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Abstract
Background: Extracellular vesicles (EVs) have been implicated in the pathogenesis of 
asthma, however, how EVs contribute to immune dysfunction and type 2 airway in-
flammation remains incompletely understood. We aimed to elucidate roles of airway 
EVs and their miRNA cargo in the pathogenesis of NSAID-exacerbated respiratory 
disease (N-ERD), a severe type 2 inflammatory condition.
Methods: EVs were isolated from induced sputum or supernatants of cultured nasal 
polyp or turbinate tissues of N-ERD patients or healthy controls by size-exclusion 
chromatography and characterized by particle tracking, electron microscopy and 
miRNA sequencing. Functional effects of EV miRNAs on gene expression and media-
tor release by human macrophages or normal human bronchial epithelial cells (NHBEs) 
were studied by RNA sequencing, LC–MS/MS and multiplex cytokine assays.
Results: EVs were highly abundant in secretions from the upper and lower airways of 
N-ERD patients. N-ERD airway EVs displayed profoundly altered immunostimulatory 
capacities and miRNA profiles compared to airway EVs of healthy individuals. Airway 
EVs of N-ERD patients, but not of healthy individuals induced inflammatory cytokine 
(GM-CSF and IL-8) production by NHBEs. In macrophages, N-ERD airway EVs ex-
hibited an impaired potential to induce cytokine and prostanoid production, while 
enhancing M2 macrophage activation. Let-7 family miRNAs were highly enriched in 
sputum EVs from N-ERD patients and mimicked suppressive effects of N-ERD EVs on 
macrophage activation.
Conclusion: Aberrant airway EV miRNA profiles may contribute to immune dysfunc-
tion and chronic type 2 inflammation in N-ERD. Let-7 family miRNAs represent targets 
for correcting aberrant macrophage activation and mediator responses in N-ERD.
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1  |  INTRODUC TION

Nonsteroidal anti-inflammatory drugs (NSAID)-exacerbated respi-
ratory disease (N-ERD) is a chronic type 2 inflammatory disease of 
the upper and lower airways. N-ERD represents a particularly severe 
subtype of chronic rhinosinusitis with nasal polyps (CRSwNP) which 
affects 9.7% of CRSwNP patients.1 Symptoms of CRSwNP include 
nasal congestion, hyposmia, and rhinorrhea.2,3 N-ERD patients suf-
fer from CRSwNP, asthma and intolerance to NSAIDs.4 Recent work 
has shown that monocyte-derived macrophages (MDM) from N-
ERD patients exhibit aberrant transcriptional profiles and mediator 
responses as well as reduced DNA methylation compared to MDM 
from healthy controls.5 Macrophages are potent producers of eico-
sanoids, arachidonic acid (AA)-derived lipid mediators with key func-
tions in type 2 immune responses.6 The severe type 2 inflammation 
in N-ERD is perpetuated by a defect in the generation of regulatory 
cyclooxygenase (COX) metabolites (prostanoids) such as prostaglan-
din E2 (PGE2) as well as an overproduction of cysteinyl leukotrienes 
(cysLTs) and type 2 cytokines.7,8

Extracellular vesicles (EVs) have been implicated in airway inflam-
mation and the generation of pro-inflammatory eicosanoids.9,10 EVs 

can be classified, depending on their size and origin, into exosomes 
(30–100 nm), microvesicles (100–1000 nm) and apoptotic bodies 
(>1 μm).11,12 Exosomes and microvesicles are derived from the endo-
somal membrane forming multivesicular bodies or the plasma mem-
brane, respectively. EVs carry various lipids, proteins and RNAs, 
and immunoregulatory functions of EVs have particularly been at-
tributed to their microRNA (miRNA) cargo.13,14 Several studies have 
shown an altered EV concentration and cargo in bronchoalveolar 
lavage fluid (BALF), nasal lavage, and serum of asthmatics.10,15–19 
However, a potential involvement of EVs in the pathogenesis of N-
ERD has remained unknown.

