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A B S T R A C T   

Latent diffusion models (LDMs) have emerged as a state-of-the-art image generation method, outperforming 
previous Generative Adversarial Networks (GANs) in terms of training stability and image quality. In compu
tational pathology, generative models are valuable for data sharing and data augmentation. However, the impact 
of LDM-generated images on histopathology tasks compared to traditional GANs has not been systematically 
studied. 

We trained three LDMs and a styleGAN2 model on histology tiles from nine colorectal cancer (CRC) tissue 
classes. The LDMs include 1) a fine-tuned version of stable diffusion v1.4, 2) a Kullback-Leibler (KL)-autoencoder 
(KLF8-DM), and 3) a vector quantized (VQ)-autoencoder deploying LDM (VQF8-DM). We assessed image quality 
through expert ratings, dimensional reduction methods, distribution similarity measures, and their impact on 
training a multiclass tissue classifier. Additionally, we investigated image memorization in the KLF8-DM and 
styleGAN2 models. 

All models provided a high image quality, with the KLF8-DM achieving the best Frechet Inception Distance 
(FID) and expert rating scores for complex tissue classes. For simpler classes, the VQF8-DM and styleGAN2 
models performed better. Image memorization was negligible for both styleGAN2 and KLF8-DM models. Clas
sifiers trained on a mix of KLF8-DM generated and real images achieved a 4% improvement in overall classifi
cation accuracy, highlighting the usefulness of these images for dataset augmentation. 

Our systematic study of generative methods showed that KLF8-DM produces the highest quality images with 
negligible image memorization. The higher classifier performance in the generatively augmented dataset sug
gests that this augmentation technique can be employed to enhance histopathology classifiers for various tasks.   
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1. Introduction 

Histopathology is a cornerstone of precision oncology. The diagnosis 
for virtually every solid tumor is made by a pathologist on histology 
slides. Histology slides can be digitized and analyzed with Deep 
Learning (DL) methods, which can extract a wealth of information from 
histomorphology in, among others, colorectal cancer (CRC) [1–6]. As 
precision medicine is developing, an increasing number of different 
biomarkers have become relevant, combined with a global shortage of 
pathologists. Training the next generation of pathologists is paramount 
and synthetic images can be utilized in their education [7]. Furthermore, 
we may automate decision-making by applying DL to digital pathology 
[8]. However, handling and analyzing digitized pathology slides with 
associated clinical data is challenging: Both comprise privileged data 
that cannot be readily shared. Patient privacy as well as legal and ethical 
quandaries must be considered before use, which constitute barriers to 
research. Moreover, histopathology image datasets are often imbal
anced, with only a few patients being part of a biologically relevant 
class. In the case of CRC, patients express microsatellite instability 
(MSI), a highly relevant biomarker, in only 15–20% of cases [9], and DL 
models may struggle to effectively learn distinctive MSI characteristics. 
Finally, biomarker prediction from histopathological images is ideally 
robust, generalizable, and accurate [10]. Classifiers for biomarker pre
diction should therefore not depend on spurious features in the training 
data that mitigate performances when deploying models on previously 
unseen data. In histopathology, some established procedures for data 
augmentation already exist [11,12], however, the lack of generalization 
of classifiers remains an issue. 

All of the above issues can be addressed with generative deep 
learning. This technique has been successfully applied to digital pa
thology: Generative models synthesize pathology images that are real
istic [13] and can model complex generative processes like those that 
translate upstream genomic changes to downstream morphological 
characteristics without revealing actual patient data [14,15]. At the 
same time, synthetic images that express characteristic histomorpho
logical features can be used to augment imbalanced datasets. Synthe
sizing images of a less-represented class (e.g. MSI) has successfully 
improved DL model performances [14,15]. Finally, generative models 
have been used to speed up the processing of histopathological slides 
[16]. 

So far, most research relies on generative adversarial networks 
(GAN) [17]. GANs can generate images of high quality and similarity to 
original images for a large range of different image modalities in cancer 
[10]. Diffusion models (DM) implemented as denoising diffusion prob
abilistic models (DDPM) [18,19] have overtaken GANs in terms of 
training stability and greater image quality with fewer artifacts [20–22]. 
This approach, however, usually consumes hundreds of GPU days for 
training, and image generation is time-consuming [23,24]. Recently, 
latent diffusion models (LDMs) (e.g. stable diffusion [25] and DALLE-2 
[26]) have further improved training and generation efficiency [25]. 
In the medical domain, DMs and LDMs have already been evaluated in 
radiology [27,28] and the histopathology domain [29]. Furthermore, 
the superiority in terms of image quality of LDMs compared to GANs has 
recently been shown for various medical image modalities such as MSI 
in CRC, eye fundus imaging, and chest X-rays [21]. However, for large 
DMs trained on small datasets, it has been shown that memorization 
occurs [30,31]. Therefore, if patient privacy data issues are to be 
resolved by LDMs, any leakage of original data via memorization should 
be evaluated and avoided. 

