.
Thus, we show that IDUA, BOC, HAOX1, LEP, and
DKK_1 overlap between both trajectories, but there is
a difference in the other mentioned proteins for each
IHF% trajectory. This might imply that a portion of the
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proteomic panel change is linked with the trajectory of
IHF%, indicating there might be a specific signature
for different IHF% trajectories. However, the results
for the normal-to-abnormal-IHF% trajectory should be
interpreted with caution due to the low number of
observations entered in the analysis.

By uncovering the relationship between IHF% and
specific proteomic biomarkers, we pave the way for
several practical benefits. First, we showed that
integrating proteomic biomarkers with traditional varia-
bles offers the potential for improved prediction of IHF%
in our study. This result may benefit along with other
integrated prediction tools for future advancements in
generating more accurate and noninvasive IHF% and
NAFLD monitoring tools. Second, identifying specific
proteins associated with IHF% changes offers the
prospect of developing biomarker-based monitoring
strategies which could assist in regular patient assess-
ments, provide early indications of IHF% alterations,
and enable timely adjustments in treatment plans. Third,
discovering proteins such as CA5A, HAOX1, and
THBS2 associated with IHF% changes suggests
potential therapeutic targets. These markers could be
explored further to develop novel therapeutic interven-
tions targeting IHF% regulation. Lastly, understanding
the relationship between IHF% trajectories and distinct
protein changes will possibly allow for personalized
treatment approaches, which may enable clinicians to
develop targeted interventions and therapies specific to
an individual’s response.

In conclusion, our findings enhance our understand-
ing of the interplay between IHF% and proteomic
biomarkers. Combining proteomics with traditional
variables may yield a better prediction of IHF%, and
distinct IHF% trajectories may differ in their proteomic
signatures. The discovery of these markers improves
patient monitoring, the detection of novel therapeutic
mediators, personalized treatment approaches, and
prognosis.
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