We isolated EVs from the upper and lower airways of N-ERD 
patients at high purity by size-exclusion chromatography20 and per-
formed small (miRNA) and long (mRNA) RNA sequencing as well as 
targeted lipidomics to characterize the miRNA cargo and immuno-
logical effects of N-ERD EVs. The miRNA cargo of sputum as well as 
nasal tissue-derived EVs in N-ERD was distinct from NSAID tolerant 
individuals and characterized by an enhanced abundance of let-7 
family members and reduced miR-155-5p levels, known to regulate 
inflammation and macrophage polarization. Compared to EVs from 
the airways of healthy individuals, N-ERD EVs showed a strongly 

G R A P H I C A L  A B S T R A C T
•	 EVs isolated from the upper and lower airways of N-ERD patients display altered miRNA profiles compared to healthy controls.
•	 Small RNA sequencing reveals upregulation of let-7 miRNAs and downregulation of miR-155 in N-ERD sputum EVs.
•	 Let-7 family miRNAs promote macrophage M2 activation, while limiting EV-triggered cytokine responses, thus implicating aberrant EV 
miRNA profiles in N-ERD pathogenesis.
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reduced immunostimulatory capacity, which could be mimicked by 
let-7 miRNAs. Thus, EV miRNAs may possess biomarker potential 
and represent a therapeutic target for the treatment of infection-
induced exacerbations in N-ERD.

2  |  MATERIAL S AND METHODS

A detailed description of the methods used in this study is provided 
in this article's Online Repository.

2.1  |  Study approval

This study was approved by the local ethics committee at the 
Klinikum rechts der Isar, Technical University of Munich (internal 
reference: 422/16). Written informed consent in accordance with 
the Declaration of Helsinki was obtained from all patients.

2.2  |  Patient characterization

N-ERD and NSAID tolerant (NT) CRSwNP patients and healthy con-
trols were recruited to the Klinikum rechts der Isar (Munich, Germany). 
The same subjects were used in a previous study5 presenting detailed 
patient information and clinical characteristics (Table S1).

2.3  |  Isolation of sputum and nasal tissue-derived 
extracellular vesicles

Sputum induction of healthy individuals and N-ERD patients was 
performed as previously described.21 Healthy turbinate tissue or 
nasal polyp tissue was cultured at air-liquid interface for 24 h. EVs 
were isolated from sputum and tissue supernatant (SN) by precipita-
tion and purified by size-exclusion chromatography (SEC) according 
to the guidelines.22

2.4  |  Alveolar-like monocyte-derived 
macrophage culture

CD14+ monocytes were isolated from healthy, CRSwNP and N-ERD 
subjects and differentiated into alveolar-like monocyte-derived 
macrophages (MDM) as previously described.23–25

2.5  |  RNA isolation and real-time quantitative PCR 
(qPCR)

RNA isolation and qPCR was performed as previously described.25 
Small and large RNAs were purified according to the manufacturer's 
instructions (Zymo Research).

2.6  |  Lipid mediator analysis

Targeted lipidomics was performed by LC–MS/MS as previously 
described.26

3  |  RESULTS

3.1  |  EVs are abundant in sputum and nasal polyp 
tissue of patients suffering from CRSwNP and N-ERD

Previous studies suggested that EVs in the airways may contrib-
ute to the pathogenesis of allergic asthma.10 Thus, we investigated 
whether EVs are present in the upper and lower airways of N-ERD 
patients. We isolated EVs from induced sputum or tissue culture 
supernatants of nasal polyp or turbinate tissues from N-ERD and 
NSAID tolerant (NT) CRSwNP patients or healthy controls by size-
exclusion chromatography (SEC).22 Nanoparticle tracking analysis 
(NTA) and transmission electron microscopy (TEM) confirmed the 
presence of EVs ranging from 50 to 850 nm corresponding to the 
expected size range of exosomes and microvesicles (Figure 1A–D, 
Figure S1A), but not apoptotic bodies. EV yield was similar for N-
ERD (8.72 × 108 particles/mL) and healthy (8.85 × 108 particles/mL) 
sputum. TEM imaging suggested that EVs were more abundant in 
nasal polyp tissue as compared to turbinate tissues from healthy in-
dividuals (Figure 1D, Figure S1A). This suggests that EVs are highly 
abundant in the upper and lower airways of N-ERD patients and may 
thus contribute to the immune dysregulation and type 2 inflamma-
tion driving CRSwNP and bronchial asthma in N-ERD.