A recent work by Ye et al. examined and assessed the possibility of 
augmenting small-scale datasets with the help of large-scale histopath
ological pretrained LDMs, and the authors successfully applied their 
method to downstream classification tasks in CRC [32]. However, this 
study did neither systematically investigate the effect of different 
autoencoder architectures, nor examine the potential of using LDMs for 
sharing of medical image data. In this paper, we perform a systematic 

evaluation of several recent LDM architectures and compare them to the 
most commonly used GAN models. We compare four generative models 
for the synthesis of small 256 × 256 pixel histopathological image 
patches. The models include three LDMs: two LDMs that use different 
autoencoder architectures, and a fine-tuned version of stable diffusion 
v1.4. As a representative of a state-of-the-art GAN, we evaluate the 
styleGAN2 model, an improved styleGAN architecture [33]. We train all 
models on the publicly available NCT-CRC-HE-100K dataset [34] that 
contains histological images from patients with CRC. The analysis is split 
into three parts. In the first part, we evaluate the generated images 
qualitatively and quantitatively for each model. For the qualitative 
evaluation, medical experts are asked to distinguish synthesized images 
from original images. For the quantitative evaluation, the Frechet 
Inception Distance (FID) [35] between synthetic and original images is 
calculated. Additionally, images from the best LDM and styleGAN2 
models are visually analyzed in comparison to the original dataset via a 
t-distributed stochastic neighbor embedding (t-SNE) plot [36]. In the 
second part, we compare data memorization in the generation of images 
from the styleGAN2 model with our best LDM. In the last part, we show 
that augmentation of the original dataset by adding synthetic images 
from our best LDM improves downstream classification performance on 
an independent test set. Based on this, we conclude that images from 
LDMs can be used to augment histopathological training data to improve 
classification performances and respect patient privacy at the same time. 

2. Material and methods 

2.1. Datasets 

In all our experiments, we train the generative models on the NCT- 
CRC-HE-100K dataset [34]. The dataset consists of 100,000 hematoxy
lin & eosin (H&E) stained histopathological tissue tiles of 224 × 224 
pixels at 0.5 μm per pixel resolution, from 89 patients with CRC. The 
tiles are classified into nine different tissue classes: Adipose (ADI), 
background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), 
smooth muscle (MUS), normal colon mucosa (NORM), 
cancer-associated stroma (STR), and colorectal adenocarcinoma 
epithelium (TUM). These classes have the following order in complexity 
as measured by entropy [37,38]: ADI (2.6), BACK (3.2), MUC (5.0), MUS 
(5.2), STR (5.2), DEB (5.4), LYM (5.4), TUM (5.4), and NORM (5.5). The 
tiles in the dataset are either Macenko-normalized [11] or show the 
native H&E color distributions. We train our models on the 
non-normalized set of tiles. Bilinear interpolation is used to upscale the 
tiles to a size of 256 × 256 pixels. The separate Macenko-normalized 
CRC-VAL-HE-7K test set with 7180 tiles extracted from 50 patients is 
used to evaluate tissue classification performances. 

2.2. Generative networks 

In this paper, we compare two conceptually different image gener
ation techniques for the synthesis of histopathological images: GANs and 
LDMs. 

2.2.1. styleGAN2 
In its simplest form, a GAN consists of two functions that are trained 

in a competing fashion: The generator (G) generates images from a 
normally distributed latent space pz(z) that can be class-conditioned. 
The discriminator (D) is trained to discriminate synthetic from non- 
synthetic images. During training, the loss objective (L) is such that 
the generator maximizes the discriminator’s classification loss, whereas 
the discriminator’s objective is to minimize that loss [17]: 

min
G

max
D

L[D,G],where L[D,G] =Ex∼data[log(D(x))] + Ez∼pz(z)[log(1− D(G(z))]

In the styleGAN architecture, the latent space vector z is mapped via 
a multilayer-perceptron mapping network to an intermediate vector 
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space w. This vector w is transformed into so-called styles via learned 
affine transformations. Styles are then added to intermediate layers of 
the generator via adaptive instance normalization (AdaIn) [33] 
(Fig. 1A). styleGAN2 reuses the discriminator architecture of Progres
sive GANs by Karras et al. [39]. Detailed training parameters can be 
found in Appendix A. 

2.2.2. Latent diffusion models 
We implement and test three different variants of latent diffusion 

models [25]. Two models are trained from scratch on histology data 
with two different autoencoders: a Kullback-Leibler KL-autoencoder 
[40], referred to as KLF8-DM, and a vector quantization VQ-autoencoder 
[41], referred to as VQF8-DM. Thirdly, we finetune the released stable 
diffusion model v1.4 trained on the LAION-400 M dataset [42]. 

In DMs, Gaussian noise is iteratively added to the original image 
according to a variance schedule with a large total number of steps (T =
1000), such that the distribution of pixel values in the resulting images 
tends towards a normal distribution. The diffusion network ϵθ is trained 
by minimizing the loss objective LDM that resembles denoising score 
matching [43] for each time step t, t ϵ N, t ≤ T [18]: 

LDM = Ex,ϵ∼N(0,1),t

[
||ϵ − ϵθ(xtt)||22

]

The learned function ϵθ can subsequently be used for a stepwise 
denoising process: Starting from an image with each pixel initialized by 
a normal random distribution, an image can be generated by successive 
application of denoising kernels that are modeled by ϵθ. Image genera
tion in DMs is very resource intensive, and to speed up image generation, 
we use the denoising diffusion implicit models DDIM-sampler with 200 

denoising steps throughout [44]. 
In LDMs, the diffusion process is only performed in a latent space 

with a reduced number of dimensions (Fig. 1B). The autoencoder en
codes original images into this latent space. Vice versa, generated im
ages need to be decoded from the latent space. In this analysis, spatial 
dimensions are reduced by a factor of eight from 256 × 256 pixels to 32 
× 32 pixels. This choice results in a good trade-off between computa
tional efficiency and obtaining perceptually faithful results [25]. 