3.2  |  Lower airway EVs from N-ERD patients show 
a reduced capacity to activate macrophages

Macrophages are key players in inflammation and host defense in 
the airways and aberrant macrophage function has recently been 
implicated in the pathogenesis of N-ERD.5 Thus, we performed 
RNA sequencing (RNAseq) to study whether airway EVs from N-
ERD patients and healthy controls may differentially modulate 
macrophage activation. Human monocyte-derived macrophages 
(MDM) were isolated from healthy donors and differentiated with 
TGFβ and GM-CSF mimicking the airway cytokine milieu.26 MDM 
were treated with sputum EVs isolated from healthy individuals 
or N-ERD patients for 24 h prior to RNAseq (Figure 2A). Five hun-
dred and twenty-four genes were differentially expressed between 
MDM exposed to healthy versus N-ERD airway EVs (Table  S2). 
Compared to mock control (qEV PBS), exposure to healthy and 
N-ERD EVs induced the expression of pro-inflammatory genes in-
cluding CXCL5, CCL8, IL12B, IL6, IL19, IL1B, S100A12, and CCL2 
(Figure 2B,C, Table S2). However, the transcription of inflammatory 
and host defense genes was more prominently induced by healthy 
as compared to N-ERD EVs, suggesting that N-ERD airway EVs dis-
play an impaired capacity to trigger pro-inflammatory host defense 
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F I G U R E  1  EVs are abundant in sputum and nasal polyp tissue of patients suffering from NSAID-exacerbated respiratory disease. (A, B) 
Nanoparticle tracking analysis (NTA) of EVs isolated from induced sputum from healthy individuals (n = 10) (A) or N-ERD patients (n = 5) (B), 
concentration distributions and particle size were measured in triplicates, SEM is shown in red; (C, D) Transmission electron microscopy 
(TEM) images showing representative EV preparations from induced sputum (C) or nasal turbinate or polyp tissue culture supernatant (D) 
from healthy subjects or patients suffering from N-ERD.

F I G U R E  2  Exposure to airway EVs from N-ERD patients limit inflammatory response of macrophages. (A) Experimental design of EV 
isolation and stimulation of MDM with sputum EVs for 24 h, created with BioRe​nder.​com; (B–H) RNAseq data for MDM (n = 6) stimulated 
with EVs isolated from sputum of N-ERD patients or healthy individuals: Volcano plot (B, C) of differentially expressed genes (DEG) (base 
mean >100, log2 fold change ≥1 or ≤−1, respectively, adjusted p-value ≤.1) of MDM exposed to healthy EVs (B) or N-ERD EVs (C) compared 
to PBS; Volcano plot (D) and heatmap (E) of top 19 differentially expressed genes and top six genes with the highest positive fold change 
between MDM exposed to N-ERD sputum EVs vs. Healthy sputum EVs; (F, G) KEGG pathway analysis of MDM exposed to healthy EVs (F) or 
N-ERD EVs (G) compared to PBS; (H) KEGG pathway analysis of MDM exposed to N-ERD sputum EVs vs. Healthy sputum EVs. Samples are 
pooled from two individual experiments.
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functions of macrophages. Compared to healthy EVs, N-ERD EVs 
elicited a reduced induction of genes associated with the suppres-
sion of type 2 immune responses (IL12B, EBI3, PTGS2, and IL10).27–30 
FABP4 and several MHC and MHC-related genes (e.g., HLA-DPB1, 
HLA-DPA1, HLA-DRB1, CD1A, CD1B, and CD1C) were more promi-
nently downregulated in response to healthy as compared to N-ERD 
EVs (Figure 2D,E, Table S2), indicative of distinct capacities to regu-
late T-cell responses. KEGG enrichment analysis revealed that both 
healthy and N-ERD airway EV exposure induced multiple cytokine 
and chemokine pathways in MDM (Figure 2F,G), while pathways as-
sociated with asthma, S. aureus infection and antigen presentation 
were enriched in MDM stimulated with sputum EVs from N-ERD 
patients (Figure 2H).

In contrast to mRNA sequencing, small RNA sequencing (miR-
NAseq) of MDM exposed to sputum EVs revealed only minor 
changes (Figure S2A–C, Table S2). Intriguingly, exposure to N-ERD 
EVs showed a stronger impact on MDM miRNA profiles compared 
to exposure to healthy EVs, suggesting that N-ERD sputum EVs may 
transport altered or enhanced levels of miRNAs to target cells, po-
tentially contributing to their aberrant immunostimulatory potential.

3.3  |  N-ERD airway EVs trigger impaired 
mediator responses in macrophages, while eliciting 
pro-inflammatory cytokines in airway epithelial cells

As eicosanoids and chemokines are key mediators in N-ERD, we 
assessed whether sputum EVs from N-ERD patients may differen-
tially affect the output of these mediators by MDM. In line with the 
impaired induction of the COX pathway by N-ERD EVs (Figure 2), 
EVs from healthy individuals, but not from N-ERD patients elicited 
a significant production of prostanoids (particularly TXB2, PGF2α, 
PGD2, and PGE2) by MDM (Figure 3A). Furthermore, healthy spu-
tum EVs triggered the production of multiple cytokines, in particular 
TNFaα, IL-6, IL-18, and IL-27, which are involved in the negative regu-
lation of type 2 immune responses and macrophage M2 polarization 
(Figure 3B).31–33 In contrast, N-ERD sputum EVs failed to elicit the 
production of type 2 suppressive cytokines in MDM, suggesting that 
immunoregulatory roles of EVs are defective in N-ERD (Figure 3B). 
In line with this result, CCL17, involved in type 2 inflammation,34 
was upregulated by both healthy and N-ERD-derived sputum EVs 
(Figure  3B). While the levels of most cytokines were much lower 
in sputum EVs as compared to MDM, EVs contained high amounts 
of IL-12 family cytokines (IL-12 and IL-27), which may contribute to 
different immunostimulatory capacities of N-ERD EVs (Table  S3). 
As BALF-derived EVs isolated from asthmatic patients have been 
shown to alter mediator responses of airway epithelial cells,10 we 
quantified the cytokine production of normal human bronchial ep-
ithelial cells (NHBEs) in response to sputum EVs from healthy in-
dividuals or N-ERD patients. NHBEs exposed to sputum EVs from 
healthy donors showed no significant induction of epithelial cy-
tokines (Figure 3C). In contrast, sputum EVs from N-ERD patients 
elicited the production of GM-CSF and IL-8, two cytokines involved 

in granulocyte recruitment and survival. This suggests that EVs from 
the airways of N-ERD patients display a reduced potential to trig-
ger the production of type 2 suppressive cytokines and prostanoids 
in macrophages, while increasing epithelial cytokines that stimulate 
granulocyte recruitment. Thus, N-ERD airway EVs affect multiple 
cellular events that favor type 2 inflammation, while impairing type 
1 mediated host defense.

3.4  |  N-ERD airway EVs display broadly 
altered miRNA profiles with upregulation of let-7 
family miRNAs

miRNAs have been suggested as the major functional cargo of EVs 
and EV miRNAs have been implicated in asthma and in altered im-
munological functions of EVs.10,16,18 Thus, we performed miRNAseq 
of airway EVs to define potential differences in the miRNA cargo of 
N-ERD EVs, which may explain the observed aberrant immunostim-
ulatory capacities. Transcriptomic analysis yielded 19 differentially 
expressed miRNAs between N-ERD and healthy sputum EVs and 96 
between nasal polyp tissue EVs from N-ERD and 119 from CRSwNP 
patients compared to turbinate tissue EVs from healthy individuals 
(Table  S4). This suggested that the miRNA cargo of airway EVs is 
broadly altered during type 2 inflammation and affected by the tis-
sue microenvironment in the upper and lower airways. For sputum 
EVs, miRNAs of the let-7 family (let-7a-5p, let-7f-5p, let-7b-5p, and 
let-7c-5p) were highly upregulated in N-ERD patients as compared 
to healthy individuals (Figure 4A,B). miR-125a-5p and let-7c-5p were 
enriched whereas miR-125b-5p, miR-21-5p, miR-200a-3p, miR-
30a-5p, miR-155-5p, and miR-3168 were downregulated in N-ERD 
sputum EVs (Figure 4A,B). Intriguingly, N-ERD sputum EVs showed 
a more diverse miRNA cargo compared to healthy sputum EVs with 
only three unique miRNAs in healthy EVs (Figure 4C).