For the LDMs in this paper, the denoising network is a time- 
conditional U-Net [45] that is augmented by a cross-attention mecha
nism to allow for class-conditioned image synthesis [25]. In stable 
diffusion, class conditioning is achieved via text strings tokenized by the 
BERT-tokenizer [46] and subsequently embedded via a transformer 
[47]. Embedded inputs are then used in the cross-attention mechanism 
(Fig. 1B). For the KLF8-DM and VQF8-DM models, class embeddings of 
512 output dimensions are obtained from binarized class labels via a 
linear layer [25]. 

Training a LDM from scratch is a two-stage process: First, training the 
autoencoder, and second, training the DM in latent space. Using the 
autoencoder, intermediate results of the diffusion process can also be 
decoded from latent space to 256 × 256 images to examine the image 
generation process. Detailed training parameters can be found in Ap
pendix B. 

2.3. Code availability 

Our implementations are based on publicly available repositories at 
GitHub: https://github.com/CompVis/latent-diffusion, GitHub: http 
s://github.com/CompVis/stable-diffusion, and GitHub: https://github. 

Fig. 1. Overview of model architectures. A: Overview of the styleGAN2 model architecture. A latent vector z is transformed into a style vector that is passed to the 
synthesis network g. The discriminator network d subsequently classifies generated and real images. B: Overview of the LDM architecture. The encoder compresses an 
image to latent space that is subsequently perturbed by Gaussian-noise kernels σ for T steps. In the denoising process, the added noise is predicted and the input image 
is reconstructed. 
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com/NVlabs/stylegan3. Our trained models, configuration files with 
parameter setups, and code extensions to the official latent diffusion 
repository are available at GitHub: https://github.com/janniehues/ 
my_LDM and Zenodo: 10.5281/zenodo.10838706. 

2.4. Evaluation metrics 

In LDMs, the quality of the deployed autoencoders is assessed by the 
Multiscale Structural Similarity Index Measure (MS-SSIM) [48] between 
input and output image pairs (Fig. 2A). Output images are obtained by 
encoding the input image and decoding the output image using the 
autoencoder. The average MS-SSIM is calculated across the full dataset 

for each autoencoder. 
To evaluate the quality of generated images via all generative 

models, we use three different metrics: 
First, we utilize the Frechet inception distance (FID) [35] to measure 

the similarity between images in the training dataset and synthesized 
images. To compute the FID we forward all images through an ImageNet 
pre-trained Inception-v3 model [49], and use the resulting feature dis
tributions in each set to calculate respective means (μ, μ̂) and covariance 
matrices (Σ ,̂Σ) to compute: 

FID = |μ − μ̂|22 + Tr
(

Σ + Σ̂ − 2(ΣΣ̂)
1/2
)

Fig. 2. Autoencoder results, and t-SNE plots. A: Input examples and decoded images for the KLF8 autoencoder (left), stable diffusion’s autoencoder (middle), and 
the VQF8 autoencoder (right). All three autoencoders provide a very good reconstruction quality. 
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A lower FID score indicates that the images in the training and 
generated sets are more similar, and a higher FID score indicates that 
images are less similar to each other. In our analysis, FIDs are calculated 
using the function as implemented in the clean-FID package [50]. To 
evaluate a generative method’s performance, the FID score for any class 
is calculated between 10,000 generated images and all images in the 
training dataset for a particular class. 

Second, we plot t-SNE distributions from all generated images by the 
KLF8-DM and styleGAN2 models together with images from the NCT- 
CRC-HE-100K dataset for each data class. To this end, all images in a 
dataset are passed through the ImageNet-pre-trained Inception-v3 
model to obtain feature vectors. These feature vectors are used to fit t- 
SNE distributions and resulting plots are qualitatively interpreted 
(Fig. 2B). 

Finally, three medical experts rate the synthesized images’ quality to 
obtain expert rating scores: This rating is performed separately for every 
tissue class. For each class, ten images are selected randomly from all 
four trained models and combined with ten randomly selected images 
from the training dataset, totaling 50 images per class. The experts are 
then asked to distinguish real from synthesized images in this combined 
set (Fig. 3). The difference in the fraction of synthetic images and of real 
images classified as real images averaged across the experts defines the 
expert rating score for each class and generative model: 

Expert rating score (k,m) =
1

NExperts

∑

i

(
n(i)

g,k,m

Ntot
−

n(i)
r,k

Ntot

)

where n(i)
g,k,m and n(i)

r,k is the number of generated and real images, 
respectively, classified as real for expert i, tissue class k and model m. 
NExperts = 3, is the number of experts, and Ntot = 10, is the total number 

of images for each model and class. Apriori, the medical experts did not 
know anything about the composition of the image sets given to them. In 
total, each expert evaluated 450 images. 

B: t-SNE distributions for generated images for the KLF8-DM (blue) 
and styleGAN2 (red) model together with the distribution for images 
from the NCT-CRC-HE-100K training dataset (orange) for each tissue 
class. The t-SNE distributions show that styleGAN2 images tend to form 
clusters, whereas this is not the case for the KLF8-DM. The t-SNE dis
tributions for the KLF8-DM model are better aligned with the distribu
tions of the training data. 

2.5. Evaluation of data memorization 

To evaluate if an image in a synthetic data set is memorized from the 
training dataset we follow and modify the procedure by Akhbar et al. 
[30]. In this analysis, we randomly select 200 images from the generated 
dataset and rotate each by 90, 180, and 270◦. For each selected image, 
we calculate the pixel-wise correlation coefficient with all images in the 
training dataset and select the highest correlation coefficient. The 
pixel-wise correlations are evaluated on grayscale images to reduce 
computational costs and to only highlight structural similarities between 
the images. Finally, the distribution of the correlation coefficient of the 
highest correlated image pairs is plotted for every class (Fig. 4, Table 1). 
In this way, data memorization in synthetic datasets is visualized and 
can be compared between different generative methods. 

2.6. Classifier training 

To assess the impact of augmenting the training dataset with 

Fig. 3. User study sketch and results of user study. A: Sketch of the user study. Generated images from all four models and real images are presented to three medical 
experts without revealing the images’ origins. Experts rate images either as generated (0) or real (1). B: Expert rating score results. A score of zero means that 
generated images are as often rated “real” as genuinely real images are rated “real”. A positive score can be interpreted as the fraction of synthetic images that are 
more often rated “real” than real images are rated “real”, and vice versa for negative scores. Error bars give the standard deviation across the three expert ratings. We 
find that pathologists can still distinguish synthetic from real images. Latent diffusion models using the KLF8 encoder (KLF8-DM), however, achieve the highest 
expert rating scores for most categories, which means that they can be least distinguished by pathologists. 

J.M. Niehues et al.                                                                                                                                                                                                                              



Computers in Biology and Medicine 175 (2024) 108410

6

Fig. 4. Highest correlation coefficients for pixel-wise correlations between generated images and training images: For each tissue class, the distribution of 
the correlation coefficients is shown for the highest correlated pair of images from the NCT-CRC-HE-100K training dataset with images from the KLF8-DM (blue), the 
styleGAN2 (red), and the independent CRC-VAL-HE-7K test set (orange). A pixel correlation value of one for any generated image means that the model has seen an 
identical image during training. A pixel correlation of zero means that no similar configured image was seen during training. The test dataset is independent of the 
training dataset and serves as an indicator of expected random correlations for each class. The vertical bands and shaded areas show the mean ± standard deviation 
for individual pixel correlation distributions. Across the classes, the distributions of the highest correlation coefficients are very similar for the three datasets, and the 
mean values are within the range of one standard deviation from each other. This shows that negligible data memorization occurs in the KLF8-DM model. 

Table 1 
Correlation statistics to assess the degree of data memorization for generative models. Correlations are calculated between images generated by the KLF8-DM 
and styleGAN2 models, and for images from the CRC-HE-VAL-7K dataset with images from the training dataset. For each tissue class the 5%- and 95%-percentiles, 
mean and median values are shown for correlations of highest correlation image pairs. The degree of memorization is similar for all assessed datasets in each tissue 
class.  

ADI mean median p5 p95 MUS mean median p5 p95 

KLF8-DM 0.33 0.32 0.2 0.46 KLF8-DM 0.26 0.21 0.10 0.55 
styleGAN2 0.29 0.29 0.21 0.4 styleGAN2 0.27 0.22 0.09 0.58 
CRC-VAL-HE-7K 0.33 0.31 0.22 0.47 CRC-VAL-HE-7K 0.20 0.16 0.12 0.45 

BACK mean median p5 p95 NORM mean median p5 p95 

KLF8-DM 0.43 0.38 0.17 0.84 KLF8-DM 0.27 0.25 0.16 0.42 
styleGAN2 0.30 0.25 0.09 0.75 styleGAN2 0.30 0.29 0.15 0.47 
CRC-VAL-HE-7K 0.33 0.28 0.12 0.70 CRC-VAL-HE-7K 0.28 0.28 0.19 0.39 

DEB mean median p5 p95 STR mean median p5 p95 

KLF8-DM 0.19 0.17 0.07 0.38 KLF8-DM 0.15 0.14 0.09 0.26 
styleGAN2 0.18 0.15 0.06 0.39 styleGAN2 0.14 0.13 0.07 0.24 
CRC-VAL-HE-7K 0.14 0.13 0.07 0.27 CRC-VAL-HE-7K 0.15 0.14 0.08 0.25 

LYM mean median p5 p95 TUM mean median p5 p95 

KLF8-DM 0.13 0.12 0.09 0.24 KLF8-DM 0.30 0.27 0.14 0.53 
styleGAN2 0.11 0.10 0.08 0.15 styleGAN2 0.32 0.30 0.14 0.57 
CRC-VAL-HE-7K 0.13 0.11 0.08 0.25 CRC-VAL-HE-7K 0.35 0.36 0.13 0.58 

MUC mean median p5 p95      

KLF8-DM 0.31 0.29 0.18 0.53      
styleGAN2 0.29 0.27 0.17 0.47      
CRC-VAL-HE-7K 0.22 0.19 0.11 0.45       
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synthetic images on multiclass classifier performance, we train a 
ResNet34 [51] on three training datasets: the NCT-CRC-HE-100K data
set, the synthetic KLF8-DM dataset alone, and the combination of the 
two datasets. Before training, the non-normalized tiles are normalized 
using the Macenko algorithm [11]. The training pipeline is implemented 
using the fastai software package [52]. The network is trained to classify 
tissue tiles into correct tissue classes. Detailed training parameters can 
be found in the Appendix. The classifiers’ performances are evaluated 
via classification accuracy across all tissue classes in the 
CRC-VAL-HE-7K test dataset. 