In line with the miRNA profiling of N-ERD sputum EVs, nasal 
tissue EVs of N-ERD and CRSwNP patients showed high levels of 
miR-125a-3p and let-7f-5p (Figure  4D,E, Figure  S1B,C), prompting 
us to focus on let-7 miRNAs, implicated in type 2 inflammation and 
regulation of macrophage functions.35–37 Furthermore, miR-1246, 
miR-182-5p, miR-223-5p, and miR-9-5p were upregulated in N-ERD 
and CRSwNP nasal tissue-derived EVs whereas miR-143-3p and 
miR-145-3p were downregulated predominantly in CRSwNP nasal 
polyp EVs (Figure 4D,E, Figure S1B,C). Comparing the miRNA cargo 
of EVs isolated from healthy nasal tissue, N-ERD or CRSwNP nasal 
polyp tissue, CRSwNP EVs displayed 140 and N-ERD EVs 45 unique 
miRNAs compared to healthy nasal EVs (Figure  4F, Figure  S1D). 
This suggests that EVs of the upper and lower airways from N-ERD 
and CRSwNP patients carry an aberrant miRNA cargo compared to 
healthy controls. Nasal polyp tissue EVs from N-ERD and CRSwNP 
patients showed a similar pattern of highly upregulated miRNAs, but 
an overall distinct miRNA expression pattern with unique miRNAs 
(e.g., miR-651-5p for N-ERD and miR-449a for CRSwNP) for both en-
dotypes. Thus, EV miRNA profiles in NSAID tolerant and intolerant 
CRSwNP indicate overlapping pathomechanisms and inflammatory 
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F I G U R E  3  N-ERD airway EVs impair 
cytokine and prostanoid responses in 
macrophages and bronchial epithelial 
cells. Mediator production of MDM (A, 
B) or NHBEs (C) stimulated with sputum 
EVs from healthy individuals or N-ERD 
patients: Levels of eicosanoids (LC–MS/
MS) (A) and cytokines (multiplex cytokine 
analysis) for MDM SN (n = 8) (B) or NHBE 
SN (n = 4–5) (C) stimulated with sputum 
EVs from N-ERD patients or healthy 
controls or PBS (mock isolated qEV 
PBS) for 24 h. Data are pooled from two 
individual experiments and are presented 
as mean + SEM. Statistical significance was 
determined by Friedman test with Dunn's 
multiple comparison test (A–C); *p < .05; 
**p < .01; ***p < .001; n.d. not detected.
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signatures, while supporting the potential of distinct EV miRNAs as 
biomarkers.

3.5  |  miRNAs identified in sputum EVs and MDM 
from N-ERD or healthy subjects differentially regulate 
M2 macrophage polarization and cytokine responses

As MDM from N-ERD patients displayed an inflammatory metabolic 
and epigenetic reprogramming,5 we analyzed miRNA profiles of 
MDM from healthy controls, N-ERD and CRSwNP patients by small 
RNA sequencing to assess endogenous miRNA expression of MDM. 
Fifty-nine or 115 miRNAs were differentially expressed between 
N-ERD or CRSwNP MDM compared to healthy MDM, respectively 
(Figure  5A,B, Figure  S1E,F, Table  S5). miRNAs of patient-derived 
MDM (N-ERD and CRSwNP) showed a high overlap characterized 
by upregulation of miRNAs associated with M2 macrophage polari-
zation (miR-125a-3p38 and miR-125a-5p39) and impaired antibacte-
rial immunity (miR-99b40) indicating common characteristics of the 
underlying pathology and immune dysregulation.

To evaluate the role of the identified miRNA cargo from N-ERD 
and healthy sputum EVs, we transfected the top differentially reg-
ulated miRNAs into MDM and analyzed cytokine and chemokine 
responses as well as macrophage polarization markers. To control 
for potential effects of glucocorticoids (GC) on major differentially 
expressed miRNAs, we analyzed let-7a, let-7f, and miR-155 expres-
sion in MDM and NHBEs treated with fluticasone propionate (FP). 
Short-term (24 h) treatment with FP did not affect let-7a, let-7f, and 
miR-155 expression in MDM, while FP treatment during the differen-
tiation period (7 days) tended to induce let-7a and let-7f (Figure S3A). 
As long-term FP treatment during macrophage differentiation im-
paired cell viability, we additionally studied effects in fully differen-
tiated MDM. However, none of the differentially expressed miRNAs 
was significantly affected by prolonged FP exposure both in MDM 
or in NHBEs, (Figure S3B,C), suggesting that GC treatment is not the 
major driver of miRNA changes in major source cells of airway EVs.

For transfection experiments, we used miR-155-5p and miR-
3168 as miRNAs associated with healthy and let-7a-5p as a miRNA 
cargo of N-ERD sputum EVs. MDM were stimulated with LPS or IL-4 
to trigger inflammatory M1 or M2 macrophage activation, respec-
tively. In IL-4-stimulated MDM, let-7a-5p reduced the expression of 
anti-inflammatory IL10 compared to control miRNA. Type 2 activat-
ing markers (MRC1 and TGM2) were reduced, while TNF and IDO1 