2.7. Ethics statement 

This study was carried out in accordance with the Declaration of 
Helsinki. The analysis was approved by the ethics committee of the 
Medical Faculty of Technical University of Dresden (BO-EK- 
444102022). No individual patient consent was required for this retro
spective analysis of anonymized data. 

3. Results 

3.1. All autoencoders achieve a high image reconstruction quality 

We found that generated images are of high quality independent of 
the generative model used (Fig. 5A). When generating images using 
LDMs, coarse structures are initially generated that are followed by the 

addition of finer details in later stages (Fig. 5B). In Fig. 5, the images are 
obtained by decoding the intermediate results of a 1000-step diffusion 
process from latent space to the original image space. First, we evaluate 
the reconstruction quality of the autoencoder: A perfect autoencoder can 
encode and subsequently decode an input image without any recon
struction loss (Fig. 5A). For the three deployed autoencoders, the KLF8- 
autoencoder obtains an MS-SSIM score of 91.6 ± 5.3%, stable diffusion’s 
pre-trained KLF8-autoencoder a score of 88.3 ± 7.0%, and the VQF8- 
autoencoder a score of 86.4 ± 7.8% across all tiles in the training 
dataset, all within the range of one standard deviation. 

Together, the samples and the evaluation demonstrate the high level 
of reconstruction quality of the employed autoencoders and that all 
architectures can be used to generate high-quality images in LDMs with 
a slight preference towards the KLF8-autoencoder as shown by the 
higher MS-SSIM. 

3.2. The KLF8-DM model outperforms all other models across the 
evaluation metrics 

For each class and model, we assess the similarity of generated im
ages and images in the training dataset by FID scores (Table 2). For the 
majority of complex tissue classes, the KLF8-DM scores the lowest (best) 
FIDs throughout outperforming all other generative models (FID(DEB) 
= 10.6, FID(MUC) = 15.3, FID(MUS) = 17.1, FID(NORM) = 14.3, FID 
(STR) = 12.4, FID(TUM) = 10.3). For the lymphocytes class, all models 
perform equally well (KLF8-DM: FID(LYM) = 22.8). For the less complex 

Fig. 5. Example images and progressive rows for LDM image generation showing image status after t time steps. A: Examples of generated and real images for 
each category and method. B: Rows show generated images after different diffusion steps. Images are shown after 1, 200, 400, 800, and 1000 diffusion steps. Results 
are shown for tumor, muscle, debris, and adipose classes. 
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adipose and background classes, the VQF8-DM and the styleGAN2 
models outperform the other two LDMs. The styleGAN2 model and the 
VQF8-DM score lowest for the adipose (FID(ADI) = 32.9) and back
ground (FID(BACK) = 13.2) classes, respectively. 

Further, we compare the t-SNE distributions between generated 
images from an LDM and the styleGAN2 model. Choosing the KLF8-DM 
as a representative of the LDMs as it has the lowest FIDs for the more 
complex classes, the t-SNE distributions for the different classes show 
that images from the KLF8-DM model are more aligned with the training 
data than styleGAN2 images (Fig. 2B). This is in particular true for the 
DEB, LYM, MUC, STR, and TUM tissue classes. For these tissue classes 
the styleGAN2 images form clusters outside the distribution obtained by 
corresponding images in the NCT-CRC-HE-100K training dataset. This 
happens only to a lesser extent for images generated by the KLF8-DM 
model. We note that the embeddings produced by t-SNE are aniso
tropic, permitting only qualitative analyses. 

Finally, expert ratings are used to evaluate generated images for each 
class and model (Fig. 3). The KLF8-DM obtains the highest expert rating 
scores for lymphocyte, cancer-associated stroma, muscle, mucus, and 
tumor classes, but obtains the lowest scores for the adipose class. The 
VQF8-DM scores the highest for background, adipose, and cell debris 
classes. styleGAN2 obtains the highest expert rating score for the tumor 
class. Finally, fine-tuned stable diffusion scores the highest for normal 
mucosa, and the lowest for background, debris, lymphocyte, muscle, 
mucus, and tumor classes. The inter-rater agreement as measured by 
Fleiss’-Kappa [53] was slightly positive across images from all genera
tive models, and medical experts agreed stronger on the classification of 
real images than of generated images (average Fleiss’s-Kappas: 
KLF8-DM: 0.04, VQF8-DM: 0.08, Stable Diffusion: 0.02, styleGAN2: 
0.06, real images: 0.22). 

Together, these data show that the KLF8-DM generates images of the 
highest FID as well as expert rating scores for more complex tissue 
classes, but is inferior in generating images for less complex tissue 
classes. The fine-tuned stable diffusion model also shows a better per
formance for more complex than less complex tissue classes, however, 
generated images have higher FID scores for eight of the nine categories. 
Also, images from fine-tuned stable diffusion are the least likely to be 
identified as authentic across the nine classes. The styleGAN2 model and 
VQF8-DM are both better at generating images for less complex adipose 
and background tissue classes. This is true in terms of FID as well as 
expert rating scores. The expert rating scores, however, come with large 
standard deviations such that expert ratings are compatible with the 
scores of real images for most classes and models. Thus, medical experts 
have difficulties distinguishing between real and synthetic images. This 
shows that all models generate authentic images of high quality, without 
displaying striking artifacts. Finally, the t-SNE distributions furthermore 
show that the generated images from the KLF8-DM are more similarly 
distributed to the images in the training dataset than images from the 
styleGAN2 model. Assuming that the more complex the images in a 
particular class are, the more relevant this class is for training an image 
classifier, we identify the KLF8-DM as the best-performing model in 
terms of FID and expert rating score for data augmentation. 

3.3. Data memorization is not observed in KLF8-DM and styleGAN2 
models 

We evaluate data memorization in the generated image datasets by 
calculating pixel-wise correlations of a subset (n = 200) of grayscale 
images with all grayscale images from the NCT-CRC-HE-100K dataset. 
This analysis is performed on generated images from the styleGAN2 and 
the KLF8-DM models. The analysis is also repeated for the images in the 
CRC-VAL-HE-7K test dataset and this serves as an indicator of random 
correlations among images in a particular tissue class. The distribution 
of the highest correlation coefficient is very similar for both images from 
the styleGAN2 and the KLF8-DM models across all nine tissue classes 
(Fig. 4, Table 1). In particular, the averages for the highest correlation 
coefficients for a particular distribution lie within the range of a stan
dard deviation from the average of the corresponding distribution of the 
other model for a particular class. This is also true when comparing the 
distributions for any of the two generating models to the distribution of 
the highest correlation coefficients obtained for images from the CRC- 
VAL-HE-7K test dataset. Together these data show that data memori
zation is not observed in either set of generated images for the style
GAN2 or the KLF8-DM models. 

3.4. Dataset augmentation using synthetic images improves classifier 
performance 

We train a classifier on three sets of images: images generated by the 
KLF8-DM, Macenko-normalized images from the NCT-CRC-HE-100K 
dataset, and the combination of the two datasets. The performances of 
trained classifiers are evaluated on the Macenko-normalized tiles in the 
separate CRC-VAL-HE-7K test dataset (Table 3). For classifiers trained 
on individual datasets, adipose, background, normal mucosa, and tumor 
classes are classified with at least 95% accuracy. Debris, lymphocytes, 
mucus, muscle, and stroma classes are more difficult to classify, with 
classification accuracies ranging from 43% to 90%. The overall accuracy 
across all classes is similar between classifiers trained on the KLF8-DM 
generated images and NCT-CRC-HE-100K images with 80% and 81%, 
respectively. Combining the two datasets into one single training dataset 
results in a classifier that considerably improves the overall classifica
tion performance. For any more difficult class, the resulting classifier is 
either much more accurate than either of the classifiers trained on the 
individual datasets (STR, LYM) or close to the accuracy of the classifier 
trained on the NCT-CRC-HE-100K alone (DEB, MUC). By augmenting 
the training dataset with synthetic images in this way, the overall clas
sification accuracy on the test set can be improved by 4% from 81% to 
85%. This improvement in classifier performance when adding synthetic 
images to the dataset is in agreement with similar findings obtained by 
Ye et al. [32]. 

Together these results indicate that LDMs can be used as an 
augmentation technique to improve the performance of histopathology 
image classifiers. Also, the performance of the classifier trained on im
ages from the LDM alone is comparable to the performance of the 
classifier trained on real images across all classes. This shows that the 
image quality achieved by LDMs is sufficient for training DL architec
tures such that LDMs can be used for data sharing and to address the 
problem of class imbalances. 

Table 2 
FID scores by method and tissue category. Latent diffusion using the KLF8 encoder systematically outperforms all other approaches in terms of FID score for the 
generation of more complex tissue types mucus (MUC), muscle (MUS), normal stroma (NORM), stroma (STR), debris, and tumor tissue (TUM). styleGAN2 obtains the 
best FID score for lymphatic tissue (LYM). Latent diffusion using the VQF8 encoder obtains the best results for the generally less complex fat and background tissues.   