were increased by healthy-associated miR-155-5p compared to N-
ERD associated let-7a-5p (Figure 5C). Similar results were observed 
in LPS-treated MDM (Figure 5D) except for IL6 which was reduced in 
let-7a-5p-compared to miR-155-5p-treated macrophages. Compared 
to let-7a-5p and miR-155-5p, miR-3168 had minor effects on EV-
modulated genes, showing a weak downregulation of IL10 and in-
duction of IDO1 both in M1 and M2 macrophages (Figure S3D,E). 
As MDM express let-7a-5p endogenously (Figure  S3F), we trans-
fected MDM with a let-7 inhibitor targeting let-7a-5p, let-7f-5p and 
miR-98-5p, all upregulated in N-ERD sputum EVs. Let-7 inhibition 
resulted in enhanced IL10 and TNF; and reduced MRC1 expression in 
IL-4- as well as LPS-stimulated macrophages compared to a control 
inhibitor (Figure 5E,F). Inhibition of macrophage intrinsic let-7 family 
miRNAs tended to increase IL6 and IDO1 in IL-4-treated MDM, sug-
gesting that N-ERD-associated let-7 miRNAs may promote a shift 
from M1 towards M2 activation. Both inhibitors (let-7 and control) 
resulted in low cytotoxicity, which is unlikely to explain differential 
effects on macrophage activation (Figure  S3G). Inflammatory and 
immunoregulatory tendencies of let-7 inhibition on gene regulation 
were confirmed under M0 conditions without IL-4 or LPS stimula-
tions (Figure  S3H). Thus, immunoregulatory miRNAs contained in 
healthy airway EVs reduce M2 macrophage polarization and pro-
mote cytokine responses contrary to N-ERD associated let-7 fam-
ily miRNAs, which may contribute to aberrant macrophage effector 
functions in N-ERD patients.5

3.6  |  N-ERD sputum EVs prevent 
immunoregulatory effects of let-7 inhibition

As let-7 is endogenously expressed and let-7 inhibition had profound 
effects on the transcription of inflammatory cytokines and type 2 
suppressive factors in MDM (Figure 5E,F, Figure S3H), we assessed 
the functional roles of N-ERD sputum EVs during let-7 inhibition 
(Figure 6A). In line with the findings shown in Figure 3B, exposure 
to N-ERD EVs alone did not alter the expression or release of TNF 
or IL6 as well as further immune regulatory genes associated with 
M2 polarization compared to mock (qEV PBS) stimulated MDM 
(Figure 6B–D). Interestingly, when let-7 inhibitor was co-transfected 
with N-ERD sputum EVs, N-ERD EVs prevented the effect of let-7 
inhibition resulting in blunted expression and protein levels of type 
2 suppressive factors (TNFAIP3, IL6, and IDO1) (Figure  6B,D). In 
contrast, expression of the M2 marker TGM2 was partially restored 

F I G U R E  4  N-ERD airway EVs display broadly altered miRNA profiles with upregulation of let-7 family miRNAs. (A–C) Differential miRNA 
content (small RNAseq) in sputum EVs between N-ERD patients (pooled, n = 5) and healthy individuals (pooled, n = 10); (A) Heatmap of 
top 25 differentially expressed miRNAs, (B) MA plot of detected miRNAs, upregulated miRNAs in red (log2 fold change >1) with top five 
labeled, downregulated miRNAs in blue (log2 fold change <1) with top five labeled, respectively; (C) Venn diagram of distinct miRNA profiles 
between N-ERD and healthy airway EVs; (D–F) Differentially expressed miRNAs in EVs of nasal tissue from healthy individuals (n = 1) and N-
ERD patients (pooled, n = 4); (D) Heatmap of top 25 differentially expressed miRNAs; (E) MA plot of detected miRNAs in EVs of nasal tissue 
between N-ERD versus Healthy, upregulated miRNAs in red (log2 fold change >1) with top five labeled, downregulated miRNAs in blue (log2 
fold change <1) with top five labeled, respectively. (F) Venn diagram of distinct miRNA profiles.
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when N-ERD sputum EVs were added to let-7 inhibitor-treated cells 
(Figure 6C). Thus, airway EVs from N-ERD patients containing high 
levels of let-7 family miRNAs (including let-7a-5p, let-7f-5p and miR-
98-5p) can overcome type 2 suppressive effects of let-7 inhibition. 
These data confirm key roles of let-7 family members in functional 
effects of N-ERD EVs (Figure  4A,B) and suggest that airway EVs 
contribute to immune dysfunction and chronic type 2 inflammation 
in N-ERD.

4  |  DISCUSSION

Recent studies have implicated EVs in physiological as well as patho-
logical processes including asthma and chronic rhinosinusitis.12,41,42 
The present study uncovers an altered EV miRNA cargo as a potential 
pathomechanism in N-ERD and identifies an important role of air-
way EVs in immune dysregulation and chronic type 2 inflammation.