ADI BACK DEB LYM MUC MUS NORM STR TUM 

Latent diffusion (KLF8) 73.2 73.1 10.6 22.8 15.3 17.1 14.3 12.4 10.3 
Latent diffusion (VQF8) 37.2 13.2 18.6 18.8 27.0 23.0 24.8 21.9 21.4 
Fine-tuned stable diffusion 105.9 164.6 24.5 21.6 16.7 23.6 17.8 20.0 21.4 
styleGAN2 32.9 36.8 15.0 18.7 22.4 20.6 18.9 15.6 15.5  

J.M. Niehues et al.                                                                                                                                                                                                                              



Computers in Biology and Medicine 175 (2024) 108410

9

4. Discussion 

Generating synthetic histopathological images is relevant in multiple 
aspects: Generative models are used for educational purposes [7], and 
can help resolve issues when applying DL to automate decision-making 
processes in histopathological workflows. These issues include patient 
privacy concerns, class imbalances in many histopathological datasets, 
as well as mitigated classifier performances for biomarker prediction on 
previously unseen data. Generative models may help to address these 
problems: First, generated images can augment existing datasets, mak
ing trained models less prone to overfitting on training data. Second, 
class imbalances are corrected by presenting DL algorithms with char
acteristic generative data for any scarce class. In the case of GANs, 
Krause et al. [14] showed that training on synthetic images results in 
superior image classifiers of microsatellite instability in CRC compared 
to classifiers trained on real images alone. Their work proved the 
enhanced robustness of resulting classifiers when using generated im
ages to augment training datasets. 

In this paper, we examine a similar potential of LDMs for augmenting 
image datasets in histopathology and compare the results to a state-of- 
the-art GAN for various metrics in a systematic way. Previous works 
have already shown the superiority of DM compared to GANs outside 
and inside the medical domain [20,21,23]. For medical data, however, 
data privacy is of the utmost priority. Akbar et al. [30] and Dar et al. 
[31] showed that data memorization can occur in DM. Therefore, we 
combine the quantitative comparison of synthetic images with an 
assessment of data memorization. 

In our analysis, all evaluated generative DL methods produce images 
of high quality across the tissue classes, and medical experts have dif
ficulties distinguishing original from generated images. A result that has 
already been observed by Krause et al. with GANs [14]. Images gener
ated by the KLF8-DM are of the highest quality (expert rating scores) and 
more similar to real images (FID score) in more complex tissue classes 
than images from the other models. For the less complex adipose and 
background classes, the fine-tuned stable diffusion and the KLF8-DM, 
are outperformed by the VQF8-DM in terms of FID and expert rating 
scores. This result shows that the former two, both using the 
KLF8-autoencoder, have problems in generating predominantly white 
images. Depending on the complexity of histopathological classes, it 
might therefore be favorable to use the VQF8-autoencoder instead. 
Furthermore, fine-tuning the stable diffusion model using the same 
training setup as the KLF8-DM results in lower-quality images. As the 
diffusion process in latent space is the same, this must be attributed to 
the difference in deployed autoencoders. This can be due to two reasons: 
First, the deployed autoencoder’s reconstruction quality is different, and 
second, histopathological images are encoded to less favorable feature 
maps for the diffusion process to take place. Both autoencoders show a 
high reconstruction quality with MS-SSIM scores of 88.3 ± 7.0% and 
91.6 ± 5.3%, respectively (Fig. 2A). Therefore, the lower image quality 
in fine-tuned stable diffusion images could be due to the interplay of the 
autoencoder and the diffusion process in latent space. 

We identify the KLF8-DM as our strongest generative LDM across the 
classes. Taking the KLF8-DM as a representative for LDMs, we further 
find that images from the KLF8-DM and the styleGAN2 model form 
different patterns on t-SNE distributions. T-SNE distributions of KLF8- 
DM images spread out similarly to real images. In contrast, styleGAN2 
images tend to form clusters on the t-SNE plots which is not observed for 

real images (Fig. 2B). Our findings across the various metrics are in line 
with previous findings of LDMs beating GANs within the medical 
domain [21]. 

Using the KLF8-DM, we find that the overall accuracy of classifiers 
trained on generated images is similar to the accuracy of a classifier 
trained on real images alone. This result is promising and confirms the 
findings by Krause et al. [14]. It is a proof of concept that data can be 
shared via LDMs to train DL architectures either to account for dataset 
imbalances or to circumvent patient privacy issues. For the latter aspect, 
however, data should not be memorized by the models. This is not the 
case for the KLF8-DM, which we test by evaluating pixel-wise correla
tions between generated images and images in the training dataset. Data 
memorization should always be assessed before sharing any LDM that 
was trained on sensitive data. In the medical domain, it would be 
desirable to establish a standard for data memorization checks in the 
future. Finally, we obtain a superior classifier by augmenting the real 
dataset with the synthetic data. This is an important result as it shows 
that LDMs can be safely and successfully applied in the medical domain 
for downstream classification tasks. 

All models are trainable in a straightforward way. During the 
training of the styleGAN2 model, however, mode collapse was 
encountered several times. When mode collapse occurs, the model’s 
output collapses to a few modes or patterns to produce repetitive and 
unrealistic outputs [54,55]. In this case, the training has to be restarted 
from the last non-collapsed training point. We did not observe this 
phenomenon for diffusion models. Training the styleGAN2 took a couple 
of days for one training run, as training had to be restarted multiple 
times due to mode collapse. Ignoring mode collapse, the total consecu
tive training time for the styleGAN2 and the LDMs was similar, taking 8h 
and 24h on two NVIDIA RTX A6000, respectively. The advantage of 
GAN models is that image synthesis is fast. Ten thousand images can be 
generated within minutes. For latent diffusion processes, however, this 
process takes 10 to 20 times longer. During inference for a diffusion 
model on an NVIDIA RTX A6000, the generation of a single image takes 
0.7s, totaling approximately 2h for the generation of ten thousand im
ages for one class. Generated images for all models can be found under 
Zenodo: 10.5281/zenodo.10838706. 