Intriguingly, healthy airway EVs triggered a profound prostanoid 
and cytokine response in macrophages, suggesting that EVs can 
support host defense responses. In contrast, N-ERD EVs showed an 
impaired capacity to induce factors involved in type 1 immunity (e.g., 
TNFαa, IL-6) and immune regulation (e.g., PGE2, IL-10, and IL-18). N-
ERD EVs also exhibited a reduced suppression of FABP4 implicated 
in neutrophil recruitment43 and epithelial barrier disruption,44 sug-
gesting that N-ERD EVs fail to support host defense and barrier in-
tegrity. The enhanced induction of MHC class II genes (HLA-DPB1, 
HLA-DRB1, HLA-DOA, and HLA-DQB2) associated with asthma and 
N-ERD45–47 further implicates airway EVs in immune dysregulation 
in N-ERD.

The strong immunostimulatory potential of healthy airway EVs 
was surprising and may suggest the presence of microbial products 
within EVs isolated from the airways. Thus, potential differences in 
the airway microbiome between healthy and N-ERD subjects may at 
least partially explain their distinct immunological effects. However, 
in contrast to their reduced stimulatory effects on macrophages, 
N-ERD airway EVs triggered the release of pro-inflammatory IL-8 
and GM-CSF by NHBEs, which was not the case for healthy air-
way EVs. Thus, the distinct cargo of healthy and N-ERD EVs has 
specific effects on different cell types implicated in host defense, 
inflammation, and barrier function in the airways. miRNAs have 
been implicated in the regulation of gene expression in allergy and 
asthma48 and we observed prominent differences in the miRNA con-
tent of healthy and patient-derived EVs. We particularly focused on 

miRNAs of the let-7 family, known to regulate inflammation35,36,49 
and macrophage polarization37,50 as these were highly abundant in 
EVs from N-ERD and CRSwNP patients. miR-125a and let-7c, both 
enriched in N-ERD sputum EVs induce M2 polarization,37,39 whereas 
miR-125b, miR-21, miR-155, and miR-200a, all downregulated in N-
ERD sputum EVs, are associated with M1 polarization.51–53 In line 
with our results, miR-155, miR-3168, and let-7d levels were reduced 
in patients suffering from asthma or idiopathic pulmonary fibro-
sis.16,54,55 Mice deficient for miR-155 displayed increased airway re-
modeling and Th2 polarization suggesting a homeostatic function,56 
which is defective in N-ERD and may contribute to the type 2 immu-
nopathology. miR-1246, upregulated in nasal tissue-derived patient 
EVs, was also increased in airway epithelium of asthmatics and its 
target POSTN was shown to regulate asthma and fibrosis progres-
sion.57 This suggests that miRNAs of EVs and MDM from N-ERD 
and CRSwNP patients promote M2 polarization and aberrant mac-
rophage activation, which may contribute to impaired lung function 
and nasal polyp growth. Despite our functional assays, supporting a 
key role for let-7 miRNAs in the reduced immunostimulatory capac-
ities of N-ERD EVs, we cannot exclude a contribution of additional 
factors, such as cytokines (e.g., IL-12 and IL-27), which we also found 
to be enriched in healthy sputum EVs. Importantly, treatment with 
glucocorticoids (GC) might influence the miRNA content in N-ERD- 
and CRSwNP-derived samples58–63 and previously reported GC-
induced changes in miRNAs (upregulation of let-7 family members 
and miR-98, downregulation of miR-155 and miR-143) were in line 
with CRSwNP-associated profiles observed in our study. However, 
fluticasone propionate did not affect let-7 family miRNA expression 
in bronchial epithelial cells or macrophages, suggesting that the in-
flammatory pathology itself rather than GC treatment is the major 
driver of aberrant miRNA profiles in N-ERD airway EVs. Of note, N-
ERD patients undergoing surgery for nasal polyp removal received 
systemic GC preoperatively, possibly explaining lower ECP levels as 
compared to patients undergoing sputum sampling.5 These different 
treatment regimens may contribute to the lower overlap between 
healthy and N-ERD EV miRNA profiles in sputum as compared to 
nasal tissue.