A few limitations of this study exist: First, the analysis is performed 
on a dataset only containing tissue classes, and not on a dataset 
including biomarker-typical morphologies. Second, the training data is 
far from being representative of the full histopathological domain. With 
the advent of foundational models in histopathology, we may have 
foundational generative models soon to enrich datasets. Such a foun
dation model requires more diverse data than used in our analysis. Our 
results indicate such a model may be used to improve DL algorithm 
performances. Third, this analysis was carefully conducted, however, it 
can not be excluded that other training hyperparameters exist that result 
in better models. Fourth, we only checked a limited number of 
autoencoder architectures and focused on the most promising autoen
coders tested in the non-medical domain [25]. Fifth, we only generated 
images of histopathological tiles. In contrast, modern DL biomarker 
classification algorithms usually analyze histopathological whole slide 
images (WSIs). The generation of such WSIs is in principle possible, but 
lies beyond the scope of this paper. Finally, we used an 
ImageNet-pre-trained Inception-v3 model to extract features for down
stream tasks. This might not be an optimal choice for an evaluation of 
histopathological images. 

Table 3 
Accuracy scores for tissue classifiers. Tissue classifiers are trained on images generated by the KLF8-DM, the training dataset images, and the combined dataset of 
the two. Classification performances using a combination of both datasets are superior to classification from a single dataset alone.   

ADI BACK DEB LYM MUC MUS NORM STR TUM AVERAGE 

KLF8-DM 0.99 1. 0.43 0.74 0.78 0.78 0.99 0.57 0.95 0.80 
real images 0.95 0.97 0.90 0.71 0.63 0.80 0.99 0.44 0.96 0.81 
combined 0.95 1. 0.89 0.88 0.62 0.77 0.99 0.62 0.96 0.85  

J.M. Niehues et al.                                                                                                                                                                                                                              



Computers in Biology and Medicine 175 (2024) 108410

10

5. Conclusion 

This paper serves as an evaluation of LDMs in histopathology. We 
trained different LDMs and compared the resulting image qualities to 
images from a styleGAN2 model. The KLF8-DM model gives the best 
LDM and outperforms styleGAN2 in different evaluation metrics (FID, t- 
SNE, expert rating scores). We show that images generated by the KLF8- 
DM are not memorized from the training data. Augmenting the NCT- 
CRC-HE-100K datasets by KLF8-DM’s generated data for training, re
sults in a superior tissue classifier as compared to training on the real 
dataset alone. This shows that LDMs can be used to share data and 
augment existing datasets in a patient-privacy-respecting way to 
improve downstream classification tasks. 

In future work, images from LDMs may be used to augment datasets 
for state-of-the-art biomarker prediction, and the impact on resulting 
classifier performances should be evaluated. State-of-the-art biomarker 
prediction, however, usually relies on the classification of histopatho
logical WSIs. Hence the generation of WSIs via LDMs is a missing step 
and remains to be addressed. The ultimate goal is to train a generative 
foundation model for histopathology. This model could then generate 
images across the full span of histopathological modalities. By applying 
LDMs to improve the accuracy of state-of-the-art DL algorithms in his
topathology, LDMs could directly impact clinical DL applications. 
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Appendix 

A. Training Details: styleGAN2 

We train our styleGAN2 model with z and w dimensions of 512. The 
loss function is regularized by R1 loss regularization [56] with γ = 0.5, a 
style-mixing probability of 0.9, and path length regularization of weight 
2 [33,57]. The network weights are updated using the Adam optimizer 
[58] (β1 = 0, β2 = 0.99, ε = 1e^-8) with the same learning rates of value 
0.001 for the generator and discriminator and batch size of 64. Images in 
the training dataset are augmented by a large set of operations with 
probability 1, including geometrical transformations of horizontal flip
ping, isotropic and anisotropic scaling (scale_std = 0.2), arbitrary rota
tions, fractional translation (xfrac_std = 0.125), and color 
transformations in brightness (brightness_std = 0.2), contrast (con
trast_std = 0.5), luma flip, hue rotation (hue_max = 1), and saturation 
(saturation_std = 1) [59]. The styleGAN2 model is trained for 16 epochs 
and generated images are of size 256 × 256 pixels. 

B. Training Details: Latent Diffusion 

Both the KL- and VQ-autoencoder are trained for 10 epochs with 
batch size 10 and a constant learning rate of 4.5*10− 6. The DMs are 
trained with a constant learning rate of value 1e-6, batch size 64, and 30 
numbers of epochs. During the fine-tuning step of the stable diffusion 
model, the autoencoder is frozen and only the diffusion process in latent 
space is trained. This fine-tuning is performed for a constant learning 
rate of 1e-6, batch size 16, and 20 epochs. For all LDMs, only random 
rotations by multiples of 90◦ are used to augment images. 

C. Training Details: Multiclass Tissue Classifier 

The classifiers are trained for 15 epochs, with batch size 64, and 
learning rate 1e-3 using the Adam optimizer [58] with a cyclic learning 
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rate scheduler as provided by fastai [60]. The models are evaluated on a 
held-out validation set from the training set after every epoch. The 
model with the lowest loss on the validation set is used to test it on the 
test dataset. 
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