Contrary to our study, multiple studies reported reduced levels of 
let-7a in bronchial biopsies, serum, and nasal tissue from asthmatics 
and CRSwNP patients, respectively.64,65,36 In addition, plasma EVs 
from asthmatics were shown to display lower levels of let-7a and in-
creased miR-155 expression.65 Indeed, the tissue milieu and source 
cells play a pivotal role in miRNA expression profiles and serum or 

F I G U R E  5  miRNAs identified in sputum EVs and MDM from N-ERD or healthy subjects differentially regulate cytokine responses 
and M2 macrophage polarization. (A, B) Differentially expressed miRNAs in MDM between healthy individuals (n = 2) and N-ERD (n = 2) 
patients; (A) Heatmap of top 21 differentially expressed miRNAs, (B) MA plot of detected miRNAs between healthy and N-ERD patients, 
upregulated miRNAs in red (log2 fold change >1) with top five labeled, downregulated miRNAs in blue (log2 fold change <1) with top five 
labeled, respectively; (C–F) Relative gene expression of MDM transfected with control miRNA, miRNAs (let-7a-5p and miR-155-5p) (C, 
D), or inhibitors (control, let-7 (E, F)) (50 nM) for 48 h stimulated with IL-4 (10 ng/mL) (C, E) or LPS (100 ng/mL) (D, F) (n = 6). (C–F) Data are 
pooled from two individual experiments and presented as mean + SEM. Statistical significance was determined by Friedman test with Dunn's 
multiple comparison test (C, D) or Wilcoxon test (E, F); *p < .05; **p < .01.
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12  |    HARTUNG et al.

EV miRNA content might not reflect the profiles found in inflamed 
tissues. Previous studies indicated that EV miRNAs do not resem-
ble host cell miRNA content and that miRNAs negatively correlated 
between airway EVs and lung tissue which may further explain the 
reported discrepancies.66–68 As EVs were isolated from induced spu-
tum, we analyzed the products of a heterogenous mixture of host 

cells, mostly reflecting the upper airways. Indeed, the miRNA levels 
of MDM derived from healthy, N-ERD, or CRSwNP patients did not 
match the miRNA cargo identified within airway EVs, suggesting that 
MDM are not the main EV/miRNA source in induced sputum. In mu-
rine BALF, 80% of EVs are of epithelial origin69 and epithelial-derived 
miRNAs and EVs have been implicated in asthma development.70,19 

F I G U R E  6  N-ERD sputum EVs prevent immunoregulatory effects of let-7 inhibition. (A) Experimental design of MDM transfected with 
let-7 inhibitor and exposed to N-ERD airway EVs, created with BioRe​nder.​com; Gene expression profile (B, C) and protein levels (D) of MDM 
(n = 3) +/− transfected with let-7 inhibitor (50 nM) +/− exposed to N-ERD sputum EVs for 48 h. Data are presented as mean + SEM from one 
experiment. Statistical significance was determined by Friedman test with Dunn's multiple comparison test (B–D); *p < .05.
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However, during allergic airway inflammation, EVs of hematopoietic 
origin were recruited into the inflamed tissue suggesting a contribution 
of immune-cell derived EVs to allergic inflammation.69 Therefore, fur-
ther research is necessary to elucidate the origin, target cells, and the 
contribution of airway EVs to the pathogenesis and severity of N-ERD. 
As obtaining sufficient EV material from individual donors is difficult, 
EVs from different donors had to be pooled for miRNA sequencing 
and functional assays. We did not collect sputum from most NSAID 
tolerant CRSwNP patients as this subgroup had poorly characterized 
and heterogenous lower airway inflammation. Thus, we decided to 
focus on N-ERD as a clearly defined CRSwNP endotype with bronchial 
asthma. A more detailed characterization and comparison of airway 
EVs based on protein markers was impossible due to the low protein 
content of the highly pure EV preparations. The low amounts of air-
way EVs obtained from healthy individuals precluded functional assays 
with let-7 inhibitors and healthy sputum EVs. We were also unable to 
purify sufficient amounts of N-ERD EVs for experiments with a control 
inhibitor, limiting us to the comparison between let-7 inhibitor alone 
or in the presence of N-ERD EVs. Such limitations could potentially 
be overcome by recently developed single cell methods, including sc 
miRNA sequencing,71 which may be adapted to EVs in the future.

Given the long-term stability of EVs, the impact of GC and cur-
rent biologics (e.g., dupilumab) on EV/miRNA levels should be inves-
tigated to assess the beneficial and detrimental effects of treatment 
regimens on the susceptibility to infections and exacerbation. 
Overall, this study implicates airway EV miRNAs in chronic type 2 
inflammation and increased susceptibility to respiratory infections 
in asthma and CRSwNP and suggests that targeting EV miRNAs may 
correct for aberrant macrophage activation and mediator responses 
in chronic airway disease.
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